Tutorial letter 201/2/2018

Basic Statistics
 STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01

CHAPTER 1

QUESTION 1

Scales of measurement
Rating availability of parking space implies an ordinal variable and; listing occupation is a nominal variable.

Option 2

QUESTION 2

Types of data
Number of viewers of a movie is a countable numeric value. It will be classified as: Quantitative, discrete data.

Option 1

CHAPTER 2

QUESTION 3

Summarising numeric data.
From the histogram only 7 shoppers out of 30 spent R800 or less.
This means that $\frac{7}{30} \times 100=23.33 \%$

Option 5

QUESTION 4

Numeric data
From the histogram only 26 , i.e. $(7+14+5)$ shoppers spent R1600 or less
Option 1

QUESTION 5

Summarising categorical data
From the table only 7 out of 30 , i.e. 23.33% of all shoppers surveyed are males who prefer to shop at Pick and Pay.

Option 1

CHAPTER 3

QUESTION 6

Quartiles
Start by ordering the values as follows:

$$
\begin{aligned}
& -4,-3,-3,-1,1,2,4,5,6,10,10 \\
& n=11
\end{aligned}
$$

First quartile (lower quartile) is found in position: $\frac{n+1}{4}=\frac{11+1}{4}=3^{\text {rd }}$ position of an ordered list.
\therefore First quartile $\left(Q_{1}\right)=-3$
Third quartile (upper quartile) is found in position:

$$
\frac{3(n+1)}{4}=\frac{3(12)}{4}=9^{\text {th }} \text { position }
$$

\therefore Third quartile $\left(Q_{3}\right)=6$

$$
\begin{aligned}
\text { Interquartle range }(I Q R) & =Q_{3}-Q_{1} \\
& =6-(-3) \\
& =6+3 \\
& =9
\end{aligned}
$$

Option 2

QUESTION 7

Numerical descriptive measures we have

0	0	0	$n=1$
1	1	1	
2	2		Mode $=0$ and 1
4	4		Median $=1$
5			Standard deviation $=1.78$

Thus, mean is greater than the median, telling us that the distribution of this data set is positively skewed or skewed to the right.

Option 1

QUESTION 8

Measure of variation or dispersion
Coefficient of variation $(C V)=\frac{S}{\bar{X}} \times 100$

From Question 7, mean $=1.82$ and standard deviation $=1.78$
$\therefore \mathrm{CV}=\frac{1.78}{1.82} \times 100=97.80 \%$
The standard deviation is 97.80% of the size of the mean.
Option 5

QUESTION 9

Descriptive measures

4	1	5	8					$n=17$
5	0	2	2	5	9			Range $=73-41=32$ 6 1
2	5	5	6	6	7	Mode $=52,65,66$		
7	0	3						

The numbers 52, 65, 66 appears twice each. Therefore, Option 2 becomes an incorrect statement. We have a trimodal case in the data set.

Option 2

CHAPTER 4

QUESTION 10

Probability
$P(A)=0.30, P(B)=0.20 \quad A \& B$ mutually exclusive means $P(A \cap B)=0$.
Option 5 is the only incorrect statement, because $P(A \mid B) \neq P(A)$ which is required for A and B to be independent.
$P(A \mid B)=0$ and $P(A)=0.30$. All other statements are correct.
Option 5

QUESTION 11

Probability (intersection of events)
$P($ White farmer $)=\frac{5}{138}=0.0362$
Option 5

QUESTION 12

Addition rule
$P($ Neither Indian nor Teacher $)=\frac{74}{138}=0.5362$
Option 1

QUESTION 13

Probability

From the Venn diagram, the $P\left(A^{\prime} \cap B^{\prime}\right)$ is equal to 0.3 .
Option 4

CHAPTER 5

QUESTION 14

Poisson
$\lambda=3$ per night

$$
P(X=5)=\frac{3^{5} \times e^{-3}}{5!}=0.1008
$$

or just use the Poisson probability table, using the fact that $\lambda=3$ with $X=5$.
Option 3

QUESTION 15

Binomial
$\pi=0.8$ within 12 hours
$n=0.2$ after 12 hours (or late)
$n=7$
Only one parcel means $P(X=1)$

$$
\begin{aligned}
P(X=1) & =n C_{X} \pi^{X}(1-\pi)^{n-X} \\
& =7 C_{1}(0.2)^{1}(0.8)^{7-1} \\
& =7 \times 0.2 \times 0.2621 \\
& =0.3670
\end{aligned}
$$

or just use the binomial probability table, using the fact that $\pi=0.2, n=7$ and $X=1$.
Option 1

QUESTION 16

Binomial
$\pi=0.8$ within 12 hours
$n=7$
Only one parcel means $P(X=1)$

$$
\begin{aligned}
P(X=1) & =n C_{X} \pi^{X}(1-\pi)^{n-X} \\
& =7 C_{1}(0.8)^{1}(0.2)^{7-1} \\
& =7(0.8)(0.0001) \\
& =0.0004
\end{aligned}
$$

or just use the binomial probability table, using the fact that $\pi=0.8, n=7$ and $X=1$.

Option 1

QUESTION 17

Discrete random variable.
Option 3 is the correct statement as follows:

$$
\begin{aligned}
P(2<X \leq 4) & =P(X \text { is greater than } 2 \text { but less or equal to } 4) \\
& =P(X=3)+P(X=4) \\
& =0.299+0.138 \\
& =0.4370
\end{aligned}
$$

Option 3

CHAPTER 6

QUESTION 18

Standard normal distribution

$$
P\left(Z_{\downarrow}^{>}-1.44\right)=0.9251
$$

Means greater than

All other options are incorrect.
Option 1

QUESTION 19

Normal distribution
$\mu=25$ and $\sigma=2.5$
$P(X>K)=0.2676$

$$
\begin{aligned}
\therefore X & =\mu+z \sigma \\
& =25+(0.62)(2.5) \\
& =26.55 \\
\therefore \quad P(X>26.55) & =0.2676
\end{aligned}
$$

Option 1

QUESTION 20

Normal distribution

$$
\begin{aligned}
& \mu=5 \text { and } \sigma=0.75 \\
& P(X \leq 4) \text { means at most four } \\
& P\left(Z \leq \frac{4-5}{0.75}\right) \\
& P(Z \leq-1.33) \\
&= 0.0918
\end{aligned}
$$

Option 1

