Tutorial letter 201/2/2018

Basic Statistics STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01

Define tomorrow.

CHAPTER 1

QUESTION 1

Scales of measurement

Rating availability of parking space implies an ordinal variable and; listing occupation is a nominal variable.

Option 2

QUESTION 2

Types of data

Number of viewers of a movie is a countable numeric value. It will be classified as: Quantitative, discrete data.

Option 1

CHAPTER 2

QUESTION 3

Summarising numeric data.

From the histogram only 7 shoppers out of 30 spent R800 or less.

This means that $\frac{7}{30} \times 100 = 23.33\%$

Option 5

QUESTION 4

Numeric data From the histogram only 26, i.e. (7 + 14 + 5) shoppers spent R1600 or less

Option 1

QUESTION 5

Summarising categorical data From the table only 7 out of 30, i.e. 23.33% of all shoppers surveyed are males who prefer to shop at Pick and Pay.

CHAPTER 3

QUESTION 6

Quartiles Start by ordering the values as follows:

$$-4$$
, -3 , -3 , -1 , 1, 2, 4, 5, 6, 10, 10
 $n = 11$

First quartile (lower quartile) is found in position: $\frac{n+1}{4} = \frac{11+1}{4} = 3^{rd}$ position of an ordered list.

 \therefore First quartile $(Q_1) = -3$

Third quartile (upper quartile) is found in position:

$$\frac{3(n+1)}{4} = \frac{3(12)}{4} = 9^{\text{th}}$$
 position

 \therefore Third quartile $(Q_3) = 6$

Interquartle range
$$(IQR) = Q_3 - Q_1$$

= $6 - (-3)$
= $6 + 3$
= 9

Option 2

QUESTION 7

Numerical descriptive measures we have

0	0	0	n = 1
1	1	1	Mode = 0 and 1
2	2		Median = 1
4	4		Mean = 1.82
5			Standard deviation $= 1.78$

Thus, mean is greater than the median, telling us that the distribution of this data set is positively skewed or skewed to the right.

Option 1

QUESTION 8

Measure of variation or dispersion Coefficient of variation $(CV) = \frac{S}{\overline{X}} \times 100$ From Question 7, mean = 1.82 and standard deviation = 1.78 $\therefore CV = \frac{1.78}{1.82} \times 100 = 97.80\%$ The standard deviation is 97.80% of the size of the mean.

Option 5

QUESTION 9

Descriptive measures

The numbers 52, 65, 66 appears twice each. Therefore, Option 2 becomes an incorrect statement. We have a trimodal case in the data set.

Option 2

CHAPTER 4

QUESTION 10

Probability

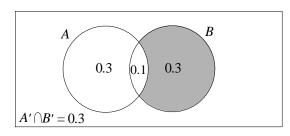
```
P(A) = 0.30, P(B) = 0.20 A & B mutually exclusive means P(A \cap B) = 0.
Option 5 is the only incorrect statement, because P(A|B) \neq P(A) which is required for A and B to be independent.
```

P(A|B) = 0 and P(A) = 0.30. All other statements are correct.

Option 5

QUESTION 11

Probability (intersection of events) P (White farmer) = $\frac{5}{138} = 0.0362$


Option 5

QUESTION 12

Addition rule P (Neither Indian nor Teacher) = $\frac{74}{138} = 0.5362$

QUESTION 13

Probability

From the Venn diagram, the $P(A' \cap B')$ is equal to 0.3. Option 4

CHAPTER 5

QUESTION 14

Poisson $\lambda = 3$ per night

$$P(X=5) = \frac{3^5 \times e^{-3}}{5!} = 0.1008$$

or just use the Poisson probability table, using the fact that $\lambda = 3$ with X = 5.

Option 3

QUESTION 15

Binomial $\pi = 0.8$ within 12 hours n = 0.2 after 12 hours (or late) n = 7Only one parcel means P(X = 1)

$$P(X = 1) = nC_X \pi^X (1 - \pi)^{n-X}$$

= 7C₁ (0.2)¹ (0.8)⁷⁻¹
= 7 × 0.2 × 0.2621
= 0.3670

or just use the binomial probability table, using the fact that $\pi = 0.2$, n = 7 and X = 1.

QUESTION 16

Binomial $\pi = 0.8$ within 12 hours n = 7Only one parcel means P(X = 1)

$$P(X = 1) = nC_X \pi^X (1 - \pi)^{n-X}$$

= 7C₁ (0.8)¹ (0.2)⁷⁻¹
= 7 (0.8) (0.0001)
= 0.0004

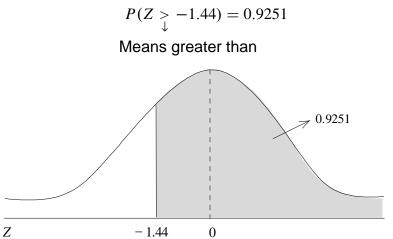
or just use the binomial probability table, using the fact that $\pi = 0.8$, n = 7 and X = 1.

Option 1

QUESTION 17

Discrete random variable.

Option 3 is the correct statement as follows:

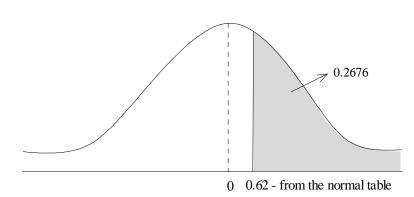

$$P(2 < X \le 4) = P(X \text{ is greater than } 2 \text{ but less or equal to } 4)$$

= $P(X = 3) + P(X = 4)$
= $0.299 + 0.138$
= 0.4370

Option 3

CHAPTER 6

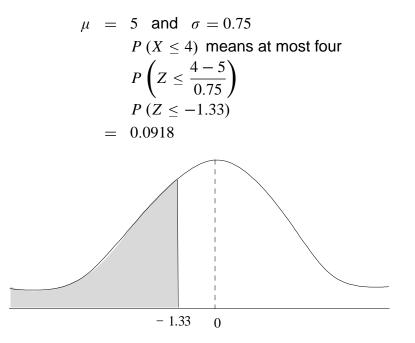
QUESTION 18


Standard normal distribution

All other options are incorrect.

QUESTION 19

Normal distribution $\mu = 25$ and $\sigma = 2.5$ P(X > K) = 0.2676



$$\therefore X = \mu + z\sigma$$

= 25 + (0.62) (2.5)
= 26.55
$$\therefore P(X > 26.55) = 0.2676$$

Option 1

QUESTION 20

Normal distribution

