Tutorial letter 201/2/2017

Basic Statistics STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01

Define tomorrow.

CHAPTER 6

QUESTION 1

Normal distribution $\mu = 5$ and $\sigma = 0.75$ $P(X \le 25)$ does not provide excellent service

Option 1

QUESTION 2

Standard Normal distribution (area to the right)

QUESTION 3

Standard normal distribution P(Z > -1.44) = 0.9251

All other options are incorrect.

Option 1

CHAPTER 5

QUESTION 4

Discrete random variable Option 3 is the correct statement as follows

> $P(2 < X \le 4) = P(X \text{ is greater than } 2 \text{ but less or equal to } 4)$ = P(X = 3) + P(X = 4)= 0.299 + 0.138= 0.4370

Option 3

QUESTION 5

Binomial (Properties or Characteristics) Distribution is discrete Option 4

QUESTION 6

Binomial $\pi = 0.45$ and n = 9Option 3 is incorrect, the corrected statement should be

$$P(X = 0) = 9C_0 (0.45^0) (0.55)^{0-9}$$

= 1 × 1 × 0.0046
= 0.0046 or 0.46%

the easier way will be to read the answer from the binomial probability table using the fact that $\pi = 0.45$, n = 9 and X = 0.

Option 3

QUESTION 7

Poisson $\lambda = 3$ per night Option 3 is correct.

$$P(X=5) = \frac{3^5 \times e^{-3}}{5!} = 0.1008$$

or just use the poisson probability table, using the fact that: $\lambda = 3$ with X = 5.

Option 3

QUESTION 8

Probability (independent events)

P(SE) = 0.2 P(TH) = 0.35 $P(SE \text{ and } TH) = 0.2 \times 0.35$ = 0.07 or 7%

There is a probability of 7% that a house in a secure estate and a townhouse will be broken into in the next year.

Option 1

QUESTION 9

Probability (addition rule)

$$P(F) = 0.6$$

$$P(C) = 0.15$$

$$P(F \cap C) = 0.25$$

∴ $P(F \text{ or } C) = P(F) + P(C) - P(F \cap C)$

$$= 0.6 + 0.15 - 0.25$$

$$= 0.5 \text{ or } 50\%$$

There is a probability of 50% of randomly selecting a friend who prefers fruit juice or coffee.

QUESTION 10

Probability

P(A) = 0.30, P(B) = 0.20 A & B mutually exclusive means $P(A \cap B) = 0$ Option 5 is the only incorrect statement because $P(A|B) \neq P(A)$ which is required for A and B to be independent.

$$P(A|B) = 0$$
 and $P(A) = 0.30$

All other statements are correct.

Option 5

QUESTION 11

		A	В	Total		
	М	78	42	120		
	W	19	11	30		
	Total	97	53	150		
$P(W \cap B) = \frac{11}{150} = 0.0733$ joint events						

Option 3

CHAPTER 3

QUESTION 12

Numerical descriptive measures

4	1	5	8				
5	0	2	2	5	9	6	
6	1	2	5	5	6	6	7
7	0	3					

n	=	17
range	=	73 - 41 = 32
mode	=	52, 65, 66

The numbers appears twice.

Each option 2 becomes an incorrect statement. We have trimodal case in this dataset. Option 2

QUESTION 13

We have

Thus, mean is greater than the median, telling us that the distribution of this data set is positively skewed or skewed to the right.

Option 1

QUESTION 14

Measure of variation or dispersion

Standard deviation =
$$\frac{\sum (X_i - \bar{X})^2}{n-1}$$

= $\frac{(0-1.82)^2 + \dots + (5-1.82)^2}{11-1}$
= 1.78

Option 2

QUESTION 15

Quartiles

Start by ordering the values as follows:

$$-4, -3, -3, -1, 1, 2, 4, 5, 6, 10, 10$$

n = 1

First quartile (lower quartile) is found in position:

$$\frac{n+1}{4} = \frac{11+1}{4} = 3^{rd} \text{ position}$$

$$\therefore \quad \text{First quartile } (Q_1) = -3$$

Third quartile (upper quartile) is found in position:

$$\frac{3(n+1)}{4} = \frac{3(12)}{4} = 9^{\text{th}} \text{ position.}$$

$$\therefore \quad \text{Third quartile } (Q_3) = 6$$

Interquartile (IQR) range =
$$Q_3 - Q_1$$

= $6 - (-3)$
= $6 + 3$
= 9

Option 2

CHAPTER 2

QUESTION 16

Summarizing categorical data Table in terms of row percentages

	Female	Male	Total
Checkers	70	30	100%
PnP	58.85	41.18	100%
Spar	66.67	33.33	100%
Total	63.33	36.67	100%

70% (7 out of 10) of all checkers shoppers are female

Option 3

QUESTION 17

Summarizing numeric data

From the table only 4, i.e. (3 + 1) out of 30 shoppers spend R1600 or more on groceries This means that $\frac{4}{30} \times 100 = 13.33\%$

Option 1

QUESTION 18

Numeric data

From the table only 19, i.e. (14+5) out of 30 shoppers spend between R800 and R1600 on groceries This means that $\frac{19}{30} \times 100 = 63.33\%$

CHAPTER 1

QUESTION 19

Types of data

Number of shoppers is a countable numeric value. It will be classified as quantitative, discrete data.

Option 1

QUESTION 20

Scales of measurement

Rating availability of parking space implies an ordinal variable and listing occupation is a nominal variable.