Tutorial letter 201/2/2017

Basic Statistics
 STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01

CHAPTER 6

QUESTION 1

Normal distribution
$\mu=5 \quad$ and $\quad \sigma=0.75$
$P(X \leq 25)$ does not provide excellent service

$$
\begin{aligned}
& P(Z \leq 4) \text { at most four } \\
& P\left(Z \leq \frac{4-5}{0.75}\right) \\
& P(Z \leq-1.33) \\
= & 0.0918
\end{aligned}
$$

Option 1

QUESTION 2

Standard Normal distribution (area to the right)

Option 3

QUESTION 3

Standard normal distribution
$P(Z>-1.44)=0.9251$

All other options are incorrect.

Option 1

CHAPTER 5

QUESTION 4

Discrete random variable
Option 3 is the correct statement as follows

$$
\begin{aligned}
P(2<X \leq 4) & =P(X \text { is greater than } 2 \text { but less or equal to } 4) \\
& =P(X=3)+P(X=4) \\
& =0.299+0.138 \\
& =0.4370
\end{aligned}
$$

Option 3

QUESTION 5

Binomial (Properties or Characteristics)
Distribution is discrete
Option 4

QUESTION 6

Binomial
$\pi=0.45$ and $n=9$
Option 3 is incorrect, the corrected statement should be

$$
\begin{aligned}
P(X & =0)=9 C_{0}\left(0.45^{0}\right)(0.55)^{0-9} \\
& =1 \times 1 \times 0.0046 \\
& =0.0046 \text { or } 0.46 \%
\end{aligned}
$$

the easier way will be to read the answer from the binomial probability table using the fact that $\pi=0.45, n=9$ and $X=0$.

Option 3

QUESTION 7

Poisson
$\lambda=3$ per night
Option 3 is correct.

$$
P(X=5)=\frac{3^{5} \times e^{-3}}{5!}=0.1008
$$

or just use the poisson probability table, using the fact that:
$\lambda=3$ with $X=5$.

Option 3

CHAPTER 4

QUESTION 8

Probability (independent events)

$$
\begin{aligned}
P(S E) & =0.2 \\
P(T H) & =0.35 \\
P(S E \text { and } T H) & =0.2 \times 0.35 \\
& =0.07 \text { or } 7 \%
\end{aligned}
$$

There is a probability of 7% that a house in a secure estate and a townhouse will be broken into in the next year.

Option 1

QUESTION 9

Probability (addition rule)

$$
\begin{aligned}
P(F) & =0.6 \\
P(C) & =0.15 \\
P(F \cap C) & =0.25 \\
\therefore \quad P(F \text { or } C) & =P(F)+P(C)-P(F \cap C) \\
& =0.6+0.15-0.25 \\
& =0.5 \text { or } 50 \%
\end{aligned}
$$

There is a probability of 50% of randomly selecting a friend who prefers fruit juice or coffee.
Option 4

QUESTION 10

Probability
$P(A)=0.30, P(B)=0.20 \quad A \& B$ mutually exclusive means $P(A \cap B)=0$
Option 5 is the only incorrect statement because $P(A \mid B) \neq P(A)$ which is required for A and B to be independent.

$$
P(A \mid B)=0 \quad \text { and } P(A)=0.30
$$

All other statements are correct.
Option 5

QUESTION 11

	A	B	Total
M	78	42	120
W	19	11	30
Total	97	53	150

$$
P(W \cap B)=\frac{11}{150}=0.0733 \text { joint events }
$$

Option 3

CHAPTER 3

QUESTION 12

Numerical descriptive measures

$$
\begin{array}{l|llllll}
4 & 1 & 5 & 8 & & & \\
5 & 0 & 2 & 2 & 5 & 9 & \\
6 & 1 & 2 & 5 & 5 & 6 & 6 \\
& 7 \\
7 & 0 & 3 & & & & \\
& & \\
& n & =17 \\
\text { range } & =73-41=32 \\
\text { mode } & =52,65,66
\end{array}
$$

The numbers appears twice.
Each option 2 becomes an incorrect statement.
We have trimodal case in this dataset.
Option 2

QUESTION 13

We have

$$
\begin{array}{rll}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & \\
4 & 4 \\
5 & \\
\text { Mode } & =0 \text { and } 1 \\
n & =11 \\
\text { Median } & =1 \\
\text { Mean } & =1.82
\end{array}
$$

Thus, mean is greater than the median, telling us that the distribution of this data set is positively skewed or skewed to the right.

Option 1

QUESTION 14

Measure of variation or dispersion

$$
\begin{aligned}
\text { Standard deviation } & =\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1} \\
& =\frac{(0-1.82)^{2}+\cdots+(5-1.82)^{2}}{11-1} \\
& =1.78
\end{aligned}
$$

Option 2

QUESTION 15

Quartiles
Start by ordering the values as follows:

$$
-4,-3,-3,-1,1,2,4,5,6,10,10
$$

$n=1$
First quartile (lower quartile) is found in position:

$$
\frac{n+1}{4}=\frac{11+1}{4}=3^{\text {rd }} \text { position }
$$

$\therefore \quad$ First quartile $\left(Q_{1}\right)=-3$
Third quartile (upper quartile) is found in position:

$$
\begin{aligned}
\frac{3(n+1)}{4} & =\frac{3(12)}{4}=9^{\text {th }} \text { position. } \\
& \therefore \quad \text { Third quartile }\left(Q_{3}\right)=6
\end{aligned}
$$

$$
\begin{aligned}
\text { Interquartile (IQR) range } & =Q_{3}-Q_{1} \\
& =6-(-3) \\
& =6+3 \\
& =9
\end{aligned}
$$

Option 2

CHAPTER 2

QUESTION 16

Summarizing categorical data
Table in terms of row percentages

	Female	Male	Total
Checkers	70	30	100%
PnP	58.85	41.18	100%
Spar	66.67	33.33	100%
Total	63.33	36.67	100%

70% (7 out of 10) of all checkers shoppers are female
Option 3

QUESTION 17

Summarizing numeric data
From the table only 4, i.e. $(3+1)$ out of 30 shoppers spend R1600 or more on groceries
This means that $\frac{4}{30} \times 100=13.33 \%$
Option 1

QUESTION 18

Numeric data
From the table only 19, i.e. $(14+5)$ out of 30 shoppers spend between R800 and R1600 on groceries This means that $\frac{19}{30} \times 100=63.33 \%$

Option 1

CHAPTER 1

QUESTION 19

Types of data
Number of shoppers is a countable numeric value. It will be classified as quantitative, discrete data.
Option 1

QUESTION 20

Scales of measurement
Rating availability of parking space implies an ordinal variable and listing occupation is a nominal variable.
Option 2

