
Chapter 9 – Advanced Widgets 

LCD Display 

To display system clock time in LCD format, need to know how to do following: 

Display LCD digits (QLCDNumber class) 

Use Timers (QTimer class) 

Fetch and measure system clock time (QTime class) 

 

Using Timers 
To perform a repetitive task, you use a timer. A timer is an instance of the 
QTimer class. To use timers in an application, you just need to create an 

instance of QTimer and connect its timeout() signal to the slot that performs 

the desired task. A timeout() signal can be controlled by these methods: 

start(n): Initiates the timer to generate a timeout() signal at n millisecond 

intervals. 
setSingleShot(true): Sets the timer to generate a timeout() signal only 

once. 
singleShot(n): Sets the timer to generate a timeout() signal only once after 

n milliseconds. 

Fetching and Measuring System Clock Time 
To fetch the system clock time and measure a span of elapsed time, you use the 
QTime class. The time returned by this class is in 24-hour format. 



 
Displaying Calendar 

To display a monthly calendar, you use the Calendar widget, which is an 
instance of the QCalendarWidget class. By default, the Calendar widget displays 

the current month and year, the days are displayed in abbreviated form (Sun, 

Mon, Tue), and Saturdays and Sundays are marked in red. The week numbers 
are displayed, and the first column day is Sunday. 

 
QDate Class 

For working with dates, you use an instance of the QDate class. A QDate object 

contains a calendar date with the year, month, and day in the Gregorian 
calendar. 



 

 
 

 

 

 

 

 

Using the Date Edit Widget 

For displaying and editing dates, you use the Date Edit widget, which is an 
instance of the QDateEdit class. Properties used to configure the Date Edit 

widget: 
minimumDate: This property is used to define the minimum date that can be set 

to the widget. 
maximumDate: This property is used to define the maximum date that can be set 

to the widget. 

Table 9.6. Methods Provided by the QDateEdit Class 

 
Using Combo Box 



To display a pop-up list (also known as a Combo Box), you use the QComboBox class. 

 
 

 
Displaying a Table 

To display contents in a row and column format, you use a Table widget, which 
is an instance of the QTableWidget class. 



 
Displaying Items in the Table 

The items displayed in the Table widget are instances of the QTableWidgetItem 

class. 

 
Displaying Web Pages 

To view and edit web pages, you use a QWebView widget, that represents an 
instance of QWebView class. It is the main widget component of the QtWebKit web-

browsing module. 

 

 

Chapter 10 – Menus and Toolbars 
Dock Widget 

A Dock widget is created with the QDockWidget class. A Dock widget can be used to 

create detachable tool palettes or widget panels. They can be closed or docked in the 

Dock area around the central widget inside QMainWindow or floated as a top-level 

window on the desktop. Allowable dock areas are LeftDockWidgetArea, 



RightDockWidgetArea, TopDockWidgetArea, and BottomDockWidgetArea, where 

TopDockWidgetArea is below the toolbar. 

 
Converting a Tab Widget 

Tool Box: A Tool Box is an instance of the QToolBox class and provides a column 

of tabbed widget items, one above the next. 
Stacked Widget: A Stacked widget is an instance of QStackedWidget and 

provides a stack of widgets where only one widget is visible at a time. 

Chapter 11 – Multiple Documents and Layouts 
Multiple-Document Interface 

Applications that provide one document per main window are said to be SDI 
(single-document interface) applications. A multiple-document interface (MDI) 
consists of a main window containing a menu bar, a toolbar, and a central 

QWorkspace widget. 

To implement an MDI, you will use an MdiArea widget, which is an instance of 
the QMdiArea class. The MdiArea widget provides an area where child windows 

(also called subwindows) are displayed. It arranges subwindows in a cascade or 
tile pattern. The subwindows are instances of QMdiSubWindow. 

 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Database handling 

 
QSqlDatabase Class 

To integrate and access databases in PyQt, you use the QSqlDatabase class. To 

represent connection to a database, an instance of QSqlDatabase is used. 

 
may occur while opening with database through open() function. 
 



Displaying Rows 

To display the rows fetched from the database table, you will use a Table View 

widget. To create a model, you need to create an instance of the 
QSqlTableModel class. 

 
QSqlQueryModel class: Provides a read-only model based on the specified SQL 

query. 
setQuery(): Used to specify the SQL query. 

record(int): Used to access individual records (rows) from the specified 

database table. 
record.value("column_name"): Used to retrieve the value of the specified 

column of the current row of the database table. 
submit(): Submits the currently edited row; applies the modifications to the 

underlying database table if the edit strategy is set to OnRowChange or 

OnFieldChange. 

Recall that if the edit strategy is set to OnRowChange, all the modifications done 

to a row in the model will be applied to the database table on moving on to a 
different row. If the edit strategy is set to OnFieldChange, all modifications to 

the model will be applied to the database table. If the edit strategy is set to 
OnManualSubmit, all modifications will be cached in the model and applied to the 

database table when submitAll() is called. Also, all cached modifications will 

be cancelled without being applied to the database if revertAll() is called. 

submitAll(): Used to submit all pending changes to the database table if the 

edit strategy is set to OnManualSubmit. The method returns true if the 

modifications are successfully applied to the database table; otherwise it returns 
false. 
lastError(): Used to display detailed error information. 

revertAll(): Used to cancel all the pending editing of the current database 

table if the model’s editing strategy is set to OnManualSubmit. 

revert(): Used to cancel the editing of the current row if the model’s strategy is 

set to OnRowChange. 

insertRow(): Inserts an empty row after the specified position in an open 

database table. If the specified position is a negative value, the row will be 
inserted at the end. 



removeRow(): Removes the row at the specified index from an open database 

table. You need to call submitAll()to apply the changes to the database 
table if the edit strategy is set to OnManualSubmit. 

setFilter(): Used to specify the filter condition for the database table. If the 

model is already populated with rows of the database table, the model 
repopulates the model with the filtered rows. 


