Chapter 9 — Advanced Widgets

LCD Display

To display system clock time in LCD format, need to know how to do following:
Display LCD digits (QLCDNumber class)

Use Timers (QTimer class)

Fetch and measure system clock time (QTime class)

Table 9.1. Methods Provided by QLCDNumber
Method Use

setMode () Used to change the base of the numbers.
Available options:

Hex for displaying hexadecimal digits.
Dec for displaying decimal digits.

oct for displaying octal digits.

Bin for displaying binary digits.

display () To display the specified content as LCD
digits.

value () Returns the numerical value displayed by the
LCD Number widget.

Using Timers

To perform a repetitive task, you use a timer. A timer is an instance of the
QTimer class. To use timers in an application, you just need to create an
instance of QTimer and connect its timeout () signal to the slot that performs
the desired task. A timeout () signal can be controlled by these methods:
start (n) : Initiates the timer to generate a timeout () signal at n millisecond
intervals.

setSingleShot (true): Sets the timer to generate a timeout () signal only
once.

singleShot (n) : Sets the timer to generate a timeout () signal only once after
n milliseconds.

Fetching and Measuring System Clock Time

To fetch the system clock time and measure a span of elapsed time, you use the
QTime class. The time returned by this class is in 24-hour format.



Table 9.2. Methods Supported by QTime

Method Description

currentTime () Fetches the system’s clock time and returns
it as a QTime object.

hour () Returns the number of hours.

minute () Returns the number of minutes.

seconds () Returns the number of seconds

msec () Returns the number of milliseconds

addsecs () Returns the time after adding a specified
number of seconds.

addMSecs () Returns the time after adding a specified
number of milliseconds.

secsTo () Returns the number of seconds between two
times.

msecsTo () Returns the number of milliseconds bhetween
two times.

Displaying Calendar

To display a monthly calendar, you use the Calendar widget, which is an
instance of the Qcalendarwidget class. By default, the Calendar widget displays
the current month and year, the days are displayed in abbreviated form (Sun,
Mon, Tue), and Saturdays and Sundays are marked in red. The week numbers

are displayed, and the first column day is Sunday.
Table 9.4. Methods Provided by QCalendarWidget

Method

Description

selectedDate ()
monthShown ()
yearshown ()
setFirstDayOfWeek ()

selectionChanged ()

Returns the currently selected date.
Returns the currently displayed month.
Returns the currently displayed year.

Used to set the day in the first column.

Emitted when the user selects a date other

than the currently selected date. The date
can be selected using the mouse or
keyboard.

QDate Class

For working with dates, you use an instance of the gbate class. A obate object
contains a calendar date with the year, month, and day in the Gregorian

calendar.




Table 9.5. Methods Provided by the QDate Class

Method

Use

currentDate ()

setDate ()

year ()

month ()

day ()

dayOfWeek ()

addDays ()

addMonths ()

addYears ()

daysTo ()
|

daysInMonth ()

daysInYear ()

isLeapYear ()

toPyDate ()

Returns the system date as a Qbate object.

Sets a date by specifying the year, month,
and day.

Returns the year from the specified date
object.

Returns the month from the specified date
object.

Returns the day from the specified date
object.

Returns the day of the week from the
specified date object.

Adds the specified number of days to the
specified date and returns new date.

Adds the specified number of months to the
specified date and returns new date.

Adds the specified number of years to the
specified date and returns new date.

Returns the number of days between two

dates.

Returns the number of days in the specified
month.

Returns the number of days in the specified
year.

Returns true if the specified date is in a leap
year.

Returns the date as a string. The format
parameter determines the format of the
result string.

Using the Date Edit Widget

For displaying and editing dates, you use the Date Edit widget, which is an
instance of the QpatekEdit class. Properties used to configure the Date Edit
widget:

minimumDate: This property is used to define the minimum date that can be set
to the widget.

maximumDate: This property is used to define the maximum date that can be set
to the widget.

Table 9.6. Methods Provided by the QDateEdit Class

Method Description

setDate () Used to set the date to be displayed in the

widget.
setDisplayFormat () Used to specify the string format that you
want to apply to the date displayed in the
Date Edit widget. Formats with their outputs
are these:

Using Combo Box




To display a pop-up list (also known as a Combo Box), you use the gComboBox class.

Table 9.7. Methods Provided by QComboBox

Method

Use

setItemText ()
removeltem()
clear ()

currentText ()

count ()

setMaxCount ()
setEditable ()
addItem ()

addItems ()

itemText ()

currentIndex()

setCurrentIndex ()

Used to change the item in the Combo Box.
Used to remove an item.

Used to remove all items.

Returns the text of the current item.

Used to set the current item.

Returns the number of items in the Combo
Box.

Used to set the maximum number of items.
Used to allow editing in the Combo Box.

Used to add an item to the Combo Box with
specified text. The item is appended to the
list.

Used to add each of the strings in the text to
the Combo Box. Each item is appended to
the list.

Returns the text at the specified index in the
Combo Box.

Returns the index of the current item in the
Combo Box. An empty Combo Box or a
Combo Box with no current item selected
returns —1 as the index.

Table 9.8. Signhals Generated by QComboBox

Signal

Description

activated()

highlighted()

editTextChanged ()

currentIndexChanged ()

The signal is emitted if the index of the
Combo Box is changed (through user
interaction or via program), and a new item
is selected.

The signal is emitted when the index is
changed by user interaction.

The signal is emitted when the user
highlights an item in the Combo Box.

The signal is emitted when the text of an
editable Combo Box is changed.

Displaying a Table
To display contents in a row and column format, you use a Table widget, which
is an instance of the QTablewWidget class.




Table 9.9. Methods Provided by QTableWidget

Method Use

setRowCount () Used to specify the number of rows in the
Table widget.

setColumnCount () Used to specify the number of columns in the
Table widget.

rowCount () Returns the number of rows in the table.

columnCount () Returns the number of columns in the table.

clear () Clears the table.

setItem() Sets the item for a given row and column of
the table.

Displaying Items in the Table
The items displayed in the Table widget are instances of the QTableWidgetItem

class.
Table 9.10. Methods Provided by QTableWidgetItem

Method Use
setFont () Used to set the font for the text label of the
Table Item.

setCheckState () Used to check or uncheck a Table Item.

checkState () Used to determine if the Table Item is
checked or not.

Displaying Web Pages
To view and edit web pages, you use a QWebView widget, that represents an

instance of Qiiebview class. It is the main widget component of the QtwebKit web-

browsing module.
Table 9.11. QWebView Methods for Displaying

Web Pages

Method Use

load() Loads the specified URL and displays it
through QWebView widget. The view remains
unchanged until enough data is downloaded
to display.

setUrl () Same as load() method.

setHtml () To view HTML content.

Table 9.12. Signals Generated by QWebView While
Loading Web Pages

Signal Description

loadstarted() Emitted when the view begins loading.

loadProgress () Emitted whenever an element of Web View
completes loading, such as an embedded
image, video, or script.

loadFinished () Emitted when the view is loaded completely.

Chapter 10 - Menus and Toolbars

Dock Widget
A Dock widget is created with the gDockwWidget class. A Dock widget can be used to

create detachable tool palettes or widget panels. They can be closed or docked in the
Dock area around the central widget inside gMainwWindow or floated as a top-level
window on the desktop. Allowable dock areas are LeftDockWidgetArea,



RightDockWidgetArea, TopDockWidgetArea, and BottomDockWidgetArea, where

TopDockWidgetArea is below the toolbar.
Table 10.2. Properties of a Dock Widget

Property Description

DockWidgetClosable If selected, the Dock widget can be closed.

DockWidgetMovable If selected, the Dock widget can be moved
between dock areas.

DockWidgetFloatable If selected, the Dock widget can be detached

from the main window and floated as an
independent window.

DockWidgetVerticalTitleBar If selected, the Dock widget displays a
vertical title bar on its left side.

AllDockWidgetFeatures If selected, automatically selects the
DockWidgetClosable, DockWidgetMovable,
and DockWidgetFloatable properties,
allowing the Dock widget to be closed,
moved, or floated.

NoDockWidgetFeatures If selected, the Dock widget cannot be
closed, moved, or floated.

Converting a Tab Widget

Tool Box: A Tool Box is an instance of the 0Too1Box class and provides a column
of tabbed widget items, one above the next.

Stacked Widget: A Stacked widget is an instance of QStackedwidget and
provides a stack of widgets where only one widget is visible at a time.

Chapter 11 — Multiple Documents and Layouts

Multiple-Document Interface

Applications that provide one document per main window are said to be SDI
(single-document interface) applications. A multiple-document interface (MDI)
consists of a main window containing a menu bar, a toolbar, and a central
QWlorkspace widget.

To implement an MDI, you will use an MdiArea widget, which is an instance of
the oMdiArea class. The MdiArea widget provides an area where child windows
(also called subwindows) are displayed. It arranges subwindows in a cascade or
tile pattern. The subwindows are instances of oMdi SubWindow.




Table 11.1. Methods Provided by QMdiArea

Method

Use

subWindowList ()

WindowOrder ()

activateNextSubWindow ()

activatePreviousSubWindow ()

cascadeSubWindows ()

tileSubWindows ()

Returns a list of all subwindows in the MDI
area arranged in the order set through the
WindowOrder () function.

Used to specify the criteria for ordering the
list of child windows returned by
subWindowList (). Following are the available
options:

CreationOrder: The windows are returned in

the order of their creation. This is the default
order.

StackingOrder: The windows are returned in
the order in which they are stacked, with the
topmost window last in the list.

ActivationHistoryOrder: The windows are

returned in the order in which they were
activated.

Sets the focus to the next window in the list
of child windows. The current window order
determines the next window to be activated.

Sets the keyboard focus to the previous
window in the list of child windows. The
current window order determines the
previous window to be activated.

Arranges subwindows in cascade fashion.

Arranges subwindows in tile fashion.

closeAllSubWindows ()

setViewMode ()

Closes all subwindows.

Sets the view mode of the MDI area. The
subwindows can be viewed in two view
modes, SubWindow view and Tabbed view:

SubWindow view: Displays subwindows with
window frames (default). You can see the
content of more than one subwindow if
arranged in tile fashion. It is also
represented by a constant value 0.

Tabbed view: Displays subwindows with tabs
in a tab bar. Only one subwindow’s content
can be seen at a time. It is also represented
by a constant value 1.




Database handling
Table 12.1. Data Types in MySQL

Data Type Stores

smallint, Integer values

mediumint, int,

bigint

float Single-precision floating-
point values

double Double-precision floating-
point values

char Fixed-length strings up to
255 characters

varchar Variable-length strings up
to 255 characters

tinyblob, blob, Large blocks of binary data

mediumblob,

longblob

tinytext, text, Long blocks of text data

mediumtext,

longtext

date Date values

time Time values or durations

datetime Combined date and time
values

QSqglDatabase Class
To integrate and access databases in PyQt, you use the gsglbDatabase class. To

represent connection to a database, an instance of 9SglDatabase is used.
Table 12.2. Methods of the QSqlDatabase Class
Method Use

addDatabase () Used to specify the database driver of
the database to which you want to
establish connection. It is through the
database drivers that the database is
accessed.

Driver types:

@DBZ: IBM DB2 Driver

oMYSQL: MySQL Driver

gocI: Oracle Call Interface Driver

QoDBC: ODBC Driver (includes Microsoft

SQL Server)

QPsQL: PostgreSQL Driver

QSQLITE: SQLite version 3 or above
setHostName () Used to specify the hostname.
setDatabaseNams () Used to specify the name of the

database that you want to work with.

setUserName () Used to specify the name of the
authorized user through whom you
want to access the database.

setPassword () Used to specify the password of the
authorized user to access the database.

open() Opens the database connection using
the current connection attributes. The
method returns a Boolean true or false
value, depending on whether the
connection to the database is
successfully established or not.

lastError () Used to display error information that

may occur while opening with database through open() function.




Displaying Rows

To display the rows fetched from the database table, you will use a Table View
widget. To create a model, you need to create an instance of the
0SglTableModel class.

Table 12.3. Methods of QSqlTableModel
Method Use

setTable() Used to specify the database table you want
the model to work with.

setEditstrategy () Applies the strategy for editing the database
table. The available strategies are these:

OnFieldChange: All modifications made in
the model will be applied immediately to the
database table.

onRowChange: All modifications made to a
row will be applied to the database table on
moving to a different row.

onManualsubmit: All modifications will be
cached in the model and applied to the
database table when submitall () is called.

Also, modifications that are cached can be
cancelled or erased without applying to the
database by calling revertall ().

select() Used to populate the model with the
information of the database table specified
with setTable().

0SglQueryModel class: Provides a read-only model based on the specified SQL
query.

setQuery () : Used to specify the SQL query.

record (int) : Used to access individual records (rows) from the specified
database table.

record.value ("column name"): Used to retrieve the value of the specified
column of the current row of the database table.

submit () : Submits the currently edited row; applies the modifications to the
underlying database table if the edit strategy is set to onRowChange or
OnFieldChange.

Recall that if the edit strategy is set to onRowChange, all the modifications done
to a row in the model will be applied to the database table on moving on to a
different row. If the edit strategy is set to OnFieldChange, all modifications to
the model will be applied to the database table. If the edit strategy is set to
OnManualSubmit, all modifications will be cached in the model and applied to the
database table when submitall () is called. Also, all cached modifications will
be cancelled without being applied to the database if revertall () is called.
submitAll () : Used to submit all pending changes to the database table if the
edit strategy is set to onManualsubmit. The method returns true if the
modifications are successfully applied to the database table; otherwise it returns
false.

lastError () : Used to display detailed error information.

revertAll () : Used to cancel all the pending editing of the current database
table if the model’s editing strategy is set to OnManualSubmit.

revert () : Used to cancel the editing of the current row if the model’s strategy is
set to OnRowChange.

insertRow () : Inserts an empty row after the specified position in an open
database table. If the specified position is a negative value, the row will be
inserted at the end.



removeRow () : Removes the row at the specified index from an open database

table. You need to call submitAll () to apply the changes to the database
table if the edit strategy is set to OnManualSubmit.

setFilter () : Used to specify the filter condition for the database table. If the
model is already populated with rows of the database table, the model
repopulates the model with the filtered rows.



