
Page 1 of 11

REGIS GAMBIZA
STUDENT NUMBER: 48396664
VISUAL PROGRAMMING 2 – INF2611 ASSIGNMENT 2
ASSIGNMENT UNIQUE NUMBER:

1.Introduction

The name of my application is sicario. Sicario is a Latin word that means a hired
assassin. The concept came up from my experience as a teacher at a school in
Mpumalanga. As a class teacher some of the duties one does is manage learner’s
textbooks and information about a learner.

The application has got the following features:

x keeps track of textbooks issued to learners
x stores a learner’s biographical information which is easily retrieved in care of

emergency. When a learner is sick or injured the parents need to be notified
as early as possible.

x There are two types of views for crewing information, it can be viewed as a
cable showing the whole class or information can be viewed for an individual
learner.

x There is a search facility for searching for a particular learner

2.Database design specifications

2.1.

Code for creating database

CREATE DATABASE IF NOT EXISTS grade8D;

Code for creating first table

CREATE TABLE IF NOT EXISTS learners
(
learner_name VARCHAR(30)NOT NULL,
address VARCHAR(100),
gender VARCHAR(10),
date_of_birth VARCHAR(10),
PRIMARY KEY (learner_name)
);

2.2.

show tables;

Page 2 of 11

show columns from learners;

Page 3 of 11

2.3

The database is made up of 3 tables, namely learners, guardians and textbook.

Learners table stores the general information of a learner. It has four fields with
learner name field being the primary key

Page 4 of 11

Guardians table scores information about a learners guardian. It has 3 fields with
the learner name field being the primary key. The guardians table is linked to the
learners table by a many to one relationship A learner can have only one guardian
but a guardian can have many learners. The primary key is referenced in the
learners liable to provide referential integrity.

Textbooks table stores information of the textbooks issued to a learner. The table
has nine fields and with learner name being the primary key. This primary key is
referenced in the learners table. There is a one to one relationship between the
guardians table and the learners table.

3.User interface design

On opening the application there is are two tabs, learner registration and learner
information. Clicking the registration tab displays the following:

Page 5 of 11

The registration page is where a learner’s information is initially saved into the
database.

Table 1: Components used in registration page

Component Use
Group box Group related components
Line edits Capture information from user
Labels Display information/identify components
Check box Selecting certain components
Push button Save information to the database

Clicking the save push button displays a message box informing the user that was
successfully saved.

Page 6 of 11

The component used is a QMessage box. Clicking ok closed the message box and
more learners can be registered.

Clicking the Learner information tab displays the following.

Page 7 of 11

This page is for viewing information in the database. It is divided into two. On the left
you can view information for an individual learner and the right you can view
information of all the learners.

Table 1: Components used in Learner information page

Component Use
Table view Display information in table format
Line edits Display information
Labels Display information/identify components
Push buttons To start certain actions

Clicking the check library status push displays the following returned books page.

Page 8 of 11

The returned books page shows all the textbooks issued to a learner and those that
were returned. The tableview widget is used to display the information in table
format. This page displays information from the guardians table. The pushbutton is
used to close the page.

4. Database manipulation

4.1. Add

In the learner information tab, clicking add creates a new row and a new learner can
then be added to the database.

Code snapshot

#Function to insert a new row
def InsertRecords(self):
 self.model.insertRow(self.ui.tableView_2.currentIndex().row())

#Connects insert button to the function insert records
QtCore.QObject.connect(self.ui.pushButton_11, QtCore.SIGNAL('clicked()'),
self.InsertRecords)

4.2. Edit
Editing in tableview has been enabled, to edit any information the cell to be edited is
double clicked and new information is enterd the update is clicked to save.

4.3. Delete
To delete a row, the row to be deleted is selected and the delete button is clicked.

Page 9 of 11

Code snapshot
#Function to delete a selected row
def DeleteRecords(self):
 self.model.removeRow(self.ui.tableView_2.currentIndex().row())
 self.model.submitAll()
#Connects delete button to the function delete records
QtCore.QObject.connect(self.ui.pushButton_12, QtCore.SIGNAL('clicked()'),
self.DeleteRecords)

4.4. Search
To search for a specific learner, the learners name is entered in the search line edit
and the search pushbutton clicked.

Code snapshot
#Filters table view to display matching names only
def FilterRecords(self):
 print("Filter clicked")
 self.model.setFilter("name like'" + self.ui.lineEdit_13.text()+"%'")

#Connect the search button to the FilterRecords function
QtCore.QObject.connect(self.ui.pushButton_8, QtCore.SIGNAL('clicked()'),
self.FilterRecords)

4.5. Next and previous
When viewing information for an individual learner, next and previous are used to
move forward or backward in the database.

Code snapshot
 def dis_next(self):
 """Display next learner information"""
 print("dis_next called successfully")
 MyForm.recno +=1
 if MyForm.recno > self.model.rowCount()-1:
 MyForm.recno = 0
 self.record = self.model.record(MyForm.recno)
 #Displaying learner info

 self.ui.lineEdit_3.setText(self.record.value("learner_name"))
 self.ui.lineEdit_4.setText(self.record.value("address"))
 self.ui.lineEdit_5.setText(self.record.value("date_of_birth"))
 self.ui.lineEdit_6.setText(self.record.value("gender"))
 #Display guardian info
 self.ui.lineEdit_7.setText(self.record.value("guardian_name"))
 self.ui.lineEdit_9.setText(self.record.value("phone_number"))

 def dis_previous(self):
 """Display previous learner information"""
 print("dis_prev called successfully")
 MyForm.recno -= 1
 if MyForm.recno < 0:
 MyForm.recno=self.model.rowCount() - 1
 self.record = self.model.record(MyForm.recno)
 #Displaying learner info
 self.ui.lineEdit_3.setText(self.record.value("learner_name"))
 self.ui.lineEdit_4.setText(self.record.value("address"))

Page 10 of 11

 self.ui.lineEdit_5.setText(self.record.value("date_of_birth"))
 self.ui.lineEdit_6.setText(self.record.value("gender"))
 #Display guardian info
 self.ui.lineEdit_7.setText(self.record.value("guardian_name"))
 self.ui.lineEdit_9.setText(self.record.value("phone_number"))

4.6. Manipulation of more than one table

In this window two tables are being displayed simultaneously

Code to display guardians table

 #Sending data to table view
 self.model = QtSql.QSqlTableModel(self)
 self.model.setTable("learners")
 self.model.setEditStrategy(QtSql.QSqlTableModel.OnManualSubmit)
 self.model.select()
 self.ui.tableView_2.setModel(self.model)
 self.record = self.model.record(MyForm.recno)
 #Displaying learner info
 self.ui.lineEdit_3.setText(self.record.value("learner_name"))
 self.ui.lineEdit_4.setText(self.record.value("address"))
 self.ui.lineEdit_5.setText(self.record.value("date_of_birth"))
 self.ui.lineEdit_6.setText(self.record.value("gender"))
 #Display guardian info
 self.ui.lineEdit_7.setText(self.record.value("guardian_name"))

Page 11 of 11

 self.ui.lineEdit_9.setText(self.record.value("phone_number"))

