Tutorial Letter 104/1/2015

Applied Statistics II STA2601

Semester 1

Department of Statistics

Dear Student

Congratulations if you obtained examination admission by submitting assignment 1. I would like to take the opportunity of wishing you well in the coming examinations. I hope you found the module stimulating.

The examination

Please note the following with regard to the examination:

* The duration of the examination paper is two-hours. You will be able to complete the set paper in 2 hours, but there will be no time for dreaming or sitting on questions you are unsure about. Make sure that you take along a functional scientific calculator that you can operate with ease as it can save you some time. My advice to you would be to do those questions you find easy first; then go back to the ones that need more thinking. I do not mind to mark questions in whatever order you do them, just make sure that you number them clearly!
* A copy of the list of formulae is attached to the trial examination paper. Please ensure that you know how to test the various hypotheses.
* All the necessary statistical tables will be supplied (see the trial paper).
* Pocket calculators are necessary for doing the calculations.
* Working through (and understanding!) ALL the examples and exercises in the study guide, workbook and in the assignments as well as the trial paper will provide beneficial supplementary preparation.
* Make sure that you know all the theory as well as the practical applications.
* All the chapters in the study guide are equally important and don't try to spot!
* Start preparing early and don't hesitate to call or email me if something is unclear.

Trial paper

Reserve two hours for yourself and do the trial paper under exam conditions on your own!

Duration: 2 hours
 100 Marks
 INSTRUCTIONS

1. Answer ALL questions.
2. Marks will not be given for answers only. Show clearly how you solve each problem.
3. For all hypothesis-testing problems always give
(i) the null and alternative hypothesis to be tested;
(ii) the test statistic to be used; and
(iii) the critical region for rejecting the null hypothesis.
4. Justify your answer completely if you make use of JMP output to answer a question.

QUESTION 1

Complete the following statements in your answer book (i.e. write down the missing words or symbols and do not waste time rewriting the whole sentence):
(a) The random variables $X_{1}, X_{2}, \ldots, X_{n}$ constitute a random sample from the distribution with probability density function (p.d.f.) $f_{X}(x)$ if $X_{1}, X_{2}, \ldots, X_{n}$ are random variables, each with p.d.f. $f_{X}(x)$.
(b) The function $T=\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$ of a random sample $X_{1}, X_{2}, \ldots, X_{n}$ is called a statistic if the following condition holds: \qquad .
(c) If you fail to reject the null hypothesis $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ on the basis of sample data, when in fact there is a difference between the variances of two populations, you have made a error.
(d) If the exceedance probability $P\left(\bar{X} \geq \bar{x} \mid \mathrm{H}_{0}\right.$ is true $)=0.0001$ and the alternative hypothesis is $H_{1}: \mu>\mu_{0}$, it means that \bar{x} is \qquad significant.
(g) The Bonferroni inequality can be applied to any . \qquad inference problem.

QUESTION 2

(a) Write down, in general terms, the method of obtaining a least squares estimator.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables from a distribution with expected value θ. Find the least squares estimator for θ.
(c) Let $X_{1} ; X_{2} ; \ldots ; X_{n}$ be a random sample from a distribution with p.d.f.

$$
f_{X}(x)=c x^{c-1} \quad \text { for } x>1
$$

Find the maximum likelihood estimator for the parameter c.

QUESTION 3

An irate customer called Rand Day Mail Order Company 40 times during the last two weeks to see why his order had not arrived. Each time he called, he recorded the length of time he was put "on hold" before being allowed to talk to a customer service representative. The following data was obtained.

1	2	3	4	4	5	5	5	5	5
5	6	6	6	6	6	6	6	7	7
7	7	7	8	8	8	8	8	8	9
9	9	9	9	9	10	10	11	12	13

Make use of the following summary statistic and output:

$$
\begin{array}{lll}
\sum_{i=1}^{40} X_{i}=279 ; & \sum_{i=1}^{40} X_{i}^{2}=2197 ; & \sum_{i=1}^{40} X_{i}^{3}=18843 ; \\
\sum_{i=1}^{40}\left(\left|X_{i}-\bar{X}\right|=79.1\right. & \sum_{i=1}^{40}\left(X_{i}-\bar{X}\right)^{2}=250.975 & \sum_{i=1}^{40}\left(X_{i}-\bar{X}\right)^{3}=17.82375 \\
\sum_{i=1}^{40}\left(X_{i}-\bar{X}\right)^{4}=4883.841203 . & A=\frac{\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|}{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}}
\end{array}
$$

-Normal(6.975,2.53678)

Quantiles
100.0\% maximum $\quad 13$
99.5\% 13
97.5\% 12.975
90.0\% 10
75.0% quartile 9
50.0\% median 7
25.0\% quartile 5
10.0% 4
2.5\% $\quad 1.025$
0.5\% 1
0.0% minimum 1

Summary Statistics

Mean	6.975
Std Dev	2.5367807
Std Err Mean	0.4011002
Upper 95\% Mean	7.7863018
Lower 95\% Mean	6.1636982
N	40

Fitted Normal

Parameter Estimates

Type	Parameter	Estimate	Lower 95\%	Upper 95\%
Location μ	6.975	6.1636982	7.7863018	
Dispersion σ	2.5367807	2.0780319	3.2573165	

$-2 \log$ (Likelihood) $=186.986750114292$

Goodness-of-Fit Test

Shapiro-Wilk WTest

$$
\begin{array}{rr}
\text { W } & \text { Prob<W } \\
0.981856 & 0.7579
\end{array}
$$

Note: $\mathrm{Ho}=$ The data is from the Normal distribution. Small p-values rejectHo

Figure 1: Graphical representation and moments of length of time on hold

Distributions

Length of time on hold

Figure 2: Graphical representation and t-test of length of length of time on hold
(a) What can you conclude about normality from the JMP graphical output in Figure 1?
(b) Use the method of moments to test for normality. (Use any of the given calculations, but clearly show all your computations). Hint: Perform the skewness and kurtosis two-sided tests at the 10% level of significance.
(c) Is there any reason to reject the null hypothesis $H_{0}: \mu=8$? Test a two-sided at the 5% level of significance. Show how you use and interpret the JMP output in Figure 2.
(d) Give a 95% confidence interval for the unknown mean μ. Does this interval confirm your conclusion in question (c)?

QUESTION 4

(a) A comparison is made between two innovative teaching methods by using the two methods for training two independent groups of pupils, and assessing exam scores obtained by the pupils in the two groups. Assume that $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$, that is, unknown equal population varainces. Summary of results obtained from the two samples are shown below:
$n_{1}=n_{2}=31 ; \quad \bar{X}_{1}=50.55 ; \quad \bar{X}_{2}=56.65 ; \quad S_{P}=14.62$
(i) Construct a 95\% confidence interval for $\mu_{1}-\mu_{2}$.
(ii) Comment on the confidence interval for $\mu_{1}-\mu_{2}$
(b) It is desired to test $H_{0}: \mu=50$ against $H_{1}: \mu \neq 50$ using a sample of size $n=13$ from a $n\left(\mu ; \sigma^{2}\right)$ distribution. Suppose that we know that the true mean is $\mu=50+0.75 \sigma$.
(i) What will the power of the test be if we test at the 5% level of significance?
(ii) What will the probability of a Type II error be if the probability of a Type I error is 0.05 ?(1)
(c) Suppose that the temperament of people (i.e. how good- or ill-tempered they are) can be measured by a psychological scale and classified into three distinct groups. A random sample of 1000 people from a certain nationality was measured and classified by this test and the results are as follows:

Bad-tempered	$N_{1}=250$
Even-tempered	$N_{2}=480$
Good-tempered	$N_{3}=270$

It is postulated that the population of this nationality is divided into the three temperament groups in the following proportions:

$$
\begin{equation*}
\pi_{1}=0.20 ; \quad \pi_{2}=0.50 \quad \text { and } \quad \pi_{3}=0.30 \tag{7}
\end{equation*}
$$

Test this hypothesis at the 5\% level of significance.
(d) In a random sample of 52 observations from a bivariate normal distribution, the correlation coefficient was $r=0.65$.

$$
\begin{array}{ll}
\text { Test } & H_{0}: \rho=0.50 \text { against } \\
& H_{1}: \rho>0.50 \text { at the } 5 \% \text { level of significance. }
\end{array}
$$

QUESTION 5

A sociologist studying City of Tshwane ethnic groups wants to determine if there is a difference in income for immigrants from four different countries during their first year in the city. She obtained the data in the following table from a random sample of immigrants from these countries (income in thousands of Rands). Use a 0.05 level of significance to test the claim that there is no difference in the earnings of immigrants from the four different countries.

Country I	Country II	Country III	Country IV
12.7	8.3	20.3	17.2
9.2	17.2	16.6	8.8
10.9	19.1	22.7	14.7
8.9	10.3	25.2	21.3
16.4		19.9	19.8

Study the following JMP output and answer the questions given below:

Oneway Analysis of Earnings By Country
Oneway Anova

Summary of Fit	
Rsquare	0.479746
Adj Rsquare	0.375695
RootMean Square Error	4.150016
Mean of Response	15.76316
Observations (or Sum Wggs)	19

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Country	3	238.22471	79.4082	4.6107	0.0177^{\star}
Error	15	258.33950	17.2226		
C. Total	18	496.56421			
Means for					
Oneway Anova					
Level	Number	Mean	Std Error	Lower 95\%	Upper 95\%
I	5	11.6200	1.8559	7.664	15.576
II	4	13.7250	2.0750	9.302	18.148
III	5	20.9400	1.8559	16.984	24.896
IV	5	16.3600	1.8559	12.404	20.316

[^0]Figure 3: Graphical representation and computations for ANOVA

```
Tests that the Variances are Equal
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Level & Count & Std Dev & MeanAbs to Me & \multicolumn{2}{|l|}{MeanAbsDif to Median} \\
\hline I & 5 & 3.073597 & \multicolumn{2}{|l|}{2.344000} & 2.540000 \\
\hline II & 4 & 5.232192 & \multicolumn{2}{|l|}{4.425000} & 4.425000 \\
\hline III & 5 & 3.223818 & \multicolumn{2}{|l|}{2.408000} & 2.360000 \\
\hline IV & 5 & 4.920671 & \multicolumn{2}{|l|}{3.688000} & 4.020000 \\
\hline \multicolumn{2}{|l|}{Test} & F Ratio & DFNum & DFDen & Prob \(>\) F \\
\hline O'Brien & & 0.8757 & 3 & 15 & 0.4756 \\
\hline Brown & orsythe & 1.3213 & 3 & 15 & 0.3044 \\
\hline Leven & & 1.2558 & 3 & 15 & 0.3249 \\
\hline Bartlet & & 0.5000 & 3 & & 0.6823 \\
\hline
\end{tabular}
Warning: Small sample sizes. Use Caution.
```


Welch's Test

```
Welch Anova testing Means Equal, allowing Std Devs Not Equal FRatio DFNum DFDen Prob \(>\) F 6.44303 7.7654 0.0167*
```

Figure 4: Tests that the variances are equal
(a) Do you think it is reasonable to assume that the four countries may be considered as independent groups?
(b) What additional graphical technique(s) would you need to decide that the four countries may be considered as coming from normal populations?
(c) Do you think it is reasonable to assume that the four countries have equal population variances? (Justify your answer.)
(d) Do these results indicate that there is a difference in the earnings of immigrants from the four countries? (In other words can you conclude that the mean earnings for the four countries differ significantly?)
Justify your answer by giving attention to the following detail:
(i) State the appropriate null and alternative hypothesis for this test.
(ii) What test statistic is used to test these hypotheses?
(iii) What is the value of the test statistic?

QUESTION 6

All apple farmers will agree that codling moth is their worst enemy! The flying moths lay their eggs in small developing fruits and the larvae develop in time to devour the ripe apples! It is generally thought that the percentage of fruits attacked by codling moth larvae is greater on apple trees bearing a small crop. The data in the table below are the results of an experiment to prove this phenomenon.

Tree Number	Size of crop on tree (hundreds of fruits) (X)	Percentage of wormy fruit (Y)
1	8	59
2	6	58
3	11	56
4	22	53
5	14	50
6	17	45
7	18	43
8	24	42
9	19	39
10	23	38
11	26	30
12	40	27

The following SAS JMP output is obtained:

Figure 5: Summary of fit and computations for ANOVA
(a) Plot the data to verify that linear regression is a suitable model.
(b) Verify that the linear regression of Y on X is $\widehat{Y}=64.247-1.013 X$.
(c) Compile (complete and compute) the following table:

X_{i}	Y_{i}	\widehat{Y}_{i}	$\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$
8	59	56.143	8.16
6	58	58.169	0.03
\vdots	\vdots	\vdots	\vdots
26	30	37.909	62.55
40	27	23.727	10.71

(d) What is the percentage of wormy fruits when the size of the crop is 1900 apples on the tree?
(e) Given that $d^{2}=924$. Test

$$
\begin{array}{lll}
\text { Test } & H_{0}: & \beta_{1}=0 \quad \text { against } \\
& H_{1}: & \beta_{1}<0 \tag{5}
\end{array} \text { at the } 1 \% \text { level of significance. }
$$

$$
\begin{aligned}
& B_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{3}}{\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]^{\frac{3}{2}}} \\
& B_{2}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{4}}{\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]^{2}} \\
& \rho=\frac{e^{\eta}-e^{-\eta}}{e^{\eta}+e^{-\eta}} \\
& T=\sqrt{n-2} \frac{U_{11}-U_{22}}{2 \sqrt{U_{11} U_{22}-U_{12}^{2}}} \\
& T=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& v=\frac{\left[\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right]^{2}}{\frac{S_{1}^{4}}{n_{1}^{2}\left(n_{1}-1\right)}+\frac{S_{2}^{4}}{n_{2}^{2}\left(n_{2}-1\right)}} \\
& F=\frac{n \sum_{i=1}^{k}\left(\bar{X}_{i}-\bar{X}\right)^{2} /(k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} /(k n-k)} \\
& \widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} Y_{i}\left(X_{i}-\bar{X}\right)}{d^{2}}
\end{aligned}
$$

TABEL I
Opperviaktes onder die Normaalkromme
$\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} \mathrm{e}^{-1 / 2 x^{2}} d x$
$\Phi(-z)=1-\Phi(z)$
Die oppervlakte $\Phi(z)$ is teen z vir $z \geqslant 0$ getabelleer.

TABLE I
Areas under the Normal Curve $\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-1 / 2 x^{2}} d x$
$\Phi(-z)=1-\Phi(z)$

Entries in the table are values of $\Phi(z)$ for $z \geqslant 0$.

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0.5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0.5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0.6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0.6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0.6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0.7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0.7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0.8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1.0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0.8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0.9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0.9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0.9545
1.7	0,9554	0.9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0.9625	0.9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1.9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2.1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0.9868	0.9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0.99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,6	0,99534	0.99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0.99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,0	0,99865	0,99869	0,99874	0,99878	0,99822	0,99886	0,99889	0,99893	0,99896	0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
3,5	0,99977									
3,6	0,99984									
3,7	0,99989									
3,8	0,99993									
3,9	0,99995									
4,0	0,99997									

TABEL II
Waardes van die Inverse Normaalverdeling
Die inverse funksie $z=\Phi^{-1}(\mathrm{u})$ is teen u vir $u \geqslant 0,5$ getabelleer, waar $\mathrm{u}=\Phi(\mathrm{z})$ die standaard normaalverdelingsfunksie aandui. Let op dat vir $\mathrm{u}=\Phi(\mathrm{z})<0,5$ is $\Phi(-z)=1-\Phi(z)>0,5$

TABLE II
Values of the Inverse
Normal Distribution
Entries in the table are values of the inverse function $z=\Phi^{-1}(u)$ for $u \geqslant$ 0,5 , where $u=\Phi(z)$ denotes the standard normal distribution function. Note that $\Phi(-z)=1-\Phi(z)$ $>0,5$ when $u=\Phi(z)<0,5$.

$\Phi(\mathrm{z})$	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,50	0,000	0,003	0,005	0,008	0,010	0,013	0,015	0,018	0,020	0,023
0,51	0,025	0,028	0,030	0,033	0,035	0,038	0,040	0,043	0,045	0,048
0,52	0,050	0,053	0,055	0,058	0,060	0,063	0,065	0,068	0,070	0,073
0,53	0,075	0,078	0,080	0,083	0,085	0,088	0,090	0,093	0,095	0,098
0,54	0,100	0,103	0,105	0,108	0,111	0,113	0,116	0,118	0,121	0,123
0,55	0,126	0,128	0,131	0,133	0,136	0,138	0,141	0,143	0,146	0,148
0,56	0,151	0,154	0,156	0,159	0,161	0,164	0,166	0,169	0,171	0,174
0,57	0,176	0,179	0,181	0,184	0,187	0,189	0,192	0,194	0,197	0,199
0,58 0,59	0,202	0,204	0,207	0,210	0,212	0,215	0,217	0,220	0,222	0,225
0,59	0,228	0,230	0,233	0,235	0,238	0,240	0,243	0,246	0,248	0,251
0,60	0,253	0,256	0,259	0,261	0,264	0,266	0,269	0,272	0,274	0,277
0,61	0,279	0,282	0,285	0,287	0,290	0,292	0,295	0,298	0,300	0,303
0,62	0,305	0,308	0,311	0,313	0,316	0,319	0,321	0,324	0,327	0,329
0,63	0,332	0,335	0,337	0,340	0,342	0,345	0,348	0,350	0,35 3	0,356
0,64	0,358	0,361	0,364	0,366	0,369	0,372	0,375	0,377	0,380	0,383
0,65	0,385	0,388	0,391	0,393	0,396	0,399	0,402	0,404	0,407	0,410
0,66 0,67	0,412 0,440	0,415	0,418	0,421	0,423	0,426	0,429	0,432	0,434	0,437
0,67 0,68	0,440 0,468	0,443 0,471	0,445 0,473	0,448 0,476	0,451	0,454	0,457	0,459	0,462	0,465
0,68 0,69	0,468 0,496	0,471 0,499	0,473 0,502	0,476 0,504	0,479 0,507	0,482 0,510	0,485 0,513	0,487 0,516	0,490 0,519	0,493 0,522
0,70	0,524	0,527	0,530	0,533	0,536	0,539	0,542	0,545	0,548	0,5 50
0,71	0,5 53	0,556	0,559	0,562	0,565	0,568	0,571	0,574	0,577	0,5 80
0,72	0,583	0,586	0,589	0,592	0,595	0,598	0,601	0,604	0,607	0,610
0,73	0,613	0,616	0,619	0,622	0,625	0,628	0,631	0,634	0,637	0,640
0,74	0,643	0,646	0,650	0,653	0,656	0,659	0,662	0,665	0,668	0,671
0,75	0,674	0,678	0,681	0,684	0,687	0,690	0,693	0,697	0,700	0,703
0,76 0,77	0,706	0,710	0,713	0,716	0,719	0,722	0,726	0,729	0,732	0,736
0,77 0,78	0,739 0,772	0,742	0,745	0,749	0,752	0,755	0,759	0,762	0,765	0,769
0,78 0,79	0,772 0,806	0,776 0,810	0,779 0,813	0,782 0,817	0,786 0,820	0,789	0,793	0,796	0,800	0,803
0,79	0,806	0,810	0,813	0,817	0,820	0,824	0,827	0,831	0,835	0,838
0,80	0,842	0,845	0,849	0,852	0,856	0,860	0,863	0,867	0,871	0,874
0,81	0,878	0,882	0,885	0,889	0,893	0,896	0,900	0,904	0,908	0,912
0,82	0,915	0,919	0,923	0,927	0,931	0,935	0,938	0,942	0,946	0,950
0,83	0,954	0,958	0,962	0,966	0,970	0,974	0,978	0,982	0,986	0,990
0,84	0,994	0,999	1,003	1,007	1,011	1,015	1,019	1,024	1,028	1,032
0,85	1,036	1,041	1,045	1,049	1,054	1,058	1,063	1,067	1,071	1,076
0,86	1,080	1,085	1,089	1,094	1,098	1,103	1,108	1,112	1,117	1,122
0,87 0,88	1,126	1,131	1,136	1,141	1,146	1,150	1,155	1,160	1,165	1,170
0,88 0,89	1,175 1,227	1,180 1,232	1,185 1,237	1,190 1,243	1,195	1,200	1,206	1,211	1,216	1,221
0,89	1,227	1,232	1,237	1,243	1,248	1,254	1,259	1,265	1,270	1,276
0,90	1282	1,287	1,293	1,299	1,305	1,311	1,317	1,323	1,329	1,335
0,91	1,341	1,347	1,353	1,359	1,366	1,372	1,379	1,385	1,392	1,398
0,92	1,405	1,412	1,419	1,426	1,433	1,440	1,447	1,454	1,461	1,468
0,93 0,94	1,476 1,555	1,483	1,491	1,499	1,506	1,514	1,522	1,530	1,538	1,546
0,94	1,555	1,563	1,572	1,580	1,589	1,598	1,607	1,616	1,626	1,635
0,95	1,645	1,655	1,665	1,675	1,685	1,695	1,706	1,717	1,728	1,739
0,96 0,97	1,751 1,881	1,762	1,774	1,787	1,799	1,812	1,825	1,838	1,852	1,866
0,97	1,881	1,896	1,911	1,927	1,943	1,960	1,977	1,995	2,014	2,034
0,98 0,99	2,054 2,326	1,075 2,366	2,097 2,409	2,120 2,457	2,144	2,170 2,576	2,197	2,226	2,257	2,290
-,9	2,326	2,366	2,409	2,457	2,512	2,576	2,652	2,748	2,878	3,090

TABEL III
Die t-verdeling:

Boonste Waarskynlikheidspunte

$P=P\left(t \geqslant t_{\nu, P}\right)=P\left(t \leqslant-t_{\nu, P}\right)$ met $\mathrm{t}_{\nu, \mathrm{P}}=-\mathrm{t}_{\nu, 1-\mathrm{P}}$ sodat

$$
\mathrm{P}\left(|t| \geqslant \mathrm{t}_{\nu, \mathrm{P}}\right)=2 \mathrm{P}, \quad \mathrm{t}_{\nu, \mathrm{P}}>0
$$

Die waardes $t_{\nu} \mathrm{P}$ van die t-verdeling is teen die aantal vryheidsgrade ν en die eenkantige oorskrydingswarskynlikheid P getabelleer.

TABLE III
The t-Distribution: Upper Probability Points

$$
\mathrm{P}=\mathrm{P}\left(\mathrm{t} \geqslant \mathrm{t}_{\nu, \mathrm{P}}\right)=\mathrm{P}(\mathrm{t} \leqslant-\mathrm{t}, \nu, \mathrm{P})
$$

with $t_{\nu, P}=-t_{\nu, 1-P}$ so that

$$
\mathrm{P}(|\mathrm{t}| \geqslant \mathrm{t} v, \mathrm{P})=2 \mathrm{P}, \quad \mathrm{t}, \quad \mathrm{P}, \mathrm{P}>0
$$

Entries in the table are the values t_{ν}, P of the t-distribution for various degrees of freedom ν and one-tailed probabilities P.

	0,25	0,10	0,05	0,025	0,01	0,005
1	1,000	3,078	6,314	12,706	31,821	63,657
2	0,816	1,886	2,920	4,303	6,965	9,925
3	0,765	1,638	2,353	3,182	4,541	5,841
4	0,741	1,533	2,132	2,776	3,747	4,604
5	0,727	1,476	2,015	2,571	3,365	4,032
6	0,718	1,440 1,415	1,943	2,447	3,143	3,707 3,499
8	0,706	1,397	1,860	2,306	2,998	3,499 3,355
9	0,703	1,383	1,833	2,262	2,821	3,250
10	0,700	1,372	1,812	2,228	2,764	3,169
11	0,697	1,363	1,796	2,201	2,718	3,106
12	0,695	1,356	1,782	2,179	2,681	3,055
13	0,694	1,350	1,771	2,160	2,650	3,012
14	0,692	1,345	1,761	2,145	2,624	2,977
15	0,691	1,341	1,753	2,131	2,602	2,947
16	0,690	1,337	1,746	2,120	2,583	2,921
17	0,689	1,333	1,740	2,110	2,567	2,898
18	0,688	1,330	1,734	2,101	2,552	2,878
19	0,688	1,328	1,729	2,093	2,539	2,861
20	0,687	1,325	1,725	2,086	2,528	2,845
21	0,686	1,323	1,721	2,080	2,518	2,831
22	0,686	1,321	1,717	2,074	2,508	2,819
23	0,685	1,319	1,714	2,069	2,500	2,807
24	0,685	1,318	1,711	2,064	2,492	2,797
25	0,684	1,316	1,708	2,060	2,485	2,787
26	0,684	1,315	1,706	2,056	2,479	2,779
27	0,684	1,314	1,703	2,052	2,473	2,771
28	0,683	1,313	1,701	2,048	2,467	2,763
29	0,683	1,311	1,699	2,045	2,462	2,756
30	0,683	1,310	1,697	2,042	2,457	2,750
35	0,682	1,306	1,690	2,030	2,438	2,724
40	0,681	1,303	1,684	2,021	2,423	2,704
60 100	0,679 0,677	1,296	1,671	2,000	2,390	2,660
100	0,677	1,290	1,660	1,984	2,364	2,626
∞	0,675	1,282	1,645	1,960	2,326	2,576

TABEL IV

$$
\begin{gathered}
\text { Die } \chi^{2} \text {-verdeling: } \\
\text { Boonste Waarskynlikheidspunte } \\
\mathrm{P}=\mathrm{P}\left(\chi^{2} \geqslant \chi_{\nu, \mathrm{P}}^{2}\right) \\
\text { Die waardes } \chi_{\nu, \mathrm{P}}^{2} \text { van die } \chi^{2} .
\end{gathered}
$$ verdeling is teen die aantal vryheidsgrade ν en die eenkantige oorskrydingswaarskynlikheid P getabelleer.

TABLE IV
The χ^{2}-Distribution: Upper Probability Points $\mathrm{P}=\mathrm{P}\left(\chi^{2} \geqslant \chi_{\nu, \mathrm{P}}^{2}\right)$
Entries in the table are the values
$\chi_{\nu, \mathrm{P}}^{2}$ of the χ^{2}-distribution for various degrees of freedom ν and onetailed probabilities P .

P	0.990	0.975	0.950	0.900	0.500	$0 \cdot 100$	0.050	0.025	0.010	0.005
1	157088.10-9	982069.10^{-9}	393214.10^{-8}	0.0157908	0.454937	2.70554	3.84146	5.02389	6.63490	7.87944
2	0.0201007	0.0506356	0. 102587	0.210720	1-38629	$4 \cdot 60517$	5.99147	$7 \cdot 37776$	9.21034	10.5966
3	$0 \cdot 114832$	0.215795	0.351846	0.584375	$2 \cdot 36597$	6.25139	7.81473	$9 \cdot 34840$	11.3449	12.8381
4	0.297110	0.484419	0.710721	1-063623	3-35670	7.77944	$9 \cdot 48773$	11.1433	13.2767	14.8602
5	0.554300	0.831211	1-145476	1.61031	4.35146	9.23635	11.0705	12.8325	15.0863	16.7496
6	0.872085	1.237347	1.63539	$2 \cdot 20413$	5-34812	10.6446	12.5916	14.4494	16.8119	18.5476
7	$1 \cdot 239043$	1.68987	2.16735	2.83311	6.34581	12.0170	14.0671	16.0128	18.4753	20.2777
8	1.646482	$2 \cdot 17973$	2.73264	$3 \cdot 48954$	$7 \cdot 34412$	13.3616	15.5073	17.5346	20.0902	21.9550
9	2.087912	$2 \cdot 70039$	3.32511	4-16816	$8 \cdot 34283$	14.6837	16.9190	19.0228	21.6660	23.5893
10	$2 \cdot 55821$	$3 \cdot 24697$	3.94030	4.86518	9.34182	15.9871	18.3070	20.4831	23.2093	$25 \cdot 1882$
11	3.05347	3.81575	$4 \cdot 57481$	$5 \cdot 57779$	10.3410	17.2750	19.6751	21.9200	24.7250	26.7569
12	$3 \cdot 57056$	$4 \cdot 40379$	5.22603	6.30380	11.3403	18.5494	21.0261	23.3367	26.2170	28.2995
13	4-10691	$5 \cdot 00874$	$5 \cdot 89186$	7.04150	12.3398	19.8119	$22 \cdot 3621$	24.7356	$27 \cdot 6883$	29.8194
14	$4 \cdot 66043$	5.62872	6.57063	7.78953	$13 \cdot 3393$	21.0642	23.6848	26.1190	$29 \cdot 1413$	31-3193
15	5. 22935	6.26214	$7 \cdot 26094$	$8 \cdot 54675$	14.3389	22.3072	24.9958	27.4884	30.5779	32.8013
16	5.81221	6.90766	7.96164	9.31223	$15 \cdot 3385$	23.5418	26.2962	28.8454	31.9999	$34 \cdot 2672$
17	$6 \cdot 40776$	$7 \cdot 56418$	8.67176	10.0852	16.3381	24.7690	27.5871	30.1910	33.4087	35.7185
18	7.01491	8.23075	$9 \cdot 39046$	10.8649	17.3379	25.9894	28.8693	31.5264	34.8053	37-1564
19	$7 \cdot 63273$	8.90655	10.1170	11.6509	18.3376	27-2036	30.1435	32.8523	36.1908	38.5822
20	8.26040	9.59083	10.8508	12.4426	$19 \cdot 3374$	28.4120	31.4104	34-1696	37.5662	39.9968
21	$8 \cdot 89720$	$10 \cdot 28293$	11.5913	13.2396	$20 \cdot 3372$	29.6151	32.6705	35.4789	38.9321	$41 \cdot 4010$
22	9. 54249	10.9823	12.3380	14.0415	21.3370	30.8133	33.9244	36.7807	$40 \cdot 2894$	42.7956
23	$10 \cdot 19567$	11.6885	13.0905	14.8479	$22 \cdot 3369$	32.0069	$35 \cdot 1725$	38.0757	41.6384	$44 \cdot 1813$
24	10.8564	12.4011	13.8484	15.6587	$23 \cdot 3367$	33.1963	36.4151	$39 \cdot 3641$	$42 \cdot 9798$	45.5585
25	11.5240	$13 \cdot 1197$	14.6114	16.4734	24.3366	34.3816	37.6525	$40 \cdot 6465$	44.3141	46.9278
26	12.1981	13.8439	15.3791	17.2919	25.3364	35.5631	38.8852	41.9232	$45 \cdot 6417$	$48 \cdot 2899$
27	12.8786	14.5733	16.1513	18.1138	26.3363	36.7412	$40 \cdot 1133$	$43 \cdot 1944$	46.9630	$49 \cdot 6449$
28	13.5648	$15 \cdot 3079$	16.9279	18.9392	27.3363	37.9159	41.3372	44.4607	48.2782	50.9933
29	14.2565	16.0471	$17 \cdot 7083$	19.7677	28.3362	39.0875	$42 \cdot 5569$	$45 \cdot 7222$	$49 \cdot 5879$	52.3356
30	14.9535	16.7908	18.4926	20.5992	29.3360	40.2560	43.7729	46.9792	50.8922	53.6720
40	22.1643	24.4331	26.5093	29.0505	$39 \cdot 3354$	51.8050	55.7585	59.3417	63.6907	66.7659
50	29.7067	32.3574	34.7642	37.6886	49.3349	63.1671	67.5048	71.4202	76.1539	79.4900
60	37.4848	$40 \cdot 4817$	$43 \cdot 1879$	46.4589	59.3347	$74 \cdot 3970$	79.0819	83.2976	88.3794	91.9517
70	45.4418	48.7576	51.7393	55.3290	69.3344	85.5271	90.5312	95.0231	$100 \cdot 425$	104.215
80	53.5400	57.1532	60.3915	64.2778	79.3343	96.5782	101.879	106.629	$112 \cdot 329$	116.321
90	61.7541	65.6466	69.1260	73.2912	89.3342	107.565	$113 \cdot 145$	118.136	$124 \cdot 116$	128.299
100	70.0648	74.2219	77.9295	82.3581	99.3341	118.498	124.342	129.561	$135 \cdot 807$	140.169

TABEL V
Die F-verdeling: Boonste 5\% Punte
(ν_{1} vryheidsgrade in die teller en ν_{2} in die noemer)

TABLE V
The F-Distribution: Upper 5\% Points
(ν_{1} degrees of freedom in numerator and ν_{2} in denominator)

v_{2}	$\psi_{1}=1$	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18,5	19,0	19,2	19,2	19,3	19,3	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,5	19,5	19,5	19,5	19,5	19,5
3	10,1	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40	4,36
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2,40
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11	2,07
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97 1,93	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1;84	1,78
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81	1,76
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79	1,73
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,71
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,65
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74 1	1,68	1,62
34	4,13	3,28	2,88	2,65	2,49	2,38	2,29	2,23	2,17	2,12	2,05	1,97	1,89	1,84	1,80	1,75	1,69	1,63	1,57
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64 1	1,58	1,51
48	4,04	3,19	2,80	2,57	2,41	2,29	2,21	2,14	2,08	2,03	1,96	1,88	1,79	1,75	1,70	1,64	1,59	1,52	1,45
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,39
80	3,96	3,11	2,72	2,49	2,33	2,21	2,13	2,06	2,00	1,95	1,88	1,79	1,70	1,65	1,60	1,54	1,48	1,41	1,32
120	3,92	3,07	2,68	2,45	2,29	2,18	2,09	2,02	1,96	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,25
∞	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,00

TABEL VI
Die F-verdeling: Boonste 2,5\% Punte

TABLE VI
The F-Distribution: Upper 2,5\% Points
(ν_{1} degrees of freedom in numerator and ν_{2} in denominator)

ν_{2}	$\nu_{1}=1$	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	648	800	864	900	922	937	948	957	963	969	977	985	993	997	1001	1006	1010	1014	1018
2	38,5	39,0	39,2	39,2	39,3	39,3	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,5	39,5	39,5	39,5	39,5	39,5
3	17,4	16,0	15,4	15,1	14,9	14,7	14,6	14,5	14,5	14,4	14,3	14,3	14,2	14,1	14,1	14,0	14,0	13,9	13,9
4	12,2	10,6	9,98	9,60	9,36	9,20	9,07	8,98	8,90	8,84	8,75	8,66	8,56	8,51	8,46	8,41	8,36	8,31	8,26
5	10,0	8,43	7,76	7,39	7,15	6,98	6,85	6,76	6,68	6,62	6,52	6,43	6,33	6,28	6,23	6,18	6,12	6,07	6,02
6	8,81	7,26	6,60	6,23	5,99	5,82	5,70	5,60	5,52	5,46	5,37	5,27	5,17	5,12	5,07	5,01	4,96	4,90	4,85
7	8,07	6,54	5,89	5,52	5,29	5,12	4,99	4,90	4,82	4,76	4,67	4,57	4,47	4,42	4,36	4,31	4,25	4,20	4,14
8	7,57	6,06	5,42	5,05	4,82	4,65	4,53	4,43	4,36	4,30	4,20	4,10	4,00	3,95	3,89	3,84	3,78	3,73	3,67
9	7,21	5,71	5,08	4,72	4,48	4,32	4,20	4,10	4,03	3,96	3,87	3,77	3,67	3,61	3,56	3,51	3,45	3,39	3,33
10	6,94	5,46	4,83	4,47	4,24	4,07	3,95	3,85	3,78	3,72	3,62	3,52	3,42	3,37	3,31	3,26	3,20	3,14	3,08
11	6,72	5,26	4,63	4,28	4,04	3,88	3,76	3,66	3,59	3,53	3,43	3,33	3,23	3,17	3,12	3,06	3,00	2,94	2,88
12	6,55	5,10	4,47	4,12	3,89	3,73	3,61	3,51	3,44	3,37	3,28	3,18	3,07	3,02	2,96	2,91	2,85	2,79	2,72
13	6,41	4,97	4,35	4,00	3,77	3,60	3,48	3,39	3,31	3,25	3,15	3,05	2,95	2,89	2,84	2,78	2,72	2,66	2,60
14	6,30	4,86	4,24	3,89	3,66	3,50	3,38	3,29	3,21	3,15	3,05	2,95	2,84	2,79	2,73	2,67	2,61	2,55	2,49
15	6,20	4,77	4,15	3,80	3,58	3,41	3,29	3,20	3,12	3,06	2,96	2,86	2,76	2,70	2,64	2,58	2,52	2,46	2,40
16	6,12	4,69	4,08	3,73	3,50	3,34	3,22	3,12	3,05	2,99	2,89	2,79	2,68	2,63	2,57	2,51	2,45	2,38	2,32
17	6,04	4,62	4,01	3,66	3,44	3,28	3,16	3,06	2,98	2,92	2,82	2,72	2,62	2,56	2,50	2,44	2,38	2,32	2,25
18	5,98	4,56	3,95	3,61	3,38	3,22	3,10	3,01	2,93	2,87	2,77	2,67	2,56	2,50	2,44	2,38	2,32	2,26	2,19
19	5,92	4,51	3,90	3,56	3,33	3,17	3,05	2,96	2,88	2,82	2,72	2,62	2,51	2,45	2,39	2,33	2,27	2,20	2,13
20	5,87	4,46	3,86	3,51	3,29	3,13	3,01	2,91	2,84	2,77	2,68	2,57	2,46	2,41	2,35	2,29	2,22	2,16	2,09
21	5,83	4,42	3,82	3,48	3,25	3,09	2,97	2,87	2,80	2,73	2,64	2,53	2,42	2,37	2,31	2,25	2,18	2,11	2,04
22	5,79	4,38	3,78	3,44	3,22	3,05	2,93	2,84	2,76	2,70	2,60	2,50	2,39	2,33	2,27	2,21	2,14	2,08	2,00
23	5,75	4,35	3,75	3,41	3,18	3,02	2,90	2,81	2,73	2,67	2,57	2,47	2,36	2,30	2,24	2,18	2,11	2,04	1,97
24	5,72	4,32	3,72	3,38	3,15	2,99	2,87	2,78	2,70	2,64	2,54	2,44	2,33	2,27	2,21	2,15	2,08	2,01	1,94
25	5,69	4,29	3,69	3,35	3,13	2,97	2,85	2,75	2,68	2,61	2,51	2,41	2,30	2,24	2,18	2,12	2,05	1,98	1,91
28	5,61	4,22	3,63	3,29	3,06	2,90	2,78	2,69	2,61	2,55	2,45	2,34	2,23	2,17	2,11	2,05	1,98	1,91	1,83
30	5,57	4,18	3,59	3,25	3,03	2,87	2,75	2,65	2,57	2,51	2,41	2,31	2,20	2,14	2,07	2,01	1,94	1,87	1,79
34	5,50	4,12	3,53	3,19	2,97	2,81	2,69	2,59	2,52	2,45	2,35	2,25	2,13	2,07	2,01	1,95	1,88	1,80	1,72
40	5,42	4,05	3,46	3,13	2,90	2,74	2,62	2,53	2,45	2,39	2,29	2,18	2,07	2,01	1,94	1,88	1,80	1,72	1,64
48	5,35	3,99	3,40	3,07	2,84	2,69	2,56	2,47	2,39	2,33	2,23	2,12	2,01	1,94	1,88	1,81	1,73	1,65	1,56
60	5,29	3,93	3,34	3,01	2,79	2,63	2,51	2,41	2,33	2,27	2,17	2,06	1,94	1,88	1,82	1,74	1,67	1,58	1,48
80	5,22	3,86	3,28	2,95	2,73	2,57	2,45	2,35	2,28	2,21	2,11	2,00	1,88	1,82	1,75	1,68	1,60	1,51	1,40
120	5,15	3,80	3,23	2,89	2,67	2,52	2,39	2,30	2,22	2,16	2,05	1,94	1,82	1,76	1,69	1,61	1,53	1,43	1,31
∞	5,02	3,69	3,12	2,79	2,57	2,41	2,29	2,19	2,11	2,05	1,94	1,83	1,71	1,64	1,57	1,48	1,39	1,27	1,00

TABEL IX
Die Produkmoment-korrelasiekoëffisiënt: Boonste Kritieke Waardes (vir $\rho=0$)

TABLE IX
The Product Moment Correlation Coefficient: Upper Critical Values (for $\rho=0$)
$\mathrm{n}=$ aantal pare waamemings
$n=$ number of pairs of observations

n	Betekenispeil vir eenkantige toets			Significance level for one-tailed test		
	0,25	0,10	0,05	0,025	0,01	0,005
3	0,7071	0,9511	0,9877	0,9969	0,9995	0,9999
4	0,5000	0,8000	0,9000	0,9500	0,9800	0,9900
5	0,4040	0,6870	0,8054	0,8783	0,9343	0,95 87
6	0,3473	0,6084	0,7293	0,8114	0,8822	0,9172
7	0,3091	0,5509	0,6694	0,7545	0,8329	0,8745
8	0,2811	0,5067	0,6215	0,7067	0,7887	0,8343
9	0,2596	0,4716	0,5822	0,6664	0,7498	0,7977
10	0,2423	0,4428	0,5494	0,6319	0,7155	0,7646
11	0,2281	0,4187	0,5214	0,6021	0,6851	0,7348
12	0,2161	0,3981	0,4973	0,5760	0,6581	0,7079
13	0,2058	0,3802	0,4762	0,5529	0,6339	0,6835
14	0,1968	0,3646	0,4575	0,5324	0,6120	0,6614
15	0,1890	0,3507	0,4409	0,5140	0,5923	0,6411
16	0,1820	0,3383	0,4259	0,4973	0,5742	0,6226
17	0,1757	0,3271	0,4124	0,4821	0,5577	0,6055
18	0,1700	0,3170	0,4000	0,4683	0,5425	0,5897
19	0,1649	0,3077	0,3887	0,4555	0,5285	0,5751
20	0,1602	0,2992	0,3783	0,4438	0,5155	0,5614
21	$0,1558$	0,2914	0,3687	0,4329	0,5034	$0,5487$
22	0,1518	0,2841	0,3598	0,4227	0,4921	0,5368
23	0,1481	0,2774	0,3515	0,4132	0,4815	0,5256
24	0,1447	0,2711	0,3438	0,4044	0,4716	0,5151
25	0,1415	0,2653	0,3365	0,3961	0,4622	0,5052
26	$0,1384$	$0,2598$	$0,3297$	0,3882	$0,4534$	$0,4958$
27	0,1356	0,2546	0,3233	0,3809	0,4451	0,4896
28	0,1330	0,2497	0,3172	0,3739	0,4372	0,4785
29	0,1305	0,2451	0,3115	0,3673	0,4297	0,4705
30	0,1281	0,2407	0,3061	0,3610	0,4226	0,4629
31	0,1258	0,2366	0,3009	0,3550	0,4158.	0,4556
32	0,1237	0,2327	0,2960	0,3494	0,4093	0,4487
35	0,1179	0,2220	0,2826	0,3338	0,3916	0,4296
40	0,1098	0,2070	0,2638	0,3120	0,3665	0,4026
45	0,1032	0,1947	0,2483	0,2940	0,3457	0,3801
50	0,0976	0,1843	0,2353	0,2787	0,3281	0,3610
60	0,0888	0,1678	0,2144	0,2542	0,2997	0,3301
70	0,0820	0,1550	0,1982	0,2352	0,2776	0,3060
80	0,0765	0,1448	0,1852	0,2199	0,2597	0,2864
90 100	$0,0720$	$0,1364$	$0,1745$	$0,2072$	$0,2449$	$0,2702$
100	0,0682	0,1292	0,1654	0,1966	0,2324	0,2565

TABEL X
Die z-transformasie vir die Korrelasiekoëffisiënt

Die getransformeerde waardes

$$
z=\tanh ^{-1} r=1 / 2 \log _{e} \frac{1+r}{1-r}
$$

is teen die korrelasiekoëffisiënt r getabelleer.

TABLE X
The z-Transformation for the Correlation Coefficient

Entries in the table are the transformed values

$$
z=\tanh ^{-1} r=1 / 2 \log _{e} \frac{1+r}{1-r}
$$

for various values of the correlation coefficient r.

r	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0100	0,0200	0,0300	0,0400	0,0500	0,0601	0,0701	0,0802	0,0902
0,1	0,1003	0,1104	0,1206	0,1307	0,1409	0,1511	0,1614	0,1717	0,1820	0,1923
0,2	0,2027	0,2132	0,2237	0,2342	0,2448	0,2554	0,2661	0,2769	0,2877	0,2986
0,3	0,3095	0,3205	0,3316	0,3428	0,3541	0,3654	0,3769	0,3884	0,4001	0,4118
0,4	0,4236	0,4356	0,4477	0,4599	0,4722	0,4847	0,4973	0,5101	0,5230	0,5361
0,5	0,5493	0,5627	0,5763	0,5901	0,6042	0,6184	0,6328	0,6475	0,6625	0,6777
0,6	0,6931	0,7089	0,7250	0,7414	0,7582	0,7753	0,7928	0,8107	0,8291	0,8480
0,7	0,8673	0,8872	0,9076	0,9287	0,9505	0,9730	0,9962	1,0203	1,0454	1,0714
0,8	1,0986	1,1270	1,1568	1,1881	1,2212	1,2562	1,2933	1,3331	1,3758	1,4219
0,9	1,4722	1,5275	1,5890	1,6584	1,7380	1,8318	1,9459	2,0923	2,2976	2,6466

r	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,90	1,4722	1,4775	1,4828	1,4882	1,4937	1,4992	1,5047	1,5103	1,5160	1,5217
0,91	1,5275	1,5334	1,5393	1,5453	1,5513	1,5574	1,5636	1,5698	1,5762	1,5826
0,92	1,5890	1,5956	1,6022	1,6089	1,6157	1,6226	1,6296	1,6366	1,6438	1,6510
0,93	1,6584	1,6658	1,6734	1,6811	1,6888	1,6967	1,7047	1,7129	1,7211	1,7295
0,94	1,7380	1,7467	1,7555	1,7645	1,7736	1,7828	1,7923	1,8019	1,8117	1,8216
0,95	1,8318	1,8421	1,8527	1,8635	1,8745	1,8857	1,8972	1,9090	1,9210	1,9333
0,96	1,9459	1,9588	1,9721	1,9857	1,9996	2,0139	2,0287	- 2,0439	2,0595	2,0756
0,97	2,0923	2,1095	2,1273	2,1457	2,1649	2,1847	2,2054	2,2269	2,2494	2,2729
0,98	2,2976	2,3235	2,3507	2,3796	2,4101	2,4427	2,4774	2,5147	2,5550	2,5987
0,99	2,6466	2,6996	2,7587	2,8257	2,9031	2,9945	3,1063	3,2504	3,4534	3,8002

Table A. Percentage points for the distribution of B_{1} Lower percentage point $=-$ (tabulated upper percentage point)

Size of sample	Percentage points	Size of sample	Percentage points
n	5%	n	5%
25	0,711	200	0,280
30	0,662	250	0,251
35	0,621	300	0,230
40	0,587	350	0,213
45	0,558	400	0,200
50	0,534	450	0,188
		500	0,179
60	0,492	550	0,171
70	0,459	600	0,163
80	0,432	650	0,157
90	0,409	700	0,151
100	0,389	750	0,146
		800	0,142
125	0,350	850	0,138
150	0,321	900	0,134
175	0,298	950	0,130
200	0,280	1000	0,127

Table B. Percentage points of the distribution of B_{2}

Size of	Percentage points	
sample n	Upper 5\%	Lower 5\%
50	3,99	2,15
75	3,87	2,27
100	3,77	2,35
125	3,71	2,40
150	3,65	2,45
200	3,57	2,51
250	3,52	2,55
300	3,47	2,59
350	3,44	2,62
400	3,41	2,64
450	3,39	2,66
500	3,37	2,67
550	3,35	2,69
600	3,34	2,70
650	3,33	2,71
700	3,31	2,72
800	3,29	2,74
900	3,28	2,75
1000	3,26	2,76

Table C. Percentage points for the distribution of $A=\frac{\text { mean deviation }}{\text { standard deviation }}$

Size of sample n	$n-1$	Percentage points			
	Upper 5\%	Upper 10\%	Lower 10\%	Lower 5\%	
11	10	0,9073	0,8899	0,7409	0,7153
16	15	0,8884	0,8733	0,7452	0,7236
21	20	0,8768	0,8631	0,7495	0,7304
26	25	0,8686	0,8570	0,7530	0,7360
31	30	0,8625	0,8511	0,7559	0,7404
36	35	0,8578	0,8468	0,7583	0,7440
41	40	0,8540	0,8436	0,7604	0,7470
46	45	0,8508	0,8409	0,7621	0,7496
51	50	0,8481	0,8385	0,7636	0,7518
61	60	0,8434	0,8349	0,7662	0,7554
71	70	0,8403	0,8321	0,7683	0,7583
81	80	0,8376	0,8298	0,7700	0,7607
91	90	0,8353	0,8279	0,7714	0,7626
101	100	0,8344	0,8264	0,7726	0,7644

Table D
Tabel D
The hypergeometric probability distribution: $P(X \leq x)$ for $N=12$
Die hipergeometriese verdeling: $P(X \leq x)$ vir $N=12$

n	k	x	P	n	k	x	P	n	k	x	P
1	1	0	0,917	4	4	0	0,141	6	2	0	0,227
1	1	1	1,000	4	4	1	0,594	6		1	0,773
				4	4	2	0,933	6	2	2	1,000
2	1	0	0,833	4	4	3	0,998				
2	1	1	1,000	4	4	4	1,000	6	3	0	0,091
								6	3	1	0,500
2	2	0	0,682	5	1	0	0,583	6	3	2	0,909
2	2	1	0,985	5	1	1	1,000	6	3	3	1,000
2	2	2	1,000								
				5	2	0	0,318	6	4	0	0,030
3	1	0	0,750	5	2	1	0,848	6	4	1	0,273
3	1	1	1,000	5	2	2	1,000	6	4	2	0,727
								6	4	3	0,970
3	2	0	0,545	5	3	0	0,159	6	4	4	1,000
3	2	1	0,955	5	3	1	0,636				
3	2	2	1,000	5	3	2	0,955	6	5	0	0,008
				5	3	3	1,000	6	5	1	0,121
3	3	0	0,382					6	5	2	0,500
3	3	1	0,873	5	4	0	0,071	6	5	3	0,879
3	3	2	0,995	5	4	1	0,424	6	5	4	0,992
3	3	3	1,000	5	4	2	0,848	6	5	5	1,000
				5	4	3	0,990				
$\begin{aligned} & 4 \\ & 4 \end{aligned}$	1	0	0,667	5	4	4	1,000	6	6		0,001
	1	1	1,000					6	6	1	0,040
				5	5	0	0,027	\bigcirc	6	2	0,284
$\begin{aligned} & \hline 4 \\ & 4 \\ & 4 \end{aligned}$	2	0	0,424	5	5	1	0,247	6	6		0,716
	2	1	0,909	5	5	2	0,689	6	6	4	0,960
	2	2	1,000	5	5	3	0,955	6	6	5	0,999
				5	5	4	0,999	6	6	6	1,000
4 4 4 4	3	0	0,255	5	5	5	1,000				
	3	1	0,764								
	3	2	0,982	6	1	0	0,500				
	3	3	1,000	6	1	1	1,000				

Table E
Upper 5\% percentage points of the ratio, $S_{\max }^{2} / S_{\text {min }}^{2}$

v	$k=2$	3	4	5	6
2	39,0	87,5	142	202	266
3	15,4	27,8	39,2	50,7	62,0
4	9,60	15,5	20,6	25,2	29,5
5	7,15	10,8	13,7	16,3	18,7
6	5,82	8,38	10,4	12,1	13,7
7	4,99	6,94	8,44	9,70	10,8
8	4,43	6,00	7,18	8,12	9,03
9	4,03	5,34	6,31	7,11	7,80
10	3,72	4,85	5,67	6,34	6,92
12	3,28	4,16	4,79	5,30	5,72
15	2,86	3,54	4,01	4,37	4,68
20	2,46	2,95	3,29	3,54	3,76
30	2,07	2,40	2,61	2,78	2,91
60	1,67	1,85	1,96	2,04	2,11
∞	1,00	1,00	1,00	1,00	1,00
$k=$ number of samples					

$v=$ degrees of freedom for each sample variance

UNISA 2013

[^0]: Std Error uses a pooled estimate of error variance

