Tutorial Letter 104/1/2015

Applied Statistics II STA2601

Semester 1

Department of Statistics

TRIAL EXAMINATION PAPER

BAR CODE

Learn without limits.

Dear Student

Congratulations if you obtained examination admission by submitting assignment 1. I would like to take the opportunity of wishing you well in the coming examinations. I hope you found the module stimulating.

The examination

Please note the following with regard to the examination:

- * The duration of the examination paper is **two-hours**. You will be able to complete the set paper in 2 hours, but there will be no time for dreaming or sitting on questions you are unsure about. Make sure that you take along a functional scientific calculator that you can operate with ease as it can save you some time. My advice to you would be to do those questions you find easy *first;* then go back to the ones that need more thinking. I do not mind to mark questions in whatever order you do them, just *make sure that you number them clearly*!
- * A copy of the list of formulae is attached to the trial examination paper. Please ensure that you know how to test the various hypotheses.
- * All the necessary statistical tables will be supplied (see the trial paper).
- * Pocket calculators are necessary for doing the calculations.
- * Working through (and understanding!) ALL the examples and exercises in the study guide, workbook and in the assignments as well as the trial paper will provide beneficial supplementary preparation.
- * Make sure that you know all the theory as well as the practical applications.
- * All the chapters in the study guide are equally important and don't try to spot!
- * Start preparing early and don't hesitate to call or email me if something is unclear.

Trial paper

Reserve two hours for yourself and do the trial paper under exam conditions on your own!

Duration: 2 hours INSTRUCTIONS

100 Marks

- 1. Answer ALL questions.
- 2. Marks will not be given for answers only. Show clearly how you solve each problem.
- 3. For all hypothesis-testing problems always give

- (i) the null and alternative hypothesis to be tested;
- (ii) the test statistic to be used; and
- (iii) the critical region for rejecting the null hypothesis.
- 4. Justify your answer completely if you make use of JMP output to answer a question.

QUESTION 1

Complete the following statements in your answer book (i.e. write down the *missing words* or *symbols* and do not waste time rewriting the whole sentence):

- (a) The random variables $X_1, X_2, ..., X_n$ constitute a *random sample* from the distribution with probability density function (p.d.f.) $f_X(x)$ if $X_1, X_2, ..., X_n$ are random variables, each with p.d.f. $f_X(x)$. (1)
- (c) If you fail to reject the null hypothesis H_0 : $\sigma_1^2 = \sigma_2^2$ on the basis of sample data, when in fact there is a difference between the variances of two populations, you have made a error. (1)
- (d) If the exceedance probability $P(\overline{X} \ge \overline{x} \mid H_0 \text{ is true}) = 0.0001$ and the alternative hypothesis is $H_1: \mu > \mu_0$, it means that \overline{x} is significant. (1)
- (g) The Bonferroni inequality can be applied to any inference problem. (1)
 - [5]

QUESTION 2

- (a) Write down, in general terms, the method of obtaining a least squares estimator. (3)
- (b) Let $X_1, X_2, ..., X_n$ be independent random variables from a distribution with expected value θ . Find the least squares estimator for θ . (4)
- (c) Let $X_1; X_2; \ldots; X_n$ be a random sample from a distribution with p.d.f.

$$f_X(x) = cx^{c-1}$$
 for $x > 1$

Find the maximum likelihood estimator for the parameter c.

[13]

(6)

3

QUESTION 3

An irate customer called Rand Day Mail Order Company 40 times during the last two weeks to see why his order had not arrived. Each time he called, he recorded the length of time he was put "on hold" before being allowed to talk to a customer service representative. The following data was obtained.

1	2	3	4	4	5	5	5	5	5
5	6	6	6	6	6	6	6	7	7
7	7	7	8	8	8	8	8	8	9
9	9	9	9	9	10	10	11	12	13

Make use of the following summary statistic and output:

$$\sum_{i=1}^{40} X_i = 279; \qquad \sum_{i=1}^{40} X_i^2 = 2197; \qquad \sum_{i=1}^{40} X_i^3 = 18843;$$

$$\sum_{i=1}^{40} (|X_i - \overline{X}|| = 79.1 \qquad \sum_{i=1}^{40} (X_i - \overline{X})^2 = 250.975 \qquad \sum_{i=1}^{40} (X_i - \overline{X})^3 = 17.82375$$

$$\sum_{i=1}^{40} (X_i - \overline{X})^4 = 4883.841203. \qquad A = \frac{\frac{1}{n} \sum_{i=1}^n |X_i - \overline{X}|}{\sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}}$$

and moments of length of time on hold

Figure 2: Graphical representation and t-test of length of length of time on hold

- (a) What can you conclude about normality from the **JMP graphical output in Figure 1**? (3)
- (b) Use the method of moments to test for normality. (Use any of the given calculations, but clearly show all your computations). Hint: Perform the skewness and kurtosis two-sided tests at the 10% level of significance. (14)

- (c) Is there any reason to reject the null hypothesis $H_0: \mu = 8$? Test a two-sided at the 5% level of significance. Show how you use and interpret **the JMP output in Figure 2**. (4)
- (d) Give a 95% confidence interval for the unknown mean μ . Does this interval confirm your conclusion in question (c)? (2)

[23]

QUESTION 4

(a) A comparison is made between two innovative teaching methods by using the two methods for training two independent groups of pupils, and assessing exam scores obtained by the pupils in the two groups. Assume that $\sigma_1^2 = \sigma_2^2 = \sigma^2$, that is, unknown equal population varainces. Summary of results obtained from the two samples are shown below:

 $n_1 = n_2 = 31; \ \overline{X}_1 = 50.55; \ \overline{X}_2 = 56.65; \ S_P = 14.62$

- (i) Construct a 95% confidence interval for $\mu_1 \mu_2$. (5)
- (ii) Comment on the confidence interval for $\mu_1 \mu_2$ (2)
- (b) It is desired to test $H_0: \mu = 50$ against $H_1: \mu \neq 50$ using a sample of size n = 13 from a $n(\mu; \sigma^2)$ distribution. Suppose that we know that the true mean is $\mu = 50 + 0.75\sigma$.
 - (i) What will the power of the test be if we test at the 5% level of significance? (4)
 - (ii) What will the probability of a Type II error be if the probability of a Type I error is 0.05?(1)
- (c) Suppose that the temperament of people (i.e. how good- or ill-tempered they are) can be measured by a psychological scale and classified into three distinct groups. A random sample of 1 000 people from a certain nationality was measured and classified by this test and the results are as follows:

Bad-tempered $N_1 = 250$ Even-tempered $N_2 = 480$ Good-tempered $N_3 = 270$

It is postulated that the population of this nationality is divided into the three temperament groups in the following proportions:

$$\pi_1 = 0.20; \quad \pi_2 = 0.50 \quad \text{and} \quad \pi_3 = 0.30.$$

Test this hypothesis at the 5% level of significance.

(7)

(d) In a random sample of 52 observations from a bivariate normal distribution, the correlation coefficient was r = 0.65.

Test $H_0: \rho = 0.50$ against $H_1: \rho > 0.50$ at the 5% level of significance.

(7)

[26]

QUESTION 5

A sociologist studying City of Tshwane ethnic groups wants to determine if there is a difference in income for immigrants from four different countries during their first year in the city. She obtained the data in the following table from a random sample of immigrants from these countries (income in thousands of Rands). Use a 0.05 level of significance to test the claim that there is no difference in the earnings of immigrants from the four different countries.

Country I	Country II	Country III	Country IV
12.7	8.3	20.3	17.2
9.2	17.2	16.6	8.8
10.9	19.1	22.7	14.7
8.9	10.3	25.2	21.3
16.4		19.9	19.8

Study the following JMP output and answer the questions given below:

Figure 3: Graphical representation and computations for ANOVA

Welch Anova testing Means Equal, allowing Std Devs Not Equal F Ratio DFNum DFDen Prob > F 6.4430 3 7.7654 0.0167*

Figure 4: Tests that the variances are equal

- (a) Do you think it is reasonable to assume that the four countries may be considered as *independent groups?*(2)
- (b) What additional graphical technique(s) would you need to decide that the four countries may be considered as *coming from normal populations?* (1)
- (c) Do you think it is reasonable to assume that the four countries have equal population variances? (Justify your answer.)(2)

(d) Do these results indicate that there is a difference in the earnings of immigrants from the four countries? (In other words can you conclude that the mean earnings for the four countries differ significantly?)

Justify your answer by giving attention to the following detail:

- (i) State the appropriate null and alternative hypothesis for this test.
- (ii) What test statistic is used to test these hypotheses?
- (iii) What is the value of the test statistic?

(4)

[9]

QUESTION 6

All apple farmers will agree that codling moth is their worst enemy! The flying moths lay their eggs in small developing fruits and the larvae develop in time to devour the ripe apples! It is generally thought that the percentage of fruits attacked by codling moth larvae is greater on apple trees bearing a small crop. The data in the table below are the results of an experiment to prove this phenomenon.

Tree	Size of crop on tree	Percentage of
Number	(hundreds of fruits) (X)	wormy fruit (Y)
1	8	59
2	6	58
3	11	56
4	22	53
5	14	50
6	17	45
7	18	43
8	24	42
9	19	39
10	23	38
11	26	30
12	40	27

The following SAS JMP output is obtained:

(a) Plot the data to verify that linear regression is a suitable model. (4)

(b) Verify that the linear regression of Y on X is
$$\hat{Y} = 64.247 - 1.013X$$
. (5)

(c) Compile (complete and compute) the following table:

X_i	Y_i	\widehat{Y}_i	$\left(Y_i - \widehat{Y}_i\right)^2$
8	59	56.143	8.16
6	58	58.169	0.03
:	:	:	:
26	30	37.909	62.55
40	27	23.727	10.71

(8)

(d) What is the percentage of wormy fruits when the size of the crop is 1 900 apples on the tree?

(2)

(e) Given that
$$d^2 = 924$$
. Test

Test
$$H_0$$
: $\beta_1 = 0$ against
 H_1 : $\beta_1 < 0$ at the 1% level of significance. (5)

[24] [100]

Formulae / Formules

 $B_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{3}}{[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}]^{\frac{3}{2}}}$ $B_{2} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{4}}{[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}]^{2}}$ $\rho = \frac{e^{\eta} - e^{-\eta}}{e^{\eta} + e^{-\eta}}$ $T = \sqrt{n-2} \frac{U_{11} - U_{22}}{2\sqrt{U_{11}U_{22} - U_{12}^2}}$ $T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{S_{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$ $v = \frac{\left[\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right]^2}{\frac{S_1^4}{n_1^2(n_1-1)} + \frac{S_2^4}{n_2^2(n_2-1)}}$ $F = \frac{n \sum_{i=1}^{k} (\overline{X}_i - \overline{X})^2 / (k-1)}{\sum_{i=1}^{k} \sum_{i=1}^{n} (X_{ij} - \overline{X}_i)^2 / (kn-k)}$ $\widehat{\beta}_1 = \frac{\sum_{i=1}^n Y_i(X_i - \overline{X})}{d^2}$

Oppervlaktes onder die Normaalkromme

$$\Phi(z) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}x^2} dx$$

 $\Phi\left(-z\right)=1-\Phi\left(z\right)$

TABLE I

Areas under the Normal Curve

$$\Phi(z) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{y}{2}x^2} dx$$

 $\Phi\left(-z\right)=1-\Phi\left(z\right)$

Die oppervlakte $\Phi(z)$ is teen z vir $z \ge 0$ getabelleer.

Entries in the table are values of $\tilde{\Phi}(z)$ for $z \ge 0$.

ſ	z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
	0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
	0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
	0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
	0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
	0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
	0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
	0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
	0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
	0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0.8078	0,8106	0,8133
	0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
	1.0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
	1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
	1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0.9015
	1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
	1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
	1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
	1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
	1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
	1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
	1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
	2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
	2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
	2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
	2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
	2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
	2,5	0,99379	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
	2,6	0,99534	0,99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
	2,7	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
	2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
	2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
	3,0	0,99865	0,99869	0,99874	0,99878	0,99822	0,99886	0,99889	0,99893	0,99896	0,99900
	3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
	3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
	3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
	3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
	3,5 3,6 3,7 3,8 3,9	0,99977 0,99984 0,99989 0,99993 0,99995									
	4,0	0,99997									

 $\Phi(z)$

0 z

TABEL II

Waardes van die Inverse Normaalverdeling

Die inverse funksie $z = \Phi^{-1}(u)$ is teen u vir $u \ge 0,5$ getabelleer, waar $u = \Phi(z)$ die standaard normaalverdelingsfunksie aandui. Let op dat vir $u = \Phi(z) < 0,5$ is $\Phi(-z) = 1 - \Phi(z) > 0,5$

TABLE II

Values of the Inverse Normal Distribution

Entries in the table are values of the inverse function $z = \Phi^{-1}(u)$ for $u \ge 0.5$, where $u = \Phi(z)$ denotes the standard normal distribution function. Note that $\Phi(-z) = 1 - \Phi(z) \ge 0.5$ when $u = \Phi(z) \le 0.5$.

Ф(z)	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,50	0,000	0,003	0,005	0,008	0,010	0,013	0,015	0,018	0,020	0,023
0,51	0,025	0,028	0,030	0,033	0,035	0,038	0,040	0,043	0,045	0,048
0,52	0,050	0,053	0,055	0,058	0,060	0,063	0,065	0,068	0,070	0,073
0,53	0,075	0,078	0,080	0,083	0,085	0,088	0,090	0,093	0,095	0,098
0,54	0,100	0,103	0,105	0,108	0,111	0,113	0,116	0,118	0,121	0,123
0,55	0,126	0,128	0,131	0,133	0,136	0,138	0,141	0,143	0,146	0,148
0,56	0,151	0,154	0,156	0,159	0,161	0,164	0,166	0,169	0,171	0,174
0,57	0,176	0,179	0,181	0,184	0,187	0,189	0,192	0,194	0,197	0,199
0,58	0,202	0,204	0,207	0,210	0,212	0,215	0,217	0,220	0,222	0,225
0,59	0,228	0,230	0,233	0,235	0,238	0,240	0,243	0,246	0,248	0,251
0,60	0,253	0,256	0,259	0,261	0,264	0,266	0,269	0,272	0,274	0,277
0,61	0,279	0,282	0,285	0,287	0,290	0,292	0,295	0,298	0,300	0,303
0,62	0,305	0,308	0,311	0,313	0,316	0,319	0,321	0,324	0,327	0,329
0,63	0,332	0,335	0,337	0,340	0,342	0,345	0,348	0,350	0,353	0,356
0,64	0,358	0,361	0,364	0,366	0,369	0,372	0,375	0,377	0,380	0,383
0,65	0,385	0,388	0,391	0,393	0,396	0,399	0,402	0,404	0,407	0,410
0,66	0,412	0,415	0,418	0,421	0,423	0,426	0,429	0,432	0,434	0,437
0,67	0,440	0,443	0,445	0,448	0,451	0,454	0,457	0,459	0,462	0,465
0,68	0,468	0,471	0,473	0,476	0,479	0,482	0,485	0,487	0,490	0,493
0,69	0,496	0,499	0,502	0,504	0,507	0,510	0,513	0,516	0,519	0,522
0,70	0,524	0,527	0,530	0,533	0,536	0,539	0,542	0,545	0,548	0,550
0,71	0,553	0,556	0,559	0,562	0,565	0,568	0,571	0,574	0,577	0,580
0,72	0,583	0,586	0,589	0,592	0,595	0,598	0,601	0,604	0,607	0,610
0,73	0,613	0,616	0,619	0,622	0,625	0,628	0,631	0,634	0,637	0,640
0,74	0,643	0,646	0,650	0,653	0,656	0,659	0,662	0,665	0,668	0,671
0,75	0,674	0,678	0,681	0,684	0,687	0,690	0,693	0,697	0,700	0,703
0,76	0,706	0,710	0,713	0,716	0,719	0,722	0,726	0,729	0,732	0,736
0,77	0,739	0,742	0,745	0,749	0,752	0,755	0,759	0,762	0,765	0,769
0,78	0,772	0,776	0,779	0,782	0,786	0,789	0,793	0,796	0,800	0,803
0,79	0,806	0,810	0,813	0,817	0,820	0,824	0,827	0,831	0,835	0,838
0,80	0,842	0,845	0,849	0,852	0,856	0,860	0,863	0,867	0,871	0,874
0,81	0,878	0,882	0,885	0,889	0,893	0,896	0,900	0,904	0,908	0,912
0,82	0,915	0,919	0,923	0,927	0,931	0,935	0,938	0,942	0,946	0,950
0,83	0,954	0,958	0,962	0,966	0,970	0,974	0,978	0,982	0,986	0,990
0,84	0,994	0,999	1,003	1,007	1,011	1,015	1,019	1,024	1,028	1,032
0,85	1,036	1,041	1,045	1,049	1,054	1,058	1,063	1,067	1,071	1,076
0,86	1,080	1,085	1,089	1,094	1,098	1,103	1,108	1,112	1,117	1,122
0,87	1,126	1,131	1,136	1,141	1,146	1,150	1,155	1,160	1,165	1,170
0,88	1,175	1,180	1,185	1,190	1,195	1,200	1,206	1,211	1,216	1,221
0,89	1,227	1,232	1,237	1,243	1,248	1,254	1,259	1,265	1,270	1,276
0,90	1 282	1,287	1,293	1,299	1,305	1,311	1,317	1,323	1,329	1,335
0,91	1,341	1,347	1,353	1,359	1,366	1,372	1,379	1,385	1,392	1,398
0,92	1,405	1,412	1,419	1,426	1,433	1,440	1,447	1,454	1,461	1,468
0,93	1,476	1,483	1,491	1,499	1,506	1,514	1,522	1,530	1,538	1,546
0,94	1,555	1,563	1,572	1,580	1,589	1,598	1,607	1,616	1,626	1,635
0,95	1,645	1,655	1,665	1,675	1,685	1,695	1,706	1,717	1,728	1,739
0,96	1,751	1,762	1,774	1,787	1,799	1,812	1,825	1,838	1,852	1,866
0,97	1,881	1,896	1,911	1,927	1,943	1,960	1,977	1,995	2,014	2,034
0,98	2,054	2,075	2,097	2,120	2,144	2,170	2,197	2,226	2,257	2,290
0,99	2,326	2,366	2,409	2,457	2,512	2,576	2,652	2,748	2,878	3,090

TABEL III

Die t-verdeling: Boonste Waarskynlikheidspunte

$$P = P(t \ge t_{\nu,P}) = P(t \le -t_{\nu,P})$$

met $t_{\nu,P} = -t_{\nu,1-P}$ sodat

$$P(|t| \ge t_{\nu,P}) = 2P, \quad t_{\nu,P} > 0.$$

Die waardes t_{ν} p van die t-verdeling is teen die aantal vryheidsgrade ν en die eenkantige oorskrydingswaarskynlikheid P getabelleer.

The t-Distribution: Upper Probability Points

$$P = P(t \ge t_{\nu,P}) = P(t \le -t_{\nu,P})$$

with $t_{\nu,P} = -t_{\nu,1-P}$ so that
 $P(|t| \ge t_{\nu,P}) = 2P$, $t_{\nu,P} > 0$.

Entries in the table are the values $t_{\nu} p$ of the t-distribution for various degrees of freedom ν and one-tailed probabilities P.

νP	0,25	0,10	0,05	0,025	0,01	0,005
1	1,000	3,078	6,314	12,706	31,821	63,657
2	0,816	1,886	2,920	4,303	6,965	9,925
3	0,765	1,638	2,353	3,182	4,541	5,841
4	0,741	1,533	2,132	2,776	3,747	4,604
5	0,727	1,476	2,015	2,571	3,365	4,032
6	0,718	1,440	1,943	2,447	3,143	3,707
7	0,711	1,415	1,895	2,365	2,998	3,499
8	0,706	1,397	1,860	2,306	2,896	3,355
9	0,703	1,383	1,833	2,262	2,821	3,250
10	0,700	1,372	1,812	2,228	2,764	3,169
11	0,697	1,363	1,796	2,201	2,718	3,106
12	0,695	1,356	1,782	2,179	2,681	3,055
13	0,694	1,350	1,771	2,160	2,650	3,012
14	0,692	1,345	1,761	2,145	2,624	2,977
15	0,691	1,341	1,753	2,131	2,602	2,947
16	0,690	1,337	1,746	2,120	2,583	2,921
17	0,689	1,333	1,740	2,110	2,567	2,898
18	0,688	1,330	1,734	2,101	2,552	2,878
19	0,688	1,328	1,729	2,093	2,539	2,861
20	0,687	1,325	1,725	2,086	2,528	2,845
21	0,686	1,323	1,721	2,080	2,518	2,831
22	0,686	1,321	1,717	2,074	2,508	2,819
23	0,685	1,319	1,714	2,069	2,500	2,807
24	0,685	1,318	1,711	2,064	2,492	2,797
25	0,684	1,316	1,708	2,060	2,485	2,787
26 27 28 29 30	0,684 0,684 0,683 0,683 0,683	1,315 1,314 1,313 1,311 1,310	1,706 1,703 1,701 1,699 1,697	2,056 2,052 2,048 2,045 2,045 2,042	2,479 2,473 2,467 2,462 2,457	2,779 2,771 2,763 2,756 2,750
35	0,682	1,306	1,690	2,030	2,438	2,724
40	0,681	1,303	1,684	2,021	2,423	2,704
60	0,679	1,296	1,671	2,000	2,390	2,660
100	0,677	1,290	1,660	1,984	2,364	2,626
∞	0,675	1,282	1,645	1,960	2,326	2,576

^tν, P

TABEL IV

Die χ^2 -verdeling: Boonste Waarskynlikheidspunte

$$\mathbf{P} = \mathbf{P}(\chi^2 \ge \chi^2_{\nu,\mathbf{P}})$$

Die waardes χ_{ν}^2 p van die χ^2 verdeling is teen die aantal vryheidsgrade ν en die eenkantige oorskrydingswaarskynlikheid P getabelleer. TABLE IV

The χ^2 -Distribution: Upper Probability Points

$$\mathbf{P} = \mathbf{P}(\chi^2 \ge \chi^2_{\nu,\mathbf{P}})$$

Entries in the table are the values $X_{\nu,P}^2$ of the X^2 -distribution for various degrees of freedom ν and one-tailed probabilities P.

νP	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010	0.005
1 2 3 4	157088.10 ⁻⁹ 0.0201007 0.114832 0.297110	982069.10- 0.0506356 0.215795 0.484419	393214.10 ⁻⁸ 0·102587 0·351846 0·710721	0.0157908 0.210720 0.584375 1.063623	0·454937 1·38629 2·36597 3·35670	2·70554 4·60517 6·25139 7·77944	3·84146 5·99147 7·81473 9·48773	5.02389 7.37776 9.34840 11.1433	6.63490 9.21034 11.3449 13.2767	$\begin{array}{c} 7\cdot 87944 \\ 10\cdot 5966 \\ 12\cdot 8381 \\ 14\cdot 8602 \end{array}$
5 6 7 8 9	0.554300 0.872085 1.239043 1.646482 2.087912	0-831211 1-237347 1-68987 2-17973 2-70039	1.145476 1.63539 2.16735 2.73264 3.32511	$\begin{array}{c} 1 \cdot 61031 \\ 2 \cdot 20413 \\ 2 \cdot 83311 \\ 3 \cdot 48954 \\ 4 \cdot 16816 \end{array}$	4·35146 5·34812 6·34581 7·34412 8·34283	9·23635 10·6446 12·0170 13·3616 14·6837	11.0705 12.5916 14.0671 15.5073 16.9190	12.8325 14.4494 16.0128 17.5346 19.0228	15.0863 16.8119 18.4753 20.0902 21.6660	16·7496 18·5476 20·2777 21·9550 23·5893
10 11 12 13 14	$\begin{array}{c} 2.55821 \\ 3.05347 \\ 3.57056 \\ 4.10691 \\ 4.66043 \end{array}$	3-24697 3-81575 4-40379 5-00874 5-62872	3.94030 4.57481 5.22603 5.89186 6.57063	4.86518 5.57779 6.30380 7.04150 7.78953	9-34182 10-3410 11-3403 12-3398 13-3393	15·9871 17·2750 18·5494 19·8119 21·0642	18·3070 19·6751 21·0261 22·3621 23·6848	20·4831 21·9200 23·3367 24·7356 26·1190	23·2093 24·7250 26·2170 27·6883 29·1413	25.1882 26.7569 28.2995 29.8194 31.3193
15 16 17 18 19	5-22935 5-81221 6-40776 7-01491 7-63273	6·26214 6·90766 7·56418 8·23075 8·90655	7.26094 7.96164 8.67176 9.39046 10.1170	8.54675 9.31223 10.0852 10.8649 11.6509	14·3389 15·3385 16·3381 17·3379 18·3376	22·3072 23·5418 24·7690 25·9894 27·2036	24.9958 26.2962 27.5871 28.8693 30.1435	$\begin{array}{c} 27 \cdot 4884 \\ 28 \cdot 8454 \\ 30 \cdot 1910 \\ 31 \cdot 5264 \\ 32 \cdot 8523 \end{array}$	30-5779 31-9999 33-4087 34-8053 36-1908	$\begin{array}{c} 32 \cdot 8013 \\ 34 \cdot 2672 \\ 35 \cdot 7185 \\ 37 \cdot 1564 \\ 38 \cdot 5822 \end{array}$
20 21 22 23 24	$8 \cdot 26040 \\ 8 \cdot 89720 \\ 9 \cdot 54249 \\ 10 \cdot 19567 \\ 10 \cdot 8564$	9.59083 10.28293 10.9823 11.6885 12.4011	10-8508 11-5913 12-3380 13-0905 13-8484	12.442613.239614.041514.847915.6587	19·3374 20·3372 21·3370 22·3369 23·3367	28-4120 29-6151 30-8133 32-0069 33-1963	31.4104 32.6705 33.9244 35.1725 36.4151	34·1696 35·4789 36·7807 38·0757 39·3641	37.5662 38.9321 40.2894 41.6384 42.9798	$\begin{array}{r} 39.9968\\ 41.4010\\ 42.7956\\ 44.1813\\ 45.5585\end{array}$
25 26 27 28 29	$ \begin{array}{c} 11 \cdot 5240 \\ 12 \cdot 1981 \\ 12 \cdot 8786 \\ 13 \cdot 5648 \\ 14 \cdot 2565 \end{array} $	13-1197 13-8439 14-5733 15-3079 16-0471	14.6114 15.3791 16.1513 16.9279 17.7083	16·4734 17·2919 18·1138 18·9392 19·7677	24·3366 25·3364 26·3363 27·3363 28·3362	34·3816 35·5631 36·7412 37·9159 39·0875	37.6525 38.8852 40.1133 41.3372 42.5569	40.6465 41.9232 43.1944 44.4607 45.7222	44·3141 45·6417 46·9630 48·2782 49·5879	46.9278 48.2899 49.6449 50.9933 52.3356
29 30 40 50 60	$ \begin{array}{r} 14 \cdot 2505 \\ 14 \cdot 9535 \\ 22 \cdot 1643 \\ 29 \cdot 7067 \\ 37 \cdot 4848 \\ \end{array} $	16.7908 24.4331 32.3574 40.4817	18·4926 26·5093 34·7642 43·1879	20.5992 29.0505 37.6886 46.4589	29·3360 39·3354 49·3349 59·3347	40·2560 51·8050 63·1671 74·3970	43.7729 55.7585 67.5048 79.0819	46.9792 59.3417 71.4202 83.2976	50.8922 63.6907 76.1539 88.3794	53.6720 66.7659 79.4900 91.9517
70 80 90 100	45·4418 53·5400 61·7541 70·0648	$\begin{array}{r} 48.7576\\ 57.1532\\ 65.6466\\ 74.2219\end{array}$	51.7393 60.3915 69.1260 77.9295	55·3290 64·2778 73·2912 82·3581	69·3344 79·3343 89·3342 99·3341	85.5271 96.5782 107.565 118.498	$\begin{array}{r} 90.5312\\ 101.879\\ 113.145\\ 124.342\end{array}$	95.0231 106.629 118.136 129.561	$ \begin{array}{r} 100.425 \\ 112.329 \\ 124.116 \\ 135.807 \end{array} $	$104 \cdot 215 \\116 \cdot 321 \\128 \cdot 299 \\140 \cdot 169$

6

χ²_{ν, Ρ}

o

TABEL V

Die F-verdeling: Boonste 5% Punte

(ν_1 vryheidsgrade in die teller en ν_2 in die noemer)

TABLE V

The F-Distribution: Upper 5% Points

(ν_1 degrees of freedom in numerator and ν_2 in denominator)

V2	$v_1 = 1$	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18,5	19,0	19,2	19,2	19,3	19,3	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,5	19,5	19,5	19,5	19,5	19,5
3	10,1	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40	4,36
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2,40
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11	2,07
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1,84	1,78
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81	1,76
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79	1,73
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,71
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,65
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68	1,62
34	4,13	3,28	2,88	2,65	2,49	2,38	2,29	2,23	2,17	2,12	2,05	1,97	1,89	1,84	1,80	1,75	1,69	1,63	1,57
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58	1,51
48	4,04	3,19	2,80	2,57	2,41	2,29	2,21	2,14	2,08	2,03	1,96	1,88	1,79	1,75	1,70	1,64	1,59	1,52	1,45
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,39
80	3,96	3,11	2,72	2,49	2,33	2,21	2,13	2,06	2,00	1,95	1,88	1,79	1,70	1,65	1,60	1,54	1,48	1,41	1,32
120	3,92	3,07	2,68	2,45	2,29	2,18	2,09	2,02	1,96	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,25
∞	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,00

TABEL VI

Die F-verdeling: Boonste 2,5% Punte

(ν_1 vryheidsgrade in die teller en ν_2 in die noemer)

TABLE VI

The F-Distribution: Upper 2,5% Points

(ν_1 degrees of freedom in numerator and ν_2 in denominator)

ν_2	$\nu_{1} = 1$	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	~~
1	648	800	864	900	922	937	948	957	963	969	977	985	993	997	1001	1006	1010	1014	1018
2	38,5	39,0	39,2	39,2	39,3	39,3	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,5	39,5	39,5	39,5	39,5	39,5
3	17,4	16,0	15,4	15,1	14,9	14,7	14,6	14,5	14,5	14,4	14,3	14,3	14,2	14,1	14,1	14,0	14,0	13,9	13,9
4	12,2	10,6	9,98	9,60	9,36	9,20	9,07	8,98	8,90	8,84	8,75	8,66	8,56	8,51	8,46	8,41	8,36	8,31	8,26
5	10,0	8,43	7,76	7,39	7,15	6,98	6,85	6,76	6,68	6,62	6,52	6,43	6,33	6,28	6,23	6,18	6,12	6,07	6,02
6	8,81	7,26	6,60	6,23	5,99	5,82	5,70	5,60	5,52	5,46	5,37	5,27	5,17	5,12	5,07	5,01	4,96	4,90	4,85
7	8,07	6,54	5,89	5,52	5,29	5,12	4,99	4,90	4,82	4,76	4,67	4,57	4,47	4,42	4,36	4,31	4,25	4,20	4,14
8	7,57	6,06	5,42	5,05	4,82	4,65	4,53	4,43	4,36	4,30	4,20	4,10	4,00	3,95	3,89	3,84	3,78	3,73	3,67
9	7,21	5,71	5,08	4,72	4,48	4,32	4,20	4,10	4,03	3,96	3,87	3,77	3,67	3,61	3,56	3,51	3,45	3,39	3,33
10	6,94	5,46	4,83	4,47	4,24	4,07	3,95	3,85	3,78	3,72	3,62	3,52	3,42	3,37	3,31	3,26	3,20	3,14	3,08
11	6,72	5,26	4,63	4,28	4,04	3,88	3,76	3,66	3,59	3,53	3,43	3,33	3,23	3,17	3,12	3,06	3,00	2,94	2,88
12	6,55	5,10	4,47	4,12	3,89	3,73	3,61	3,51	3,44	3,37	3,28	3,18	3,07	3,02	2,96	2,91	2,85	2,79	2,72
13	6,41	4,97	4,35	4,00	3,77	3,60	3,48	3,39	3,31	3,25	3,15	3,05	2,95	2,89	2,84	2,78	2,72	2,66	2,60
14	6,30	4,86	4,24	3,89	3,66	3,50	3,38	3,29	3,21	3,15	3,05	2,95	2,84	2,79	2,73	2,67	2,61	2,55	2,49
15	6,20	4,77	4,15	3,80	3,58	3,41	3,29	3,20	3,12	3,06	2,96	2,86	2,76	2,70	2,64	2,58	2,52	2,46	2,40
16	6,12	4,69	4,08	3,73	3,50	3,34	3,22	3,12	3,05	2,99	2,89	2,79	2,68	2,63	2,57	2,51	2,45	2,38	2,32
17	6,04	4,62	4,01	3,66	3,44	3,28	3,16	3,06	2,98	2,92	2,82	2,72	2,62	2,56	2,50	2,44	2,38	2,32	2,25
18	5,98	4,56	3,95	3,61	3,38	3,22	3,10	3,01	2,93	2,87	2,77	2,67	2,56	2,50	2,44	2,38	2,32	2,26	2,19
19	5,92	4,51	3,90	3,56	3,33	3,17	3,05	2,96	2,88	2,82	2,72	2,62	2,51	2,45	2,39	2,33	2,27	2,20	2,13
20	5,87	4,46	3,86	3,51	3,29	3,13	3,01	2,91	2,84	2,77	2,68	2,57	2,46	2,41	2,35	2,29	2,22	2,16	2,09
21	5,83	4,42	3,82	3,48	3,25	3,09	2,97	2,87	2,80	2,73	2,64	2,53	2,42	2,37	2,31	2,25	2,18	2,11	2,04
22	5,79	4,38	3,78	3,44	3,22	3,05	2,93	2,84	2,76	2,70	2,60	2,50	2,39	2,33	2,27	2,21	2,14	2,08	2,00
23	5,75	4,35	3,75	3,41	3,18	3,02	2,90	2,81	2,73	2,67	2,57	2,47	2,36	2,30	2,24	2,18	2,11	2,04	1,97
24	5,72	4,32	3,72	3,38	3,15	2,99	2,87	2,78	2,70	2,64	2,54	2,44	2,33	2,27	2,21	2,15	2,08	2,01	1,94
25	5,69	4,29	3,69	3,35	3,13	2,97	2,85	2,75	2,68	2,61	2,51	2,41	2,30	2,24	2,18	2,12	2,05	1,98	1,91
28	5,61	4,22	3,63	3,29	3,06	2,90	2,78	2,69	2,61	2,55	2,45	2,34	2,23	2,17	2,11	2,05	1,98	1,91	1,83
30	5,57	4,18	3,59	3,25	3,03	2,87	2,75	2,65	2,57	2,51	2,41	2,31	2,20	2,14	2,07	2,01	1,94	1,87	1,79
34	5,50	4,12	3,53	3,19	2,97	2,81	2,69	2,59	2,52	2,45	2,35	2,25	2,13	2,07	2,01	1,95	1,88	1,80	1,72
40	5,42	4,05	3,46	3,13	2,90	2,74	2,62	2,53	2,45	2,39	2,29	2,18	2,07	2,01	1,94	1,88	1,80	1,72	1,64
48	5,35	3,99	3,40	3,07	2,84	2,69	2,56	2,47	2,39	2,33	2,23	2,12	2,01	1,94	1,88	1,81	1,73	1,65	1,56
60	5,29	3,93	3,34	3,01	2,79	2,63	2,51	2,41	2,33	2,27	2,17	2,06	1,94	1,88	1,82	1,74	1,67	1,58	1,48
80	5,22	3,86	3,28	2,95	2,73	2,57	2,45	2,35	2,28	2,21	2,11	2,00	1,88	1,82	1,75	1,68	1,60	1,51	1,40
120	5,15	3,80	3,23	2,89	2,67	2,52	2,39	2,30	2,22	2,16	2,05	1,94	1,82	1,76	1,69	1,61	1,53	1,43	1,31
∞	5,02	3,69	3,12	2,79	2,57	2,41	2,29	2,19	2,11	2,05	1,94	1,83	1,71	1,64	1,57	1,48	1,39	1,27	1,00

TABEL IX

Die Produkmoment-korrelasiekoëffisiënt: Boonste Kritieke Waardes (vir $\rho=0$)

TABLE IX

The Product Moment Correlation Coefficient: Upper Critical Values (for ρ =0)

n = aantal pare waarnemings

n = number of pairs of observations

	Betekenis	peil vir eenkan	tige toets	Significance	level for one-ta	ailed test
n	0,25	0,10	0,05	0,025	0,01	0,005
3	0,7071	0,9511	0,9877	0,9969	0,9995	0,9999
4	0,5000	0,8000	0,9000	0,9500	0,9800	0,9900
5	0,4040	0,6870	0,8054	0,8783	0,9343	0,9587
6	0,3473	0,6084	0,7293	0,8114	0,8822	0,9172
7	0,3091	0,5509	0,6694	0,7545	0,8329	0,8745
8	0,2811	0,5067	0,6215	0,7067	0,7887	0,8343
9	0,2596	0,4716	0,5822	0,6664	0,7498	0,7977
10	0,2423	0,4428	0,5494	0,6319	0,7155	0,7646
11	0,2281	0,4187	0,5214	0,6021	0,6851	0,7348
12	0,2161	0,3981	0,4973	0,5760	0,6581	0,7079
13	0,2058	0,3802	0,4762	0,5529	0,6339	0,6835
14	0,1968	0,3646	0,4575	0,5324	0,6120	0,6614
15	0,1890	0,3507	0,4409	0,5140	0,5923	0,6411
16	0,1820	0,3383	0,4259	0,4973	0,5742	0,6226
17	0,1757	0,3271	0,4124	0,4821	0,5577	0,6055
18	0,1700	0,3170	0,4000	0,4683	0,5425	0,5897
19	0,1649	0,3077	0,3887	0,4555	0,5285	0,5751
20	0,1602	0,2992	0,3783	0,4438	0,5155	0,5614
21	0,1558	0,2914	0,3687	0,4329	0,5034	0,5487
22	0,1518	0,2841	0,3598	0,4227	0,4921	0,5368
23	0,1481	0,2774	0,3515	0,4132	0,4815	0,5256
24	0,1447	0,2711	0,3438	0,4044	0,4716	0,5151
25	0,1415	0,2653	0,3365	0,3961	0,4622	0,5052
26	0,1384	0,2598	0,3297	0,3882	0,4534	0,4958
27	0,1356	0,2546	0,3233	0,3809	0,4451	0,4896
28	0,1330	0,2497	0,3172	0,3739	0,4372	0,4785
29	0,1305	0,2451	0,3115	0,3673	0,4297	0,4705
30	0,1281	0,2407	0,3061	0,3610	0,4226	0,4629
31	0,1258	0,2366	0,3009	0,3550	0,4158	0,4556
32	0,1237	0,2327	0,2960	0,3494	0,4093	0,4487
35	0,1179	0,2220	0,2826	0,3338	0,3916	0,4296
40	0,1098	0,2070	0,2638	0,3120	0,3665	0,4026
45	0,1032	0,1947	0,2483	0,2940	0,3457	0,3801
50	0,0976	0,1843	0,2353	0,2787	0,3281	0,3610
60	0,0888	0,1678	0,2144	0,2542	0,2997	0,3301
70	0,0820	0,1550	0,1982	0,2352	0,2776	0,3060
80	0,0765	0,1448	0,1852	0,2199	0,2597	0,2864
90	0,0720	0,1364	0,1745	0,2072	0,2449	0,2702
100	0,0682	0,1292	0,1654	0,1966	0,2324	0,2565

TABEL X

Die z-transformasie vir die Korrelasiekoëffisiënt

Die getransformeerde waardes

$$z = \tanh^{-1} r = \frac{1+r}{1-r}$$

is teen die korrelasiekoëffisiënt r getabelleer.

TABLE X

The z-Transformation for the Correlation Coefficient

Entries in the table are the transformed values

$$z = \tanh^{-1} r = \frac{1+r}{1-r}$$

for various values of the correlation coefficient r.

	1									
r	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0 0,1 0,2	0,0000 0,1003 0,2027	0,0100 0,1104 0,2132	0,0200 0,1206 0,2237	0,0300 0,1307 0,2342	0,0400 0,1409 0,2448	0,0500 0,1511 0,2554	0,0601 0,1614 0,2661	0,0701 0,1717 0,2769	0,0802 0,1820 0,2877	0,0902 0,1923 0,2986
0,3 0,4	0,3095 0,4236	0,3205 0,4356	0,3316 0,4477	0,3428 0,4599	0,3541 0,4722	0,3654 0,4847	0,3769 0,4973	0,3884 0,5101	0,4001 0,5230	0,4118 0,5361
0,5 0,6 0,7 0,8 0,9	0,5493 0,6931 0,8673 1,0986 1,4722	0,5627 0,7089 0,8872 1,1270 1,5275	0,5763 0,7250 0,9076 1,1568 1,5890	0,5901 0,7414 0,9287 1,1881 1,6584	0,6042 0,7582 0,9505 1,2212 1,7380	0,6184 0,7753 0,9730 1,2562 1,8318	0,6328 0,7928 0,9962 1,2933 1,9459	0,6475 0,8107 1,0203 1,3331 2,0923	0,6625 0,8291 1,0454 1,3758 2,2976	0,6777 0,8480 1,0714 1,4219 2,6466
	Y									
г	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
r 0,90 0,91 0,92 0,93 0,94	0,000 1,4722 1,5275 1,5890 1,6584 1,7380	0,001 1,4775 1,5334 1,5956 1,6658 1,7467	0,002 1,4828 1,5393 1,6022 1,6734 1,7555	0,003 1,4882 1,5453 1,6089 1,6811 1,7645	0,004 1,4937 1,5513 1,6157 1,6888 1,7736	0,005 1,4992 1,5574 1,6226 1,6967 1,7828	0,006 1,5047 1,5636 1,6296 1,7047 1,7923	0,007 1,5103 1,5698 1,6366 1,7129 1,8019	0,008 1,5160 1,5762 1,6438 1,7211 1,8117	0,009 1,5217 1,5826 1,6510 1,7295 1,8216

Size of sample	Percentage points	Size of sample	Percentage points
n	5%	n	5%
25	0,711	200	0, 280
30	0,662	250	0, 251
35	0,621	300	0,230
40	0, 587	350	0, 213
45	0, 558	400	0,200
50	0, 534	450	0, 188
		500	0, 179
60	0,492	550	0, 171
70	0,459	600	0, 163
80	0,432	650	0, 157
90	0,409	700	0, 151
100	0, 389	750	0, 146
		800	0, 142
125	0,350	850	0, 138
150	0, 321	900	0,134
175	0, 298	950	0,130
200	0, 280	1000	0, 127

Table A.	Percentage points for the distribution of B_1
Lower percenta	ge point = $-$ (tabulated upper percentage point)

Size of	Percentage points				
sample n	Upper 5%	Lower 5%			
50	3,99	2, 15			
75	3, 87	2,27			
100	3,77	2,35			
125	3,71	2,40			
150	3, 65	2,45			
200	3, 57	2, 51			
250	3, 52	2, 55			
300	3,47	2, 59			
350	3,44	2,62			
400	3,41	2,64			
450	3, 39	2,66			
500	3, 37	2,67			
550	3, 35	2,69			
600	3,34	2,70			
650	3, 33	2,71			
700	3, 31	2,72			
800	3, 29	2,74			
900	3, 28	2,75			
1000	3,26	2,76			

Table B. Percentage points of the distribution of B_2

Size of		Percentage points							
sample n	n-1	Upper 5%	Upper 10%	Lower 10%	Lower 5%				
11	10	0,9073	0,8899	0,7409	0,7153				
16	15	0,8884	0,8733	0,7452	0,7236				
21	20	0,8768	0,8631	0,7495	0,7304				
26	25	0,8686	0,8570	0,7530	0,7360				
31	30	0,8625	0,8511	0,7559	0,7404				
36	35	0,8578	0,8468	0,7583	0,7440				
41	40	0,8540	0,8436	0,7604	0,7470				
46	45	0,8508	0,8409	0,7621	0,7496				
51	50	0,8481	0,8385	0,7636	0,7518				
61	60	0,8434	0,8349	0,7662	0,7554				
71	70	0,8403	0,8321	0,7683	0,7583				
81	80	0,8376	0,8298	0,7700	0,7607				
91	90	0,8353	0,8279	0,7714	0,7626				
101	100	0,8344	0,8264	0,7726	0,7644				

Table C. Percentage points for the distribution of $A = \frac{\text{mean deviation}}{\text{standard deviation}}$

Table D *Tabel D*

The hypergeometric probability distribution: $P(X \le x)$ for N = 12

Die hipergeometriese verdeling: $P(X \le x)$ vir N = 12

n	k	x	Р	n	k	x	Р	n	k	x	Р
1	1	0	0,917	4	4	0	0,141	6	2	0	0,227
1	1	1	1,000	4	4	1	0,594	6	2	1	0,773
				4	4	2	0,933	6	2	2	1,000
2	1	0	0,833	4	4	3	0,998				
2	1	1	1,000	4	4	4	1,000	6	3	0	0,091
								6	3	1	0,500
2	2	0	0,682	5	1	0	0,583	6	3	2	0,909
2	2	1	0,985	5	1	1	1,000	6	3	3	1,000
2	2	2	1,000								
				5	2	0	0,318	6	4	0	0,030
3	1	0	0,750	5	2	1	0,848	6	4	1	0,273
3	1	1	1,000	5	2	2	1,000	6	4	2	0,727
								6	4	3	0,970
3	2	0	0,545	5	3	0	0,159	6	4	4	1,000
3	2	1	0,955	5	3	1	0,636				
3	2	2	1,000	5	3	2	0,955	6	5	0	0,008
				5	3	3	1,000	6	5	1	0,121
3	3	0	0,382					6	5	2	0,500
3	3	1	0,873	5	4	0	0,071	6	5	3	0,879
3	3	2	0,995	5	4	1	0,424	6	5	4	0,992
3	3	3	1,000	5	4	2	0,848	6	5	5	1,000
				5	4	3	0,990				
4	1	0	0,667	5	4	4	1,000	6	6	0	0,001
4	1	1	1,000					6	6	1	0,040
				5	5	0	0,027	6	6	2	0,284
4	2	0	0,424	5	5	1	0,247	6	6	3	0,716
4	2	1	0,909	5	5	2	0,689	6	6	4	0,960
4	2	2	1,000	5	5	3	0,955	6	6	5	0,999
				5	5	4	0,999	6	6	6	1,000
4	3	0	0,255	5	5	5	1,000				
4	3	1	0,764								
4	3	2	0,982	6	1	0	0,500				
4	3	3	1,000	6	1	1	1,000				

					,∼ma
v	k = 2	3	4	5	6
2	39,0	87,5	142	202	266
3	15,4	27,8	39, 2	50, 7	62,0
4	9,60	15,5	20,6	25, 2	29, 5
5	7,15	10, 8	13, 7	16, 3	18, 7
6	5,82	8,38	10,4	12, 1	13, 7
7	4,99	6,94	8,44	9,70	10, 8
8	4,43	6,00	7,18	8,12	9,03
9	4,03	5,34	6, 31	7,11	7,80
10	3,72	4,85	5,67	6,34	6,92
12	3,28	4, 16	4, 79	5,30	5,72
15	2,86	3, 54	4,01	4,37	4,68
20	2,46	2,95	3,29	3,54	3,76
30	2,07	2,40	2,61	2,78	2,91
60	1,67	1,85	1,96	2,04	2, 11
∞	1,00	1,00	1,00	1,00	1,00

Table E Upper 5% percentage points of the ratio, $S_{\rm max}^2/S_{\rm min}^2$

k = number of samples v = degrees of freedom for each sample variance

> © UNISA 2013