Tutorial Letter 203/1/2015

Applied Statistics II STA2601

Semester 1

Department of Statistics

Solutions to Assignment 3

QUESTION 1

(a) $n=20 \quad \bar{X}=6.003 \quad s=0.017$

The $100(1-\alpha) \%$ confidence interval for the unknown variance σ^{2} is

$$
\left(\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\chi_{\frac{1}{2} \alpha ; n-1}^{2}} ; \frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{X_{1-\frac{1}{2} \alpha ; n-1}^{2}}\right)
$$

$$
\begin{aligned}
(n-1) s^{2} & =\sum\left(X_{i}-\bar{X}\right)^{2} \\
19 \times 0.017^{2} & =\sum\left(X_{i}-\bar{X}\right)^{2} \\
0.005491 & =\sum\left(X_{i}-\bar{X}\right)^{2}
\end{aligned}
$$

$$
\alpha=0.01 \quad \alpha / 2=0.005
$$

$$
\begin{aligned}
& \chi_{\frac{\alpha}{2}}^{2} ; n-1=\chi_{0.005 ; 19}^{2}=38.5822 \\
& \chi_{1-\frac{\alpha}{2} ; n-1}^{2}=\chi_{0.995 ; 19}^{2}=6.84398
\end{aligned}
$$

Now the 99% confidence interval for the variance of the diameter of bearings is

$$
\begin{aligned}
\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\chi_{\frac{1}{2} \alpha ; n-1}^{2}} & <\sigma^{2}<\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{X_{1-\frac{1}{2} ; n-1}^{2}} \\
\frac{0.005491}{38.5822} & <\sigma^{2}<\frac{0.005491}{6.84398} \\
0.000142319 & <\sigma^{2}<0.000802331
\end{aligned}
$$

Thus the 99% confidence interval for σ is

$$
\begin{aligned}
\sqrt{0.000142319} & <\sigma<\sqrt{0.00080231} \\
0.0119 & <\sigma<0.0283
\end{aligned}
$$

(b) Let first sample be males and second sample be females.
$n_{m}=11 \quad \sigma_{m}^{2}=12$
$n_{f}=13 \quad \sigma_{f}^{2}=4$
$H_{0}: \sigma_{m}^{2}=\sigma_{f}^{2} \quad H_{1}: \sigma_{m}^{2}>\sigma_{f}^{2}$
The test statistic is

$$
\begin{aligned}
F & =\frac{\sigma_{f}^{2}}{\sigma_{m}^{2}} \times \frac{S_{m}^{2}}{S_{f}^{2}} \\
& =1 \times \frac{12}{3} \\
& =3
\end{aligned}
$$

Test is one-tailed. The critical value is $F_{\alpha ; n_{m}-1 ; n_{f}-1}=F_{0.05 ; 10 ; 12} \approx 2.75$ Reject H_{0} if $F>2.75$.

Since $3>2.75$, we reject H_{0} at the 5% level of significance and conclude that $\sigma_{m}^{2}>\sigma_{f}^{2}$, that is, the reaction times of males are more variable than the reaction times of females.

QUESTION 2

(a) Based on the assumption of independent observations and the assumption that the weights have a normal distribution (i.e. that the sample comes from a normal population) we may assume that

$$
\begin{equation*}
T=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S} \sim t_{n-1} \tag{2}
\end{equation*}
$$

(b)

Figure 1: Testing for Normality

Are they met? If we assume that the weight of one baby (no multiple births) does not influence the other baby, independent observations are OK.
Maybe, the normality assumption is slightly violated because from the JMP graphical output we see that the normal curve does not fit the histogram very well, the box plot has a long tail to the left suggesting negative skewness and there also seems to be a slight systematic deviation around the line in the Normal Quantile Plot especially on the lower end (It is subjective). Luckily the test is not too sensitive and we may proceed.
(c) We have to test $H_{0}: \mu=3.6$ against $H_{0}: \mu<3.6$.

Method I: Using the critical value approach:

$$
n=30 \quad \sum X=102.1 \quad \sum X^{2}=352.69
$$

$\bar{X}=\frac{\sum X}{n}=\frac{102.1}{30} \approx 3.4033$.

$$
\begin{aligned}
S^{2} & =\frac{1}{n-1}\left(\sum X^{2}-\frac{\left(\sum X\right)^{2}}{n}\right) \\
& =\frac{1}{30-1}\left(352.69-\frac{(102.1)^{2}}{30}\right) \\
& =\frac{1}{29}(352.69-347.4803333) \\
& =\frac{1}{29}(5.209666667) \\
\therefore S & =\sqrt{0.179643678} \\
& \approx 0.4238 \\
t_{\text {calc }} & =\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S} \\
& =\frac{\sqrt{30}(3.4033-3.6)}{0.4238} \\
& =\frac{\sqrt{30}(-0.1967)}{0.4238} \\
& =\frac{-1.077370271}{0.4238} \\
& \approx-2.5422
\end{aligned}
$$

Test is one-tailed. $\alpha=0.05$. The critical value is $t_{\alpha ; n-1}=t_{0.05 ; 29}=-1.699$. Reject H_{0} if $t_{\text {calc }}$ is less than -1.699 .

Since $-2.5422<-1.699$, we reject H_{0} at the 5% level of significance and conclude that the mean weight of a full time baby is significantly less than 3.6 kg .
(d) If we know that $\sigma=0.5$ we will use the test statistic

$$
Z=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma} \sim n(0 ; 1) .
$$

For this specific sample, it becomes

$$
\begin{aligned}
Z & =\frac{\sqrt{30}(3.4033-3.6)}{0.5} \\
& =\frac{-1.077370271}{0.5} \\
& \approx 2.1547 .
\end{aligned}
$$

The critical value is $z_{\alpha}=z_{0.05}=1.645$. Reject H_{0} if $z_{\text {calc }}$ is less than -1.645 .
Since $-2.1547<-1.645$, we reject H_{0} at the 5% level of significance and conclude that the mean weight of full time baby is significantly less than 3.6 kg .
(e) A 90% two-sided confidence interval is computed as $\bar{X}-\left(\frac{S}{\sqrt{n}}\right)\left(t_{0.05 ; 29}\right)<\mu<\bar{X}+\left(\frac{S}{\sqrt{n}}\right)\left(t_{0.05 ; 29}\right)$ where

$$
\begin{aligned}
3.4033-\left(\frac{0.4238}{\sqrt{30}}\right)(1.699) & <\mu<3.4033+\left(\frac{0.4238}{\sqrt{30}}\right)(1.699) \\
3.4033-(0.077374939)(1.699) & <\mu<3.4033+(0.077374939)(1.699) \\
3.4033-0.1315 & <\mu<3.4033+0.1315 \\
3.2718 & \leq \mu \leq 3.5348
\end{aligned}
$$

Since this lower bound (at the 90% level) will be the same as the 95% one-sided interval we may say we are 95% confident that $\mu \leq 3.5348$ (This means we reject $H_{0}: \mu=3.6$ which confirms our conclusion.)
(f) For the test in (b) we see the p -value is $0.0083=P(t \leq-2.5415)$:

Tcst Mcan

Hypothesized Va ue		3.6
Actual tstımate		3.40333
DF		29
Std Der		C.42784
t Test		
Test Statist c	-2.54	
Prob > \mid \|	0.016	
Prole $>t$	0.991	
Prob < t	0.008	

Figure 2: The t-test

For the test in (c) we see the p -value is $0.0156=P(z \leq-2.1544)$:

Test Mean	
Hypotl esized Value	Value $\quad 3.6$
Actual Estimate	
DF	
Str Cew	0.42384
Sigma given 0.5	
	\angle Test
Test Statisti:	-2.1544
Prub $>\|<\|$	0.C3-2*
Proh>7	0.9844
Prob $<z$	0.0156^{*}

Figure 3: The z-test
(g) We want to test:
$H_{0}: \sigma^{2}=0.25$
against
$H_{1}: \sigma^{2} \neq 0.25$

Test Standard Deviation	
Hypothesized	Value 0.5
Actual tstımate	e 0.42384
DF	29
Test	CliSquare
Test Statstic	2083867
Mirl Plaue	0.2701
Pmb < Chisn	0.1350
Prob > Chisc	0.8550

Figure 3: Testing for Standard
Deviation

Method I: Using the critical value approach:

Assuming μ is unknown, i.e., $\widehat{\mu}=\bar{X}$, then the test statistic is

$$
\begin{gathered}
U=\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}=\frac{(n-1) s^{2}}{\sigma^{2}} \approx 20.83867 \\
\alpha=0.05 \quad \alpha / 2=0.025 \\
\\
\chi_{\frac{\alpha}{2} ; n-1}^{2}=\chi_{0.025 ; 29}^{2}=45.7222 \\
\chi_{1-\frac{\alpha}{2} ; n-1}^{2}=\chi_{0.975 ; 219}^{2}=16.0471
\end{gathered}
$$

Reject H_{0} if $U<16.0471$ or $U>45.7222$.

Since $16.0471<20.83867<45.7222$, we do not reject H_{0} at the 5% level of significance and conclude that $\sigma=0.5$.

Method II: Using the p-value approach

p-value $=0.2701$. Since $0.2701>0.05$, we do not reject H_{0} at the 5% level of significance and conclude that $\sigma=0.5$.
(h) $H_{0}: \mu_{X}=\mu_{Y}$
against $H_{1}: \mu_{X}<\mu_{Y}$

$$
\begin{array}{lll}
n_{x}=30 & \bar{X}=3.4033 & S_{X}^{2}=0.1796 \\
n_{y}=24 & \bar{Y}=3.5125 & S_{Y}^{2}=0.1803
\end{array}
$$

The test statistic is

$$
T=\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n x}+\frac{1}{n y}}}
$$

Now

$$
\begin{aligned}
S_{p}^{2} & =\frac{\left(n_{x}-1\right) S_{X}^{2}+\left(n_{y}-1\right) S_{Y}^{2}}{n_{1}+n_{2}-2} \\
& =\frac{(30-1) 0.1796+(24-1) 0.1803}{30+24-2} \\
& =\frac{(29) 0.1796+(23) 0.1803}{30+24-2} \\
& =\frac{5.2084+4.1469}{52} \\
& =\frac{9.3553}{52} \\
& \approx 0.179909615 \\
& \Longrightarrow S_{\text {pooled }}=\sqrt{0.179909615} \approx 0.4242
\end{aligned}
$$

Then

$$
\begin{aligned}
T & =\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n_{x}}+\frac{1}{n_{y}}}} \\
& =\frac{(3.4033-3.5125)-(0)}{0.4242 \sqrt{\frac{1}{30}+\frac{1}{24}}} \\
& =\frac{-0.1092}{0.4242 \sqrt{0.075}} \\
& =\frac{-0.1092}{0.116171954} \\
& \approx-0.9400
\end{aligned}
$$

The critical value is

$$
\begin{aligned}
t_{\alpha ; n_{1}+n_{2}-2} & =t_{0.05 ; 52} \\
& =1.684+\frac{12}{20}(1.671-1.684) \\
& =1.684+0.6(-0.013) \\
& =1.684-0.0078 \\
& \approx 1.676
\end{aligned}
$$

Reject H_{0} if $T<-1.676$.
Since $-0.94>-1.676$, we do not reject H_{0} at the 5% level and conclude that the means are not significantly different from each other, i.e., $\mu_{X}=\mu_{Y}$.

QUESTION 3

(a) We are testing $H_{0}: \mu=30$ against $H_{1}: \mu \neq 30$.

The power of the test is a function of Φ which is defined as $\Phi=\frac{\delta}{\sqrt{2}}$

$$
\begin{aligned}
\delta & =\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma} \\
& =\frac{\sqrt{10}(30+\sqrt{2} \sigma-30)}{\sigma} \\
& =\sqrt{10} \sqrt{2} \\
\Longrightarrow \Phi=\frac{\delta}{\sqrt{2}} & =\frac{\sqrt{10} \sqrt{2}}{\sqrt{2}} \\
& \approx 3.1623
\end{aligned}
$$

From table \mathbf{F} we read of the power as 98% (i.e., $1-\beta=0.98$)
(b) We have to test $H_{0}: \mu=0$ against $H_{0}: \mu<0$.

Method 1: Using the critical value approach

From the output the test statistics is

$$
t=\frac{\left(\bar{x}-\mu_{0}\right)}{\frac{s}{\sqrt{n}}}=\frac{(-1.4875-0)}{0.52727} \approx-2.82114
$$

The critical value is $t_{\alpha ; n-1}=t_{0.05 ; 7}=1.895$. Reject H_{0} if $T \leq-1.895$
Since $-2.82114<-1.895$, we reject H_{0} in favour of H_{1} at the 5% level of significance and conclude that $\mu<0$.

Method II: Using the p-value approach

p-value $=0.0129$. Since $0.0129<0.05$, we can reject H_{0} in favour of H_{1} at the 5% level of significance and conclude that $\mu<0$.

QUESTION 4

Group	A	B	C	D
n	5	5	5	5
$\sum X_{i j}$	1311	1174	1258	1343
\bar{X}_{i}	262.2	234.8	251.6	268.6
$\sum\left(X_{i j}-\bar{X}_{i}\right)^{2}$	154.8	154.8	141.2	209.2

(a)

$$
\begin{aligned}
S_{1}^{2} & =\frac{1}{n_{1}-1} \sum\left(X_{1 j}-\bar{X}_{1}\right)^{2} & S_{2}^{2} & =\frac{1}{n_{2}-1} \sum\left(X_{2 j}-\bar{X}_{2}\right)^{2} \\
& =\frac{1}{5-1}(154.8) & & =\frac{1}{5-1}(154.8) \\
& =\frac{1}{4}(154.8) & & =\frac{1}{4}(154.8) \\
& =38.7 & & =38.7 \\
S_{3}^{2} & =\frac{1}{n_{3}-1} \sum\left(X_{3 j}-\bar{X}_{3}\right)^{2} & S_{4}^{2} & =\frac{1}{n_{4}-1} \sum\left(X_{4 j}-\bar{X}_{4}\right)^{2} \\
& =\frac{1}{5-1}(141.2) & & =\frac{1}{5-1}(209.2) \\
& =\frac{1}{4}(141.2) & & =\frac{1}{4}(209.2) \\
& =35.3 & & =52.3
\end{aligned}
$$

From the computations above it, follows that $S_{1}^{2}=38.7 ; S_{2}^{2}=38.7 ; S_{3}^{2}=35.3$ and $S_{4}^{2}=52.3$.
(b) (i) Ordinary average $=\frac{38.7+38.7+35.3+52.3}{4}=\frac{165}{4}=41.25$.
(ii) $M S E=\frac{S S E}{k n-k}$.

For this ANOVA problem, we have $k=4$ (there are four groups) and $n=5$ (the number of observations in each sample).

$$
\begin{aligned}
S S E & =\sum_{i=1}^{k} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} \\
& =154.8+154.8+141.2+209.2 \\
& =660 \\
\therefore M S E & =\frac{660}{4(5)-4} \\
& =\frac{660}{16} \quad \text { The result in (i) }=\text { result in (ii). } \\
& =41.25 . \quad
\end{aligned}
$$

This makes perfect sense! $M S E$ is like a pooled variance or an average variance, because the assumption of $A N O V A$ is that $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\sigma_{4}^{2}$ and if these variances are unknown, we estimate it by pooling.
(c) It is reasonable to assume that the four samples are independent. The outcome of one state can not influence the outcome of the other state.

The other assumption (of equal variances) can be formally tested!
$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\sigma_{4}^{2}$
$H_{1}: \sigma_{p}^{2} \neq \sigma_{q}^{2}$ for at least one $p \neq q$.

$$
\begin{aligned}
U & =\frac{\max S_{i}^{2}}{\min S_{i}^{2}} \\
& =\frac{52.3}{35.3} \\
& \approx 1.4816
\end{aligned}
$$

From Table E with $k=4$ and $v=n-1=5-1=4$, we find that the critical value is 20.6.
Reject H_{0} if $U>20.6$.

Since $1.4816<20.6$, we cannot reject H_{0} at the 5% level of significance and we may assume that the variances are equal.
(If we use the JMP computer output we may also assume that the variances are equal because "Prob > F" is not significant for all the four tests under the heading: "Tests that the Variances are Equal".)
(d) We have to test:
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ against
$H_{1}: \mu_{p} \neq \mu_{q}$ for at least one $p \neq q$.
The test statistic is $F=\frac{M S T_{r}}{M S E} \sim F_{k-1 ; k n-k}$

$$
M S T_{r}=\frac{n \sum_{i=1}^{k}\left(\bar{X}_{i}-\bar{X}\right)^{2}}{k-1}
$$

$$
\text { where } \bar{X}=\frac{\sum \sum X_{i j}}{N}=\frac{5086}{20}=254.3 \quad \text { (overall mean); }
$$

and $\sum\left(\bar{X}_{i}-\bar{X}\right)^{2}=(262.2-254.3)^{2}+\cdots+(268.6-254.3)^{2}$
$=(7.9)^{2}+(-19.5)^{2}+(-2.7)^{2}+(14.3)^{2}$
$=62.41+380.25+7.29+204.49$
$=654.44$
$\therefore M S T_{r}=\frac{5(654.44)}{4-1}=\frac{3272.2}{3}=1090.7333$
We already know that $M S E=41.2500$ (see question (b)(ii)).

$$
\begin{aligned}
\therefore F & =\frac{M S T_{r}}{M S E} \\
& =\frac{1090.7333}{41.25} \\
& \approx 26.442 .
\end{aligned}
$$

(Note that these computations are the same with the JMP output under the heading: "Analysis of Variance".)

The critical value is $F_{0,05 ; 3 ; 16}=3.24$. Reject H_{0} if $F>3.24$.

Since $26.442>3.24$, we reject H_{0} at the 5% level of significance and conclude that the population mean prices of the four states differ, that is, $\mu_{p} \neq \mu_{q}$ for at least one $p \neq q$.
(Note that we reach the same conclusion with the JMP output under the heading: "Analysis of Variance" if we consider "Prob > F" < 0.0001)
(e) For each pair of means, we compute a test statistic

$$
T_{p q}=\frac{\bar{X}_{p}-\bar{X}_{q}}{S_{\text {pooled }} \sqrt{1 / n+1 / n}}=\frac{\sqrt{n}\left(\bar{X}_{p}-\bar{X}_{q}\right)}{\sqrt{2} S}=\frac{\sqrt{5}\left(\bar{X}_{p}-\bar{X}_{q}\right)}{\sqrt{2} \sqrt{M S E}} .
$$

We reject $H_{0}(p ; q)$ if

$$
\left|T_{p q}\right|>\sqrt{(k-1) F_{\alpha ; k-1 ; k n-k}}=\sqrt{3(3.24)} \approx 3.1177
$$

This implies that we reject H_{0} if

$$
\begin{aligned}
& \frac{\sqrt{5}\left|\bar{X}_{p}-\bar{X}_{q}\right|}{\sqrt{2} \sqrt{41.25}} \geq 3.1177 \\
& \text { i.e. if }\left|\bar{X}_{p}-\bar{X}_{q}\right| \geq \frac{(3.1177) \sqrt{2} \sqrt{41.25}}{\sqrt{5}}=\frac{28.31791653}{2.236067977} \approx 12.6642 \\
& \left|\bar{X}_{1}-\bar{X}_{2}\right|=|262.2-234.8|=27.4>12.6642 \Longrightarrow \mu_{1} \neq \mu_{2} \\
& \left|\bar{X}_{1}-\bar{X}_{3}\right|=|262.2-251.6| \quad 10.6<12.6642 \Longrightarrow \mu_{1}=\mu_{3} \\
& \left|\bar{X}_{1}-\bar{X}_{4}\right|=|262.2-268.6| \\
& \left|\bar{X}_{2}-\bar{X}_{3}\right|=|234.8-251.6| \\
& \left|\bar{X}_{2}-\bar{X}_{4}\right|=|234.8-268.6| \\
& 16.8>12.6642 \Longrightarrow \mu_{2} \neq \mu_{3} \\
& \left|\bar{X}_{3}-\bar{X}_{4}\right|=\mid 23.8>12.6642 \Longrightarrow \mu_{4} \\
& \mu_{2} \neq \mu_{4} \\
& \\
& \\
&
\end{aligned}
$$

All pairs of means are significantly different from each other except the pairs \bar{X}_{1} and \bar{X}_{3}; and \bar{X}_{1} and \bar{X}_{4}, that is, $\mu_{1}=\mu_{3}$ and $\mu_{1}=\mu_{4}$.

QUESTION 5

(a) Yes, it is reasonable to assume that the four groups may be considered as independent groups because suppliers in one state may not influence suppliers in the other states.
(b) Start the JMP program
$>\quad$ Enter State in the first column and label it State.
(make sure to change the scale to nominal)
$>\quad$ Enter Price in the second column and label it Price.
This is a one-way ANOVA. To fit the model
$>\quad$ Choose Analyze>Fit Y by X with State as X factor and Price as Y response.
$>\quad$ Click Ok.
$\Longrightarrow \quad$ Then on the Oneway Analysis of Price By State click on the Red triangle
> Choose Unequal Variances

Means and Std Deviations

Level	Number	Mean	Std Dev	Mean	Lower 95\%	Upper 95\%
1	5	262.200	6.22093	2.7821	254.48	269.92
2	5	234.800	6.22093	2.7821	227.08	242.52
3	5	251.600	5.94138	2.6571	244.22	258.98
4	5	268.600	7.23187	3.2342	259.62	277.58

Tests that the Variances are Equal

Level	Count	Std Dev	MeanAbsDif to Mean	MeanAbsDif to Median	
$\mathbf{1}$	5	6.220932	5.040000	5.400000	
2	5	6.220932	4.640000	5.000000	
3	5	5.941380	4.720000	4.800000	
4	5	7.231874	5.680000	6.400000	
Test		FRatio	DFNum	DFDen	Prob $>$ F
O'Brien[.5]	0.1129	3	16	0.9513	
Brown-Forsythe	0.2646	3	16	0.8499	
Levene	0.1171	3	16	0.9487	
Bartlett	0.0556	3	.	0.9828	

Warning: Small sample sizes. Use Caution.

Welch's Test

Welch Anova testing Means Equal, allowing Std Devs Not Equal
FRatio DFNum DFDen Prob > F

$$
\begin{array}{llll}
22.3823 & 3 & 8.8701 & 0.0002^{*}
\end{array}
$$

Figure 5: Testing of Equality of Variances

For your own information:

The standard deviation column shows the estimates you are testing. The p-values are listed under the column called Prob $>F$ and are testing the assumption that the variances are equal. Small p-values suggest that the variance are not equal.

Interpretation:

We have to test:
$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\sigma_{4}^{2}$, against $H_{1}: \sigma_{p}^{2} \neq \sigma_{q}^{2}$ for at least one $p \neq q$
Using the Levene's test, p-value $=0.9487$. Since $0.9487>0.05 \Longrightarrow$ we can not reject H_{0} at the 5% level of significance. The assumption of equal variances is not violated.
$(\mathrm{c}) \Longrightarrow \quad$ Click on the triangle "Tests that the variances are equal" to hide the output.
$\Longrightarrow \quad$ Then click on the Red triangle on Oneway Analysis of Price by State.
> Choose Means/ANOVA
$\Longrightarrow \quad$ Click again on the Red triangle and choose Means and Std dev.

Figure 6: Oneway ANOVA

For your information:

On the plot, the dots shows the response for each State. The line across the middle is the grand mean. The diamonds give a 95% confidence interval for each State with the middle line of each diamond showing the group mean. If the groups are significantly different, then the diamonds do not overlap.

Interpretation:

(i) $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ against $H_{1}: \mu_{p} \neq \mu_{q}$ for at least one $p \neq q$.
(ii) The test statistic is $F=\frac{M S T r}{M S E} \sim F_{k-1 ; n-k}$
(iii) From the output: Computations for ANOVA we see that $F=26.4420$ which is significant with a p-value of $<0.0001 \ll 0.05$. We reject H_{0} in favour of H_{1} at the 5% level of significance and conclude that $u_{p} \neq \mu_{q}$ for at least one pair $p \neq q$, that is, the mean price per 1000 board feet of standard or better grade green Douglas fir framing lumber of the States are not the same.
(d) $\Longrightarrow \quad$ Hide the output "Oneway ANOVA" and "Means and Std deviations" by clicking the triangles.
$\Longrightarrow \quad$ Click on the Red triangle on Oneway Analysis of Price by State.
$\Longrightarrow \quad$ Choose Compare Means $>$ Each Pair, Student's t.
Oneway Analysis of Price By State

Means Comparisons
Comparisons for each pair using Student's t
Confidence Quantile

t	Alpha
2.11991	0.05

LSD Threshold Matrix

Abs(Dif)-LSD

	4	1	3	2
4	-8.611	-2.211	8.389	25.189
1	-2.211	-8.611	1.989	18.789
3	8.389	1.989	-8.611	8.189
2	25.189	18.789	8.189	-8.611

Positive values show pairs of means that are significantly different.
Connecting Letters Report

Level				Mean
4		A		268.60000
1		A		262.20000
3			B	251.60000
2			C	234.80000

Levels not connected by same letter are significantly different.

Ordered Differences Report

Figure 7: Pairwise t-tests using Student's t

Interpretation:

Yes The $A b s(\operatorname{Dif})-L S D$ for the pair 14 is negative. They all share the letter A and the confidence interval is $(-2.211 ; 15.0111)$ and it includes zero. We conclude that the means are not significantly different from each other. All the other pairs have $A b s(D i f)-L S D s$ that are positive. Thus we conclude that $\mu_{2} \neq \mu_{1}=\mu_{4}$.
(e)

Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile			
q^{*}	Alpha		
2.86102	0.05		
LSD Threshold Matrix			
Abs(Dif)-HSD			
4	1	3	2
$4 \quad-11.622$	-5.222	5.378	22.178
1 -5.222	-11.622	-1.022	15.778
$3 \quad 5.378$	-1.022	-11.622	5.178
$2 \quad 22.178$	15.778	5.178	-11.622

Positive values show pairs of means that are significantly different.
Connecting Letters Report

Level			Mean	
4	A		268.60000	
1		A B		262.20000
3		B	251.60000	
2			C	234.80000

Levels not connected by same letter are significantly different.
Ordered Differences Report

Figure 8: Comparisons of Means using Tukey-HSD

Manually, we should have computed for each pair of means, a test statistic

$$
T_{p q}=\frac{\bar{X}_{p}-\bar{X}_{q}}{\mathrm{~S}_{\text {pooled }} \sqrt{\frac{1}{n}+\frac{1}{n}}}
$$

where we have samples of equal sizes if we want to incorporate the principle of the Bonferroni equality.

The Turkey-Kramer HSD that are shown in the JMP out perform individual comparisons that make adjustments for multiple test.

Confidence intervals that do not include zero imply that the pairs of means differ significantly. The pairs that do not include zero are 42, 12, 43 and 32 . The confidence interval for the pairs are ($22.1785: 45.42152$); ($15.7785 ; 39.02152$); ($5.3785 ; 28.62152$); and ($5.1785 ; 28.42152$); respectively. These are the only intervals that do not include zero and it means we reject the null hypothesis and conclude that $\mu_{2} \neq \mu_{4}, \mu_{1} \neq \mu_{2}, \mu_{3} \neq \mu_{4}$ and $\mu_{2} \neq \mu_{3}$. This is also supported by the fact that the p-values for the differences between the means are $<0.0001,<$ $0.0001,0.0035$ and 0.0039 respectively. All p-values are $\ll 0.05$ (highly significant), leading to the rejection of the null hypothesis of equal means.

The pairs that do not have the same letter connecting them means that the pairs are significantly different from each other.

Confirming this is the $\mathbf{A b s}(\mathbf{D i f})$-LSD which are 22.178; 15.778; 5.378 and 5.178 for the pairs 42, 12, 43 and 32 respectively. Since all of them are positive thus, the means are significantly different. (Recall a negative value of Abs(Dif)-LSD means the groups are not significantly different from each other.)

QUESTION 6

(a)

Figure 9: Simple Linear Regression Plot of Y vs X
(b) $n=15$

$$
\Sigma X_{i}=45
$$

$$
\Sigma X_{i}^{2}=145
$$

$$
\Sigma X_{i} Y_{i}=411
$$

$$
\Sigma Y_{i}=132
$$

$$
\Sigma Y_{i}^{2}=1204
$$

$$
b=\frac{n \Sigma X_{i} Y_{i}-\left(\Sigma X_{i}\right)\left(\Sigma Y_{i}\right)}{n \Sigma X_{i}^{2}-\left(\Sigma X_{i}\right)^{2}}
$$

$$
=\frac{15(411)-(45)(132)}{15(145)-(45)^{2}}
$$

$$
=\frac{6165-5940}{2175-2025}
$$

$$
=\frac{225}{150}
$$

$$
=1.5
$$

$$
a=\frac{\Sigma Y_{i}-b\left(\Sigma X_{i}\right)}{n}
$$

$$
=\frac{132-1.5(45)}{105}
$$

$$
=\frac{132-67.5}{15}
$$

$$
=\frac{64.5}{15}
$$

$$
=4.3
$$

The estimated regression line is Length of $\widehat{\text { decision time }=4.3+1.5 \mathrm{No} \text {. of alternatives. (6) }}$
(c)

X_{i}	Y_{i}	$\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X$	$e_{i}=Y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} X\right)$	$e_{i}^{2}=\left(Y_{i}-Y_{i}\right)^{2}$
2	5	7.3	-2.3	5.29
2	8	7.3	0.7	0.49
2	8	7.3	0.7	0.49
2	7	7.3	-0.3	0.09
2	9	7.3	1.7	2.89
3	7	8.8	-1.8	3.24
3	9	8.8	0.2	0.04
3	8	8.8	-0.8	0.64
3	9	8.8	0.2	0.04
3	10	8.8	1.2	1.44
4	10	10.3	-0.3	0.09
4	11	10.3	0.7	0.49
4	10	10.3	-0.3	0.09
4	12	10.3	1.7	2.89
4	9	10.3	-1.3	1.69
\sum				19.9

(d) The confidence interval is $\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} X\right) \pm t_{\alpha / 2 ; n-2} \times S \sqrt{\frac{1}{n}+\frac{(X-\bar{X})^{2}}{d^{2}}}$

$$
\begin{aligned}
s^{2} & =\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2} \\
& =\frac{19.9}{13} \\
& \approx 1.530769231 \\
& \Longrightarrow s=\sqrt{1.530769231} \approx 1.2372
\end{aligned}
$$

$$
\begin{array}{lll}
n=15 & \widehat{\beta}_{0}+\widehat{\beta}_{1} X=8.8 & X=3 \\
\bar{X}=3 & d^{2}=\sum(X-\bar{X})^{2}=10 & s \approx 1.2372 \\
\alpha=0.05 & \alpha / 2=0.025 & t_{\alpha / 2 ; n-2}=t_{0.025 ; 13}=2.160
\end{array}
$$

The 95% confidence interval for the average length of time necessary to make a decision when three alternatives are presented is

$$
\begin{array}{ll}
\widehat{\beta}_{0}+\widehat{\beta}_{1} X & \pm t_{\alpha / 2 ; n-2} \times S \sqrt{\frac{1}{n}+\frac{(X-\bar{X})^{2}}{d^{2}}} \\
8.8 & \pm 2.160 \times 1.2372 \sqrt{\frac{1}{15}+\frac{(3-3)^{2}}{10}} \\
8.8 & \pm 2.672352 \sqrt{0.066666667+0} \\
8.8 & \pm 2.672352 \sqrt{0.066666667} \\
8.8 & \pm 0.69 \\
(8.8-0.69) & ; 8.8+0.69) \\
(8.11 & ; 9.49)
\end{array}
$$

Then the interval is (8.11 to 9.49)
(e) $H_{0}: \beta_{1}=0$

$$
H_{1}: \beta_{1}>0
$$

$\alpha=0.01$

$$
t_{a ; n-2}=t_{0.01 ; 13}=2.650 . \text { Reject } H_{0} \text { if } T \text { is greater than 2.65. Now }
$$

$$
\begin{aligned}
T & =\frac{\hat{\beta}_{1}-B_{1}}{s / d} \\
& =\frac{1.5-0}{1.2372 / \sqrt{10}} \\
& =\frac{1.5}{0.391236992} \\
& =3.8340
\end{aligned}
$$

Since $3.834>2.65$, we reject H_{0} at the 1% level significance and conclude that $\beta_{1}>0$.
(f) Model fitted is $\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$

Commands for the Output:
Start the JMP program
$>\quad$ Enter number of alternatives in the first column and label it Number of alternatives (x).
$>\quad$ Enter length of decision time in the second column and label it Length of decision time (y)
To plot:
$>\quad$ Choose Analyze $>$ Fit Y by X with Number of alternatives (x) as X factor and Length of decision time (y) as Y response.
$>\quad$ Click Ok.
Click on the Red triangle on Bivariate Fit of Length of decision time (y) by Number of alternatives (x).

$>\quad$ Choose Fit Line

The JMP output is
Bivariate Fit of Length of decision time, y By Number of alternatives, x

- Linear Fit
- Bivariate Normal Ellipse $\mathrm{P}=0.950$

$|$| Linear Fit | |
| :--- | ---: |
| Length of decision time, $y=4.3+1.5^{\star} \mathrm{Num}$ | |
| Summary of Fit | |
| RSquare | |
| RSquare Adj | 0.53066 |
| Root Mean Square Error | 0.494557 |
| Mean of Response | 8.237243 |
| Observations (or Sum Wgts) | 8.8 |

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	1	22.500000	22.5000	14.6985
Error	13	19.900000	1.5308	Prob $>$ F
C. Total	14	42.400000		0.0021^{*}

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> $\|\mathbf{t}\|$
Intercept	4.3	1.216447	3.53	0.0037^{*}
Number of alternatives, x	1.5	0.39125	3.83	0.0021^{*}

Correlation

Variable	Mean	Std Dev	Correlation	Signif. Prob	Number
Number of alternatives, x	3	0.845154	0.728464	0.0021^{*}	15
Length of decision time, y	8.8	1.740279			

Figure 10: The Simple Linear Regression Model

