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ORIENTATION
Introduction
Welcome to STA2601. If you are a student at the College of Science, Engineering and Technology,

the four modules STA2601, STA2602, STA2603 and STA2604 form the second-year modules in

statistics. The module is the followup on the module STA1502 (Statistical Inference I). The name

Applied Statistics was chosen because of its double meaning: Data analysis is in effect applied

statistical theory and you will learn how to apply the statistical software package JMP. This means

that you must have access to a suitable computer for a component of practical work. (Please read

carefully through the section "Role of computers and statistical calculators" following below.)

This module forms part of the new statistics curriculum and it will equip you with a proper basis

in statistical knowledge, introduce you to a statistical package and highlight the value of thorough

statistical know-how that the business and outside world require of students who major in Statistics!

Knowledge of statistics will enable you to conduct quantitative research and statistical literacy will

enable you to understand research reports you might encounter as a scientist in your everyday life

or enable you to understand statistical reports you might encounter as a manager in your business.

There will be times when you feel frustrated and discouraged and then only your attitude will pull you

through!

Learning outcomes
At the end of each study unit we will list the learning outcomes for that unit but there are also very

specific overall outcomes for this module which we list below. Throughout your study of this module

you must come back to this page, sit back and reflect upon these outcomes, think them through,

digest them and feel confident in the end that you have mastered them.

• Describing various probability distributions and illustrating their applications as probabilities

associated with critical values from tables.

• Describing desirable properties of estimators for population parameters and deriving these

estimators through the methods of maximum likelihood and least squares.

• Evaluating the reliability of estimates of the population parameters by means of the sampling

distributions of the corresponding sample statistics.

• Describing the behaviour of sample statistics (eg the sample mean, the sample variance et cetera)

in repeated sampling focusing on various sampling distributions.

• Considering point and interval estimators for single or compound population parameters.
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• Testing for normality by employing various tests (eg testing for skewness and for kurtosis, normal

quantile plots et cetera).

• Statistical estimation and hypothesis testing involving population variances, means, correlation

coefficients and regression coefficients.

The prescribed textbook(s)
You have to buy the following prescribed textbook: Sall, J, Creighton, L and Lehman, A. (2007

fourth edition or any later edition) JMP Start Statistics, (ISBN 978-1-59994-572-9) Cary, NC:

SAS Institute Inc.

This is the official handbook for JMP, the powerful statistical software developed by the SAS Institute.

You will be instructed to study specific sections from specific chapters, and it is a guide book that

you will use for more than one module, in other words for whatever statistical techniques you

might encounter at different levels of your studies in statistics. (This includes modules such as

STA2602, Statistical Inference II, STA2604, Forecasting II, and even for postgraduate modules such

as STA4806, Advanced Research Methods in Statistics.)

You should also buy the following prescribed book of tables: Stoker, DJ. (1977 3 edition)

Statistical tables, Academica, Pretoria.

Feel free to use any other book of tables, but then it is up to you to find the correct table for a given

problem.

The study guide, the textbook and the workbook
Your formal study material consists of a study guide, a textbook and a workbook which are

intertwined and together they cover the syllabus. The study guide is more than what its name

implies: it contains the major part of the theoretical contents of the course and it also serves as a

guide through the textbook in a systematic way. There is a separate workbook which will provide

you with an opportunity to apply your knowledge of the material that is covered in the guide and

textbook. For each separate study unit you should first study the work in the study guide and/or

textbook and then utilise the workbook to assess your progress, test your knowledge and prepare for

the examination.

The workbook serves as an interactive workbook, where spaces are provided for your convenience.

Should you so prefer, you are welcome to write and reference your solutions in your own book or file,

if the space we supply is insufficient or not to your liking. The workbook will also serve as a kind of

manual for beginners to help you with the computer exercises.

You will find the study of this module very unrewarding if you

do not work actively through the workbook.
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You should make sure that you receive both the study guide and the workbook. You cannot do

your assignments without the workbook. Please feel free to give us feedback on any aspect of any

study unit in the workbook. Negative feedback will motivate us to rectify what is wrong and positive

feedback will give us inspiration to complete the workbook.

Study units and workload

We realise that you might feel overwhelmed by the volumes and volumes of printed matter that you

have to absorb as a student! How do you eat an elephant? Bite by bite! Make very sure about the

sections of the textbook in each study unit since some sections of the textbook are not included and

we do not want you frustrated by working through unnecessary work. The study units vary in length

but you should try to spend on average 12 hours on each unit. Practically everybody should be able

to do statistics. It depends on the amount of TIME you spend on the subject. Regular contact with

statistics will ensure that your study becomes personally rewarding.

Try to work through as many of the exercises and activities as possible

Doing exercises on your own will not only enhance your understanding of the work, but it will give

you confidence as well. Feedback is given immediately after each activity in the workbook to help

you check whether you understand the specific concept. The activities are designed (ie specific

exercises are selected) so that you can reflect on a concept discussed in the study guide. You can

only derive maximum benefit from this activity-feedback process if you discipline yourself not to peep

at the solution before you have attempted it on your own! You should also not misuse it by merely

glancing at sections needed for similar questions in the assignments.

Role of computers and statistical calculators
The emphasis in the study guide is well beyond the arithmetic of calculating statistics and the focus

is on the identification of the correct technique, interpretation and decision making. This is achieved

by a flexible design giving both manual calculations and computer steps. The statistical software

package will give you the feeling that you are really practising statistics. I give the following quote

from the textbook: "If you give someone a large truck, they will find someone to drive it for them.

But if you give them a sports car, they will learn to drive it themselves. Believe that statistics can be

interesting and reachable so that people will want to drive that vehicle."

We try our best to illustrate every statistical technique that needs computation in a two-step

approach:

Step 1 MANUALLY

Step 2 JMP

It is a good idea that you initially go through the laborious manual computations to enhance your

understanding of the principles and mathematics. However, you must be able to manage the JMP
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computations because using computers reflects the real world outside. The additional advantage of

using a computer is that you can do calculations for larger and more realistic data sets.

It is impossible and impractical to do assessment of computer skills on computers in the examination

but it does not preclude us from providing you with printed output which you have to interpret.

We will give you definite instructions on where and how to use a computer for your calculations in

assignments. You must be able to use both a computer program and a statistical calculator as tool

for your calculations. However, the emphasis in this module will always be on the interpretation and

how to articulate the results.

Licence agreement

Unisa has a campus licence to supply one CD (a student version of JMP) free of charge to every
student enrolled for STA2601. This is for your academic use only and you are not allowed to
make copies of this product. Your licence will automatically expire after one year.

(This CD is included with your study material when you register at Unisa.)

You will be instructed in a tutorial letter on how to update your licence.

Access to a suitable computer

For the smooth running of JMP 8 you will need the following hardware:

CPU: At least a Pentium II or equivalent processor

RAM: 128 MB minimum, 256+ MB recommended

Drive space: 110 MB minimum

For your PC operating system JMP 8 requires:

Windows NT 4.X with service pack

or Windows 2000

or Windows XP

or Windows 7

Please note: JMP 8 will not run on Windows 98 or ME. It is not compatible with Vista.

Something about the author(s)
This study guide is a second revision by Ms Suwisa Muchengetwa after the major revision by Dr

Reina Nieuwoudt of the previous STA203-N guide which was compiled by Prof FE Steffens, who has

now retired.

As this is an applied statistics course, it needs continuous improvement since we are living in

a dynamic world. A graduate of statistics needs to know about analysing data using statistical

packages. It is a dream the authors shared to equip modern students interested in the world around

them with the know-how to use a statistical package.
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STUDY UNIT 1

Revision of statistical distributions

1.1 Introduction
The first study unit is designed to provide you with some background knowledge and to summarise

what prior knowledge we assume you to have. These results are important building blocks and we

often refer to them in the study units to follow. You will not be examined explicitly on this section

as the emphasis of this module is on applied statistics.

A successful practical statistician must be courageous. Whereas a theoretical statistician can simply

declare 1 2   to be independently normally distributed with mean  and variance 2 the

practical statistician has to worry about these assumptions: are they valid for my data, and what if

they are not valid but approximately so?

Before the statistician can proceed with the analysis, he or she has to make a decision about this. In

this respect one should avoid the two extremes: those who do not worry about the appropriateness

of the analysis at all, who simply shove the data into the computer and believe what the computer

says (also known as cookbook statisticians) and those who worry so much about the assumptions

that they never get to analyse the data.

If a complex set of data is given to four highly skilled practical statisticians, then they could come up

with four different analyses. Not that only one of them is correct and the others wrong! They will have

analysed different aspects of the problem, and often such analyses are complementary. Combined

it could lead to greater insight into the practical problem.

That is what makes Applied Statistics so exciting. It is not a rigid system, but allows an inventive

person to use his or her originality to the full.

We trust that you will experience the thrill of practical statistics when you use JMP to enter data

sets, perform the analyses and draw the final conclusions. Throughout this module, whenever a new

technique is explained you should concentrate on the two aspects: what does it assume and what

does it hope to achieve?
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1.2 General concepts of continuous and

discrete distributions

Many students get confused by statistics because different authors use different notation. In this

study guide  will denote a random variable, and  a value assumed by 

Definition 1.1

With every random variable  is associated a distribution function  ()

which is defined as follows for all :

 () =  ( ≤ )

The two main types of distribution functions are discrete and continuous distribution functions.

Discrete distributions
A discrete distribution function typically appears as in figure 1.1.

FX(x)

X2 X3X1 XXk

1

0

Figure 1.1: A discrete distribution function

The properties of a discrete distribution function are:

(a)  (−∞) = 0 and  (+∞) = 1
(b) If    then  () ≥  ()  ie  () is nondecreasing.

(c)  () has jumps at a number of points called the discrete points of the distribution. A distribution

can have at most countably many discrete points.

(d)  () remains constant between the discrete points.
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(e) The size of the jump at a discrete point  is the probability that the random variable  will assume

the value :

 ( = ) =  ( ≤ )−  (  )

=  ()−  (−)

where  (−) = lim
→0

 ( − ) ( a small positive number).

Suppose now that A is the set of discrete points of 

ie  ( = )  0 if  ∈ A

= 0 if  ∈ A

As was indicated before, A can have either finitely many or countably many elements.

Definition 1.2

The probability function of  is defined as

 () =  ( = ) 

 () has the properties:

(a)  () ≥ 0 for all 

(b)
P
∈A

 () = 1

Moments and other special coefficients of a discrete variable 

The -th central moment of  is computed as

 =  ( − )

where  is the mean or expected value of .

 =  () =
P
∈A

 ()

2 is called the variance of  and denoted as 2

2 =  ( − )2 =
P
∈A

(− )2  ()

The third central moment of  is

3 =  ( − )3 =
P
∈A

(− )3  () 
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The fourth central moment of  is

4 =  ( − )4 =
P
∈A

(− )4  () 

From the last two central moments we define the following two special coefficients:

The coefficient of skewness of  is

1 =
3
3



The coefficient of kurtosis of  is

2 =
4
4



Continuous distributions
The distribution function  () =  ( ≤ ) of a continuous random variable  appears typically

as follows:

(a)

FX(x)

X

1

0

(b)

FX(x)

X2 X3X1 XXk

1

0

Figure 1.2: A continuous distribution function
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A continuous distribution function has the following properties:

(a)  (−∞) = 0 and  (+∞) = 1
(b)  () is nondecreasing, ie if    then  () ≥  () 

(c)  () has no jumps, ie  (−) =  (+) for all  or lim
→0

 (− ) = lim
→0

 (+ ) for all 

(d)  () may have bend points (like 1 2 3 and 4 in figure 1.2(b) and it may remain constant

in certain intervals, (eg between 2 and 3 in figure 1.2(b)).  () can have at most countably

many bend points.

Since  () has no jumps, and at most countably many bend points, the derivative

 0 () =
 ()



exists for all  except in the bend points.

Definition 1.3

The probability density function (pdf)  () is defined as

 () =  0 () =



 () 

 () may have any arbitrary value if the derivative does not exist, eg

 () = 0

or

 () = lim
→0

 (+ )−  ()


(the derivative from the right)

or

 () = lim
→0

 ()−  (− )


(the derivative from the left)

Probabilities concerning  are computed as follows:

If    then  (   ≤ ) =  ()−  ()

=
R


 () 

This probability may be regarded as the area under the probability density function between  = 

and  =  as in figure 1.3.
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fX(x)

a b

P(a<X<b)

Figure 1.3: Probability equals area

Note that  ( = ) =  ( ≤  ≤ )

=
R


 () 

= 0

ie the probability that  assumes any specific value is 0. In this case (ie in the case of continuous

random variables), we have

 ( ≤  ≤ ) =  (   ≤ ) =  ( ≤   ) =  (    ) 

Moments and other special coefficients of a continuous variable 

The -th central moment of  is computed as  =
∞R
−∞

(− )  () where the mean or expected

value of  is

 =  () =
∞R
−∞

 () 

2 is called the variance of  and is denoted as 2

2 =  ( − )2 =
∞R
−∞

(− )2  () 

The third and fourth central moments are

3 =  ( − )3 =
∞R
−∞

(− )3  () 

4 =  ( − )4 =
∞R
−∞

(− )4  () 

From these two central moments we define the following two special coefficients:
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The coefficient of skewness of  is

1 =
3
3

and the coefficient of kurtosis of  is

2 =
4
4



If 1 = 0 the distribution is called symmetric;

if 1  0 the distribution is called negatively skew; and

if 1  0 the distribution is called positively skew. A negatively skew distribution has a long tail to the

left and a positively skew distribution has a long tail to the right:

B>0
B<0B=0

Figure 1.4: Types of skewness

Rare events
Given a random variable  with pdf  (), we have seen that, for given ,

 (  ) =
∞R


 () 

Suppose a very small value  has been chosen between 0 and 1, eg  = 005 and the corresponding

value of  calculated such that

 (  ) = 

If a value of  is found which is larger than  we say a rare event (or unlikely event) has occurred,

ie an event with a small probability. Likewise we say a rare event has occurred if a value    has

been obtained where

 (  ) =
R

−∞
 ()  = 
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fX(x)

"

c

←− rare events−→

fX(x)

"
   

 
d

←− rare events−→
Figure 1.5: Rare events

Bivariate distributions
Sometimes one is interested in studying a number of variables jointly; their joint distribution may

contain some information which is not available if they are studied separately. In this section some

theory of bivariate distributions is given but this is treated in detail in STA2603. (In the next section

we generalise it to multivariate distributions.)

Definition 1.4
Let 1 and 2 be two random variables. If a function 1;2

(1; 2) exists such that

 (1 ≤ 1; 2 ≤ 2) =
2R
−∞

1R
−∞

1;2
(1; 2) 12

for all 1 and 2 then 1;2
(1; 2) is called the joint probability density function

of 1 and 2

1;2
(1; 2) has the following characteristics:

(a) 1;2
(1; 2) ≥ 0 for all 1 and 2

(b)
∞R
−∞

∞R
−∞

12
(1; 2) 12 =  (1 ≤ ∞; 2 ≤ ∞) = 1
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Definition 1.5
The function

1;2
(1; 2) =

2R
−∞

1R
−∞

1;2
(; )  =  (1 ≤ 1; 2 ≤ 2)

is called the joint distribution function of 1 and 2

Note that

1;2
(1; 2) =

2

12
1;2

(1; 2)

ie 1;2
(1; 2) is the second order partial derivative of 1;2

(1; 2) with respect to 1 and 2

Definition 1.6
The function

1
(1) =

∞R
−∞

1;2
(1; 2) 2

is called the marginal probability density function of 1

Likewise,

2
(2) =

∞R
−∞

1;2
(1; 2) 1

is called the marginal probability density function of 2

Definition 1.7
The function

1|2 (1; 2) =
1;2

(1; 2)

2
(2)

is called the conditional probability density function of 1 given that 2 = 2

The conditional pdf of 2 given that 1 = 1 is defined in a similar manner.

Definition 1.8
The conditional expectation of the random variable 1 given that 2 = 2 is defined as

 [1|2 = 2] =
∞R
−∞

11|2 (1; 2) 1
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The conditional expectation of 1 given that 2 = 2 is also called the regression function of 1 on

2

The roles of 1 and 2 can of course be reversed in the above discussion.

Definition 1.9

 (1 − 1) (2 − 2) =
∞R
−∞

∞R
−∞

(1 − 1) (2 − 2) 12
(1; 2) 12

=  (12)− (1) (2)

is called the covariance of 1 and 2

\

Definition 1.10

 =
 (12)p

  (1)  (2)

is called the correlation coefficient between 1 and 2 if

  (1) 6= 0 and   (2) 6= 0

The correlation coefficient is a quantity which lies between −1 and 1.

Definition 1.11

If the correlation coefficient between two random variables is zero, the two

variables are said to be uncorrelated.

NB From the definition  it follows that  = 0 if and only if the covariance is zero.

Definition 1.12

The random variables 1 and 2 are said to be independent if their joint

pdf can be factorised:

1;2
(1; 2) = 1

(1) 2
(2) 
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The term independent has this special technical meaning when used in connection with random

variables. Remember this! The following theorem is given without proof.

Theorem 1.1

If 1 and 2 are independent random variables then they are uncorrelated.

The converse is not true: two uncorrelated random variables need not be independent. This is very

important.

Multivariate distributions
Generalisation of the bivariate distribution theory of the previous section is straightforward, and will

not be done in detail here. The multivariate pdf of the  random variables 1   is the function

1;2;;
(1; 2; ; )

such that

 (1 ≤ 1; ;  ≤ ) =

Z
−∞



1Z
−∞

1;;
(1; ; ) 1

for all 1  

The marginal pdf of 1 is

1
(1) =

∞Z
−∞



∞Z
−∞

1;;
(1; ; ) 23

Similarly

2
(2) =

∞Z
−∞



∞Z
−∞

1;;
(1; ; ) 13, et cetera

Definition 1.13

The random variables 1   are said to be mutually independent if

1;;
(1; ; ) = 1

(1) 
()

for all values of 1; ; 
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An important special case is the following:

Let 1   be independent and identically distributed, ie

1
() = 2

() =  = 
() =  () 

say, for all , and

1;;
(1; ; ) =  (1)  ()

then 1   are said to constitute a random sample of size  from the distribution with pdf  () 

1.3 Standard distributions
In this section a number of standard distributions are dealt with. These distributions are

very important in statistical applications. The binomial and Poisson distributions are discrete

distributions, while the normal, chi-square, t- and  -distributions are continuous distributions.

The bivariate normal distribution is an example of a continuous bivariate distribution.

You should remember the mathematical formulae for the binomial, Poisson,

normal and bivariate normal distributions; it is not imperative that you

memorise the probability density functions of the chi-square, t- and

F-distributions. A random variable will sometimes be called a variate in this

section.

The following book of tables is referred to in this section. This book is prescribed for this module.

DJ. Stoker: Statistical tables, Academia, Third Edition, 1977.

Bernoulli trials

Suppose the outcome of a random experiment is either a success or a failure. For example, if a

patient is operated on, he or she may either recover (success) or die (failure). If we select a person

at random and ask him or her whether he or she smokes, he or she may either say "Yes" (success)

or "No" (failure). The labelling of one possible outcome as "success" and the other as "failure" is of

course arbitrary, and may be switched according to the context of the problem.
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The following mathematical model is used to describe such an experiment. Let the probability of a

success be  where  is a constant with 0    1 Define the random variable  as follows:

 = 0 if the outcome is a failure

= 1 if the outcome is a success.

∴  ( = 1) =  and  ( = 0) = 1− 

Then  () =  (1) + (1− ) (0) = 

and 
¡
2
¢
=  (1)2 + (1− ) (0)2 = 

∴   () = 
¡
2
¢− ( ())2 =  − 2 =  (1− ) 

An experiment of this type is called a Bernoulli trial (named after the Swiss mathematician, Jacques

Bernoulli (1664-1705)) and  is called a Bernoulli variate.

The binomial distribution

The binomial distribution was also derived by Jacques Bernoulli. Suppose a Bernoulli experiment is

repeated  times, such that the outcomes 1 2   are independent Bernoulli variates with

the same probability  of a success. The implications of these two assumptions, independence and

constant probability of a success, are important. If a random sample is drawn from a finite population

these conditions may hold if sampling is done with replacement. However, if the sample is drawn

without replacement, the proportion of the population having the "success" property changes after

each draw and the outcome of one draw depends on the outcomes of the previous draws. However,

if the population is very large and the sample size  relatively small, the conditions of independence

and constant probability of a success are approximately satisfied, and the model described here will

be a good approximation to the true situation.

We are interested in the number of successes in the sample of size . Let

 = 1 +2 + +

then  represents the number of successes in the sample.

Definition 1.14

 is a binomial variate, denoted by  ∼  (; ) if

 ( = ) =
¡



¢
 (1− )− ;

where  = 0; 1; 2; ;  and 0    1
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It can be shown that

 ( ) =  and   ( ) =  (1− ) 

Binomial variates have the following important additive property: If 1 ∼  (1; ) and 2 ∼  (2; )

and if 1 and 2 are independent, then 1 + 2 ∼  (1 + 2; ) 

This property follows simply from the fact that, if 1 is the number of successes in 1 independent

Bernoulli trials and 2 is the number of successes in 2 independent Bernoulli trials, if these

1 + 2 trials are mutually independent and the probability of a success is  throughout the 1 + 2

experiments, then 1 + 2 is the number of successes in 1 + 2 independent Bernoulli trials.

Table XI of Stoker gives the cumulative binomial distribution:  ( ≤ ) for a given  and  (In

table XI  is used instead of our  and  instead of our ), ie

 ( = ) =
¡



¢
 (1− )−

and

 ( ≤ ) =

X
=0

¡



¢
 (1− )− 

Individual probabilities are obtained by subtraction.

Example 1.1

Let  ∼  (10; 04)  then

 (  7) =  ( ≤ 6) = 09452 (table XI)

 (  6) =  ( ≤ 5) = 08338 (table XI)

 ( ≥ 7) =  (  6) = 1−  ( ≤ 6) = 00548

 ( ≥ 6) =  (  5) = 1−  ( ≤ 5) = 01662

 ( = 6) =  ( ≤ 6) − ( ≤ 5) = 01114

 (3 ≤  ≤ 8) =  ( ≤ 8) − ( ≤ 2) = 09983− 01673 = 08310 (table XI).
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Note

Table XI gives the cumulative distribution of a  (; ) variate for 0   ≤ 1
2
 In the case   1

2
we

could interchange the successes and failures: if  ∼  (; )  ie if  is the number of successes

in  trials with probability of success  then  −  is the number of failures; if we let  =  − 

then  may be regarded as the number of successes in  trials with probability of success 1−  ie

 ∼  (; 1− ) 

Example 1.2

Let  ∼  (12; 07)  Find

(i)  ( = 7)

(ii)  (3    7) 

Solution

Let  = 12−; then  ∼  (12; 03) and therefore probabilities concerning  are catered for in table

XI.

(i)  ( = 7) =  (12− = 12− 7)
=  ( = 5)

=  ( ≤ 5)−  ( ≤ 4)
= 08821− 07237
= 01584

(ii)  (3    7) =  (−7  −  −3)
=  (12− 7  12−  12− 3)
=  (5    9)

=  (5   ≤ 8)
=  ( ≤ 8)−  ( ≤ 5)
= 09983− 08821
= 01162



16

The Poisson distribution

Definition 1.15

Let  be a discrete random variable with probability function

 ( = ) =
−

!
 = 0; 1; 2; 

where   0 is a constant. Then  is said to be a Poisson variate with

parameter  which we denote by  ∼  () 

The Poisson distribution (pronounced pwa-sòn) is named after its discoverer, the French

mathematician Simeon Denis Poisson, who published the distribution in 1837. The Greek letter

 is pronounced "lambda".

The Poisson distribution is used extensively in practice for the number of occurrences of an event

in a given time period. The number of telephone calls which arrive at an exchange in one minute,

the number of customers who arrive at a supermarket in one hour and the number of vehicles which

pass a certain point in five minutes are examples of random variables which have been found to be

approximately distributed as Poisson variates under certain circumstances.

Important properties of the Poisson distribution

(i) If  ∼  () then  () =  and   () =  (note that the mean and the variance are the

same).

(ii) If 1 and 2 are independent  (1) and  (2) variates respectively, then 1 + 2 is a

 (1 + 2) variate (additive property).

Table XII gives the cumulative Poisson distribution.

Example 1.3

Let  ∼  (25) 

Then

 ( ≤ 6) = 09858 (table XII)

 ( ≤ 5) = 09580 (table XII)

 ( = 6) =  ( ≤ 6)−  ( ≤ 5) = 09858− 09580 = 00278

 ( ≥ 6) =  (  5) = 1−  ( ≤ 5) = 1− 09580 = 00420

 (3    7) =  (3   ≤ 6) =  ( ≤ 6)−  ( ≤ 3)
= 09858− 07576 = 02282 (table XII).
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In STA1503 (and also in STA1501) you learned that the normal distribution is used as a limiting

distribution for the binomial distribution if  is large and  is close to 05 but the Poisson distribution

is used as a limiting function for the binomial distribution if  is large and  is small.

Example 1.4

Let  ∼  (20; 005)  the largest  and smallest  in table XI. Then  is approximately  () with

 =  = 20 (005) = 1

We compare probabilities from tables XI and XII.

  ( ≤ ) table XII  ( ≤ ) table XI

0 03679 03585

1 07358 07358

2 09197 09245

3 09810 09841

The approximations are fair, and for larger  the approximations become much better.

The normal distribution

Definition 1.16

If  is a continuous variate with pdf

 () =
1


√
2

−
1
2
(−)22 ; −∞   ∞

then  is said to be a normal variate with mean  and variance 2

We write  ∼ 
¡
; 2

¢


Let  =
 − 


 Then  is a normal variate with mean 0 and variance 1, ie  ∼  (0; 1) 

The pdf of  is obtained by setting  = 0 and  = 1 in the pdf of 
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Definition 1.17

If  is a continuous variate with pdf

 () =
1√
2

−
1
2
2 ; −∞   ∞

then  is a standard normal variate

This pdf is often denoted by  () and the corresponding distribution function by Φ ()  ie

 () =
1√
2

−
1
2
2

Φ () =

Z
−∞

 () 

These two functions are depicted in the next two graphs.

 ()

-5 -3 -1 1 3 5
0

0.1

0.2

0.3

0.4

Figure 1.6:
The standardised normal probability density function

Φ ()

-5 -3 -1 1 3 5
0

0.2

0.4

0.6

0.8

1

Figure 1.7:
The standardized normal distribution function
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Notice that the standardised normal density function is symmetric about zero from which it follows

that:

(i)  ( ≤ 0) =  ( ≥ 0) = 1

2

   

 

0

0.5

(ii)  ( ≥ ) =  ( ≤ −)

   

 
-c

   

 
P(Z>c)

c

P(Z<-c)

(iii)  (  ) = 1−  (  −)

   

 

P(Z<c)

c

   

 

1-P(Z<-c)

-c

In table I we find areas under the normal density function specifically  (  ) =

Z
−∞

 () 

Please note that some editions of normal tables tabulate  (0    ) =

Z
0

 () 

These values enable us to compute other probabilities, as the following examples will show. Always

try to draw sketches which indicate the probabilities under consideration.
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Example 1.5

Let  ∼  (0; 1). Then

(a)  (  13) = 09032 (table I)

(b)  (  13) = 1−  (  13) = 00968

(c)  (−13    13) =  (  13)−  (  −13)
=  (  13)− [1−  (  13)] from (b) above
= 2 (  13)− 1
= 08064

(d)  (||  13) =  (−13    13) = 08064 as above

(Please note: || is the absolute value of  ignoring the sign of 

||   if and only if −     and

||   if and only if   − or   )

(e)  (  −13) =  (  13) = 00968 from (b)

(f)  (  −13) = 1−  (  −13) = 09032

   

 
0

   

 

0.09680.0968 0.4032 0.4032

-1.3 1.3

Furthermore

(g)  (−02    18) =  (  18)−  (  −02)
=  (  18)− [1−  (  02)]

= 09641− 1 + 05793 (table I)
= 05434
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(h)  (055    196) =  (  196)−  (  055)

= 09750− 07088 (table I)
= 02662

(i)  (−132    −035) =  (  −035)−  (  −132)
= [1−  (  035)]− [1−  (  132)]

= (1− 06368)− (1− 09066)
= 09066− 06368
= 02698

You should acquaint yourself well with the use of table I - it is used more often by statisticians

than any other table.

Example 1.6

Let  ∼  (3; 16)  Find  (1    7) 

Solution

We use  =
 − 


(where for this example  = 3 and  =

√
16).

∴  (1    7) = 

µ
1− 3
4


 − 3
4


7− 3
4

¶
=  (−05    1)

=  (  1)−  (  −05)
= 08413− (1− 06915) (table I)
= 05328

Table II works in an almost inverse manner, and we will use it mainly to obtain so-called critical values

of the  (0; 1) distribution. Given  it gives  such that

 (  ) =

∞Z


 ()  = 
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ie  (  ) =

Z
−∞

 ()  = 1− 

   

 

N(z)

"

z0

We denote such values of  by  ie it is our agreement that  (  ) = 

We illustrate the use of table II by means of examples:

Example 1.7

(a) Find  such that  (  ) = 095

(b) Find  such that  (−    ) = 095

Solution

(a)

   

 

0.95

1.6450

   

 

0.95

-1.645

We can look up  in table II directly, because it is given that  ( ≤ ) ≡ Φ () = 095 and we find

 = 1645

∴  (  1 645) = 095

Therefore  (  −1645) = 095 by symmetry.
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(b) Now we cannot look up  in table II directly, because  (−    ) is not Φ () 

   

 

0.95

z-z

095 =  (−    )

=  (  )−  (  −)
=  (  )− [1−  (  −)]
=  (  )− 1 +  (  )

= 2 (  )− 1

∴ 2 (  ) = 195

∴  (  ) = 0975 = Φ ()

∴  = 1960 from table II

 (−196    196) = 095

 

 
0

   

 

0.0250.025 0.95

-1.96 1.96



24

Sums of independent normal variates

Let 1 2   be independent normal variates such that  ∼ 
¡
; 

2


¢
. Let  =

X




Then  is a normal variate with mean and variance given by

 ( ) = Σ and   ( ) = Σ2
2
 

In particular, if 1 = 2 =  =  =  and 21 = 22 =  = 2 = 2 then

 ( ) = Σ and   ( ) = 2Σ2 

An important special case:

If  =  =
1



X
1

 then 
¡

¢
= 

X
1

1


=  and  

¡

¢
= 2

X
1

1

2
= 2

Theorem 1.2

If 1   are independent 
¡
; 2

¢
variates then

 =
1



X
1



is a 
¡
; 2

¢
variate.

The central limit theorem

We have seen above that, if 1   are independent 
¡
; 2

¢
variates, then  =

1



X
1

 is a


¡
; 2

¢
variate.

However, if 1   are independent variates from a general distribution having pdf  ()  with

mean  and variance 2 then  still has mean and variance


¡

¢
= ;  

¡

¢
= 2

whether the distribution of  is normal or not. However, in general the distribution of  is not normal.

What is the distribution of  then? Unfortunately this depends on  ()  However, the central limit

theorem is of great use in this respect and reads as follows:
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Theorem 1.3

Let 1   be independent variables from a general distribution with pdf  ()

with mean  and variance 2 Then 
¡

¢
=  and  

¡

¢
= 2 and

 =
 − 


√


(provided 2 is finite)

is asymptotically normally distributed with mean 0 and variance 1.

In practical terms this means that the distribution of  can, for large  be approximated by the

standardised normal distribution, and we may use tables I and II to obtain approximate probabilities

and critical values with respect to  The condition that 2 must be finite is not a trivial one – there

are distributions for which the variance does not even exist, for example the Cauchy distribution.

The question of how large  should be before the approximation becomes satisfactory, is not easily

answered. It depends on the specific  () 

Example 1.8

Let 1 2  36 be a random sample from a distribution with mean 10 and variance 25. Find an

approximate value for 
¡
9    11

¢


Solution

 =
 − 10p
2536

= 12
¡
 − 10¢ is approximately  (0; 1) 

∴ 
¡
9    11

¢
= 

£
12 (9− 10)  1 2 ¡ − 10¢  12 (11− 10)¤

=  (−12    12)

≈ 07698 (table I)
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The chi-square distribution

Definition 1.18

If  is a random variable with pdf

 () =

1
2
−1−

1
2


2
1
2
Γ

µ
1

2


¶  for   0

= 0 otherwise

where  is a positive integer, then  is said to have a chi-square distribution with

 degrees of freedom. We write  ∼ 2

The pdf, which depends on the parameter  is represented graphically for  = 1; 4; 10 and 20 in figure

1.8.

 ()

d =

1

4

10

20

x
0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

Figure 1.8:
The pdf of the chi-square distribution with  degrees of freedom

Table IV gives critical values of this distribution.

Example 1.9

Verify that, if  ∼ 26 then

(a)  ( ≥ 125916) = 005
(b)  ( ≤ 106446) = 090
(c)  ( ≥ 163539) = 095
(d)  ( ≤ 0872085) = 001
(e)  (1237347 ≤  ≤ 144494) = 095
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Solution

(a) We can look up  ( ≥ ) = 005 directly in table IV because the one-sided exceedance

probability  is given as 0.05. With  = 6 and  = 005 we therefore find  = 125916 We

also write 26;005 = 125916

d = 6

x

0 4 8 12 16 20 24

0

0.03

0.06

0.09

0.12

0.15

0.05

12.5916

(b)  ( ≤ ) = 090

⇒ 1−  (  ) = 090

⇒  ( ≥ ) = 010

so that it follows from table IV that  = 106446

We also write 26;010 = 106446

d = 6

x
0 4 8 12 16 20 24

0

0.03

0.06

0.09

0.12

0.15

0.10

10.6446

(c) We can also look up this value directly because now  = 095 and  ( ≥ ) = 095 so that it

follows from table IV that  = 163539

x
0 4 8 12 16 20 24

0

0.03

0.06

0.09

0.12

0.15

  

 

0.95

 

1.63539
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(d)  ( ≤ ) = 1−  ( ≥ )⇒  ( ≥ ) = 099 so that it follows from table IV that  = 0872085

d = 6

x

0 4 8 12 16 20 24

0.872085

0.01

(e)

d = 6

x

0 4 8 12 16 20 24

0.025

1.237347 14.4494

0.025

It follows from table IV that  (1237347 ≤  ≤ 144494) = 0975− 0025

= 095

Result 1.1
Properties of the chi-square distribution

(i) If  ∼ 2 then  ( ) =  and   ( ) = 2

(ii) If 1 and 2 are independent and 1 ∼ 21 and 2 ∼ 22 

then 1 + 2 ∼ 21+2 (additive property)

(iii) Relation to normal sampling theory (a very important result)
If 1   are independent  (0; 1) variates (ie 1  

is a random sample from a standardised normal distribution) and if

 = 2
1 +2

2 + +2


then  ∼ 2

(iv) Special case  = 1

If  ∼  (0; 1) then 2 ∼ 21
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Example 1.10

Let  ∼  (0; 1) and  = 2 Then  ∼ 21

From table IV:

 (  384146) = 1−  ( ≥ 384146) = 1− 005 = 095
∴ 

¡
2  384146

¢
= 095

∴ 
¡−√384146   

√
384146

¢
= 095

∴  (−196    196) = 095

which is in accordance with tables I and II.

From (iii) above we can deduce the following important result:

Result 1.2

If 1   are independent 
¡
; 2

¢
variates, then

1 − 


 

 − 


are independent  (0; 1) variates and

 =

X
=1

∙
 − 



¸2
∼ 2

The following is also an important result. Note that we have "lost" one degree of freedom because 

was replaced by  and we already know that  ∼ 
¡
; 2

¢


Result 1.3

Let 1   be independent 
¡
; 2

¢
variates,  =

1



X
1



and let  =

X
=1

∙
 −



¸2
 Then  ∼ 2−1 and  and  are

independent variates, ie ; (; ) =  ()  () 

Note that  can also be expressed as  =
(− 1)2

2
with 2 the sample variance.
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Student’s t distribution

This distribution was derived by WS Gossett who worked for a brewery and was not allowed to

publish his results under his own name. He therefore used the pseudonym "Student".

Definition 1.19

If  is a random variable with pdf

 () =
Γ
£
1
2
(+ 1)

¤
Γ
¡
1
2

¢
Γ
¡
1
2

¢√


µ
1 +

2



¶−1
2
(+1)

; −∞   ∞

where  is a positive integer, then  is called a Student t-variate with

 degrees of freedom. We write  ∼ 

The pdf of this distribution is illustrated in the following graph:

-5 -3 -1 1 3 5

n(0,1)

t8

t30

t4

Figure 1.9:
The pdf of Student’s t-distribution with  = 4  = 8 and  = 30 degrees of freedom

When  = ∞ the pdf of  is identical to the standardised normal probability density function.

(Compare the last line of table III with table II.)

Table III gives critical values of the t-distribution. Notice that the t-distribution is, like the standardised

normal distribution, symmetric about zero.
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Relation to normal sampling theory

Theorem 1.4

Let  and  be independent variates such that  ∼  (0; 1) and  ∼ 2 and let

 =
p


 Then  ∼ 

Theorem 1.5

Let 1   be independent 
¡
; 2

¢
variates and let

 =
1



X
1

 Then  =

√

¡
 − 

¢s
Σ
¡
 −

¢2
− 1

is a −1 variate.

The F-distribution

Definition 1.20

Let  be a random variable with pdf

 () =
Γ
£
1
2
(1 + 2)

¤
Γ
¡
1
2
1
¢
Γ
¡
1
2
2
¢1211 

1
2
2

2 
1
2
1−1 (2 + 1)

−1
2
(1+2)   0

= 0 elsewhere,

where 1 and 2 are positive integers. Then  is said to have an F-distribution with

1 and 2 degrees of freedom. We write  ∼ 1;2 

This is a two-parameter family of distributions, and the pdf is illustrated for 1 = 10 and 2 = 4; 10; 50

and∞ in the following graph:
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x
0 1 2

10

4 5
0

0.2

0.4

0.6

0.8

1

4

4
50

3

Figure 1.10:
The pdf of the F-distribution for 1 = 10 and 2 = 4; 10; 50 and∞

Tables V, VI and VII list critical values of this distribution. Note that the first degrees of freedom 1 is

always listed at the top of the table and the second degrees of freedom 2 on the left.

We will use the shorthand notation ;12 for the upper-tail probability 

Definition 1.21

Let 1 and 2 be independent random variables with

1 ∼ 21 and 2 ∼ 22  and let  =
11

22


Then  ∼ 1;2 .

Since the roles of 1 and 2 may be switched the following result is easily proved:

Result 1.4

If  ∼ 1;2 then
1


∼ 2;1 

This result enables us to find a two-sided interval for an F-variate, as is shown in the next example.
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Example 1.11

Find a 95% two-sided confidence interval for the F-variate  where  ∼ 8;20

Solution

 (  291) = 0975 (table VI). From the previous result  =
1


∼ 20;8

∴  (  4) = 0025 (table VI) (ie 0025;20;8 = 4)

∴ 

µ
1


 4

¶
= 0025

∴ 

µ
 

1

4

¶
= 0025 (ie 0975;8;20 =

1

0025;20;8
)

∴ 

µ
1

4
   291

¶
=  (  291)− 

µ
 

1

4

¶
= 0975− 0025 = 095

x
0 1 2 3 4 5

0

0.4

0.6

0.8
F8 ; 20

0.25 2.91

0.025 0.025

The bivariate normal distribution

Definition 1.22

Let 1 and 2 be two random variables with joint pdf

1;2
(1;2) =

1

212
p
1− 2




−1
2
(1;2)


;

for −∞  1 ∞; −∞  2 ∞; 1  0; 2  0; −1    1 where

 (1;2) =
1

1− 2

(µ
1 − 1

1

¶2
+

µ
2 − 2

2

¶2
− 2

µ
1 − 1

1

¶µ
2 − 2

2

¶)


Then 1 and 2 are said to have a bivariate normal distribution.
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The significance of the various constants is:

1 =  (1) ; 2 =  (2) ; 21 =   (1) ; 22 =   (2);

 = correlation coefficient between 1 and 2

Remember that it was pointed out previously that, if 1 and 2 are independent variates then they

are uncorrelated; and also that the converse is not always true. The converse is true in the case of

the bivariate normal distribution, however. If we set  = 0 in the joint pdf of 1 and 2 we obtain

1;2
(1;2) =

1

212

−1
2


1−1
1

2

+


2−2
2

2

=
1√
21


−1
2


1−1
1

2

1√
22


−1
2


2−2
2

2

= 1
(1) 2

(2) 

The following result is therefore true:

Result 1.5

Let 1 and 2 have a bivariate normal distribution. Then 1 and 2

are independent if and only if they are uncorrelated.

In the general case ( not necessarily equal to zero) it can be shown that, if 1 and 2 have a

bivariate normal distribution, then the marginal distributions of 1 and 2 are normal distributions, ie

∞Z
−∞

1;2
(1;2) 2 = 1

(1)

where 1
(1) is the 

¡
1;

2
1

¢
density function and likewise for 2
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The exponential distribution

Definition 1.23

Let  be a random variable with pdf

 () =
1


−  ≥ 0; 1


 0

Then  is said to have an exponential distribution with parameter
µ
1



¶


Mean

0.5

1

2

x
0 2 4 6 8 10 12

0

0.4

0.8

1.2

1.6

2

Figure 1.11:
The pdf of the exponential distribution

Result 1.6

For the exponential distribution:

(i)  () = 

(ii)   () = 2

(iii)  ( ≤ ) = 0 for  ≤ 0
= 1− − for   0

The parameter
µ
1



¶
is sometimes referred to as the failure rate.
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Exercise 1.1

1. Verify that if  ∼ 10 then

 ( ≥ 2764) = 001 note that we write 001;10 = 2764

 (  2764) = 099 =⇒  (  −2764) = 001
 (−2764    2764) = 098

 (−07    07) = 05

2. Verify that, if  ∼ 5;12 then

 (  311) = 005 (table V) ∴ 005;5;12 = 311

 (  389) = 0975 (table VI) ∴ 0025;5;12 = 389

 (  506) = 099 (table VIII) ∴ 001;5;12 = 506
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1.4 Learning outcomes

After studying unit 1 you should know the following concepts:

¥ random variable

¥ probability density function (pdf)

¥ the mean or expected value of a random variable

¥ the variance of a random variable

¥ the covariance of two random variables

¥ uncorrelated random variables

¥ the probability functions of the following two discrete random variables:

 ∼  ()

 ∼  (; )

(Poisson)
(binomial)

¥ the probability density function of  ∼ 
¡
; 2

¢
(normal)

¥ the central limit theorem

¥ properties of the chi-square distribution

¥ the relation of the t-distribution to normal sampling theory

¥ the relation of the F-distribution to two independent 2-variables

¥ the pdf and properties of the exponential distribution

You should be able to look up a value in your prescribed book of tables that links an

outcome of a variable with a given probability (or vice versa) for the following

distributions:

¥ normal

¥ 

¥ 

¥ 2
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STUDY UNIT 2

Concepts of estimation and inference

2.1 Introduction
It is always difficult to summarise a subject in a nutshell but we could say that Statistics as a science

is focused on the following overall objective: To collect, organise, analyse and interpret data for the

purpose of making better decisions.

In the previous study unit we stressed that the shape of the normal distribution is determined

by the value of the mean  and the variance 2 whilst the shape of the binomial distribution is

determined by the sample size  and the probability of a success . These critical values are

called parameters. (If you might recall, parameters are numerical measures that describe the

characteristics of a population.) We most often don’t know what the values of the parameters

are and thus we cannot "utilise" these distributions (ie use the mathematical formula to draw a

probability density graph or compute specific probabilities) unless we somehow estimate these

unknown parameters. In introductory courses it is usually simply stated that it makes perfect logical

sense that to estimate the value of an unknown population parameter, we compute a corresponding

or comparable characteristic of the sample. Is this always the best estimate? What does "best

estimate" mean? In this study unit you will learn that there are mathematical techniques that will

"lead" us to estimators of parameters!

In your first-year modules we dealt with probability and probability distributions, and emphasised

that unless one has a proper understanding of the laws of probability, the mechanisms underlying

statistical data analysis will not be understood properly. Probability theory is the tool that makes

statistical inference possible. In dictionary terms, inference is the act or process of inferring and to

infer means to conclude or judge from premises or evidence which means to derive by reasoning.

In general the term implies a conclusion based on experience or knowledge. More specifically in

statistics, we have as evidence the limited information contained in the outcome of a sample and

we want to conclude something about the unknown population from which the sample was drawn.

The set of principles, procedures and methods that we use to study populations by making use of

information obtained from samples is called statistical inference. Thus our objective will be to draw

inference about a population (a complete set of data) based on the limited information contained in

a sample.

How will we link the information from a sample to a population? You have already learned from

first-year modules that the sampling distribution of a statistic is the vehicle to move between the

sample and the population. For example, we showed you how to derive the sampling distribution of

the sample mean, , and how to apply this sampling distribution in developing an interval estimate
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for a population mean and how to perform a hypothesis test. In this study unit we will return to

concepts of hypothesis testing and confidence intervals in general.

2.2 Defining a random sample and a statistic
At first-year level, we were very specific with our examples and explanations of the sampling

distribution of a statistic in developing an interval estimate for a population parameter or to perform

a hypothesis test for a population parameter. For example, we explained how a confidence interval is

derived for  using the sampling distribution of  how a confidence interval is derived for  using

the sampling distribution of b and how a confidence interval is derived for 1−2 using the sampling

distribution of 1 −2

How can we generalise these principles?

In general, we are interested in a random variable  with probability density function (pdf)  ()

which depends on a parameter  which is (usually) unknown. We sometimes write  (; ) to

emphasise that the pdf depends on  We are interested specifically in obtaining information about

the parameter  for example that  =  () ;  =   () or  =  ( ≥ ) for a specific 

Consider for example the random variable  which represents the life (in thousands of kilometres) of

a tyre of given size and manufacture. We may be interested in the expected life, in which case

 =  ()  or in the probability that the tyre will last for more than 50 000 km, in which case

 =  (  50) 

In order to obtain information about the unknown parameter  we usually make use of a random

sample. Suppose in the above example we select five tyres at random and determine the life of

each tyre, say 1  5 In order for 1  5 to be regarded as a random sample for a given

distribution, we require that 1  5 be independent and that each of them has the prescribed

distribution.

Definition 2.1

The random variables 1   constitute a random sample from the

distribution with pdf  () if 1   are independent random

variables, each with pdf  () 

It follows that the joint pdf of 1   is given by

1
(1  ) =  (1)  () 

After such a random sample has been obtained, it must be analysed. This may be done in many

ways, depending on the objective. Firstly the data are represented graphically in different ways in
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order to try to find out what information about the population may be obtained from the sample. This

graphical analysis is followed by statistical computations. These computations lead to quantities

which we shall call statistics.

Definition 2.2

Any function  ≡  (1  ) of the random sample 1  

is called a statistic if it can be computed without using unknown parameters.

NB: Since a statistic is a function of random variables, it is itself a random variable.

Example 2.1

If 1   is a random sample from a distribution with mean  and variance 2 then the following

functions are examples of statistics:

(a)
1



P
1



(b)
P
1

¡
 −

¢2
(c) max (1  )

(d) 3

The following is not a statistic:
P
1

( − )2

(unless  is known).
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The remainder of this study unit is devoted to the general introduction to the three main subjects

falling under statistical inference:

• Point estimation

We want to find a statistic T which may be used as an estimator for the unknown parameter.

• Hypothesis testing

We are looking for a decision rule by means of which we may choose between the two hypotheses

0 (the null hypothesis) and 1 (the alternative hypothesis). Such a hypothesis is some or other

statement about the unknown parameter  for example  = 0;   10;  6= 6.

• Interval estimation

We are trying to find two statistics 1 ≡ 1 (1  ) and 2 ≡ 2 (1  ) such that

 (1    2) = 1−  where  is a small number between 0 and 1, for example  = 005

2.3 Point estimation
Given a random sample 1   from a distribution with pdf  (; ) which depends on the

unknown parameter  we wish to find a statistic  ≡  (1  ) which may serve as an estimator

for  An estimator for  is sometimes denoted by ̂ ("theta-hat"). The sample 1   consists

of  random variables and the estimator  is also a random variable. The values which 1  

assume in a specific example, 1   say, are constants and the corresponding value of  namely

 (1  ) which is a realisation of the estimator, is called an estimate of 

An estimator may be regarded as a formula by means of which an estimate is obtained from a given

set of data.

Thus, for example, we shall show that  =
1



P
1

 is a possible estimator for the population mean

; if we obtain a sample 1 = 10; 2 = 20; 3 = 15 then  = (10 + 20 + 15) 3 = 15 is an estimate of



In order to ensure that there is some connection between the estimator and the parameter, in other

words to prevent the possibility that just any old statistic be used as an estimator of  certain

restrictions are imposed on the estimator. Such restrictions are treated more fully in advanced

courses, but we mention briefly the property of unbiasedness. This is a logical property for an

estimator to have, but the requirement of unbiasedness is sometimes replaced by other requirements

which may lead to better estimators.

Definition 2.3

The statistic  is called an unbiased estimator for the parameter  if  ( ) = 
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Example 2.2

Let 1   be a random sample from a distribution with expected value  Prove that  =
1



P
1



is an unbiased estimator for 

Solution


¡

¢
= 

µ
1


1 + +

1




¶

=
1


 (1) + +

1


 ()

=
1


 + +

1




= 

Example 2.3

Let 1 and 2 be random variables from a 
¡
; 2

¢
distribution. Show that both

̂1 =
1

3
1 +

2

3
2

and

̂2 =
1

2
1 +

1

2
2

¡
= 

¢
are unbiased estimators of the mean.

Solution

 (̂1) = 

µ
1

3
1 +

2

3
2

¶

=
1

3
 (1) +

2

3
 (2)

=
1

3
+

2

3


= 
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 (̂2) = 

µ
1

2
1 +

1

2
2

¶

=
1

2
+

1

2


= 

Thus both ̂1 and ̂2 are unbiased estimators of 

Definition 2.4

If we have two or more unbiased estimators for the parameter  then

we select the estimator with the smallest variance. Such an estimator is

called the most efficient of the estimators.

Example 2.4

For example 2.3 we have

  (̂1) =  

µ
1

3
1 +

2

3
2

¶

=
1

9
  (1) +

4

9
  (2)

=
1

9
2 +

4

9
2

=
5

9
2

  (̂2) =  

µ
1

2
1 +

1

2
2

¶

=
1

4
2 +

1

4
2

=
1

2
2

Therefore ̂2 is a more efficient estimator of  than ̂1 is.
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2.4 Methods of finding estimators
Some highly sophisticated methods exist for finding estimators. Some of these methods involve

complicated theories and are treated in more advanced courses. We discuss two methods here:

(A) least squares

(B) maximum likelihood.

(A) Least squares estimation

The method of least squares is used especially in problems where the unknown parameters are

linear functions of known constants.

Theorem 2.1

Let 1   be independent random variables such that

 () = 11 + 22 + + ;

  () = 2;  = 1  ; where

   = 1   and  = 1   are known constants.

The least squares estimators of 1   are found by minimising

 (1  ) =
P
=1

( − ())
2

=
P
=1

( − 11 − 22 − − )
2 

This is achieved by setting




= 0;  = 1  

thus obtaining  equations with  unknowns, which are solved to obtain ̂1  ̂



45 STA2601/1

Example 2.5

Let 1 2      be independent random variables from a distribution with expected value .

Show that  =
1



X
=1

 is the least squares estimator for .

Solution

 () =   = 1 2     

 () =

X
=1

[ − ()]
2

=

X
=1

( − )2




=

X
=1

2 ( − ) (−1)

= −2
X
=1

 + 2 (Do you recall that
X
=1

 = ?)

Set



= 0

⇒ 2 = 2

X
=1



̂ =

X
=1





Example 2.6

Let 1   be independent random variables such that  () =   = 1   where 1  

are known constants. Find the least squares estimator for 

Solution

We estimate  by minimising  () where

 () =

X
=1

( − )
2 =

X
=1

¡
2
 − 2 + 2 

2
¢



46

 ()


= −2

X
=1

¡
 − 2 

¢
= −2 ¡Σ − Σ2

¢
= 0 if  =

Σ

Σ2


Thus the least squares estimator of  is ̂ =

X
=1



X
=1

2



(B) Maximum likelihood estimation (mle)

Before we formally define this method, consider the following concrete example:

Example 2.7

Suppose the number of visits a child pays the dentist per year, has a Poisson distribution with

unknown parameter . A random sample of 4 children paid the following observed number of visits

to the dentist:

1 = 0; 2 = 2; 3 = 1 and 4 = 3.

This means we have a random sample of size  = 4 from a distribution with pdf

 (; ) =
−

!
for  = 0; 1; 2;  (see definition 1.15)

where  () =  and   () = 

The probability of any outcome  therefore depends on  only so that we can write

 (1 = 0) = (1; ) =
−0

0!
;

 (2 = 2) = (2; ) =
−2

2!
;

 (3 = 1) = (3; ) =
−1

1!
and

 (4 = 3) = (4; ) =
−3

3!

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Assuming independence of 1 2     4 the joint probability function of the sample can therefore

be written as

 (1; 2; 3; 4; ) =
−0

0!
· 
−2

2!
· 
−1

1!
· 
−3

3!

=
−40+2+1+3

1× 2× 1× 1× 3× 2× 1

=
−46

12


Please note that this specific probability expression is not a "general case" but specifically derived

for a sample of four, with very specific outcomes, ie it is  (1 = 0 2 = 2 3 = 1 4 = 3).

Since it is a function of  only, we denote it by () and call it the likelihood function (from there the

).

For each different value of , we can compute a different value for (). This means we could use

the "connect-the-dots" method to draw a graph of (). (See figure 2.1.)

If  = 1 we have  (1) =
−416

12
=
00183156

12
= 00015263 (and we interpret it as the joint probability

of the specific sample for the case where  = 1).

If  = 2 we have  (2) =
−826

12
=
00003355× 64

12
= 0001789

In the following table () has been computed for seven different values of .

 ()

0 0

05 0000176

10 0001526

15 0002353

20 0001789

25 0000924

30 0000373



48

These likelihood values are plotted in figure 2.1 and it is obvious from the graph that () reaches

a maximum at  = 15. We therefore say that  = 15 is our maximum likelihood estimator for this

specific sample.

But, what is now very interesting is to note that  =

4X
=1



4
=
0 + 2 + 1 + 3

4
= 15

Instead of this "trial and error" or graphical method we will mostly use analytical methods to determine

 – although it is instructive to look at the problem this way.

Figure 2.1

The method of maximum likelihood is in effect that one has to find that value of  that will maximise

() for the observed sample.

Definition 2.5

The method of maximum likelihood for estimating a parameter ,

selects that value of  as a point estimator that maximises the

likelihood function

 () =  (1; )  (2; )  (; ) =

Y
=1

 (; ).

In the same way that the symbol
X
=1

denotes the sum of  terms, the symbol
Y
=1

can be used to

denote the product of  terms.
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Theorem 2.2

In many problems it is easier to maximise log () than  ()  The value of  that

maximises log () will also maximise  () since log () is a strictly increasing

function of  () 

Example 2.7 (continued)

Suppose that we now want to keep it abstract and use 1 2 3 and 4 without replacing them

with the observed values.

 () =

4Y
=1

 (; )

=
−1

1!
· 
−2

2!
· 
−3

3!
· 
−4

4!

=
−4

4P
=1



4Q
=1

!

Now log () = −4 +
4X

=1

 log  −
4X

=1

log (!)

 log ()


= −4 +

4X
=1

 · 1

+ 0

Let
 log ()


= 0 then

4X
=1

 = 4

Therefore b =
4X

=1



4
=  is the maximum likelihood estimator of .

[Strictly speaking (mathematically) we should also inspect the second-order derivative to ascertain

whether we in fact have a maximum value and not a minimum!]
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We already know that (see exercise 2.1, question 1)
1

− 1
X
=1

¡
 −

¢2
is an unbiased estimator

for the variance of a distribution and also that  =
1



X
=1

 is an unbiased estimator for the mean.

We began example 2.7 with the statement that the number of visits has a Poisson distribution.

Paging back to the properties of this discrete distribution (see the heading after definition 1.15) we

may write down that

() =  and

 () = 

Why don’t we choose 2 =
1

− 1
X
=1

¡
 −

¢2
as our unbiased estimator for ?

It is because the method of maximum likelihood has "guided" us to  (and not 2) and

usually (under general conditions) the maximum likelihood estimators are more efficient than other

estimators, but they are not necessarily always unbiased.

Example 2.8

Let 1      be a random sample from a distribution with pdf

() = −−1   1

Find the MLE for .

Solution

() =

Y
=1

 (; ) = 
Y
=1

−−1


log () =  log − (+ 1)
X
=1

log

 log


=




−

X
=1

log = 0 if

 =


X
=1

log



Therefore the MLE of  is

̂ =


X
=1

log





51 STA2601/1

In cases where more than one, say , unknown parameters are to be estimated, the partial derivative

of  (or log) with respect to each parameter is equated to zero to obtain  equations with 

unknowns. These equations cannot always be solved very easily if they are nonlinear; sometimes it

is necessary to employ an iterative method to obtain a numerical solution.

2.5 Hypothesis testing
One of the most commonly used techniques in the analysis of data is hypothesis testing. The basis

for it was laid in the thirties of the previous century by two statisticians: Jerzy Neyman, originally from

Poland, and Egon S Pearson of the UK, son of the famous statistician Karl Pearson.

The technique of hypothesis testing is discussed here generally, but using an example to illustrate the

concepts. The details of how to find the decision rule in specific types of problems will be discussed

in later study units. The process is described here in a number of steps. The order of these steps

represents more or less the ideal order. In practice one may sometimes have to change the order

due to practical necessity. Such changes in the order may, however, change the characteristics of

the test.

Step 1. The brainwave

A researcher develops a theory about a natural phenomenon, economic law, production process, et

cetera which he or she is in the process of investigating. The researcher decides that the theory is

of sufficient importance to try to verify or discard by means of an experiment.

Example 2.9

A farmer wants to find a better feed which will make his piglets grow faster. He knows from past

experience that his piglets seldom reach a mass of 40 kg or more after four months. A salesman

assures him that his piglets will on average weigh more that 40 kg after four months if they are fed

on Yumyum Balanced Pig Feed. He decides to try Yumyum on a few piglets for a trial period.
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Step 2. Choice of a model

At this stage it is desirable that a statistical model be formulated as carefully as possible for the

proposed experiment. Sometimes the model can be formulated only partially at this stage, since

one may want to gain information about the model from the data after experimentation. In such a

case one would formulate a tentative model with the idea that it may be altered later.

Example 2.9(a) (example 2.9 continued)

For the piglets we could formulate the following model: Let  denote the mass after four months of

a piglet selected at random and fed on Yumyum. Let  be the mean and 2 the variance of the

distribution of . We assume for the moment that

 ∼ (;2)

In some applications the researcher may know from past experience that data of the type which he

or she is going to collect, usually follow a certain distribution. Sometimes, however, the distribution

may have to be investigated after the data become available and the model adjusted accordingly.

Step 3. Specification of the hypothesis and significance level

At this stage the null and alternative hypotheses must be specified. These hypotheses consist of

specifications for one or more parameters. The null hypothesis usually specifies a single value for

each parameter being tested; the alternative is usually less specific.
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Example 2.9 (b) (example 2.9 continued)

In the piglet example the obvious null hypothesis is

0 :  = 40

and the alternative

1 :   40

This is a one-sided alternative: the farmer only wants to know whether the expected mass is more

than 40 kg; he will not be interested in Yumyum if the expected mass is less than 40 kg. Actually

one could say that the null hypothesis is 0 :  ≤ 40, but usually only the extreme value (closest to

1) is specified.

In many problems the alternative would be two-sided.

Suppose, for example, a dealer orders ball bearings with the specification that the mean diameter

must be  = 10 . Ball bearings which are too large or too small are unacceptable. Thus

0 :  = 10 is regarded as false if either   10 or   10 and the alternative is 1 :  6= 10.

This is an example of a two-sided alternative.

Note

The research worker must know before the experiment is conducted what the null and alternative

hypotheses are. If he or she does not know which specific hypotheses will be tested, he or she

must specify the hypotheses as generally as is necessary in order to provide for all possibilities.

The practice of generating hypotheses by first studying the data is not to be recommended. It may

promote the drawing of false conclusions. If one searches carefully enough, one could find false

hypotheses in any set of data. It may be necessary to collect further data to confirm hypotheses

generated from the original data. The statistician who does consultation work may have to question

his or her client carefully in order to establish whether the latter had good reason to expect the

hypotheses before seeing the data.
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As was said earlier, an experiment will be conducted in order to gain information which will enable

the investigator to choose between 0 and 1. In the final decision two types of error can be

committed:

A type I error is committed if we reject 0 when 0 is in fact true.

A type II error is committed if we do not reject 0 when 0 is false.

Note: We never say "we accept 0", we say "we do not reject 0" or "we fail to reject 0"

This is represented in the following table:

Decision based on the data

Do not reject H0 Reject H0

The true state 0 is true Good decision Type I error

of nature 1 is true Type II error Good decision

The decisions to "fail to reject" or "reject" 0 must be interpreted as follows: If 0 is rejected (and

1 is not rejected) it means either that 0 is true and a rare event has occurred, or that 1 is

true. Since a rare event occurs only rarely, however, we are inclined to lean towards the belief that

1 is true. If 0 is not rejected (and 1 is rejected) it does not mean that we have proved that

0 is true; we could have made a type II error. It means only that there is not sufficient evidence in

the data to reject 0.

In every hypothesis testing procedure, there are probabilities associated with the two types of error:

P(type I error) = 

P(type II error) = .

We consider the two cases: 0 true and 1 true.

(a) 0 is true.

Example 2.9 (c) (example 2.9 continued)

Assume for illustration purposes that we know that 2 = 4, so that  ∼ (; 4).

Now "0 is true" means that  = 40 (ie  ∼ (40; 4)) and we graphically represent the mass

distribution of the piglets by drawing a normal curve.
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 = 40

Figure 2.2: Curve of a (40; 4) distribution

With some manipulation and using table I (Stoker) we find that  ( ≥ 4329) = 005.

To graphically display a type I error, we shade the area where 0 is rejected. In this example, if

 = 005 then  ( ≥ 4329) =  (assuming  ∼ (40; 4)).

"

 

 

 = 40 4329

Figure 2.3:  (0 is rejected| 0 is true) = 

   

 

 = 40 4329

Figure 2.4:  (0 is not rejected| 0 is true) = 1− 
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There are two possibilities: 0 may not be rejected or rejected. The probabilities are

 (0 is not rejected| 0 is true) = 1− ;

 (0 is rejected| 0 is true) = 

Definition 2.6

 is called the significance level of the test, if  (0 is rejected| 0 is true) = .

The significance level is selected in advance, depending on the seriousness of a type I error.

If a type I error means that the farmer will use a somewhat poorer feed for his pigs, he may use

 = 005 or even  = 010. However, if a type I error means that a patient will die, a much smaller

 (like  = 0001) will have to be used. The most generally used choices of  are 005 and 001.

To a certain extent the choice of  is restricted by the availability of statistical tables, when we

perform hypothesis tests manually. However, when you perform a hypothesis test using a statistical

package, the -value will be used more often to draw a conclusion. (The definition and interpretation

of a -value is discussed at the end of this section.)

Although  is selected in advance, the eventual significance level may differ from . The assumptions

in the model, like normality and independence, are not always satisfied exactly. There is probably no

such thing as a normal population in real life. The model being used will only be an approximation to

the true situation. Certain types of deviations from the model may cause the true significance level

to be larger than the chosen ; other deviations may cause it to be smaller.

(b) H1 is true

There are again two possibilities: we may reject 0 and not reject 1 or do not reject 0 and

reject 1. The probabilities are

 (not rejecting 0 | 1 is true) = 

 (not rejecting 1 | 1 is true) = 1− 
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Example 2.9 (d) (example 2.9 continued)

If we continue with the example of the piglets and assume that 2 = 4 (once again simply for

illustration purposes) then  is still ∼ (; 4). Now "1 is true" means that   40. There is not

simply a single graph which captures this scenario but trillions of possible graphs! How can you draw

a graph where "  40"? What value will you choose?

If we want to try to represent this graphically, we have to assign specific values to  (where of course

  40).

For example, let us consider where  = 405;  = 4329 and  = 45362. This means we draw the

following three normal probability distributions:

(405; 4) (4329; 4) and (45362; 4)

(1)  = 405

 

 

:=40

=405 4329

(2)  = 4329
   

 

1-$

43.29

0.5

(2)  = 45362

   

 

0.85

1-$

43.29

Figure 2.5:  (not rejecting 1|1is true) = 1− 

Definition 2.7

The probability, 1− , is called the power of the test, where

 (not rejecting 0 | 1 is true) = 

The power of the test depends on the following factors:

(i) The significance level :

The larger  is, the smaller is  and thus the larger the power. In the choice of  we have a

trade-off between  and  If  is small the test is called conservative and the result is that the

power is small. Similarly, if  is large then the power is large.
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(ii) The correctness of the model:

Just as deviations from the model influence the significance level, they may cause the power to

decrease or increase.

(iii) The value of :

Suppose, as before, the null hypothesis and the alternative are 0 :  = 0 and 1 :   0 where

0 is a specified constant. The power of the test will depend on the deviation of the true value of

 from the hypothesised value 0 In general  → 0 and (1− )→ 1 as →∞ (for the alternative

  0). A graph of 1−  versus  will have the following general form:

Figure 2.6

On the other hand if 0 :  = 0 is tested against 1 :  6= 0 the power curve will appear as

follows:

Figure 2.7

If the curve is symmetrical about 0 one would obtain a graph like the graph for the one-sided test

by plotting | − 0| on the horizontal axis.
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(iv) The planning of the experiment including the choice of the sample size :

The larger the sample size, the larger the power. If all other factors remain constant and 1

is true, it will be true in general that  → 0 as  → ∞ and thus the power increases to 1 as

the sample size increases. Thus it would seem as if the ideal situation can be approached by

simply collecting a very large sample. If even the smallest little deviation from 0 is of practical

importance, this would be a good strategy. However, one must remember that, if 0 :  = 0 is not

true,  could still be equal to 0 +  where  is a very small number; in fact  could be so small as

to be of no practical importance. Yet if a very large sample is taken, the power could be close to 1

even if  = 0 +  A very large sample may often be analysed more informatively by constructing

confidence intervals rather than by testing hypotheses. The power curves look something like the

following for different sample sizes:

Figure 2.8

Such power curves may be used to select the sample size which would ensure that the test will

have a selected power for a given value of 

(v) Other factors:

The amount of variation in the population may, for example, also play a role in determining the

power of the test, depending on the parameter being tested. In general, if the parameter being

tested is a mean of a population, then  → 0 as 2 → 0 where 2 is the population variance, so

that the power→ 1 Such a parameter, like 2 above, which is of no importance in itself, but which

has a profound influence on the test, is sometimes called a "nuisance parameter".

Step 4. Planning of the experiment

We shall not say much about this aspect here except to stress the importance of designing a

well-planned experiment. The module STA2602 treats the subject more fully. For some types of

experiment tables and graphs are available to enable one to select a sample size – more about this

later.
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Example 2.9 (e) (example 2.9 continued)

Suppose we assume that a significance level of 0.05 has been selected and that a sample of

size  = 10 was decided upon. For the piglet example, this means the farmer must try to obtain

10 independent observations of four-month-old piglets which have been raised on Yumyum. It is

preferable that 10 piglets out of different litters be selected rather than ten of the same litter. Ten

piglets out of the same litter cannot be considered as a random sample of independent observations

and will be much more similar than 10 piglets from different litters. The same litter possesses certain

common factors. In the final analysis the farmer wants to say something about all his pigs, not just

about the one litter. The crucial question will always be which population does the sample represent?

Step 5. Choice of a test

At this stage (and remember the experiment has not even been started) the researcher must already

know how the data is going to be analysed once they have been obtained. If difficulties arise at this

stage, the plan could still be altered. Once the experiment is started, it would probably be too late to

change the plan. Planning the analysis of the data at this stage helps to ensure objectivity.

A decision rule is formulated, and very often this can be done in terms of an estimator of  If  is the

population mean, for example, one may decide that 0 will be rejected if , the sample mean, lies

in a certain region, called the critical region.

[Note that in figure 2.3, for example, the "critical region" was taken as { :   4329} for  = 005

Here the distribution of  was not yet taken into account. We do however know that if 1 2  

constitute a random sample from a 
¡
; 2

¢
distribution, then  ∼ 

¡
; 2

¢
 Only for a sample

size of  = 1 will 4329 be the critical value. If  = 4 then  ∼  (; 44) =  (; 1) and if 0 =  = 40

is true, then 
¡
  41645

¢
= 005 so that the critical value becomes  = 41645.]

In the case of a population mean, we say  is significantly different from 0, the hypothesised value

at the -level (or 100% level). In this case ( the population mean) the critical region is usually of

the form: ©
 :   

ª
if the alternative is 1 :   0;©

 :   
ª

if the alternative is 1 :   0 or©
 :

¯̄
 − 0

¯̄
 
ª

if the alternative is 1 :  6= 0

(We are going to devote a whole study unit to the testing of means, where the specific details of how

the critical region must be obtained, will be discussed in detail. This is simply an overview to refresh

your lnowledge of the statistical jargon of hypothesis testing.)
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The constant  is determined by the sample size, the significance level and the variance (the

population variance if known; otherwise the sample variance).

If  does not lie in the critical region, in other words if  lies in the complement of the critical region,

called the acceptance region, then 0 is not rejected and we say that  is not significantly different

from 0 at the -level. It does not make sense to say that  is (or is not) significantly different from

0 without specifying the level of significance. The words significant and significantly different imply

that a statistical test has been performed at a certain level.

Step 6. The experiment

We shall not elaborate on this step except to say that the statistician should, if possible, observe the

experimentation. In this way he or she may prevent unwanted factors from confusing the experiment

without his or her being aware of it, like operator fatigue which could have the effect that some

observations are made less carefully than others, or a breakdown of the machine with the result that

the machine setting is changed during the experiment. Even the statistician may not always be able

to prevent these occurrences,he or she may be able to take them into account when analysing the

data.

Step 7. Analysis of the data

Once the data have been received, the statistician will start analysing them. The first step is to

draw graphs and represent the data in various ways in order to decide whether the chosen model

is a reasonable approximation or not. With some types of experiment one may know from past

experience that the chosen model usually holds in similar situations, but sometimes one may have

to rely almost entirely on the data. A word of warning, however. The fact that the model may possibly

be changed after the experiment will certainly have an effect on the ultimate significance level, but

the size of this effect is unknown. However, this is not a good reason to be blind to obvious and

gross deviations from the model. If the model, and possibly the hypotheses, are changed drastically

after the data have been studied, one may have to confirm the conclusions by means of a further

experiment. Remember that no two samples from the same population are the same, and the danger

always exists that a phenomenon in the sample which is due to sampling variation, will be interpreted

as a phenomenon in the population.

Finally a choice between 0 and 1 is made. In a research environment this usually leads to further

theories which are investigated in turn.

This concludes the description of the steps in hypothesis testing.

The p-value

One of the criticisms against hypothesis testing is that it is too much of an all-or-nothing procedure:

the final decision is either that 0 is true or that 1 is true without specifying how close to the truth

0 is. The procedure makes no distinction between 1 :  = 0 +  and 1 :  = 0 +  where  is

very small and  is very large. Thus if the decision rule is to reject 0 if   45 we shall reject 0
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if  = 451 and if  = 10451 where the values  = 451 and  = 10451 are treated as completely

equivalent results with regard to the procedure of hypothesis testing. One way of overcoming this

criticism at least partially, is by quoting the so-called -value or exceedance probability.

Definition 2.8

The -value is the probability that a value of the statistic, which is equal to or more

than the observed value, will be obtained if 0 is true.

For example if  is the statistic and  the observed value and we have the case where the alternative

is 1 :   0 we will compute the -value as

-value = 
¡
 ≥  | 0 is true

¢
.

If we have the two-sided alternative where 1 :  6= 0 we will compute the -value as

-value = 
¡¯̄
 − 0

¯̄
 |− 0| | 0 is true

¢
• If this -value is very small,  is said to be highly significant (usually if ¿ ).

• If the -value is fairly small,  is said to be significant (usually if   ).

• If the -value is large,  is said to be not significant (usually if   ).

[NB We read the symbol "¿" as "is much smaller than" whereas we read "" only as "is smaller

than".]

2.6 Confidence intervals
It was said in the previous paragraph that a criticism against hypothesis testing is that it is too much of

an all-or-nothing procedure. If we decide that  6= 0 we still do not know by how much  differs from

0 Unfortunately it is not possible to say what the exact value of  is, but we may be able to construct

an interval such that we can say with a given certainty that  lies within the interval. This interval is

called a confidence interval. Hypothesis testing and the construction of a confidence interval are not

mutually exclusive or opposing procedures. They are based on the same statistical theory. In fact

one may test the hypothesis 0 :  = 0 by first constructing a confidence interval for  and rejecting

0 if 0 is outside the interval.
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A confidence interval may be two-sided, ie of the form (1; 2) where 1 and 2 are statistics, or

one-sided, ie of the form (−∞;  ) or ( ; ∞) according to the needs of the experimenter. Basically

the construction of a two-sided confidence interval implies that one finds the smallest and largest

values of  such that the sample is not a rare event. For example, if  is the mean of the distribution

and  the sample mean, we may represent 1 and 2 as follows:

Figure 2.9

If   1 then  is a rare event; similarly if   2

The method of construction is usually based on a function of  say (), which would be a statistic if

 were known. ()must be a function of  but not of any other unknown parameter. The distribution

of () must be known and independent of  so that a probability statement of the form

 ( ≤ () ≤ ) = 1− 

may be made, where  and  are found from tables of the distribution of (). For a one-sided interval

we select  = −∞ or  = +∞ as the case may be. In the above equation  is again a small number

between 0 and 1, such as  = 005 or  = 001

The number 1 −  is called the confidence level of the interval (compared to the term "significance

level" for  in hypothesis testing). The inequality  ≤ () ≤  is then manipulated algebraically to

obtain an inequality of the form 1 ≤  ≤ 2 so that we may say that

 (1 ≤  ≤ 2) = 1− 

Note that we now have the unknown parameter inside the interval (1; 2)  The end points of the

interval are statistics and therefore random variables. Technically, this means we cannot say that the

probability that  lies between 1 and 2 is (1− ). We therefore call it a confidence interval and

not a probability interval. An interpretation of the confidence interval is the following:
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If we draw repeated samples from the same population and compute the
confidence interval every time, the true value of  will lie inside the interval
100 (1− )% of the time and outside the interval 100% of the time.

When we deal with a specific sample,  lies either inside or outside the interval; it would seem strange

to write

 (16 ≤  ≤ 20) = 095

if we obtain 1 = 16 and 2 = 20 in a specific sample, because it would appear that  is regarded as

a random variable. Rather, we regard (16; 20) as an interval chosen at random from a population

of intervals, 95% of which contain  and 5% of which do not contain 

Example 2.10

Let 1   be a random sample from a 
¡
; 2

¢
distribution with 2 unknown. Let

 =
1



P
=1

 and 2 =
1

− 1
P
=1

¡
 −

¢2


From theorem 1.2, study unit 1, we know that  ∼ 
¡
; 2

¢
and therefore

 =
 − 


√

=
√

¡
 − 

¢


is a  (0; 1) variate which is independent of (− 1)22 which in turn is a 2−1 variate (see result

1.3). Employing theorem 1.4 we obtain the following Student’s t-variate:

() =

√

¡
 − 

¢
p

((− 1)22)  (− 1)

=
√

¡
 − 

¢

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which is a Student’s t-variate with  − 1 degrees of freedom. From tables of the t-distribution we

obtain  = 1
2
; −1 such that

1−  =  [− ≤ () ≤ ]

= 

"
− ≤

√

¡
 − 

¢


≤ 

#

= 

∙−√

≤  −  ≤ √



¸

= 

∙
− − √


≤ − ≤ − +

√


¸

= 

∙
 − √


≤  ≤  +

√


¸

therefore the interval
∙
 − √


;  +

√


¸
is a 100 (1− )% confidence interval for 

2.7 Simultaneous inference
In analysing the results of complex experiments, one may sometimes want to test a number of

hypotheses or construct a number of confidence intervals.

Social scientists, for example, who carry out surveys may sometimes want to test several hundred

hypotheses on the results of one survey. The problem is that the probability of a type I error increases

as the number of tests or confidence intervals increases. For example, if 100 significance tests are

performed, each at a 5% level of significance, then the probability of one or more type I errors could

be very close to 1.

Definition 2.9

If  hypotheses 01  0 are tested simultaneously, then

the overall significance level is defined as

 (at least one 0 is rejected|all 0 are true) = 1−  (no 0 is rejected|all 0 are true) 
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Definition 2.10

If  confidence intervals 1   are constructed for parameters 1   then the

overall significance level is defined as

 ( ∈  ;  = 1  )

ie the probability that all the intervals will contain the true values of the respective parameters.

The problem is: how to perform the  significance tests so that the overall significance level is  or

how to construct the  confidence intervals so that the overall confidence level is 1− This problem

has been studied in great detail in the literature, and the best solution depends on the specific type

of problem. One very general solution that can be applied to any simultaneous inference problem is

based on the Bonferroni inequality.

Theorem 2.3

Let 1 2   be any  events in a sample space  Then

 (1 ∪2 ∪  ∪) ≤  (1) +  (2) + +  () 

To apply this theorem to a simultaneous testing problem, assume 01  0 are true and let

 =  ( reject 0 |0 is true) = 

say, the significance level of the -th test. Then the overall significance level

=  (at least one 0 rejected|all 0 true)

=  (1 ∪2 ∪  ∪|all 0 true)

≤ 1 + 2 + + 

Thus if we choose  =



  = 1   then the overall significance level is




+




+ +




= 

Thus if each test is performed at level



then the overall significance level is at most equal to 

Similarly, if each of  confidence intervals has confidence level 1 − 


then the overall confidence

level is at least 1− 

One point of criticism against using the Bonferroni inequality for this purpose is that the resulting

procedure may be very conservative if  is large: the individual tests may have low power or the

individual confidence intervals may be very wide because



is so very small.
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One solution may be that the investigator (the biologist, engineer, social scientist, et cetera) should

formulate the research problem better before starting, thus eliminating any fancy hypotheses that

may have very little meaning. A practice that should be guarded against very carefully, and that is all

too prevalent in certain disciplines, unfortunately, is to test many hypotheses on the same data and

then to report only the significant ones as if they were the only ones tested. While this is downright

dishonest, many scientists without a statistical training fail to see it that way. If you have trouble

convincing a client, ask him or her whether he or she would be willing to play the following game:

We toss a coin: "Heads" I win, "Tails" we toss again. "Heads" I win, "Tails" we toss again. "Heads" I

win, "Tails" we toss again ...

2.8 Bayesian inference
In the classical inference theory, as described in sections 2.4 and 2.5, we test a hypothesis about

a parameter  or construct a confidence interval for  where  is regarded as a fixed (but unknown)

constant for a specified population. An alternative view is that  is a random variable (or may be

treated as if it were a random variable), and this leads to Bayesian inference. 1 2   is a

random sample from a distribution with pdf  (| ) that depends on the parameter ;  is regarded

as a random variable with prior distribution with pdf  ()  Using Bayes’ theorem, the posterior pdf

of  given 1 2   is found, say  (|1  ) and then the Bayes estimator of  is the

expected value of the posterior distribution. Significance tests and confidence limits are likewise

based on the posterior distribution, but the subject is not pursued further in this module.
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Exercise 2.1

1. Let 1   be a random sample from a distribution with expected value  and variance 

Prove that
1

− 1
P
=1

¡
 −

¢2
is an unbiased estimator for 

(Hint: Remember that 
¡
2


¢
=  + 2 and 

³

2
´
=




+ 2)

2. Let 1   be a random sample from a  (; ) distribution with  known. Prove that the two

statistics

1 =
1



P
1

( − )2 and 2 =
1

− 1
P
1

¡
 −

¢2
are both unbiased estimators for  and that 1 has a smaller variance than 2

(Hint: from study unit 1 it is known that multiples of 1 and 2 are 2 variates.)

3. Let 1 2      be independent random variables from a distribution such that

() = 1 + 2 2  = 1     

where 1 and 2 are known parameters while 1 2      are known constants. Find the least

squares estimators for 1 and 2.

4. Let 1 2      be independent random variables such that

() = 1  = 1     (− 1)

() = 1 + 2.

Find the least squares estimators for 1 and 2.

5. Let 1      be a random sample from a (; ) distribution with  known.

Show that the MLE of  is
1


Σ ( − )2 
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6. Let 1      be a random sample from a distribution with pdf

(; ) = (1− )−1;   1

Find the maximum likelihood estimator of .

7. Let 1      be a random sample from an exponential distribution with pdf

(; ) =
1


−


   0

Find the M.L.E. for .

8. Let 1   be a random sample from a 
¡
; 2

¢
distribution with σ2 known. Use the

distribution of () =
√

¡
 − 

¢
 to show that

¡
 − 196√;  + 196

√

¢

is a 95%

confidence interval for  (Hint: () does not have a t-distribution.)
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2.9 Learning outcomes

Use the following learning outcomes as a checklist after you have completed this study unit to

evaluate the knowledge you have acquired.

After studying study unit 2, you should know (and understand!) the following definitions:

¥ a random sample

¥ a statistic

¥ an unbiased estimator

¥ the most efficient estimator

¥ the method of least squares estimation

¥ the likelihood function of a random sample

¥ the method of maximum likelihood estimation

¥ a type I error for hypothesis testing

¥ a type II error for hypothesis testing

¥ the significance level of a hypothesis test

¥ the power of a test

¥ the exceedance probability for hypothesis testing

¥ a confidence interval

¥ the overall significance level for  simultaneous hypothesis tests
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STUDY UNIT 3

Introduction to statistical software: JMP

3.1 Introduction
Before we continue with any new statistical concepts in our study guide it would be a good idea nice

to make the contents of the previous two study units more alive and applied – which calls for the use

of a statistical package.

In the preface of your textbook, you will read that JMP is "statistical discovery software" created by

the SAS Institute whose principal commercial product is the SAS System. Whereas the SAS System

is used by large institutions such as STATSA or large banks to perform large-scale statistical data

processing, JMP is used to perform smaller, personal data analyses. You will also read that the

textbook is a mix of software manual and statistics text. This study unit will reflect that same mix

– slanting a bit more towards the statistics text whereas the workbook will slant a bit more towards

the software manual. You should also always keep in mind that the statistical software includes

many advanced methods that will only be dealt with at honours level. Even the textbook deals with

and include methods that are not in the syllabus of STA2601. Hence, it is very important for this

specific study unit that you only go to your workbook when I instruct you to do so and that

you do not study sections at random.

If you are using your computer for the first time I advise you

to do activity 3.1 before you continue with the next section.

3.2 Familiarise yourself with JMP
I do hope that your brain tricked you into reading the three letters JMP as jump? That is correct! It is

exactly why the textbook is called JMP Start Statistics! In this section we are even more bold to jump

right into the software! It means that the time has come to get practical and to open your prescribed

textbook: Sall, J, Creighton, L and Lehman, A. (2007 4 edition) JMP Start Statistics. The only

way to familiarise yourself with JMP and to get to know the program is to work with the program! Of

course the first step will be to install the software on your computer. You will notice as we proceed

through the study guide that whenever you have to perform an action, the workbook will guide you

step by step. Hence it seems logical that the workbook on study unit 3 will
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be rather lengthy! Especially section 3.2 of the workbook will guide you in detail through the first

sessions on the computer and I do hope that you enjoy your introduction to statistical software!

Data analysis starts with a data set. In this module our focus is not the methods of obtaining data

but rather on the methods of analysing data. Don’t get confused by the action of "obtaining data" in

the context of a computer program – it will mostly mean the capturing of values such that you (and

the computer) will have them displayed on the screen. We will guide you in the workbook to create

new data tables and to open existing data tables.

Please note that I deviate from the chronological order of the textbook in a systematic and logical

way to synchronise with the syllabus for STA2601. This different manner (which now differs from the

authors’ order) will seem haphazard if you do not follow my guidance. Thus I urge you to do all the

activities in the workbook and also to try to stick to the order in which they are given.

Please work through section 3.2 of the workbook and do

activities 3.2-3.4 before you continue with the next section.

3.3 Generating random data
The heading of this section is in itself an important concept to grasp. To "generate data" will imply

that the computer goes through a process whereby random sampling from a specific population is

simulated. (This seems like the marriage of the different nuances of the concept of "obtaining data"

as explained in the context of a computer program as the capturing of values – both happening at

the same time!)

The end result is that you will have a set of observations (data) that was drawn from a familiar

distribution. "Familiar" means that we know the parameters which underlie the theoretical model.

This is hardly the scenario when you are a real-life botanist or market researcher or whatever you do

when you are busy with statistics in the outside world! However, analysing simulated data is useful

because you more or less know what to expect of the data and thus it enhances your understanding

of statistical theory. It also helps you to learn in an almost relaxed manner how to work with the

powerful analysing and graphing techniques of JMP.

As we have stressed in the previous section, your first step with any statistical software application

will be to have a data file in front of you – whether you play around with simulated data or have the

task of analysing proper real-world data. In this specific section we will only work with generated

data, which are synonymous to simulated data.
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READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Start reading on page 122 "Probability distributions" and read up to
..."Generating random data".

Now it is time to go back to your workbook!

Work through section 3.3 and do activities 3.5–3.7.

It is important that you understand how to use "Randdist.Jmp" to create a "Randdist Data Table" on

your computer screen and to make use of the "Random Number Functions" to generate a random

sample of any specified size from a normal distribution with specified parameters.

From this point onwards I assume that you have worked through activities 3.5–3.7 of the workbook

and that the table of values shown below, makes sense to you. (I have used the "Random Number

Functions" to generate a random sample of size  = 200 from a normal distribution with  = 100 and

 = 15 and copied table 3.1 of the workbook.)

Table 3.1:
Random sample of size  = 200

from a (100; 225) distribution
95.0261248 108.673703 105.207311 110.408931 98.9287494
86.1807082 96.2371431 106.816181 107.087295 82.90295529

87.342583 117.648554 101.143465 112.640705 105.2734719
92.4497588 72.3515123 104.007397 103.663943 103.7060315
126.273761 114.532135 115.480004 98.1667769 117.8774362
93.6972172 111.960113 104.757367 94.9082184 95.22628788

62.424483 103.720267 90.1301899 85.0839447 99.14806757
95.898603 141.104107 99.9642251 139.267817 119.396389

66.2798598 106.326517 99.9886544 99.3918981 102.4184193
129.34403 112.684672 110.858622 84.3003421 94.67080258

78.2592288 89.9198078 87.2774164 101.775315 108.8261539
107.376692 119.114798 101.275262 93.4032787 108.1526353
103.810744 105.537401 99.1559323 91.1256385 96.85622495
82.4671237 66.7534075 83.6001245 123.476955 89.6895426
104.694594 111.037693 87.4646249 90.6632368 80.52620825
92.5576878 102.564492 101.181145 87.1398378 83.05907006
122.128304 133.365777 84.5410086 72.9854585 92.24317298
103.351207 128.352053 80.2313952 74.2713204 99.72134987
100.057557 90.1970603 104.810991 74.1823075 130.6309563
116.711154 109.026082 90.1970885 89.200611 112.2280531
107.787393 106.157907 88.6430137 125.523816 89.41168103
80.1134694 110.778756 83.9120401 97.8748482 89.99950408
81.4338672 93.5407744 136.327297 77.8211061 114.2349559
92.1540742 84.0132972 104.421598 65.8111435 117.2293545
76.2920105 88.5202731 87.2445124 75.8592492 69.99247073
123.418881 108.651368 123.113381 90.6374495 78.14600043
114.467747 101.456106 95.646771 76.3839556 95.44716284
138.083185 94.5051387 110.344685 82.1228564 100.3929758
71.3594482 119.834766 77.9323831 99.9087132 92.66709382

81.678026 106.062303 73.1089372 106.766464 139.1394087
122.76004 102.337755 98.3795826 113.471127 82.39709488

90.8229834 101.591442 99.4115982 100.816091 108.5461405
104.705267 109.518999 105.527789 97.0364265 99.11854042
105.897602 77.0303965 95.9793677 82.4503798 79.25422393
85.5100171 125.286512 105.539517 106.99005 126.8929464
103.604254 83.9999384 93.2895136 106.061077 97.64914891
92.8974992 115.522558 91.3454019 95.3115182 93.40381505
98.1679818 113.289158 112.63634 121.9373 113.7370493
117.295325 99.6360811 99.2160423 114.7977 107.8258572
117.922741 123.820001 106.642021 99.7218702 87.18216867
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We started this study unit with the wish to make the contents of the previous two study units more

alive and applied and then detoured to introduce you to the very basics of JMP. So, you might well

ask now, what do we make of the generated data and what they have to do with the previous two

study units?

For starters, they cement your understanding of section 1.3 "Standard distributions" and more

specifically it enhances your understanding of the normal distribution. (This is not trivial since the

normal distribution is the workhorse of statistics!)

In section 1.3 you learned that if the theoretical model of a variable  is a normal distribution with

mean  and variance 2 , we write it as  ∼ (;2) Thus, if we know that  = 100 and 2 = 225 we

write it as  ∼ (100; 225) Since the two parameters are known, it means that we have a workable

probability distribution for which we may draw the following bell-shaped normal probability graph:

n(100; 225)

100 115 1308570 14555

Note that
√
225 = 15 =  (the SD) and that there are vertical lines at respectively one, two and three

standard deviations above and below the mean.

From what we have learned in study unit 1 and employing the table of normal probabilities, we are

99% sure that the theoretical -values will vary between 55 and 145.

Suppose we plan to draw a random sample from this specific normal population, what could

we expect?

• We would expect that the smallest observed value will be  55 and that the largest observed value

will be  145

• We would expect 50% of the sample values to be above the mean  = 100 and 50% of the sample

values to be below the mean  = 100 (This follows from the symmetrical property of the normal

distribution.)

• Furthermore, we would not expect the "tail values" to dominate the sample as we would expect

most (±68%) of the sample values to lie within one standard deviation below and above the mean,

ie between 85 and 115.
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Let us return to the generated sample of size  = 200 given in table 3.1: Keep in mind that what

we expect is based on a theoretical model and always remember that anything is possible in

sampling and that randomness makes the world interesting. This means that we can never be

certain how a sample is going to turn out! This is of course also true for a generated sample. The

authors of the textbook talk about the two sides of statistics that are "forever interacting, catalyzed

by Random, the agent of uncertainty".

Did what-we-may-expect happen with the generated sample?

• The smallest observed value was 6242448 and the largest observed value was 1411041 (within

our expectancy of the theoretical -values varying between 55 and 145)

• There were 97 = 485% of the sample values above the mean and 103 = 515% of the sample

values below the mean (again within our expectancy of the 5050 split)

• Did the "tail values" dominate the sample? We observe that there were 37 values below 85 and

31 values above 115, hence there were 200− 37− 31 = 132 values between 85 and 115, in other

words, 132
200

= 66% (again within our expectancy that ±68% of the sample values will lie within one

standard deviation below and above the mean).

Big deal! The sample behaved as we would expect of a sample from a normal population because

it came from a normal population! So what did you learn from this? Somehow we would like to

assess if a sample really "passes a test" as coming from a normal population. In real life this whole

process will be in reversed order! We will not know from what kind of distribution our sample comes.

Remember that statistics, as seen as a discovery tool, would like to find patterns in the data and to

fit models. What we did above was merely an intuitive test. In the next study unit you will formally

learn about "Testing for normality".

What does this sample have to do with study unit 2?

Firstly, it illustrates in a practical way the concepts random sample and statistic which we defined in

section 2.2. (In activities 3.8 and 3.9 of the workbook you will learn how to compute various statistics

for this sample.)

According to the definition of a statistic, we may say that the following statistics have been computed

for the generated sample of table 3.1 above:
200P
=1

 = 19 9807108;
200P
=1

2
 = 2045 28817;  = 9990; () = 246956;  = 998152

1 = 8948 and 3 = 10898

Secondly, we could use this sample to illustrate concepts of estimation:

We could say that the sample mean,  = 9990 and the sample median,  = 998152 are both

unbiased point estimates (section 2.3 ) of the population mean . With the knowledge of section 2.4

we could even go a step further and say that  is a maximum likelihood estimator for 
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We could also say that  is a more efficient estimator than the median. This is the kind of theoretical

information you will hardly ever see as output from a computer!

Thirdly, we could use this sample to illustrate sections 2.5 and 2.6 regarding hypothesis testing and

confidence intervals.

From activities 3.8 and 3.9 we may state that a 95% confidence interval for the population mean  is

given by (9771; 10209)

This confidence interval was computed in the blink of an eye by the computer. Are you able to do it

manually? How do you interpret the interval? What about the hypothesis test? Questions like these

will be discussed in detail when we deal with "Tests for means" in study unit 7.

To summarise:

In this study unit you were introduced to JMP which will not only be used to perform smaller,

personal data analyses but which must be seen as "statistical discovery software". This powerful

tool enhances understanding of the terminology of statistics and statistical thinking. One such an

application was to create simulated data or generated data which implies that the computer goes

through a process whereby random sampling from a specific population is simulated. The end result

is that you will have a set of observations (data) that was drawn from a familiar distribution of whom

you know the parameters which underlie the theoretical model. In this study unit we have only

illustrated generated data for the normal distribution. However, if you are enrolled for the module

STA2603: Distribution Theory II, you will use JMP again to generate random samples from other

important theoretical distributions.
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3.4 Learning outcomes

After studying study unit 3, you should be able to

¥ create a new data table in JMP

¥ open an existing data table in JMP

¥ generate data (ie simulate a random sample) from a specified

(;2) distribution using JMP

¥ draw a histogram for a given sample using JMP

¥ draw an Outlier and Quantile Box Plot for a given sample using JMP

¥ compute basic sample statistics for a given sample using JMP
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STUDY UNIT 4

Testing for normality and goodness-of-fit
tests in general

4.1 Introduction
The normal distribution is probably the distribution which is used most often as model for statistical

experiments. To some extent the use of the normal distribution can be justified because of the

central limit theorem. If an observation  can be regarded as the sum of a large number of random

components, for example

 = + 1 + 2 + + 

where  =  ()  then  will, under fairly general conditions, be approximately normally distributed.

If  is the size of a product manufactured in a factory, the deviation of  from its expected value may

be the result of such factors as variation in the electrical current, machine setting, variations in the

raw materials and the fact that the operator does not repeat his or her actions identically each time.

The analysis of the observations is therefore often based on the assumption that they come from a

normal distribution. Sometimes this assumption is not very crucial, especially when the sample is

large and the parameters which are being investigated are expected values. As a result of the central

limit theorem it may be shown that Student’s t-distribution is, for large samples, a good approximation

to the distribution of

 =
√

¡
 − 

¢


even if 1   are not normally distributed. However, if the parameters under investigation

are variances or correlation coefficients, the assumption of normality becomes more crucial.

There is no "central limit theorem" which states, for example, that (− 1)22 (where 2 =

Σ
¡
 −

¢2
 (− 1)) is asymptotically distributed as a 2−1 variate.

How do we know whether a sample comes from a normal distribution? How can we test whether a

sample comes from a normal distribution?
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4.2 Graphical techniques
Suppose we have a random sample 1 2   from a distribution. How will we investigate the

possibility that this is a sample from a normal distribution?

A. Drawing a histogram

If the sample is large enough, we could construct a histogram in order to see whether it resembles

the typical bell-shaped pdf of the normal distribution. If we draw a histogram with JMP, there is the

option to superimpose the normal density curve corresponding with  =  and  =  over the

histogram. If this superimposed pdf fits snugly over the histogram, and the intervals of the histogram

are not too wide, we may subjectively conclude "a good fit". The problem is, when will you decide

the "fit is not good"? Secondly, a histogram based on a small sample will not be very informative.

B. Using normal probability paper

We know from section 1.3 that the (cumulative) standardised normal distribution function is given by

Φ () =
1√
2

R
−∞

−
1
2
2 (see definition 1.17).

Let for example  ∼  (10; 4)  ie  =
 − 10
2

∼  (0; 1) 

∴  (  ) = 

µ
 − 10
2


− 10
2

¶
= 

µ
 

− 10
2

¶
= Φ

µ
− 10
2

¶


In pre-computer days, special graph paper, called normal probability paper, was constructed such

that, if Φ () was plotted against  the result was a straight line. (See figure 4.1.) Note that 100Φ ()

is marked on the vertical axis rather than Φ () 
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Figure 4.1
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The idea behind the graphical technique is to compare computed percentiles of the observed sample

with theoretical percentiles of a normal distribution. In other words, you will have to draw the set of

"paired" points (observed; expected) on the graph and hope that they fall more or less on the straight

line. The interpretation remains subjective (whether by hand or by computer). Keep in mind that

because points constitute a random sample, they will not lie exactly on a straight line and we will

only conclude non-normality if there appears to be a systematic deviation from the line. Doing this

by hand is rather outdated and the special probability paper is difficult to obtain because computers

have taken over all the tedious tasks!

Although we will not draw such graphs by hand, you need to understand the principle behind the

technique.

Theoretical percentiles of normal distribution

For a normal distribution, the mean  is also the median or the 50th percentile. Note that in figure

4.1 the mean of  is zero and hence the value  = 0 corresponds to 100Φ () = 50

For any normal distribution, the value  +  will represent the 84th percentile. For the  (0; 1)

distribution +  = 0 + 1 and hence the value  = 1 corresponds to 100Φ () = 84 in figure 4.1.

Why is this the case? (Please see activity 4.4 of the workbook.)

Similarly the value −  will represent the 16th percentile. Using table I of Stoker, we could compile

the following table:

Table 4.1

 100Φ ()

−3 0135

−25 0621

−2 228

−15 668

−1 1587

−05 3085

0 5000

05 6915

10 8413

15 9332

2 9772

25 99379

3 99865
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If we plot these points on ordinary graph paper we will get the curved standardised normal

distribution function looking like the one in figure 1.7 of section 1.3, but if we plot them on the paper

of figure 4.1 they will all fall on the straight line.

The special probability paper makes it easier to detect deviations from the cumulative distribution

function because our eyes are trained to detect deviations from a straight line.

C. Normal quantile plots

The discussion in Sall, Creighton and Lehman is a little confusing at first glance because their

histograms and accompanying normal quantile plots look "tilted by 90◦". Let us first understand the

principle in terms of an ordinary  -graph before you work through this section in the textbook. The

horizontal axis will represent the observed values and the vertical axis will represent the expected

value under the normal distribution associated with a specific probability  One of the problems will

be to decide on the value of this probability 

Let 1   be a random sample from a 
¡
; 2

¢
distribution (with  and 2 unknown). Arrange

the observations in order of magnitude, and call the result ∗
1   

∗
, so that ∗

1  ∗
2   

∗
 Then ∗

1   
∗
 are the order statistics of a sample of size  from a normal distribution. On

the probability paper ∗
 will be plotted on the horizontal axis. What is the vertical coordinate which

corresponds to ∗
 ?

You will see that Sall, Creighton and Lehman state that the normal quantile values are Φ−1
µ



+ 1

¶
where  is the rank of the observation being scored.

How will you do this manually?
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Example 4.1

Consider the following sample (1 2  19) of 19 observations:

275 680 451 745 649 499 872 628 612 340 730

700 766 534 488 420 947 581 830

If we rank the values from small to large (to obtain ∗
 ) and compute



+ 1
for each ranked value,

we get:

Table 4.2

 1 2 3 4 5 6 7 8 9 10

∗
 275 340 420 451 488 499 534 581 612 628

 (+ 1) 005 010 015 020 025 030 035 040 045 050

 11 12 13 14 15 16 17 18 19

∗
 649 680 700 730 745 766 830 872 947

 (+ 1) 055 060 065 070 075 080 085 090 095

Please note that in pre-computer days you would plot
µ
∗
 ; 100

µ


(+ 1)

¶¶
on the special

probability paper and if the coordinates fell more or less on the straight line, without any systematic

deviation, you could conclude that the sample comes from a normal distribution.

But, the computer does not use the special probability paper because it CONVERTS
µ



(+ 1)

¶
to

an expected normal score. What does this mean?

The formula


(+ 1)
is called Van der Waerden’s formula. Van der Waerden argued that we may

associate a probability of 0.05 with the smallest observation in a sample; we may associate a

cumulative probability of 0.10 with the second smallest observation, et cetera, up to a cumulative

probability of 0.95 with the largest observation. [This is when  = 19 For a sample of size  = 99 we

will assume a probability of 0.01 with the smallest observation and a cumulative probability of 0.99

with the largest observation.] Other statisticians have proposed different formulae to compute the

corresponding cumulative probability associated with the rank 

For example Tukey’s formula is
(3 − 1)
(3+ 1)

and

Blom’s formula is
(8 − 3)
(8+ 2)



We will only consider Van der Waerden’s method seeing that this is the one the authors of the

textbook also prefer.

So far so good! Now, how will you compute Φ−1
µ



+ 1

¶
?
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For example, Φ−1 (005) translated into ordinary English means "find a -value such that  ( ≤ ) =

005". This means that we have to use the inverse normal table. From first-year applications of the

normal distribution we know that we have to manipulate table II if   050 Are you able to show that

Φ−1 (005) = −1645: (See activity 4.5 of the workbook.)

This means that  ( ≤ −1645) = 005

In a similar fashion, Φ−1 (010) = −1282
Φ−1 (015) = −1036

et cetera

...

Φ−1 (095) = 1645

Keep in mind that these Φ−1
µ



+ 1

¶
values are the standardised -values and we are interested in

the values corresponding to the ∗
 -scale.

Thus, the final step is to transform the variable  to ∗ and for this we need  and  We do not have

 and 2 for the population but we use the estimates from the sample.

̂ =  = 61826

̂ =  = 17973

Hence, the expected ∗
 -value for a 

³
61826; (17973)2

´
distribution associated with a probability

of 0.05 is (−1645) (17973) + 61826 = 323 Similarly, the expected ∗
 -value for Φ−1 (010) is 388

Do you agree that it is very laborious to do this for all 19 observations by hand? This is why we rely

on JMP to draw the normal quantile plot.

We can summarize all the calculations in the following table:
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Table 4.3

 ∗




(+ 1)
Φ−1

µ


+ 1

¶
Expected ∗

 -score

1 275 005 −1645 323

2 340 010 −1282 388

3 420 015 −1036 432

4 451 020 −0842 467

5 488 025 −0674 497

6 499 030 −0524 524

7 534 035 −0385 549

8 581 040 −0253 573

9 612 045 −0126 596

10 628 050 0000 618

11 649 055 0126 641

12 680 060 0253 664

13 700 065 0385 687

14 730 070 0524 712

15 745 075 0674 739

16 766 080 0842 770

17 830 085 1036 804

18 872 090 1282 849

19 947 095 1645 914

To draw a normal quantile plot similar to the one produced by JMP, you will have to draw a scatter

plot of the data pairs (∗
 ; expected ∗

 -score) on ordinary graph paper.
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READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Start reading on page 127 "Histograms" and read up to
..........."Outlier and quantile box plots".

Then read page 152 "Examining for normality- normal quantile plots".

It will not be expected of you to draw a normal quantile plot manually,

but you must be able to do it with JMP. (See activity 4.6.)

Please note that the data for example 4.1 were in fact generated from a  (6; 4) distribution for

illustrative purposes. In order to show what a sample from a non-normal distribution may look like

when plotted on probability paper and converted to a normal quantile plot, consider the following 19

observations:

Example 4.2

The following are the order statistics of a random sample from a non-normal distribution:

606 732 864 906 948 966

1008 1050 1086 1104 1122 1152

1170 1194 1206 1224 1272 1302

1350

In order to perform a manual normal quantile plot we have to go through the same laborious process

as in example 4.1.

For this sample  = 1066421 and  = 194369
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Table 4.4


(rank)

Observed
value



20
Φ−1

µ


+ 1

¶
Expected normal quantile

1 606 005 −1645 747

2 732 010 −1282 817

3 864 015 −1036 865

4 906 020 −0842 903

5 948 025 −0674 935

6 966 030 −0524 964

7 1008 035 −0385 992

8 1050 040 −0253 1017

9 1086 045 −0126 1042

10 1104 050 0000 1066

11 1122 055 0126 1091

12 1152 060 0253 1116

13 1170 065 0385 1141

14 1194 070 0524 1168

15 1206 075 0674 1197

16 1224 080 0842 1230

17 1272 085 1036 1268

18 1302 090 1282 1316

19 1350 095 1645 1386

If we plot the observed values versus the expected normal values on ordinary graph paper we get

figure 4.3.

Figure 4.3

If we plot the observed values versus 100
µ



+ 1

¶
on the special probability paper we get figure 4.4.
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Figure 4.4

We get exactly the same picture for both methods and we see that there is a systematic deviation

from a straight line. The first few points on the left and the last few points on the right are above the

line, while the points in the middle are below the line. We conclude that the sample is probably not

from a normal distribution.

This graphical method is rather subjective, but is often sufficient to enable us to make a decision.

Usually we only want to know whether the normal distribution is a fair approximation to the true (but

unknown) distribution from which the sample came.

If a subjective graphic investigation of the data is not sufficient, one may decide to perform a test for

normality. A number of tests for normality exist, for example one based on the correlation coefficient

of the points on the probability plot – if the points fall close to a straight line, one would expect the

correlation coefficient to be close to 1. Special tables are needed for this test, and we shall not

consider it further.

We will consider two other possible tests for normality, namely the goodness-of-fit test and the

method-of-moments test.

4.3 Goodness-of-fit test for normality
We started our discussion on graphical techniques with the possibility of drawing a histogram which

we had to judge subjectively to decide whether it deviates from the form of a normal distribution. In a

sense we are now going to continue with a histogram but we are going to try and "measure" how far

it deviates from a histogram of a normal distribution and we do it by way of a proper hypothesis test.
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In general a test for goodness of fit checks the agreement (consistency) between a set of observed

data and a proposed model. In other words, it is a test that can be used to test a distribution type.

(In this section we specify the type as normal but any other known statistical distribution can be

specified.)

The null hypothesis must always specify the distribution that is being tested, and the distribution

must be fully specified (no unknown parameters) in order to compute the theoretical or expected

values for the given intervals. Suppose there are  intervals into which the data are classified. For

the time being, please accept the following result which is an application of theorem 4.1 that follows

in the next section of this study unit. (In section 4.4 you will also see why it makes sense to denote

the test statistic as a squared value.)

The appropriate test statistic is the chi-square statistic

 2 =
P
=1

(observed frequency − expected frequency)2

expected frequency

which is approximately distributed as 2−1 This is only true if the theoretical distribution is completely

specified (for example 0 :  has a  (25; 46) distribution).

If the distribution is not completely specified (for example 0 :  has a 
¡
; 2

¢
distribution) the test

statistic will be approximately a 2−1− variable where  = number of unknown parameters that are

estimated).

Example 4.3

Suppose we have the following random sample of 100 observations and we wish to test the null

hypothesis that the sample comes from a  (50; 100) distribution. Use ten class intervals of equal

expected frequencies to perform the test.

(Please note that the sample values have been ordered from small to large to ease the classification

into intervals.)

320 325 333 334 338 340 344 346 350 354

360 364 368 370 374 375 377 381 386 387

391 394 397 402 403 405 408 410 411 415

416 423 428 435 437 441 444 447 449 454

457 463 468 474 475 475 477 478 481 483

484 488 493 497 499 501 503 506 514 517

519 524 526 537 541 548 552 553 564 568

573 576 582 588 590 591 593 598 602 606

610 613 619 624 626 627 629 632 635 638

641 643 650 654 657 665 668 672 677 680
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Solution

If we have to use 10 class intervals of equal expected frequencies, it means the theoretical model

(which is the normal distribution) will have five classes below the mean and five classes above the

mean. (This is because the normal distribution is symmetrical.) The most difficult part of this problem

is to find the limits of the intervals in order to classify the observed values.

Since we know that the probability of each interval must be
1

10
 we will use table II of Stoker which

gives a -value for a known area. Thus, the first step will be to find the limits in terms of the -scale

and then to transform back to the -scale where

 =
 − 


=

 − 50√
100

.

(We can even take a "shortcut" for our use of table II and use every second line of table 4.3 where

Φ−1
µ



+ 1

¶
is actually the -value associated with a given probability!)

Hence we know that  (  −1282) = 010

 ( ≤ −0842) = 020

 ( ≤ −0524) = 030
... et cetera

...
 ( ≤ 0842) = 080

 ( ≤ 1282) = 090

From this it follows that the 10 intervals are

-scale -scale
 ≤ −1282  ≤ 3718

−1282 ≤  ≤ −0842 3718 ≤  ≤ 4158

−0842 ≤  ≤ −0524 4158 ≤  ≤ 4476

−0524 ≤  ≤ −0253 4476 ≤  ≤ 4747

−0253 ≤  ≤ 0 4747 ≤  ≤ 5000

0 ≤  ≤ 0253 5000 ≤  ≤ 5253

0253 ≤  ≤ 0524 5253 ≤  ≤ 5524

0524 ≤  ≤ 0842 5524 ≤  ≤ 5842

0842 ≤  ≤ 1282 5842 ≤  ≤ 6282

 ≥ 1282  ≥ 6282

This conversion can be represented in the following figure:
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Figure 4.5

Using the 10 intervals, we may now classify the data to obtain the following table:

(I have added a second column called "Tally marks" which is what one would normally have to do if

your data are not arranged from small to large and you have to classify them by hand. It is a simple

way of counting where represents five observations.)

Table 4.5

Interval Tally marks
Observed

frequency, 

Expected frequency,
̂ = ̂

( − ̂)

  3718   
14 10 +4

3718 ≤   4158  16 10 +6

4158 ≤   4476  8 10 −2
4476 ≤   4747  6 10 −4
4747 ≤   5000  11 10 1

5000 ≤   5253   
7 10 −3

5253 ≤   5524 5 10 −5
5524 ≤   5842  6 10 −4
5842 ≤   6282  13 10 +3

 ≥ 6282   
14 10 +4

Totals 100 100
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We have to test the following hypotheses:

0 : The sample comes from a  (50; 100) distribution.

1 : The sample does not come from a  (50; 100) distribution.

We compute the test statistic as

 2 =
10P
=1

( − ̂)
2 ̂

=
16

10
+
36

10
+ +

16

10

= 148

We will reject the null hypothesis at the 5% level of significance if  2 ≥ 2005; 10−1 = 2005;9 = 16919

Since 148  16919 we cannot reject the null hypothesis and conclude that the sample could

have come from a  (50; 100) distribution. Suppose, however, we had chosen  = 010 Now

2010;9 = 146837 Since  2  146837 we reject 0 at the 10% level of significance and conclude that

the underlying distribution is not normal.

It is informative in this case to look at the discrepancies  − ̂ We see that these are mostly

positive in the tails and negative in the middle. This suggests that the distribution is rather leptokurtic

compared to the normal distribution. (This will be discussed in detail in section 4.5.)

In a more realistic or real-life situation, we will most often not know what the parameters of the

distribution are, and the instruction for the hypothesis test will change to: "Use ten class intervals of

equal expected frequencies and perform a hypothesis test to test for normality".

How will this change the solution to example 4.3?

Example 4.4

Refer to the data of example 4.3. Use ten class intervals of equal expected frequencies and test

whether the data come from a 
¡
; 2

¢
distribution.
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Solution

The first part of the solution will be the same as the first part for example 4.3 (in other words where

we find the -values corresponding to probabilities of
1

10
)

The difference is that  and  are unknown and have to be estimated from the sample. We have to

use the maximum likelihood estimators of  and 2 (This is an application of theorem 4.3 which

follows towards the end of the following section.)

For this sample ̂ =  =
49457

100
= 49457

and the M.L.E. ̂ =

s
Σ
¡
 −

¢2


(note that we divide by  and not by (− 1))

hence ̂ =

r
10 81241

100
= 10398

If we now use  =
 − ̂

̂
=

 − 49457
10398

we will get the following 10 intervals:

-scale -scale
 ≤ −1282  ≤ 3613

−1282 ≤  ≤ −0842 3613 ≤  ≤ 4070
−0842 ≤  ≤ −0524 4070 ≤  ≤ 4401
−0524 ≤  ≤ −0253 4401 ≤  ≤ 4683

−0253 ≤  ≤ 0 4683 ≤  ≤ 4946
0 ≤  ≤ 0253 4946 ≤  ≤ 5209

0253 ≤  ≤ 0524 5209 ≤  ≤ 5491
0524 ≤  ≤ 0842 5491 ≤  ≤ 5821
0842 ≤  ≤ 1282 5821 ≤  ≤ 6279

 ≥ 1282  ≥ 6279

Classifying the data into these classes leads to the following table:

Table 4.6

Interval
Observed

frequency, 

Expected frequency,
̂ = ̂

( − ̂)
2

 ≤ 3613 11 10 1

3613 ≤  ≤ 4070 15 10 25

4070 ≤  ≤ 4401 9 10 1

4401 ≤  ≤ 4683 8 10 4

4683 ≤  ≤ 4946 10 10 0

4946 ≤  ≤ 5209 8 10 4

5209 ≤  ≤ 5491 5 10 25

5491 ≤  ≤ 5821 7 10 9

5821 ≤  ≤ 6279 13 10 9

 ≥ 6279 14 10 16

Totals 100 100
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We have to test:

0 : The sample comes from a normal distribution.

1 : The sample does not come from a normal distribution.

 2 =
10P
=1

( − ̂)
2

̂

=
1

10
+
25

10
+
1

10
+
4

10
+ 0 +

4

10
+
25

10
+
9

10
+
9

10
+
16

10

= 940

We have  − 1 = 9 and  −  − 1 = 7; 2005;7 = 140671

Since 940  140671 we cannot reject 0 We may conclude that the sample comes from a normal

distribution.

A variation on the theme of goodness of fit for a normal distribution, is that a specific set of intervals

with observed data is given and then one has to test for normality. In other words you are given the

tabular equivalent of a histogram (which most often consists of a number of intervals with the same

length). This means that you need not compute the limits because you are given a set of intervals (all

with the same lengths) as well as the observed frequencies. The problem will be to find the expected

frequencies under the assumption that a normal curve will be superimposed over these intervals.

So, here we have a proper statistical test appropriate for the first graphical technique of the previous

section.

Example 4.5

Refer to the data of example 4.3. These 100 values can be classified into the following frequency

table:
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Table 4.7

Interval Observed frequency
2995− 3395 5

3395− 3795 12

3795− 4195 14

4195− 4549 10

4595− 4995 14

4995− 5395 9

5395− 5795 8

5795− 6195 11

6195− 6595 12

6595− 6995 5

Total 100

Suppose the instruction is similar to that of example 4.3: "Test the null hypothesis that the sample

comes from a  (50; 100) distribution".

Solution

The trap is to assume that the expected frequencies are 10 for each interval (as we had in the

previous two examples). Please note that this is not the case. We now have a different scenario

where the expected probability for each interval has to be computed by making use of table I (Stoker).

The first step is to standardise the interval limits of the -scale to the corresponding interval limits

of the -scale. Since it was given as part of the null hypothesis that  = 50 and  = 10 we use

 =
 − 50
10



The second step is to compute the corresponding probabilities  ( ≤  ≤ ) for each interval by

making use of table I (Stoker). This is laborious work!

Both these steps are summarised in the following table:

Table 4.8

Intervals Expected
-scale -scale probability ()

2995− 3395  ≤ −161 00537

3395− 3795 −161 ≤  ≤ −121 00594

3795− 4195 −121 ≤  ≤ −081 00959

4195− 4549 −081 ≤  ≤ −041 01319

4595− 4995 −041 ≤  ≤ −001 01551

4995− 5395 −001 ≤  ≤ 040 01594

5395− 5795 040 ≤  ≤ 080 01327

5795− 6195 080 ≤  ≤ 120 00968

6195− 6595 120 ≤  ≤ 160 00603

6595− 6995  ≥ 160 00548

10033
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The expected frequencies for the intervals are found by multiplying the expected probability by the

sample size.

Do you notice that the first and the last interval for the -scale are open-ended? This is necessary

to ensure that
10P
=1

 = 1 However, if we add the values in the last column we get 1.0033. This is due

to rounding in table 1 which results in a cumulative rounding error.

We use the same goodness-of-fit test statistic:

 2 =
10P
=1

(observed − expected)2

expected

=
(5− 537)2
537

+
(12− 594)2

594
+
(14− 959)2

959
+ +

(5− 548)2
548

= 0086 + 6182 + 2028 + + 0042

= 20462

Since the number of classes did not change, we use the same critical value 2 as for example 4.3.

2005;10−1 = 2005;9 = 16919

We notice that 20462  16919 and hence we reject the null hypothesis.

Table 4.7 can be displayed graphically as the following histogram:

Figure 4.6: Histogram of sample data

Looking at this graph, would you say this is a sample from a normal distribution?
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Superimposing a normal curve over the histogram makes our decision easier and it seems as if the

sample does not come from a normal distribution. Is this what you conclude from the next figure?

Figure 4.7: Histogram and normal curve

Our subjective conclusion based on the graphical method is confirmed by the formal hypothesis test.

We conclude that the sample is most probably not from a normal distribution.

So, why is there a discrepancy between the results of the 2-test of example 4.3 and this example?

Please see activity 4.8 of the workbook.

The 2 goodness-of-fit test can be used to test for any distribution type where the null hypothesis

always specifies the type of distribution.

4.4 Goodness-of-fit tests in general
A. The multinomial distribution

The multinomial distribution is a generalisation of the binomial distribution in the sense that the latter

is a special case of the former.

Consider an infinite population of items, each of which belongs to one of  categories. Let the

proportion belonging to category  be  thus

1 + 2 + +  = 1
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If we select an element of the population at random, the probability that it will belong to category

 is  Suppose we draw a random sample of size  from a population. Let  be the number of

elements of the sample which belong to category  Thus 1+2+ + =  The joint distribution

of 1   is called the multinomial distribution. (In the special case  = 2, 1 is a binomial

variate.)

Suppose now we have a number of random variables 1   and suppose we select class

intervals (0; 1) ; (1; 2) ; ; (−1; ) which cover the whole range of variation of these

variables. (We could choose 0 = −∞ and  = +∞ if necessary.) If 1   is a random

sample from a continuous distribution with pdf  ()  let

 =  (−1   ≤ ) =
R

−1

 () 

On the other hand, if 1   is a random sample from a discrete distribution,  =

 (−1   ≤ ) is found by summation rather than by integration.

If we now let  be the number of s which fall in the -th class interval, then 1   will have a

multinomial distribution with parameters 1   We use this fact to test whether a sample comes

from a given distribution.

We distinguish between two types of problems:

(i) The distribution is completely specified by the null hypothesis, including all parameters, for

example 0 :  is  (25; 46) 

(ii) The type of distribution is specified but not all the parameters, for example 0 :  is  (; 5) with

 not specified; or 0 :  is 
¡
; 2

¢
with  and 2 not specified.

B. Distribution completely specified

We make use of the following theorem which we shall prove for a special case only.

Theorem 4.1

Let 1   be observed frequencies in a random sample of size 

from a multinomial distribution with probabilities 1   where

1 + + =  and 1 + −+ = 1 Then

 2 =
P
=1

( − )
2 

is approximately distributed as 2−1
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The proof of this theorem falls beyond the scope of this module. However, it is interesting to look at

the case where  = 2 please see activity 4.9 of the workbook.

The reason why we have only  − 1 degrees of freedom is the linear restriction 1 + + =  in

other words we have freedom to vary − 1 of the frequencies, but after − 1 frequencies have been

chosen the -th frequency is fixed.

An interesting fact to prove is to show that 
¡
 2
¢
=  − 1 This will strengthen our belief in theorem

4.1 since we know that the expected value of a chi-squared variate is equal to its degrees of freedom.

Theorem 4.2

¡
 2
¢
=  − 1

Proof

Every observation can fall in category  with probability  and not in

category  with probability 1−  Therefore  the number of

observations falling in category  is a binomial variate with

expectation  and variance  (1− ) 

Therefore

 ( − )
2 =  (1− )

∴  ( − )
2  = 1− 

∴ 
¡
 2
¢
= 

P
=1

( − )
2 

= (1− 1) + (1− 2) + + (1− )

= 1 + 1 + 1 + · · ·+ 1| {z }
 

− (1 + 2 + + | {z })
=1

=  − 1

The quantities  are usually called expected frequencies (they need not be integers).  2 is

sometimes written as

 2 =
P
=1

( − )
2  where  = 

[It is easier to remember this formula as:
P
=1

[observed − expected]2

expected
]
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How do we use theorem 4.1 to test goodness of fit?

We divide the data into categories (if the distribution is discrete then the data will already form

categories; otherwise we group the data into intervals). We compute the probabilities that an

observation will fall into each class according to the distribution specified by the null hypothesis, and

compute  2 The value we obtain is compared with a critical value of the appropriate 2-distribution.

We illustrate applications other than the normal distribution by means of examples.

Example 4.6

According to genetic theory the offspring of parents of genetic types  and  will be the following:

type  with probability
1

4
;

type  with probability
1

4
and

type  with probability
1

2


In an experiment with pea plants a geneticist crossed plants of type  with plants of type  and

from 132 seeds he reported the following counts:

 = 35;  = 30 and  = 67

Test this genetic theory at the 10% level.

Solution

We want to test 0 : 1 =
1

4
; 2 =

1

4
; 3 =

1

2


We have 1 = 35; 2 = 30; 3 = 67;  = 132; so that 1 = 33; 2 = 33; 3 = 66

We use the test statistic  2 =
4P

=1

( − )
2 

=
(35− 33)2

33
+
(30− 33)2

33
+
(67− 66)2

66

= 04091

From table IV we see that 2010;2 = 460517 This implies that we will reject 0 if  2 ≥ 460517
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Since  2  460571 we cannot reject 0 at the 10% level.

Three points to remember

1. Note that large values of  2 are obtained when the differences between the theoretical and

observed frequencies are large. Small values of  2 are obtained when the observed and

theoretical frequencies are close. Therefore we reject 0 if  2 is large, in other words we do

a one-sided test.

2. Large values of  2 may also be obtained by having small values of  (because we divide by

), and large values obtained in this way do not necessarily imply that 0 is not true. We should

therefore not have small frequencies  If we have small expected frequencies, we pool two

or more cells by adding both their observed and expected frequencies. As a general rule we

should not have expected frequencies of less than five, otherwise the approximation of the

distribution of  2 by 2−1 may not be adequate.

3. Large values of  2 can also arise from very large samples.

Example 4.7

The times to failure of 50 electronic components were recorded in minutes and are given below:

Using an Excel spreadsheet, the observations have been arranged from small to large:

106 113 157 189 192

213 224 236 271 282

309 346 360 395 406

459 478 492 508 621

673 718 742 837 851

892 904 967 1071 1222

1278 1351 1368 1391 1426

1474 1506 1534 1573 1629

1693 1712 1783 1858 1902

1935 1994 2038 2116 2194

Test the null hypothesis that the data are from an exponential distribution with pdf

 () =
1

100
−


100 for  ≥ 0

Perform a goodness-of-fit test by making use of five classes with equal expected frequencies.
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Solution

If  is the time to failure of an electronic component, we have to test whether

0 :  has an exponential distribution with  = 100

We have to use five class intervals of equal expected frequencies. In other words, we have to find

the unknown class limits such that if we divide the observations into these classes we will know that

the expected frequency for each class is
50

5
= 10

In other words  = 02 for  = 1 2  5

Unlike example 4.3 we do not have tables for the exponential distribution and thus we have to follow

the theoretical route!

For any continuous distribution, we know from calculus that

 ( ≤  ≤ ) =
R


() 

So, if we assume that  = 100 for this specific exponential distribution, we may write that

 ( ≤  ≤ ) =
1

100

R


−

100

= −

100 − −


100 (which is a result from calculus).

For the first interval we know that  = 0 and we also know that 0 = 1 If we set  (0 ≤  ≤ ) = 02

we obtain  (0 ≤  ≤ ) = −
0
100 − −


100 = 02

In other words 1− −

100 = 02

∴ −

100 = 08

∴ − 

100
= ln (08)

− 

100
= −02231

⇒  = 2231
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For the second interval we replace  by 22.31 and hence

 (2231 ≤  ≤ ) = −
2231
100 − −


100 = 02

∴ −

100 = −

2231
100 − 02

= 08− 02

= 06

∴  = (−100) (ln 06) = 5108

In a similar fashion we derive 3 = 9163 and 4 = 16094 Thus 0 = 0; 1 = 2231; 2 =

5108; 3 = 9163 and 4 = 16094 in figure 4.8 showing the pdf of an exponential distribution with

 = 100

Figure 4.8: The pdf of an exponential distribution with  = 100

If we classify the 50 observations into these intervals we get the following:

Time to failure in minutes Observed frequencies Expected frequencies
0 ≤   2231 6 10

2231 ≤   5108 13 10

5108 ≤   9163 8 10

9163 ≤   16094 12 10

16094 ≤  ∞ 11 10

Total 50 50
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Thus,

 2 =
(6− 10)2
10

+
(13− 10)2

10
+
(8− 10)2
10

+
(12− 10)2

10
+
(11− 10)2

10
= 34

Since 2010;4 = 777944 we do not reject the null hypothesis that the sample is from an exponential

distribution with  = 100 at the 10% level of significance.

Note

In the above example we chose to divide the range of the observations into classes with equal

expected frequencies, since that makes the computations easier. The problem is dealt with

differently, namely by choosing intervals of equal length (eg 0 ≤   30; 30 ≤   60; 60 ≤   90

et cetera) and the corresponding expected frequencies are computed by integration. This is a valid

method, but the computations are more messy because the expected frequencies are usually not

integers.

C. Distribution not completely specified

We use the following theorem which we shall also not prove.

Theorem 4.3

Let 1   be observed frequencies with 1 + + =  and let

1   be the corresponding cell probabilities, with 1 + +  = 1

such that 1   depend on  unknown parameters 1  

Then  2 =
P
=1

( − ̂)
2 ̂ is approximately a 2−−1 variate

provided the ̂ are computed by substituting the maximum likelihood

estimators of 1  

Example 4.8

A sociologist is studying the distribution of TV sets per household in a certain area. According to a

theory developed by him, the ratio of the number of TV sets in a household will be  : 5 : 1−6 where

the first group represents households with no TVs; the second group represents households with 1

TV and the last group represents households with 2 or more TVs. (In other words, if  represents

the number of TV sets in a household chosen at random from this specific area, the probabilities

should be related as follows:
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 ( = 0) = ;  ( = 1) = 5;  ( ≥ 2) = 1− 6

where  is an unknown constant.

In a random sample of 50 households the sociologist observed the following distribution:

Number of TV sets Observed frequency
0 12

1 33

≥ 2 5

Total 50

Is this distribution in accordance with the theory?

Solution

We have to test 0 : The probabilities for the three classes will be in the ratio  : 5 : 1− 6
We first have to estimate  according to the maximum likelihood method.

Let 0 1 and 2, respectively, denote the number of households with 0, 1 and more than 1 TV set

where  = 0 +1 +2 The likelihood function is the product of the probabilities for the observed

sample. (Revise this in section 2.4 of the study guide.)

 () =
Q
=1

 ( = )

=  | {z }
0 times

55  5| {z }
1 times

(1− 6)  (1− 6)   (1− 6) | {z }
2 times

= 0 (5)1 (1− 6)2

∴ ln () = 0 ln () +1 ln (5) +1 ln () +2 ln (1− 6)

∴  ln ()


=

0


+

1


+
−62
1− 6

Setting
 ln ()


= 0 (to obtain the maximum value) we get

0


+

1


=

62

1− 6 

∴ 0 +1


=

62

1− 6
∴ 62 = (0 +1) (1− 6)

∴ 6 (0 +1 +2)  = 0 +1

∴ ̂ =
0 +1

6 (0 +1 +2)
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In the present example

̂ =
12 + 33

6 (50)
=
45

300
= 015

The estimated probabilities are therefore

̂ = 015; 5̂ = 075; 1− 6̂ = 010

Multiplying by 50 we obtain the expected frequencies:

Class Observed frequencies Expected frequencies
0 12 75

1 33 375

≥ 2 5 50

Therefore

 2 =
(12− 75)2

75
+
(33− 375)2

375
+
(5− 5)2
5

= 27 + 054 + 0

= 324

We have 3 − 1 − 1 = 1 degree of freedom (one parameter estimated) and 2005;1 = 384146 Since

324  384146 the theory cannot be rejected at the 5% level of significance.

We conclude this section where the distribution is not completely specified by returning to the

goodness-of-fit test for a normal distribution (which was illustrated in section 4.3).

The MLEs based on the ungrouped data are as follows:

 known: ̂2 =
1


Σ ( − )2

2 known: ̂ =
1


Σ = 

 and 2 unknown: ̂ =
1


Σ = 

̂2 =
1


Σ
¡
 −

¢2

[NB You should be able to derive the above yourself!]
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The MLEs based on the grouped data present some computational difficulties. If  is the number of

observations lying in the interval (−1 ) for  = 1   and ̂ and ̂2 are the MLEs to be computed,

then the likelihood function is


¡
 2

¢
=

Q
=1

[ (−1   ≤ )]

=
Q
=1

"
R

−1

1


√
2


−1
2


−


2



#



Maximising this likelihood function with respect to  and 2 will not be done easily without a computer.

Consequently we are faced with a dilemma:

- If we use the MLEs based on the grouped data, then the distribution of  2 is asymptotically 2−−1
where  is the number of parameters so estimated; the problem is that the MLEs are not easily

computed.

- The MLEs based on the ungrouped data are easily computed, but now the distribution of  2 is

not easily computed. It has been found that the distribution of  2 lies between 2−1 and 2−−1
in this case.

A pragmatic solution would be as follows:

Compute the MLEs based on the ungrouped data. Compute  2 as before.
If  2  2;−−1 : do not reject 0

If  2  2;−1 : reject 0

If 2;−−1   2  2;−1 : decision uncertain

In the latter case there are two possibilities:

(a) Obtain a larger sample.

(b) Choose another significance level according to the circumstances.

For the purpose of this module it is sufficient simply to state: "Decision uncertain".

D. The Kolmogorov-Smirnov test

We briefly mention an alternative test which can be applied to test whether a random sample comes

from a specified distribution (with all the parameters specified). For any  we have

 () =  () =  ( ≤ ) which is completely specified

 () = ̂ () =
number of observations in the sample ≤ 

total number of observations

= cumulative relative frequency
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A one-sided test is based on

+
 = supremum over all  of { ()−  ()} 

The value thus computed is compared to a critical value read from table XIX (Stoker). If +
 is larger

than the critical value, reject 0

For a two-sided test, compute

 = supremum over all  of | ()−  ()| 

The critical value for a two-sided -level test is approximately the same as the critical value for the

one-sided 1
2
-level test. Reject 0 if  is larger than this critical value.

This is the test JMP employs for a goodness-of-fit test. (See activity 4.10 of the workbook.) A

computer, however, does not use critical values but only computes the -value which has to be

interpreted.

You will not be required to know this test for examination purposes.

4.5 Using the method of moments to test for normality
Another test procedure is based on skewness and kurtosis. For any distribution with mean  and pdf

 () the r-th central moment is defined as

 =
∞R
−∞

(− )  () 

The third moment is zero if  () is symmetric.

The third standardised moment

1 =
3
3
=

3

(2)
3
2

is a measure of the skewness of the distribution. For the normal distribution,

as for any symmetric distribution, 1 = 0
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The fourth standardised moment

2 =
4
22
=

4
4

is a measure of the kurtosis of the distribution. For the normal distribution

2 = 3

If 1   is a random sample from a normal distribution we can estimate  by

̂ =
1



P
=1

¡
 −

¢


A. Test for skewness

We can test the null hypothesis that the distribution is symmetrical,that is 0 : 1 = 0 against a

two-sided or one-sided alternative. The critical values are tabulated in table A for different sample

sizes but not for different levels of significance.

The null hypothesis is that the distribution is normal, namely 0 : 1 = 0

If the alternative hypothesis is positive skewness (one-sided testing), namely 1 : 1  0

we reject 0 at the 5% level if 1  tabulated percentage point.

If the alternative is negative skewness (one-sided testing), that is 1 : 1  0

we reject 0 at the 5% level if 1  − (tabulated percentage point) 

If the alternative is skewness (two-sided testing), namely 1 : 1 6= 0
we reject 0 at the 10% level if |1|  tabulated percentage point.

We use the test statistic

1 =
̂3

(̂2)
3
2

=

1



P
=1

¡
 −

¢3
µ
1



P
=1

¡
 −

¢2¶32 

For a symmetrical distribution (as the normal distribution) we would expect this test statistic to vary

in the region of 0. We do not expect you to know the distribution of 1, but critical values have been

computed for this distribution and are summarised in the table below. We are restricted to either test

5% one-sided or 10% two-sided. In other words, we cannot choose freely what the significance level

is going to be.
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Table A: Percentage points for the distribution of 1
(Lower percentage point = − (tabulated upper percentage point)

Size of sample Percentage points Size of sample Percentage points
 5%  5%

25 0711 200 0280

30 0662 250 0251

35 0621 300 0230

40 0587 350 0213

45 0558 400 0200

50 0534 450 0188

500 0179

60 0492 550 0171

70 0459 600 0163

80 0432 650 0157

90 0409 700 0151

100 0389 750 0146

800 0142

125 0350 850 0138

150 0321 900 0134

175 0298 950 0130

200 0280 1000 0127

Please note:

Because the sampling distribution of 1 is symmetrical about zero, the same values, with negative

sign, correspond to the lower limits.

B. Test for kurtosis

To test for kurtosis the null hypothesis is that the distribution is normal, namely. 0 : 2 = 3

A distribution with 2  3 is called leptokurtic: the pdf has a sharper peak than the normal distribution

and has longer tails.

A distribution with 2  3 is said to be platykurtic: the pdf is flat and has shorter tails than the normal

distribution.

Figure 4.9: Degrees of kurtosis
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To test for kurtosis, we could use two different test statistics.

We may use the test statistic

2 =
̂4

(̂2)
2
=

1



P
=1

¡
 −

¢4
µ
1



P
=1

¡
 −

¢2¶2 

For the normal distribution we would expect this test statistic to vary in the region of 3. We do not

expect you to know the distribution of 2, but only to realise that critical values (associated with a

significance level of 5%) have been computed and are tabulated in table B. Again (as with 1) we

are restricted to test 5% one-sided or 10% two-sided, and we cannot freely choose the significance

level.

Table B:. Percentage points of the distribution of 2

Size of Percentage points
sample  Upper 5% Lower 5%

50 399 215

75 387 227

100 377 235

125 371 240

150 365 245

200 357 251

250 352 255

300 347 259

350 344 262

400 341 264

450 339 266

500 337 267

550 335 269

600 334 270

650 333 271

700 331 272

800 329 274

900 328 275

1000 326 276

Test based on B2

If the alternative is 2  3 reject 0 at the 5% level if 2  lower 5% point in table B.

If the alternative is 2  3 reject 0 at the 5% level if 2  upper 5% point in table B.

If the alternative is 2 6= 3 reject 0 at the 10% level if 2  lower 5% point or if 2  upper 5%

point in table B.
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Example 4.9

From a random sample of size  = 100 the following were computed:

Σ = 200; Σ
2
 = 416; Σ

¡
 −

¢3
= 128; Σ

¡
 −

¢4
= 1024

We wish to test the sample for normality. We shall test

(a) for skewness (two-sided) at the 10% level;

(b) for kurtosis (two-sided) at the 10% level.

A sample from a normal distribution should pass both tests with a high probability.

Solution

(a) Test for skewness

We have to test 0 : 1 = 0 against
1 : 1 6= 0

We will reject 0 if |1|  0389 (in other words if 1  −0389 or if 1  0389 (using table A.)

The value of the test statistic is 1 =

1


Σ
¡
 −

¢3
∙
1


Σ
¡
 −

¢2¸32 

We do not have Σ
¡
 −

¢2
but it can be derived from the given information.

Σ
¡
 −

¢2
= Σ2

 − 
2
= 416− 100

µ
200

100

¶2
= 416− 400

= 16

∴ 1 =

128

100Ãr
1

100
(16)

!3 = 0128

(04)3
= 2

Since 2  0389 we reject 0 at the 10% level.
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(b) Test for kurtosis

We have to test 0 : 2 = 3 against
1 : 2 6= 3

We will reject 0 at the 10% level of significance (two-sided) if 2  377 or if 2  235 (from

table B).

The value of the test statistic is 2 =

1



P
=1

¡
 −

¢4
∙
1


Σ
¡
 −

¢2¸2 =
1024

100

[016]2
=
01024

00256
= 4

Since 4  377 we reject 0 at the 10% level.

The sample failed both tests and hence we conclude that the sample is not from a normal

population.

Another statistic which is a measure of kurtosis is the standardised mean deviation,

 =

1


Σ
¯̄
 −

¯̄
r
1


Σ
¡
 −

¢2 = mean deviation
standard deviation



(
¯̄
 −

¯̄
is read as "the absolute value of  −" and it means you take the positive value of the

difference.)

The test statistic you choose depends on the sample size: for small samples (  50) we usually use

; for larger samples ( ≥ 50) use 2
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Table C: Percentage points for the distribution of  =
mean deviation

standard deviation

Size of Percentage points
sample  − 1 Upper 5% Upper 10% Lower 10% Lower 5%

11 10 09073 08899 07409 07153

16 15 08884 08733 07452 07236

21 20 08768 08631 07495 07304

26 25 08686 08570 07530 07360

31 30 08625 08511 07559 07404

36 35 08578 08468 07583 07440

41 40 08540 08436 07604 07470

46 45 08508 08409 07621 07496

51 50 08481 08385 07636 07518

61 60 08434 08349 07662 07554

71 70 08403 08321 07683 07583

81 80 08376 08298 07700 07607

91 90 08353 08279 07714 07626

101 100 08344 08264 07726 07644

Test based on A

If the alternative is that the distribution is leptokurtic, namely 1 : 2  3

we reject 0 at the 5% level of significance if   upper 5% point in table C (or at the 10% level if

  upper 10% point in table C).

If the alternative is that the distribution is platykurtic, namely 1 : 2  3

we reject 0 at the 5% level of significance if   lower 5% point in table C (or at the 10% level if

  lower 10% point in table C).

If the alternative is two-sided, namely 1 : 2 6= 3
we reject 0 at the 10% significance level if   lower 5% point or if   upper 5% point in table C.
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Example 4.10

We wish to test the kurtosis of the following sample:

18 26 21 25 20 16 12 24 17 19 22

Test two-sided at the 10% level of significance.

Solution

We have to test 0 : 2 = 3 against
1 : 2 6= 3

Since  = 11  50 we will use the test statistic A.

 =

1



P
=1

¯̄
 −

¯̄
r
1


Σ
¡
 −

¢2
where  =

220

11
= 20; Σ

¯̄
 −

¯̄
= 36 and Σ

¡
 −

¢2
= 176

Thus  =

36

11r
176

11

= 08182

We will reject 0 two-sided if   07153 or if   09073 (from table C).

Since 07153  08182  09073 we conclude that the kurtosis of the sample is not significantly

different from the kurtosis of the normal distribution, at the 10% level (two-sided).

What about statistical packages and moments?

The statistical package SPSS computes the third and fourth moments as standard output under

"descriptive statistics" for any data set. It is, however, not part of the standard output of JMP. We

need to manipulate our output if we want to compute 1 and 2 (Please see activity 4.15 of the

workbook.)
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Exercise 4.1

1. The blood of a random sample of 1 000 people from a certain population was classified into 4

blood groups, and the results are as follows:

1 = 125; 2 = 185; 3 = 230; 4 = 460

It is postulated that the population is divided into the four blood groups in the following proportions:

1 = 010; 2 = 020; 3 = 020; 4 = 050

Test this hypothesis at the 1% level.

2. According to a seed man’s claim, of the plants that germinate from a packet of "Colorglo"

Namaqualand daisy seeds, there will be twice as many plants bearing yellow flowers as white

flowers, and twice as many bearing orange flowers as yellow flowers. It is admitted implicitly that

a certain proportion will not germinate at all. The theory can be written as a model as follows:

 (White) = ;  (Yellow) = 2;  (Orange) = 4;  (Fail to germinate) = 1− 7

I sow 100 of these seeds (presumably a random sample) and 84 germinate. Of these 84 plants,

16 bear white flowers, 28 bear yellow flowers and 40 bear orange flowers. Can the seed man’s

claim be rejected at the 5% level of significance?

3. A sample of size 40 from a distribution with known variance 2 = 100 has mean  = 10 The

following classification was obtained:

 Frequency
  3255 7

3255 ≤   10 6

10 ≤   16745 15

 ≥ 16745 12

Compute the goodness-of-fit statistic to test whether the distribution is normal. Determine whether

the sample is significantly different from normal

(a) at the 10% level

(b) at the 5% level.
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4. The number of bees arriving at a peach tree was recorded during 100 non-overlapping one-minute

intervals. The observed frequencies were as follows:

Number of bees 0 1 2 3 4 5 6

Frequencies 21 30 27 16 3 2 1

Test the null hypothesis, at the 5% level of significance, that this is a random sample from a

Poisson distribution

(a) with mean  = 2

(b) with  not specified.

(For ease of computation, round off the expected frequencies to the nearest integer.)

Hint: −16 = 02019

5. On the assumption that the lifetime of a product is normally distributed with mean 32 months

and standard deviation eight months, a guarantee was determined. The following data were

subsequently collected:
Lifetime (months) Frequency
Less than 16 6

16 to 20 9

20 to 24 12

24 to 28 16

28 to 32 20

32 to 36 22

36 to 40 10

more than 40 5

Test the assumption of normality with mean 32 and variance 64 at the 5% level of significance.

6. The following data have been observed in an experiment:

29 12 28 46 15 13 25 44 20 14

37 41 11 38 28 12 40 47 19 29

13 39 6 13 29 15 34 17 33 51

Test the null hypothesis that the sample comes from a (25; 122) distribution. Use five classes of

equal probability to derive the intervals.
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7. Test the following sample for kurtosis:

17; 22; 15; 25; 22; 26; 16; 14; 18; 21; 24

(10% level).

8. From a sample of 50 observations the following statistics were computed:

 = 25; Σ
¡
 −

¢2
= 200; Σ

¡
 −

¢3
= −320; Σ ¡ −

¢4
= 4000

Would you regard this as a sample from a normal distribution? Use the 10% level (two-sided).

9. From a sample of 1 000 observations it was found that

 = 50;
1


Σ
¡
 −

¢2
= 16;

1


Σ
¡
 −

¢3
= 64;

1


Σ
¡
 −

¢4
= 8192

Test at the 10% level (two-sided) whether the sample comes from a normal distribution.
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4.6 Learning outcomes

After studying unit 4 you should understand and be able to apply and interpret
the following tests for normality:

¥ using normal probability paper to plot the order statistics  against 100 (+ 1)

¥ a normal quantile graph (using JMP)

¥ a goodness-of-fit test (ie 2-test) where the expected frequencies are

obtained by
%
&

assuming equal probabilities and computing the

corresponding set of intervals

computing the areas under the pdf of a normal

distribution for a given set of intervals

¥
test for skewness

test for kurtosis

⎤⎦ which together form one test for normality

You should be able to perform a goodness-of-fit test (2-test) for any

other type of distribution (which will be specified).
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STUDY UNIT 5

Statistical independence

5.1 The meaning of independence
The assumption of independence is an integral part of most statistical models. Thus, for example,

independence forms part of the definition of a random sample. Sometimes it is possible to test

whether certain observations are independent, but in most cases the independence, or lack thereof,

must be deduced from the way in which the experiment was conducted. The formal definition of

independence is: the random variables 1 and 2 are independent if their joint pdf is given by

1;2
(1; 2) = 1

(1) 2
(2) for all 1 and 2

The definition of the independence of  random variables is given in unit 1. An equivalent definition,

in terms of conditional distributions, is that 1 and 2 are independent if the conditional pdf of 2

given that 1 = 1 for all values 1 is not a function of 1

The question is: how do we know that this condition holds good for our experiment? The answer to

this question is not easy, but the acid test is to ask the following question: does the outcome of one

observation have any influence on the outcome of any other observation? We shall discuss a few

examples of non-independence which may help you in answering this question.

To begin with, we have to point out that there is a difference in the definitions of a random sample

for finite and infinite populations. The results of sampling with replacement from a finite population

may be regarded as independent observations, but such samples are usually not desirable since one

does not want to observe one number of the population more than once. On the other hand, if one

draws a sample without replacement, the composition of the population changes after each draw

and the consecutive observations are not independent. A random sample from a finite population

requires only that each and every distinct sample of size  of the
¡



¢
different samples must have the

same probability 1
¡



¢
of being selected. Mutual independence of the  observations in the sample

is not part of the definition.

If the population is finite but very large, and the sample to be drawn from it is comparatively small, the

population is regarded as an infinite population for practical purposes. The change in the composition

of the population after each draw is then so small as to be negligible. In principle it is easy to draw a

random sample from a finite population (small or large) provided each member of the population can
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be identified uniquely by means of a number. In such a case one may draw a sample of the numbers,

using numbers in a hat, tables, random numbers or random numbers generated by a computer.

We shall now concentrate on samples from an infinite population.

5.2 Examples of dependence
The problem with dependence is that one cannot really do analyses or applications without being

able to quantify this dependency in a model, that is to set up a model for the dependence.

A. Repeated measurements on the same individual

The following type of experiment is often performed: an individual is subjected to a treatment and the

result is observed at a number of specified times. Examples of this are a patient who consumes an

amount of sugar and has his or her blood sugar tested every 30 minutes in order to determine his or

her sugar curve; a learner who is taught arithmetic and whose arithmetic ability is tested every term;

a pig that is placed on a certain diet and whose mass is determined every week.

The result of such an experiment is a number of observations 1   It is not safe to assume

automatically that the observations are independent. If we select a patient at random from a

population, measure his or her blood pressure 1 administer a treatment and measure his or her

blood pressure 2 then 2 will depend on 1 because the response of the patient to the treatment

will depend on his or her initial blood pressure. Given 1, we cannot regard 2 as the blood pressure

after treatment of a patient selected at random from the population.

In repeated measurements there is also the possibility of a carry-over effect. If we administer one

treatment to an individual and measure the result, then administer another treatment to the same

individual and measure the effect again, there is a possibility that the effect of the first treatment has

not "worn off" and had an effect on the second measurement. Think of an experiment to test the

effect of two methods of teaching arithmetic. If we teach a learner by the one method and measure

his or her ability, the knowledge acquired by the learner in the first phase of the experiment will not

be forgotten, and the second measurement will not be independent of the first.

To summarise, the results 1 ...  of  measurements on one individual may have to be analysed

in a completely different way from the results 1   of one measurement on each of 

individuals.
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B. Paired observations

Very similar to the discussion in A above is the difference between the following two experiments to

determine the effect of a treatment on a group of individuals.

One experiment is done by measuring every individual with respect to the variable being studied,

administering the treatment and measuring every individual again.

The other experiment is done by dividing the individuals in a random manner into two groups. The

one group, called the control group, is measured without treatment, and the other group is treated

and then measured.

The results of these two experiments will be analysed differently. In the first case we have paired

observations with dependence in each pair, and in the second case we have two independent

samples.

This dependence between measurements on the same individual will of course hold good for

measurements of different variables on the individual, like height and mass, as well.

C. Ordering of observations

Let 1   be a random sample; we know that 1   are mutually independent. Suppose

we arrange the observations from the smallest to the largest, and call the result 1   Then

1   are called the order statistics of the sample. There is an ordering in these statistics:

1 ≤ 2 ≤  ≤ 

Although 1 and 2 are independent, it is no longer true that 1 and 2 are independent. For one

thing, 2 is bounded from below by 1 and, given 1 2 cannot assume all possible values. The

distribution of the order statistics is not the same as the distribution of 1  

D. Recognisable subsets

In many populations there are recognisable subsets of individuals who are more similar than the

population as a whole. Children from the same family, piglets from the same litter and people living

in the same suburb are examples of such subsets. If we select a number of individuals from the

same subset they may be regarded as a random sample from that subset. However, regarded as a

sample from the whole population, there is a definite dependence and the sample is not a random

sample from that population.
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E. Time dependence

In economic data especially, there is often a time dependence which may result in a special kind of

mutual dependence between the observations. Consider an inflation rate which is computed monthly.

One feels intuitively that the inflation rate in April will not be completely independent of the inflation

rate in March of the same year, but will be less dependent on the inflation rate in April of the previous

year. A curve which joins the points in the following graph will be fairly smooth:

Figure 5.1

In a random sample one would expect all rearrangements of the data to be equally likely to occur.

The following rearrangement of the same points will be less likely in this application, however.

Figure 5.2
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The data in the first graph are subject to autocorrelation: each observation depends in a specific way

on the previous one. Such data must be analysed in a special way. (This is covered in STA2604 and

STA3704.)

In the rest of this study unit we are going to look at a few types of analysis that test for dependence.

When we talk about "tests of independence/dependence, we are usually interested in the possibility

that one variable could affect or influence a second variable. This means we are moving into the

field of studying the variables simultaneously (as opposed to studying them one at a time). This

immediately alerts us to the type of variable involved in the analysis. We could have the situation

where both variables are nominal, or one could be nominal and one continuous or both could be

continuous!

In the next section we explain the technique of how to test for dependence when we have two nominal

(or also called categorical) variables.

5.3 Contingency table analysis
Contingency tables generally consist of frequencies arranged into a two-way table according to

two categorical variables (eg A and B). Sometimes the variables are truly categorical (eg gender,

profession, city) and sometimes the variables are continuous, but are divided or forced into categories

(for example age group).

In general we have frequencies  ;  = 1  ;  = 1   which are random variables. We use

the following notation:

· =
P

=1

 ; ·
P
=1

 ; ·· =
P
=1

P
=1



where 1·  · are the row totals; ·1  · are the column totals and ·· is the grand total.

· and · are called the marginal totals. The general ×  (" by ") contingency table with  rows

and  columns is as follows:

Categories of variable 

1 2 · · · · ·  Total
Categories 1 11 12 · · · · · 1 1·

of 2 21 22 · · · · · 2 2·

variable
...

...
...

...
...

  1 2 · · · · ·  ·
Total ·1 ·2 · · · · · · ··

The example below is a typical example of a contingency table.
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Example 5.1

A monkey was fitted with a radio transmitter and its position was determined 100 times at various

times of the day over a period of a few months. The observation times were classified into one of

the following categories: Early morning () ; Late morning () ; Early afternoon () and

Late afternoon ()  The monkey’s distance from the river was computed every time, and these

distances were classified as Close to, Near and Far from the river. Counting the number of times

(frequencies) the observations fell into each of these categories, the results are as follows:

Time
    Total

Distance Close 12 11 4 13 40

from Near 6 0 20 4 30

river Far 2 19 6 3 30

Total 20 30 30 20 100

(Eg of the 30 late morning observations, the monkey was close to the river on 11 occasions, near

the river on 0 occasions and far from the river on 19 occasions.)

The question is: does the distance from the river depend on the time of day or are the two variables

independent?

Contingency tables may be obtained in various ways, and we will discuss two. The method of analysis

will be identical, but theoretically the hypotheses are not the same.

A. Fixed grand total

We assume a random sample of ·· individuals was chosen, and two variables were recorded for

each individual (eg home language and type of work). The problem is to test whether the two

variables are independent. In this case · and · are random variables. Let

 =  (individual falls into row  and column )

· =
P

=1

 =  (individual falls into row )

· =
P
=1

 =  (individual falls into column )

·· =
P
=1

P
=1

 = 1
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The null hypothesis of independence is

0 :  = ·· ;  = 1  ;  = 1  

B. Fixed row (or column) totals

Assume we have  populations, and each individual from each population can be classified into one

of  categories. We choose a random sample of size · from population  where · is not a random

variable but a chosen sample size. In this case

 =  (individual from population  falls into category )

and

· =
P
=1

 = 1

The null hypothesis of independence is that the probability of falling

into category  is the same for all  populations:

0 : 1 = 2 =  =  for  = 1  

(For example, in the case  =  = 2 we want to test whether two probabilities are equal.) Example

5.1 is an example of this kind since the experimenter presumably selected his or her observation

times, and the column totals are therefore not random.

Analysis

Let  =
··
··

(in other words the expected frequency for a cell equals the row total times the

column total divided by the grand total).

The test statistic we use for testing the null hypothesis is

 2 =
P
=1

P
=1

( − )
2




(Does this look familiar?)

The distribution of  2 (under 0) is given by the following theorem which we shall not prove here.
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Theorem 5.1

Under the null hypothesis the distribution of  2 is approximately that of 2

with (− 1) ( − 1) degrees of freedom.

Please note the following:

We could have called the test statistic  or  or whatever, but we stick to the notation  2 to have

the connection with the "square" in the 2-variable. Please do not try to create your own test statistic

by taking the square root of whatever you compute. Stick to  2 and report it as  2

Why do you think we have (− 1) ( − 1) for the degrees of freedom? Note that if we fill in the

marginal totals and choose  − 1 rows and  − 1 columns then the remaining row and column are

fixed. We have the freedom to vary (− 1) ( − 1) of the cell frequencies.

Illustration: Example 5.1 (continued)

The null hypothesis of independence is that the probability of being close to the river ( = 1) is

the same for any time of the day. It also means that we could say that the distance from the river is

independent of the time of day. The alternative hypothesis is that the two factors are not independent.

The expected frequencies are as follows:

    Total

Close
20× 40
100

= 8 12 12 8 40

Near
20× 30
100

= 6 9 9 6 30

Far
20× 30
100

= 6 9 9 6 30

Total 20 30 30 20 100

Therefore  2 =
(12− 8)2

8
+
(11− 12)2

12
+ +

(3− 6)2
6

=
3 595

72

= 499306
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We have (4− 1) (3− 1) = 6 degrees of freedom and 2001;6 = 168119 Since 499306  168119 the

null hypothesis is rejected at the 1% level of significance, and we conclude that there is a relationship

between the time of day and the distance from the river. Comparing the observed and expected

frequencies, we notice that the monkey was more often than expected close to the river in the early

morning and late afternoon, more often than expected far from the river in the late morning and more

often than expected near the river in the early afternoon.

A few important general notes:

1. Note that the statistic  2 is not changed if we exchange the roles of rows and columns (ie if  is

renamed ) or if two rows (or two columns) are switched.

2. A significant  2 only indicates association between the two variables and not a causal

relationship.

3. The expected frequencies  = ···· need not be integers. The examples in this study

guide have been chosen in such a way that the  are integers to make the computations easier.

Normally one would work with the  correct to about two decimal digits.

4. In order for the 2 approximation to the distribution of  2 to be adequate, we should not have too

many small  otherwise we should pool rows and/or columns. An empirical rule (Cochran’s rule)

states that no  should be smaller than 1 and not more than 20% of the  should be smaller

than 5. (A more stringent rule given in many textbooks is that no  should be less than 5.)

5. When choosing categories or when deciding which rows or columns should be pooled, one must

be careful not to choose categories deliberately in the way most favourable for rejection of 0 (or

acceptance, if that is what we want). The choice should be made objectively on external grounds

or be based on expected frequencies – not observed frequencies.

6. Although the chi-square test looks like a one-sided test (because the critical value is on the right

and we reject 0 if  2 ≥ 2;) it is in fact a test for two-sided alternatives! (A large numerical

value for  2 can be obtained if the observed cell frequency is very small or very large.)

7. Alternative methods of analysing contingency tables are available, but based on advanced

statistical and mathematical principles and therefore beyond the scope of this module. We

mention two such techniques briefly which are covered in STA4806 (an honours course).

(i) The log-linear model

The null hypothesis of independence  = ·· ;  = 1  ;  = 1   may be written

log () = log (·) + log (·) for all  and 



129 STA2601/1

If this null hypothesis is rejected, then it may be that alternative models are suitable for

expressing the log-probability, log  , in terms of the logs of the marginal probabilities. The

purpose of such an analysis is to find a model that will adequately explain the data. This model

can be used for multidimensional contingency tables. The analysis cannot be done without a

computer.

(ii) Correspondence analysis

Correspondence analysis is a technique that enables one to display a contingency table on a

special graph. Rows in the table that are very similar are close to one another on the graph

and likewise for columns that are very similar. If a given column is very close to a given row

on the graph, then the frequency in that row and column is very large compared to the other

frequencies in that row (and in that column).

Theorem 5.1 states that the distribution of  2 is approximately 2 and then only under certain

conditions.

There is a special case where an exact test exists. This means we may compute probabilities 100%

accurately. The exact test exists in the case of 2× 2 tables.

C. Exact test for a 2× 2 table

In the case of 2 × 2 contingency tables an exact test exists – the only problem is that extensive

tables are needed to apply it. In fact, one such table fills a whole book:

Lieberman, GJ and Owen, DB: Tables of the hypergeometric probability distribution,
Stanford, California, Stanford University Press, 1961.

It falls beyond the scope of this module to explain how the exact probabilities for a 2× 2 table can be

computed. You only need to know how to apply the table to perform a hypothesis test. For a 2 × 2
table we have four cells.

Consider the following notation:

Let  be any one of the four cell frequencies

 the column total corresponding to that cell

 the row total corresponding to that cell

 the total number of observations.
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Thus we have

Attribute A

Attribute B

1 2 Total

1  

2

Total  

The remainder of the table can now be completed in by subtraction:

1 2 Total

1  −  

2  −   −  − +   − 

Total   −  

For fixed N n and k  can be regarded as a value assumed by a random

variable which has a hypergeometric distribution, denoted by  ( ;; ) 

and this is the distribution tabulated in table D for the special case  = 12

Luckily JMP can compute these probabilities for any value of  and you need to be able to interpret

the output for JMP which is explained in the workbook. In order to see how the hypothesis test works

and how you have to use the table, we present only a very small part of the thick book of tables on

the hypergeometric distribution. Table D below is the special case where the total sample size is

 = 12 and the possible combinations of  and  go from 1 to 6.
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Table D:
The hypergeometric probability distribution:  ( ≤ ) for  = 12

           

1 1 0 0917 4 4 0 0141 6 2 0 0227

1 1 1 1000 4 4 1 0594 6 2 1 0773

4 4 2 0933 6 2 2 1000

2 1 0 0833 4 4 3 0998

2 1 1 1000 4 4 4 1000 6 3 0 0091

6 3 1 0500

2 2 0 0682 5 1 0 0583 6 3 2 0909

2 2 1 0985 5 1 1 1000 6 3 3 1000

2 2 2 1000

5 2 0 0318 6 4 0 0030

3 1 0 0750 5 2 1 0848 6 4 1 0273

3 1 1 1000 5 2 2 1000 6 4 2 0727

6 4 3 0970

3 2 0 0545 5 3 0 0159 6 4 4 1000

3 2 1 0955 5 3 1 0636

3 2 2 1000 5 3 2 0955 6 5 0 0008

5 3 3 1000 6 5 1 0121

3 3 0 0382 6 5 2 0500

3 3 1 0873 5 4 0 0071 6 5 3 0879

3 3 2 0995 5 4 1 0424 6 5 4 0992

3 3 3 1000 5 4 2 0848 6 5 5 1000

5 4 3 0990

4 1 0 0667 5 4 4 1000 6 6 0 0001

4 1 1 1000 6 6 1 0040

5 5 0 0027 6 6 2 0284

4 2 0 0424 5 5 1 0247 6 6 3 0716

4 2 1 0909 5 5 2 0689 6 6 4 0960

4 2 2 1000 5 5 3 0955 6 6 5 0999

5 5 4 0999 6 6 6 1000

4 3 0 0255 5 5 5 1000

4 3 1 0764

4 3 2 0982 6 1 0 0500

4 3 3 1000 6 1 1 1000

In real life there could be any possible value for the total sample space!

The null hypothesis is the same as for the ×  contingency table.

0 : There is no association between attribute A and attribute B.

However, unlike the chi-square test, which is a test for a two-sided alternative, the exact 2 × 2 test

can be applied for one or two-sided alternatives.

To use table D, first find the smallest marginal total (row or column) or if there is more than one

marginal total equal to the smallest value, choose any one of these, and call it  If  is a row total,

choose  the smallest column total (or any of the two column totals if they are equal). Then  is the

cell frequency corresponding to the row and column with marginal totals  and  If  is a column

total then  is the smallest row total.
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For example, in the case



↑
2 1 3 → 

4 5 9

6 6 12

↑


choose  = 3 (the smallest marginal total, in this case a row total) and  = 6 (the smallest column

total; suppose for argument’s sake we choose the second column) then x = 1 We now use the

symbol  to denote the random variable which has outcome  (ie  = 1) in the table. If  = 3 then

 can assume the values 0; 1; 2 or 3, that is ifA is the set of discrete points of , thenA = {0; 1; 2; 3}
and

 ( = 0) +  ( = 1) +  ( = 2) +  ( = 3) = 1| {z }
These probabilities are not given individually, but cumulatively in table D.

The second block from the top, in the last column of the table, gives

 ( = 0  = 3  = 6  = 12) = 0091

In that same block,  ( ≤ 1) = 0500

 ( ≤ 2) = 0909

 ( ≤ 3) = 1000

Next we have to figure out the alternative hypothesis for . (The null hypothesis is of course that

there is no association between the two attributes A and B.)

The wording "figure out" is exactly what it says! From the given problem and the cell you chose for

,you have to figure out whether the one-sided alternative would mean small values for  to favour

the alternative or large values for  to favour the alternative.

If the alternative implies small values of : reject 0 at the  level if  ( ≤ ) ≤ 

If the alternative implies large values of : reject 0 at the  level if  ( ≥ ) ≤  that is

1−  ( ≤ − 1) ≤ 

If the alternative is two-sided, in other words we want to reject 0 if  is too large or too small,

compute  ( ≤ ) and  ( ≥ ) = 1 −  ( ≤ − 1). If the smaller of these two probabilities is

≤ 1
2
 reject the null hypothesis at the  level.
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Example 5.2

We want to test whether there is an association between smoking and preference for coffee (whether

smokers tend to prefer coffee or equivalently whether coffee drinkers tend to smoke). A random

sample of 12 people yielded the following table:

Coffee Tea Total
Smokers 4 1 5

Nonsmokers 4 3 7

Total 8 4 12

Solution

0: There is no association between smoking and preference for coffee.

1: Smokers tend to prefer coffee to tea.

For this 2× 2 table we have to choose  = 4 and  = 5 (Our table D will not allow us to work with an

  6 or a   6.)

As soon as you choose  and  it "fixes the class" for  In this example  = 1 and it means there

was one person in the class of people who smoke and do not drink coffee.

Now comes the "figuring out" of the alternative hypothesis!

Tea


↑
Smokers 4 1 5 ←− 

4 3 7

8 4 12 −→ 

↑


The alternative (smokers prefer coffee) would imply a small value of  to reject 0 that is so small

that P (X ≤ x)≤ α

Now  = 1 and  ( ≤ 1) = 0424 (from table D)
 005 = 

The small -value or exceedance probability is therefore larger than  so that the test statistic is not

significant.

The null hypothesis therefore cannot be rejected at the 5% level (or any of the usual significance

levels).
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Example 5.3

Suppose we want to test for association (two-sided alternative) in the following table:

1 2 Total
1 6 1 7

2 0 5 5

Total 6 6 12

Solution

0: There is no association between attribute A and attribute B.

1: There is an association. (Since the direction cannot be specified a two-sided test has to be

done.)

Choose  = 5  = 6 and  = 5 Under 0  has a  (12; 6; 5) distribution and

 ( = 0) +  ( = 1) +  ( = 2) +  ( = 3) +  ( = 4) +  ( = 5) = 1

To show that this looks like a proper discrete distribution (and for illustration purposes) we draw the

following probability distribution. The individual probabilities are obtained from table D by subtraction.

(See the second part of activity 5.6 in the workbook for a similar example.)

Figure 5.3: Probability distribution of  ∼  ( = 12;  = 6;  = 5)

We can only reject 0 in favour of the two-sided alternative if  is too large or too small and if it

represents a "rare event", in other words only if

 ( ≤ ) ≤ 

2
or if  ( ≥ ) ≤ 

2

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For any 2× 2 table the question of hypothesis testing actually means: given the values of   and

 is the value of  unusual (too large or too small) to be ascribed to chance?

Suppose we choose  = 005⇒ 

2
= 0025

The observed value of  is 5. From table D we find that

 ( ≤ 5) = 1 and  ( ≥ 5) = 1−  ( ≤ 4) = 0008

Since the smaller of these two probabilities is  ( ≥ 5) = 0008 


2
we reject 0 and conclude

that there is an association between the two attributes A and B.

Final remarks

We introduced you to contingency table analysis by stating that it is the simultaneous study of

two nominal variables. How will you capture two nominal variables in a JMP data set? Say for

example you extend example 5.2 to capture the smoking habit and preference for coffee/tea for all

the students taking STA2601? How will you then go a step further to create a cross-tabulation and

test for independence? Please see activities 5.8 and 5.9 of the workbook.

5.4 Correlation
A. Correlation and independence

The concepts "independent" and "uncorrelated" are confused very often. We repeat two results from

unit 1.

Theorem 5.2

Let  and  be two random variables with correlation coefficient 

If  and  are independent then  = 0 (ie  and  are uncorrelated).

Theorem 5.3

Let  and  have a bivariate normal distribution with correlation coefficient 

Then  and  are independent if and only if  = 0
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Thus, if  and  do not have a bivariate normal distribution then  = 0 does not necessarily imply

independence.

Up to this point we did not explicitly mention that we are busy studying the simultaneous

behaviour of two continuous variables. So, in contrast to the previous section where we had

two categorical variables we are now interested in the independence/dependence of two interval-

measured variables.

The sample correlation coefficient is

 =
Σ
¡
 −

¢ ¡
 − 

¢q
Σ
¡
 −

¢2
Σ
¡
 − 

¢2 
An alternative formula is

 =
Σ − (Σ) (Σ)

vuutÃΣ2
 −

(Σ)
2



!Ã
Σ 2 −

(Σ)
2



! 

The first formula is "better" when using a computer.  which is computed from a random sample

(; )   = 1   where  and  are the sample means, is used as an estimator for  If  and

 follow a bivariate normal distribution then  is the MLE for  If  and  do not follow a bivariate

normal distribution, there is usually not a parameter  which is to be estimated. However,  is still

used as a measure of the strength of the relationship between  and  It must be remembered,

however, that  is a measure of linear relationship. A small value of  may mean either that there is

not a strong relationship between  and  or that the relationship is not linear. It is always necessary

to draw a graph on which each observation (; ) is represented as a dot on the (;  ) plane in

order to find out whether the relationship, if it exists, is linear.

If we intend to construct confidence intervals for  or test hypotheses about

 we must assume that  and  follow a bivariate normal distribution.

How do we know that we have a bivariate normal distribution in a practical application? This is a

difficult problem. There are indicators which are necessary but not sufficient. If certain conditions

are not satisfied, we do not have bivariate normality. If the conditions are satisfied, we can feel a bit

more confident (but not certain) of bivariate normality. The indicators are as follows:
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(a) Marginal normality

If the joint distribution of  and  is bivariate normal then the marginal distributions of  and 

are univariate normal. We plot a histogram of each variable. These histograms should have a bell

shape. We may of course perform a goodness-of-fit test for normality for the marginal distributions

if we have a large number of observations.

(b) Linearity

The product moment correlation coefficient is a measure of linear correlation. If  and  have

a bivariate normal distribution then the relationship between them must be linear. We may plot

a scatter diagram of the observations. The points should be scattered around a straight line,

otherwise we can be sure that the joint distribution is not bivariate normal.

A necessary and sufficient condition for  and  to have a bivariate normal distribution is that all

linear combinations of the form  +  (for all possible choices of  and ) should be univariate

normal. You may use your imagination to think how one would use this fact to test whether  and 

have a bivariate normal distribution.

A further point could not be stressed often enough: if  and  are correlated then it does not imply

that there is a causal relationship. A famous case in point is a study of the relationship between

smoking and the incidence of lung cancer. Although a definite correlation was observed, it was not a

proof that smoking causes lung cancer. A causal relationship could only be demonstrated by means

of carefully controlled experiments in which external factors which may contribute towards cancer

can be "held constant". An example which is often cited is that there is a high correlation between

the salary of the minister of a certain church in Xville and the price of rum in Jamaica. The question

is, which is cause and which is effect?

B. Testing for zero correlation

Theorem 5.4

Let (; )   = 1   be a random sample of size  from a bivariate normal

distribution, and let  be the sample correlation coefficient. If  = 0 the statistic

 =

√
− 2√
1−2

has a Student’s t-distribution with (− 2) degrees of freedom.
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We give this theorem without proof and use this result to test

0 :  = 0 against the alternatives

1 :   0 or

1 :   0 or

1 :  6= 0

In the latter case, for example, 0 is rejected if | |  1
2
; −2

Table IX of Stoker makes it unnecessary for us to compute  since this table gives critical

values for  itself. To see that this table is based on theorem 5.4, consider the case of testing

0 :  = 0 against 1 :  6= 0 Let  = 1
2
; −2 then 0 is accepted if

√
− 2 || 

√
1−2  

∴ (− 2)2 ¡1−2
¢

 2

∴ (− 2)2  2 − 22

∴
¡
− 2 + 2

¢
2  2

∴ 2  2
¡
− 2 + 2

¢
∴ ||  

√
− 2 + 2

Choose, for example,  = 005 and  = 20 Then  = 0025;18 = 2101 (table III).

∴ 
√
− 2 + 2 = 2101

√
18 + 4414 = 04438 which is the same as the critical value in table IX.

Example 5.4

At a certain university the 18 students who enrolled for a specific course were subjected to an

aptitude test at the beginning of the year. Their scores in the aptitude test () and their marks

in the final examinations ( ) were as follows:

Student   Student   Student  
1 13 65 7 16 45 13 5 65

2 11 75 8 11 35 14 2 45

3 5 60 9 12 50 15 7 40

4 15 70 10 8 40 16 9 60

5 10 75 11 10 80 17 12 80

6 6 60 12 14 75 18 14 60

We wish to test at the 10% level whether  and  are correlated.
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Solution

The first step is drawing a scatter diagram of  and  to determine whether the relationship, if there

is one, is indeed linear.

Figure 5.4: Scatter diagram of  and 

From figure 5.4 it seems as though there is no strong linear relationship between  and  but this

is a subjective conclusion. We formally test

0 :  = 0 against

1 :  6= 0
by computing the test statistic  (or  ).

We compute the sample correlation coefficient in tabular form.

   −
¡
 −

¢2
 − 

¡
 − 

¢2 ¡
 −

¢ ¡
 − 

¢
13 65 3 9 5 25 15

11 75 1 1 15 225 15

5 60 −5 25 0 0 0

15 70 5 25 10 100 50

10 75 0 0 15 225 0

6 60 −4 16 0 0 0

16 45 6 36 −15 225 −90
11 35 1 1 −25 625 −25
12 50 2 4 −10 100 −20
8 40 −2 4 −20 400 40

10 80 0 0 20 400 0

14 75 4 16 15 225 60

5 65 −5 25 5 25 −25
2 45 −8 64 −15 225 120

7 40 −3 9 −20 400 60

9 60 −1 1 0 0 0

12 80 2 4 20 400 40

14 60 4 16 0 0 0

180 1 080 0 256 0 3 600 240
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 = 10;  = 60

 =
240√

256× 3600 =
240

16× 60 = 025

In table IX we find the 10% two-sided critical value (which is the same as the 5% one-sided critical

value) which is equal to 0.4. Since 025  04 0 is not rejected in favour of 1 at the 10% level.

Alternatively

 =
√
− 2 √

1−2
=
√
16

025√
09375

=
1

09682
= 10328

in other words we do not reject 0 :  = 0 at the 10% level (005;16 = 1746) 

Notes about the computations of R

1. In the above example the data were chosen in such a way that  and  are integers. In practice

this would happen only rarely. If  and  are not integers or have more than a few decimal digits

then it would be preferable to compute the covariance and variances by means of the alternative

formulae

Σ
¡
 −

¢2
= Σ2

 − (Σ)
2 

Σ
¡
 − 

¢2
= Σ 2 − (Σ)2 

Σ
¡
 −

¢ ¡
 − 

¢
= Σ − (Σ) (Σ) 

2. The correlation coefficient between  and  is identical to the correlation coefficient between

1 + 1 and 2 + 2 provided 1  0 and 2  0 For ease of computation one may subtract a

constant near the mean of each variable and divide by another suitably chosen constant to reduce

the observations to smaller numbers. For example in example 5.4 we could replace  by − 10
and  by ( − 50) 5 where the constants 10; 50 and 5 were chosen by inspecting the data.

(This type of transformation is nowadays seldom done because of the availability of calculators

and the use of computers.)

C. Testing other hypotheses about the correlation coefficient

A famous British statistician, Sir Ronald Fisher, found an approximation to the distribution of the

correlation coefficient (the distribution itself is much less manageable when  6= 0). We state this as

a theorem which we give without proof.
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Theorem 5.5

Let  be the sample correlation coefficient of a random sample from a bivariate normal

distribution.

Let  =
1

2
log

1 +

1−
and  =

1

2
log

1 + 

1− 


Then, for large samples,  =
√
− 3 ( − ) is approximately a  (0; 1) variate.

Table X lists this transformation, usually called Fisher’s -transformation. Note that

1

2
log

1 +

1−
= −1

2
log

1 + (−)
1− (−)

so that for negative  one must look up the transformation of || and add a negative sign.

Suppose that the notation 0 implies a known value (other than zero) specified under the null

hypothesis.

In order to test 0 :  = 0 against

1 :   0 or

1 :   0 or

1 :  6= 0 we compute

 =
√
− 3 ( − 0) where 0 =

1

2
log [(1 + 0)  (1− 0)]

and reject 0 if this quantity exceeds a critical value of the  (0; 1) distribution.

Example 5.5

In a sample of 28 observations it is found that  = 02 We wish to test 0 :  = 05 against

1 :  6= 05 at the 5% level.

Solution

We look up in table X (Stoker):

 =
1

2
log

1 + 02

1− 02 = 02027
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0 =
1

2
log

1 + 05

1− 05 = 05493

∴  =
√
25 (02027− 05493) = −1733

In table II we find 0025 = −196

Since −196  −1733  196 we do not reject 0 :  = 05 at the 5% level.

D. Confidence interval for 

As has been said, the distribution of  when  6= 0 is very complicated. We could use theorem 5.5

to construct a confidence interval for 

For a 95% confidence interval, for example, we use the fact that

095 =  (−196    196)

≈ 
¡−196  √− 3 ( − )  196

¢
= 

µ
 − 196√

− 3     +
196√
− 3

¶

where  =
1

2
log

1 +

1−

 =
1

2
log

1 + 

1− 

and then we have to transform the confidence limits for  back to confidence limits for  by means of

the formula

 =
 − −

 + −
= tan ()

or by using table X inversely.
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Example 5.6

From a sample of 25 observations from a bivariate normal distribution  = −03 was found. To find a

95% confidence interval for  we look up for  = 03 in table X to find  = 03095; thus for  = −03
we have  = −03095 The 95% confidence interval for  is

−03095− 196√
22

≤  ≤ −03095 + 196√
22

∴ −03095− 04179 ≤  ≤ −03095 + 04179

∴ −07274 ≤  ≤ 01084

Now
−07274 − 07274

−07274 + 07274
=
04832− 20697
04832 + 20697

= −062

and
01084 − −01084

01084 + −01084
=
11145− 08973
11145 + 08973

= 011

that is a 95% confidence interval for  is (−062; 011). Using table X we have:

for  = −07250 :  = −062
for  = −07414 :  = −063

Using linear interpolation:

For  = −07274 :  = −062 + 07274− 07250
07414− 07250 (062− 063)

= −062− 00015

≈ −062

for  = 01104 :  = 011

for  = 01003 :  = 010

Once more using linear interpolation:



144

If you are fond of graphs, make the following sketch:

∴ for  = 01084 :  = 010 +
01084− 01003
01104− 01003 (011− 010)

= 010 + 0008

≈ 011

which is the same result.

E. Testing the equality of two correlation coefficients

Let 1 be a correlation coefficient computed from a random sample of size 1 from a distribution

with population correlation coefficient 1 Let 2 be a correlation coefficient computed from a sample

of size 2 from a distribution with correlation coefficient 2 We assume 1 and 2 are based on

independent samples, in other words 1 and 2 are independent. We wish to test 0:1 = 2

Let 1 =
1

2
log (1 +1)  (1−1)

2 =
1

2
log (1 +2)  (1−2)

 =
1

2
log (1 + )  (1− )   = 1; 2

If 0 : 1 = 2 is true then 1 = 2
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For large values of 1 and 2

1 − 1 is approximately 

µ
0;

1

1 − 3
¶

2 − 2 is approximately 

µ
0;

1

2 − 3
¶


Therefore (1 − 2) − (1 − 2) is approximately 

µ
0;

1

1 − 3 +
1

2 − 3
¶

provided 1 and 2 are

independent.

Theorem 5.6

If 1 = 2, that is 1 = 2 then  =
1 − 2r
1

1 − 3 +
1

2 − 3
is approximately  (0; 1) 

We use this result in the usual manner to test 0

Example 5.7

In a sample of 111 schoolboys the correlation coefficient between their scores in an intelligence test

and their scores in the final examinations was found to be 0.25. In a sample of 57 girls the correlation

coefficient between the same two scores is 0.35. We wish to test at the 10% level whether the

difference between the two sample correlation coefficients is significant.

Solution

We want to test 0 : 1 = 2 against
1 : 1 6= 2

We compute

1 =
1

2
log

125

075
= 02554

2 =
1

2
log

135

065
= 03654

1

1 − 3 +
1

2 − 3 =
1

108
+
1

54
=
1

36

∴  =
1 − 2r
1

1 − 3 +
1

2 − 3
= 6 (02554− 03654) = −066
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We will reject 0 if || ≥ 1645 in other words if  ≤ −1645 or if  ≥ 1645

Since −1645  −066  1645 we cannot reject 0 at the 10% level.

Exercise 5.1

1. In a random sample of 50 men it was found that 26 smoked. In a random sample of 50 women,

14 smoked. Is there a relationship between gender and smoking? (Use the 21
2
% level.)

2. One hundred students were classified with respect to their appearance ( = attractive;  =

ordinary;  = unattractive) and their intelligence (very high; high; average; low). The frequencies

are as follows:

VH H A L
A 9 12 7 2

O 8 11 14 7

U 3 7 9 11

Test at the 10% level whether there is an association between appearance and intelligence.

Discuss the relationship between the two variables.
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3. The following table gives the high school score () (on a five-point scale) and the first-year

university score ( ) of 30 students:

     

29 23 29 19 31 28

23 25 27 22 33 32

36 29 37 31 27 18

35 38 27 26 35 27

37 35 33 28 29 21

28 29 28 27 27 17

35 30 31 24 29 17

30 27 28 30 32 23

23 21 30 33 34 26

30 29 22 18 25 27

Draw a graph of the data to decide whether the relationship is linear or not. Compute the sample

correlation coefficient and test 0 :  = 0 against 1 :   0 at the 1% level.

4. In a random sample of 39 observations the sample correlation coefficient was −035 Test

0 :  = −02 against 1 :  6= −02 at the 5% level.

5. In a random sample of 33 observations  = −06 was found, and in a second random sample of

153 observations  = −08 Test at the 5% level 0 : 1 = 2 against 1 : 1 6= 2

6. In a random sample of 10 observations  = 07 was found. Find 95% confidence limits for 

7. For the case  = 12  = 6,  = 5 construct a 2×2 contingency table for which the null hypothesis

would be rejected at the 1% level of significance in favour of a one-sided alternative.

8. In an experiment to test whether white mice are more susceptible to influenza than brown mice,

six mice of each colour were exposed to an influenza virus. One of the six brown mice contracted

influenza, compared to five of the six white mice. Construct a contingency table and test the

hypothesis that the two strains are equally susceptible, against the alternative that white mice are

more susceptible, at the 5% level of significance.

9. A random sample of 200 elderly men were classified according to level of training and number of

children:

Number of children
Training 0 1 2 more than 2

Primary school 18 22 30 30

Secondary school 6 24 15 15

College 2 0 13 15

University 4 4 2 0

Test at the 5% level whether the number of children is independent of the father’s level of training.
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10. In a random sample of 19 observations from a bivariate normal distribution, the correlation

coefficient was  = 05

(a) Test 0 :  = 02 against 1 :   02 at the 5% level of significance.

(b) Construct a 95% (two-sided) confidence interval for 

11. Two independent random samples from bivariate normal distributions yielded the following

correlation coefficients:

Sample 1: 1 = 06 1 = 53

Sample 2: 2 = 09 2 = 53

Test 0 : 1 = 2 against 1 : 1  2 at the 5% level of significance.

12. A certain agricultural product is produced in ten districts. The rainfall (cm) and yield (tons per ha)

were recorded on one farm in each district:

District 1 2 3 4 5 6 7 8 9 10

Rainfall 60 48 34 46 58 70 26 44 62 52

Yield 17 22 19 26 32 12 10 21 16 25

Compute the correlation coefficient and test at the 5% level of significance whether rainfall and

yield are correlated. Discuss your assumptions and your conclusions.
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5.5 Learning outcomes

Use the following learning outcomes as a checklist after you have completed this study unit to

evaluate the knowledge you have acquired.

After studying study unit 5, you should be able to

¥ define statistical independence

¥ check for independent observations

¥ explain the dependence of five classical examples

¥ explain what is meant by a contingency table

¥ perform and interpret the chi-square test of independence for an ×  contingency table

¥ perform an exact test for a 2× 2 contingency table

¥ define the terms sample covariance and sample correlation coefficient

¥ perform and interpret the hypothesis test 0 :  = 0

¥ compute a confidence interval for 

¥ perform and interpret the hypothesis test 0 :  = 0

¥ perform and interpret the hypothesis test for the equality of two correlation coefficients,

0 : 1 = 2
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STUDY UNIT 6

Inference on variances

We discuss four problems: inference on the variance of a normal distribution, inference on the ratio of

the variances of two normal distributions based on independent samples, testing the equality of two

variances based on paired observations and testing the equality of more than two variances. In the

first two instances we have to distinguish between problems involving known means and problems

involving unknown means.

6.1 One-sample problem

Example 6.1

A tyre manufacturer claims that a certain type of tyre will last an average of 50 000 km on a certain

make of car, and that the standard deviation is no more than 3 000 km. Eight tyres were tested by

an inspector, and they lasted the following distances (in thousands of km):

47; 48; 50; 51; 52; 55; 55; 58

Would you believe the claim that the standard deviation is at most 3 000 km

(a) if you accept that the population mean is 50 000 km?

(b) if you do not accept the specified mean?

How shall we test this?

To derive a test statistic and a proper hypothesis test, we combine result 1.2 and result 1.3 of study

unit 1 into the following theorem:
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Theorem 6.1

Let 1 2   be a random sample from a 
¡
; 2

¢
distribution. Then

(a)
P
=1

( − )2 2 ∼ 2

(b)
P
=1

¡
 −

¢2
2 ∼ 2−1 where  =

1


Σ

Hypothesis testing

We want to test the null hypothesis H0: σ
2= c

(a) μ known

The procedure is based on the statistic  =
P
=1

( − )2  which, if 0 is true, is a 2 variate.

If Σ ( − )2 is small, it is an indication that 2 is small and vice versa. We reject 0 : 
2 = 

against the alternatives

(i) 1 : 
2 6=  if   2

1−1
2
;

or   21
2
;

(ii) 1 : 
2   if   21−;

(iii) 1 : 
2   if   2;

(The explanation and the application of the critical values of the chi-square distribution are shown

in figure 6.1.)

(b) μ unknown

The procedure is based on the statistic  =
P
=1

¡
 −

¢2
 which, if 0 is true, is a 2−1

variate.

We reject 0 : 
2 =  against the alternatives

(i) 1 : 
2 6=  if   2

1−1
2
;−1

or   21
2
;−1

(ii) 1 : 
2   if   21−;−1

(iii) 1 : 
2   if   2;−1
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Suppose we use the notation of table IV (Stoker) for the critical values of the 2 distribution except

that we interchange  and  This means we first write down the tail-to-the-right area and follow

it by the degrees of freedom. [Please see activities 6.2 and 6.3 for concrete examples of this

notation.]

We define the use and the notation of the critical values of the chi-square distribution such that, if

 ∼ 2 then

(a) 
³
2
1−2;    2

2;

´
= 1− 

(b) 
³
  21−;

´
= 1− 

(c) 
³
  2;

´
= 1− 

Figure 6.1: Critical values of the 2 distribution
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Example 6.1 (continued)

This example is a one-sided problem. That means we have to test

0 : 
2 = 9 against

1 : 
2  9

To calculate the value of the test statistic, it depends on what we assume about the population mean.

(a) Suppose we assume that the population mean is 50 000 km. How will we utilise this

information?

The observations, 1 2  8 are given in thousands of km which means we must do the

same with  Hence we write: Assume that μ = 50

Now we are able to compute
8P

=1

( − 50)2 = 132

We use the test statistic  =
Σ ( − )2


which has a 2 distribution.

So,  =
132

9
= 146667

Since we have one-sided testing (to the right) we will reject 0 if  ≥ 2;8

 was not specified and we will look up the critical values for both  = 005 and  = 010

Now 2010;8 = 133616 and since 146667  13362 we reject 0 at the 10% level in favour of 1

(We do not reject 0 at the 5% level since 2005;8 = 155073.)

(b) Suppose we do not know that μ = 50

Now we have to estimate the "unknown population mean" as ̂ =  and we have to compute
8P

=1

¡
 −

¢2


 =
Σ

8
=
416

8
= 52 and

8P
=1

¡
 −

¢2
= 100
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We use the test statistic  =
Σ
¡
 −

¢2


which has a 2−1 distribution.

So, now  =
100

9
= 111111

Now 2010;7 = 12017 and since 111111  12017 we cannot reject 0 in favour of 1 at the 10%

level.

Confidence intervals

We want to derive a confidence interval for 2

How shall we derive a two-sided 100 (1− )% confidence interval for an unknown variance?

From theorem 6.1 we know that if  =
Σ
¡
 −

¢2
2

then  ∼ 2−1 From this we may derive the

probability expression

1−  = 

µ
2
1−1
2
;−1

   21
2
;−1

¶

= 

"
2
1−1
2
;−1


Σ
¡
 −

¢2
2

 21
2
;−1

#

= 

⎡⎣ 1

21
2
;−1


2

Σ
¡
 −

¢2 
1

2
1−1
2
;−1

⎤⎦

= 

⎡⎣Σ ¡ −
¢2

21
2
;−1

 2 
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ 

Therefore

⎡⎣Σ ¡ −
¢2

21
2
;−1

;
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ is a 100 (1− )% confidence interval for 2
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Please note that this interval can also be used to test the hypothesis 0 : 
2 =  against 1 : 

2 6= 

The interval above was derived under the (b)-assumption of theorem 6.1 and for a two-sided

confidence of 1− 

As another example, we shall now derive a one-sided upper confidence interval for 2 if  is assumed

to be known.

Let  =
P
=1

( − )2 2 then  ∼ 2

∴ 1−  = 
£
21−;  

¤
= 

"
21−; 

Σ ( − )2

2

#

= 

"
1

21−;


2

Σ ( − )2

#

= 

"
2 

Σ ( − )2

21−;

#


Therefore

"
0;
Σ ( − )2

21−;

#
is a 100 (1− )% one-sided confidence interval for 2 which tests the

hypothesis 0 : 
2 =  against 1 : 

2  .

It is better (and safer) to understand how to derive these intervals than to try and memorise the

results!

You must be able to derive the other one and two-sided intervals if  is known or unknown.

Example 6.2

In a sample of size 20 from a 
¡
; 2

¢
distribution it was found that Σ = 30 and Σ2

 = 60

Construct 90% two-sided confidence limits for 2

(a) assuming  = 2

(b) assuming  is unknown.

Would you accept 0 : 
2 = 1 against 1 : 

2 6= 1 in each case?



156

Solution

Σ
¡
 −

¢2
= Σ2

 − 
2

= Σ2
 − (Σ)

2 

= 60− (30)2 20

= 60− 45

= 15

Σ ( − )2 = Σ2
 − 2Σ + 2

= 60− 2 (2) (30) + 20 (2)2

= 60− 120 + 80

= 20

(a) If μ is known:

A 90% two-sided confidence interval for 2 is

Ã
20

2005;20
;

20

2095;20

!
that is

µ
20

314104
;

20

108508

¶
that is (064; 184) 

A variation on the theme is where it is required to derive a confidence interval for the standard

deviation. What will a 90% two-sided confidence interval for  be?

We simply take the square root on both sides and a 90% confidence interval for  is therefore

(080; 136) 

(b) If μ is unknown:

The 90% two-sided confidence interval for 2 now becomes

Ã
15

2005;19
;

15

2095;19

!

that is
µ

15

301435
;

15

10117

¶
that is (050; 148) 

A two-sided confidence interval may be used to test a two-sided alternative. In both cases 2 = 1

falls inside the interval and we do not reject 0 : 
2 = 1 If 2 = 1 did not fall inside the interval we

would have come to the conclusion that we reject 0 at the 10% level of significance.
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Example 6.3

Suppose we wish to construct a 95% two-sided confidence interval for 2 based on a random sample

of 16 observations from a 
¡
; 2

¢
distribution, assuming  is unknown.

(a) What is the expected length of the confidence interval?

(b) What is the expected length of the confidence interval if the sample size is 30?

Solution

The crux of this question is that we have to bring "mathematical expectation" somewhere into the

picture. This is where we have to fall back on theoretical knowledge which always takes us back to

study unit 1.

We will use the fact that
P
=1

¡
 −

¢2
2 ∼ 2−1

∴ 
h
Σ
¡
 −

¢2
2

i
= − 1 (see result 1.1)

∴ 
h
Σ
¡
 −

¢2i
= 2 (− 1)

(a) The 95% confidence interval for 2 when  = 16 is⎡⎣Σ ¡ −
¢2

21
2
;−1

;
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ = "Σ ¡ −
¢2

274884
;
Σ
¡
 −

¢2
62614

#


The length of the interval is the difference between the upper bound and the lower bound

= Σ
¡
 −

¢2µ 1

62614
− 1

274884

¶
= 01233Σ

¡
 −

¢2
 which is a random variable.

The expected length is therefore 01233
h
Σ
¡
 −

¢2i
= (01233) (15)2 = 184952

(b) Now  = 30 and the length of the interval is

Σ
¡
 −

¢2Ã 1

20975;29
− 1

20025;29

!
= Σ

¡
 −

¢2µ 1

160471
− 1

457222

¶

= Σ
¡
 −

¢2
(00404) 

The expected length is therefore 00404 (29)2 = 117162

[NB The intervals become narrower as  gets larger even though


h
Σ
¡
 −

¢2i
= (− 1)2 Convince yourself by calculating the expected length of a sample
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size of  = 10.]

6.2 Two independent samples

Example 6.4

Two operators are asked to analyse 10 samples each of a mixture which contains exactly 14.6%

iron. The one operator broke two test tubes, with the result that he has only eight analyses. Their

determinations of the iron content were as follows:

Operator A: 146 145 148 144

142 148 147 146

Operator B: 143 146 150 146

141 151 150 146

143 146

Is there reason to believe that the two operators differ with respect to precision, in other words does

one operator show greater variation in his determination than the other?

Example 6.5

A manufacturer of prestige cars has a choice between two makes of fan belts to install in the cars.

He wants to use the make with the least variation in lifetime, because the lifetime of any given fan

belt can then be predicted accurately and the belt replaced before it breaks. (The mean lifetime is

not of prime importance.) However, make A is cheaper, and he wants to use B only if its standard

deviation is less than 80% of the standard deviation of A. He tests a number of fan belts of each

make, and the results (in thousands of km) are as follows:

Make A: 44; 44; 49; 38; 46; 41; 50; 46; 50; 42

Make B: 50; 51; 50; 48; 53; 48; 50

Do these observations confirm that the standard deviation of B is less than 0.8 times that of A?

We use the following model for this type of problem:

Let (11  11) and (21  22) be two independent random samples from 
¡
1; 

2
1

¢
and
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
¡
2; 

2
2

¢
distributions respectively. Thus in total 11  11  21  22 are (1 + 2)

independent random variables.

From result 1.3 we know that Σ
¡
1 −1

¢2
21 and Σ

¡
2 −2

¢2
22 are independent 21−1 and

22−1 variates respectively. Thus it follows from definition 1.21 that  =

¡
21−1

¢
 (1 − 1)¡

22−1
¢
 (2 − 1)

has an

(1−1);(2−1) distribution.

In other words

 =
Σ
¡
1 −1

¢2
21 (1 − 1)


Σ
¡
2 −2

¢2
22 (2 − 1)

=
21
21


22
22

=
22
21
· 

2
1

22

has an 1−1;2−1 distribution, where

1 =
1

1

1P
1

1; 2 =
1

2

2P
1

2;

21 =
1

1 − 1Σ
¡
1 −1

¢2
; 22 =

1

2 − 1Σ
¡
2 −2

¢2


Aha, and here we have the key to a test statistic.

We use as test statistic

 =
22
21
· 

2
1

22
∼ 1−1;2−1

Since this follows a "standard distribution" which has been studied and for which we have tables with

critical values, the last problem to solve is to express the null hypothesis in such a way that
∙
22
21

¸
will

"disappear" and thus we will only have to compute a statistic based on the sample outcomes of two

independent samples.

We wish to test 0 : 
2
1 = 22 against three possible alternatives.

(A) 1 : 
2
1 6= 22

(B) 1 : 
2
1  22
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(C) 1 : 
2
1  22

The trick is to "manipulate" 0 : 
2
1 = 22 and rewrite it as the equivalent expression 0 :

22
21
= 1

This means that the three possible alternatives will change accordingly to

(A) 1 :
22
21
6= 1

(B) 1 :
22
21

 1

(C) 1 :
22
21

 1

We can even take all the possible hypotheses a step further (to a more general expression) by

replacing the 1 with a known constant (call it ).

What does this imply?

0 :
22
21
=  means we are actually testing

0 : 
2
2 = 21 (or 0 : 

2
1 =

µ
1



¶
22 if you prefer!)

Before we apply this to our two examples (which were introduced at the beginning of this section)

we need to clarify how to obtain the critical values. Do you recall that if  ∼  ; then
1


∼ ;?

(See result 1.4.)

We assume the shorthand notation ; ; to mean  [ ≥ ; ;] =  Thus, to obtain the lower

critical value from tables V, VI and VII, we use the fact that 1−; ; =
1

;;


Please revisit exercise 1.2 and example 1.11 of study unit 1.

For example if  ∼ 3;6 then  [0975;3;6    0025;3;6] = 095

Thus 

∙
1

0025;6;3
   0025;3;6

¸
= 095

If we use table VI it follows that 
∙
1

147
   66

¸
= 095

It is important to realise that there will always be a connection between a hypothesis test and the

derivation of a confidence interval. The one is only a different algebraic manipulation of the other.

Back to the critical values, we may find critical values such that



µ

1−

2
;1−1;2−1 

22
21

21
22

 
2
;1−1;2−1

¶
= 1−   () 
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Please note that instead of writing  (lower value    upper value) = 1−  we have replaced

"lower value" with the correct notation; replaced  with
22
21
· 

2
1

22
and replaced "upper value" with the

correct notation. What is the point I am trying to make? Expression () is really simple and the

replacements make it look very complicated.

For one-sided critical values we use the following two expressions:



∙
22
21
· 

2
1

22
 ;1−1;2−1

¸
= 1−   ()

and



∙
1−;1−1;2−1 

22
21
· 

2
1

22

¸
= 1−   () 

The critical values given in expression () can be used to test

0 :
22
21
=  (where  is a specified positive number) against

1 :
22
21
6=  because we will reject 0 in favour of 1 if

 ≤ 1−2;1−1;2−1 or if  ≥ 2;1−1;2−1

Expression () is also the first step in the derivation of a two-sided confidence interval for
22
21



This we find as
µ

lower value
21

2
2

;
upper value

21
2
2

¶


In other words, we are (1− ) 100% confident that the ratio
22
21

will fall between

∙
1−2;1−1;2−1

21
2
2

;
2;1−1;2−1

21
2
2

¸


We will use expression () to test 0 against 1 :
22
21

  and we will reject 0 in favour of 1 if

 =
22
21
· 

2
1

22
≥ ;1−1;2−1

Similarly, we will use expression () to test 0 against 1 :
22
21

  and we will reject 0 in favour of

1 if  =
22
21
· 

2
1

22
≤ 1−;1−1;2−1
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Are you able to derive the relevant one-sided confidence intervals for
22
21

and how will you interpret

and apply them?

Please note:

Do you recall from section 6.1 that the 2-test statistic changed depending on whether  was known

or unknown? Exactly the same could happen with the two-sample problem resulting in an  -test.

1. If 1 and 2 are known, we simply replace the  in 2 by  (for  = 1 and 2) and then the

 -statistic has 1 and 2 degrees of freedom.

⇒  =
22
21
·

1P
=1

(1 − 1)
2 1

2P
=1

(2 − 2)
2 2

∼ 1;2

2. Either of the two samples may be regarded as the "first" sample, provided that the null and

alternative hypotheses correspond with this. (This is a way to avoid the "awkward" lower critical

value when using expression () for one-sided testing by switching to expression ().)

Example 6.4 (continued)

We assume that both the analyses represent normal distributions and that they are independent

(which seems logical). We have to test

0 : 
2
2 = 21 written as

22
21
= 1 (ie  = 1) against

1 : 
2
2 6= 21 written as

22
21
6= 1

We use the test statistic⇒  =
22
21
·

1P
=1

(1 − 1)
2 1

2P
=1

(2 − 2)
2 2

because we assume that 1 = 2 = 146 (a

known value).

Computation of  :

8P
=1

(1 − 146)2 = 030;
10P
=1

(2 − 146)2 = 100 1 = 8; 2 = 10



163 STA2601/1

∴  =
22
21
·

8P
=1

(1 − 146)2 8
10P
=1

(2 − 146)2 10

= (1)
(030) 8

(100) 10

=
00375

01

= 0375

Critical values

Under 0 the test statistic has an 8;10 distribution. We choose  = 010 and find from table V that

005;8;10 = 307

095;8;10 = 1005;10;8 = 1335 = 030

Since 030    307 we cannot reject 0 The two operators do not differ with respect to precision.

Example 6.5 (continued)

Let us call make A the first sample and make B the second sample. If we once more assume that

we have two independent random samples from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions respectively,

we can use the F-test to test whether "the standard deviation of B is less than 0.8 times that of A".

0 : 21 = 08 that is

0 :
22
21
= 064 against

1 :
22
21

 064
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We compute

1 = 45; Σ
¡
1 −1

¢2
= 144; 1 − 1 = 9; 21 = 1449 = 16

2 = 50; Σ
¡
2 −2

¢2
= 18; 2 − 1 = 6; 22 = 186 = 3

Since we have a one-sided test we use expression () to find the critical value.

In table V we find 005;9;6 = 410 We reject 0 if   410.

Now

 =
22
21
· 

2
1

22

= 064× 16
3

≈ 34133

Since  = 34133  410 we do not reject 0 There is insufficient evidence that the standard

deviation of make B is less than 0.8 times that of make A. The manufacturer will probably decide to

use make A.

It also follows from expression (B) that



∙
22
21
· 

2
1

22
 005;9;6

¸
= 1− 005

∴ 

∙
22
21


410

21
2
2

¸
= 095

This gives an upper bound for a 95% one-sided confidence interval:

410

21
2
2

=
410

163
= 077

A 95% one-sided confidence interval for
22
21

is therefore [0; 077) which shows that 0.64 is just inside

the interval. We notice that 1 is not inside the interval, in other words the two sample variances are

significantly different (0 : 
2
2

2
1 = 1 is rejected) at the 5% level.
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6.3 Paired observations

Example 6.6

A factory produces shafts which must have very high precision. An engineer has designed a device

which, he claims, can reduce the variability of the product. (Although this device also reduces

the mean diameter, this does not matter because the machine which produces the shafts can

be readjusted to produce slightly thicker shafts.) To test the idea, six shafts were produced and

measured, and then passed through the device. The results are as follows:

Shaft no 1 2 3 4 5 6

Diameter (mm) before treatment 9978 10002 9990 9986 9999 9985

Diameter (mm) after treatment 9914 9902 9910 9910 9911 9913

Do these observations indicate that the variance was decreased by the treatment?

We may again postulate the model  ∼ 
¡
; 

2


¢
  = 1  ;  = 1; 2 and assert that

P
=1

¡
 −

¢2
2 ∼ 2−1;  = 1; 2

but unfortunately these two chi-square variates are not independent and their ratio does not give

rise to an  -distribution. The distribution of their ratio depends on the joint distribution of each pair

(1  2)  If we are prepared to assume that each pair is a random observation from a bivariate

normal distribution (cf unit 1), there is a method for dealing with the problem.

NB The assumption of bivariate normality is not a trivial assumption.

The method of analysing the variances of the joint distribution is developed in theorems 6.2 and 6.3.



166

Theorem 6.2

Let 1 and 2 have a bivariate normal distribution. Then   (1) =   (2)

if and only if (1 −2) and (1 +2) are uncorrelated.

Proof

Let  (1) = 1;  (2) = 2;   (1) = 21;

  (2) = 22;  (1; 2) = 12

Then  (1 −2; 1 +2) =  [(1 −2)− (1 − 2)] [(1 +2)− (1 + 2)]

=  [(1 − 2)− (2 − 2)] [(1 − 1) + (2 − 2)]

= 
h
(1 − 1)

2 − (2 − 2)
2
i

=   (1)−   (2) = 21 − 22

It follows that  (1 −2; 1 +2) = 0 (ie (1 −2) and (1 +2) are uncorrelated)

if and only if 21 = 22

Please note: If 1 and 2 have a bivariate normal distribution, and we define 1 = 1 − 2 and

2 = 1 +2 then 1 and 2 have a bivariate distribution as well. For the newly created bivariate

distribution we will have

 (1) =  (1)− (2) ;  (2) =  (1) + (2),

variances

  (1) =   (1) +   (2)− 2 (1; 2)

  (2) =   (1) +   (2) + 2 (1; 2)

and covariance

 (1; 2) =   (1)−   (2).

Now consider a random sample (1 ; 2)   = 1   from the bivariate normal distribution of 1

and 2 Let us define the following:

1 =
1


Σ1 ; 2 =

1


Σ2 ; 11 = Σ

¡
1 −1

¢2
;
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22 = Σ
¡
2 −2

¢2
; 12 = Σ

¡
1 −1

¢ ¡
2 −2

¢
.

Also let

1 = 1 −2 ; 2 = 1 +2   = 1  .

Then

 1 = 1 −2;  2 = 1 +2

Now (1 ; 2)   = 1   may be regarded as a random sample from a bivariate normal distribution,

and we may use theorem 5.4, which states that if  is the sample correlation coefficient of 1 and

2 then

 =

√
− 2√
1−2

has a −2 distribution, provided 1 and 2 are uncorrelated.
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Theorem 6.3

Let  be the sample correlation coefficient between 1 and 2 as defined above. Then
√
− 2

√
1−2 =

√
− 2 (11 − 22) 2

p
1122 − 212

Proof

 = Σ
¡
1 −  1

¢ ¡
2 −  2

¢


q
Σ
¡
1 −  1

¢2
Σ
¡
2 −  2

¢2
But Σ

¡
1 −  1

¢ ¡
2 −  2

¢
= Σ

£¡
1 −1

¢− ¡2 −2

¢¤ £¡
1 −1

¢
+
¡
2 −2

¢¤
= Σ

¡
1 −1

¢2 −Σ ¡2 −2

¢
= 11 − 22

Σ
¡
1 −  1

¢2
= Σ

£¡
1 −1

¢− ¡2 −2

¢¤2
= Σ

¡
1 −1

¢2 − 2Σ ¡1 −1

¢ ¡
2 −2

¢
+Σ

¡
2 −2

¢2
= 11 − 212 + 22

Likewise Σ
¡
2 −  2

¢2
= 11 + 212 + 22

∴ Σ
¡
1 −  1

¢2
Σ
¡
2 −  2

¢2
= (11 − 212 + 22) (11 + 212 + 22)

= (11 + 22)
2 − 4212

∴  =
11 − 22q

(11 + 22)
2 − 4212

∴ 2
¡
1−2

¢
= (11 − 22)

2 4
¡
1122 − 212

¢
(after some manipulation)

from which the theorem follows.

Result 6.1

If we apply these two theorems, we see that

 =
√
− 2 11 − 22

2
p
1122 − 212

has a −2 distribution provided 0 : 
2
1 = 22 is true.

This result may be used to perform one or two-sided tests of 0
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Example 6.6 (continued)

We want to test 0 : 
2
1 = 22 against 1 : 

2
1  22 (ie one-sided testing). For the critical value, we

choose the 5% level and find 005;4 = 2132 Reject 0 if  ≥ 2132

We perform the calculations of the data in tabular form as follows:

1 2 1 −1

¡
1 −1

¢2
2 −2

¡
2 −2

¢2 ¡
1 −1

¢ ¡
2 −2

¢
9978 9914 −012 00144 004 00016 −00048
10002 9902 012 00144 −008 00064 −00096
9990 9910 000 00000 000 00000 00000

9986 9910 −004 00016 000 00000 00000

9999 9911 009 00081 001 00001 00009

9985 9913 −005 00025 003 00009 −00015
59940 59460 000 00410 000 00090 −00150

From this it follows that

1 =
59940

6
= 999

2 =
59460

6
= 991

11 = 0041; 12 = −0015; 22 = 0009

 =

√
4 (0041− 0009)

2

q
(0041) (0009)− (0015)2

=
0032√
0000144

=
0032

0012
= 26667

Since 26667  2132 we reject 0 at the 5% level. We are inclined to agree with the engineer that

this device reduces the variance.

6.4 More than two independent samples
We now consider the following model:

Let    = 1  ;  = 1   be independent random variables with  ∼ 
¡
; 

2


¢
. We wish

to test the null hypothesis

0 : 
2
1 = 22 =  = 2 against the alternative 1 : 

2
 6= 2 for at least one  6= 

Let  be the sample mean and 2 the sample variance of the -th sample ( = 1  ), that is
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 =
1



P
=1

 ; 2 =
1

− 1
P

=1

¡
 −

¢2


Thus we have  sample variances 21   
2
 and we want to test whether they differ significantly at

the 100% level. If we select two of the sample variances at random, say 2 and 2  then we know

that 2
2
 will have an −1;−1 distribution. However, if we arrange 21   

2
 from the smallest to

the largest, the distribution of the ratio

 = max

2 min


2

will not resemble the F-distribution at all. The distribution of  has been studied by statisticians in

the past, and critical values are given in table E. Using this table is easy enough. For example, if six

sample variances are computed from six independent samples of size 11 each, then each sample

variance has 10 degrees of freedom. If the ratio of the largest to the smallest exceeds 6.92 0 is

rejected at the 5% level.

In order to use table E the sample sizes must be equal. In the case of unequal sample sizes one may

use another test known as Bartlett’s test, but you will not be required to know that test for examination

purposes.

Table E:
Percentage points of the ratio, 2max

2
min

Upper 5% points

  = 2 3 4 5 6

2 390 875 142 202 266

3 154 278 392 507 620

4 960 155 206 252 295

5 715 108 137 163 187

6 582 838 104 121 137

7 499 694 844 970 108

8 443 600 718 812 903

9 403 534 631 711 780

10 372 485 567 634 692

12 328 416 479 530 572

15 286 354 401 437 468

20 246 295 329 354 376

30 207 240 261 278 291

60 167 185 196 204 211

∞ 100 100 100 100 100

 = number of samples
 = degrees of freedom for each sample variance
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Example 6.7

Four independent samples of size  = 5 from assumed 
¡
 2

¢
distributions yield the following

results:

Sample 1 16 16 15 14 14

Sample 2 20 17 17 16 15

Sample 3 20 20 19 18 18

Sample 4 22 22 21 21 19

Test 0 : 
2
1 = 22 = 23 = 24 at the 5% level of significance.

Solution

We have to test 0 : 
2
1 = 22 = 23 = 24 against 1 : 

2
 6= 2 for at least one  6= 

1 = 15
P

1 = 75
P

2
1 = 1129

2 = 17
P

2 = 85
P

2
2 = 1459

3 = 19
P

3 = 95
P

2
3 = 1809

4 = 21
P

4 = 105
P

2
4 = 2211

 = 5

21 =
1

− 1

ÃP
2
1 −

(
P

1)
2



!
22 =

1

− 1

ÃP
2
2 −

(
P

2)
2



!

=
1

5− 1

Ã
1 129− (75)

2

5

!
=

1

5− 1

Ã
1 459− (85)

2

5

!

=
1

4
(4) =

1

4
(14)

= 1 = 35

23 =
1

− 1

ÃP
2
3 −

(
P

3)
2



!
24 =

1

− 1

ÃP
2
4 −

(
P

4)
2



!

=
1

5− 1

Ã
1 809− (95)

2

5

!
=

1

5− 1

Ã
2 211− (105)

2

5

!

=
1

4
(4) =

1

4
(6)

= 1 = 15
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The test statistic is

 =
max

2

min

2

=
35

1

= 35

The critical value is 206 0 is rejected if   206

Since 35  206, we do not reject 0 at the 5% level and conclude that the variances of the four

populations are equal.

6.5 Computers and testing for homogeneity of variance
Most statistical software packages will automatically include a test for the equality of variances when

you request to do a test for means. This also happens when you request to do an ANOVA test for

means. (Both these "tests for means" will be dealt with in the next study unit.)

In statistical software jargon, the testing of equality of variances is referred to as "testing for

homogeneity of variance". Usually these tests are not treated on their own, in other words as

separate tests, but are considered to be part of "testing the assumptions" for other tests!

The output below in figure 6.2 shows the output for a test for the difference between two means

(which you need not worry about at this stage because it will be dealt with in the next study unit) and

you must please take note of the first two lines. The output was produced by using the statistical

package SPSS.

The results for the test for the equality of variances is a so-called F-test. It is not computed in the

way we computed F in section 6.2 and the definition of Levene’s test falls beyond the scope of this

module. However, you need to be able to interpret the first two lines of the output.

The computed value of the F-statistic is 0.218 and the -value associated with this specific value is

0.641. Since -value  ⇒ we cannot reject 0 and for this specific data set we may assume that

the variances of the two groups are the same.
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Independent Samples Test

.218

.641

1.145 1.145

198 197.744

.254 .254

2.5419413 2.5419413

2.2206805 2.2206805

-1.8372795 -1.8373144

6.9211620 6.9211970

F

Sig.

Levene's Test for
Equality of Variances

t

df

Sig. (2-tailed)

Mean Difference

Std. Error Difference

Lower

Upper

95% Confidence Interval
of the Difference

t-test for Equality of
Means

Equal variances
assumed

Equal variances
not assumed

normal

Figure 6.2: SPSS output

If you compare the above with the output in figure 6.3 it shows that JMP provides more than one test

that the variances are equal. Using the same data set, JMP also computed Levene’s F as 0.2177

with a -value of 0.6413 but it gives four other tests as well. This output is again obtained as part of

the output when we test for means. JMP computes the F-test as we defined it in section 6.2 in the

study guide. (The last line of the group of F Ratio tests.)

0

5

10

15

S
td

 D
e

v

0 1

group

0

1

Level

100

100

Count

15.98282

15.41725

Std Dev

12.58769

11.94631

MeanAbsDif to Mean

12.54831

11.94125

MeanAbsDif to Median

O'Brien[.5]

Brown-Forsythe

Levene

Bartlett

F Test 2-sided

Test

0.1312

0.1921

0.2177

0.1278

1.0747

F Ratio

1

1

1

1

99

DFNum

198

198

198

.

99

DFDen

0.7176

0.6617

0.6413

0.7207

0.7207

p-Value

Welch Anova testing Means Equal, allowing Std Devs Not Equal

1.3103

F Ratio

1

DFNum

197.74

DFDen

0.2537

Prob > F

1.1447

t Test

Tests that the Variances are Equal

Figure 6.3: JMP output

Refer to activity 6.9 to produce output to test 0 : 
2
1 = 22

Refer to activity 6.14 to produce output to test 0 : 
2
1 = 22 = 23
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Exercise 6.1

1. Explain why and under what conditions you will use the following confidence intervals for 2:

"
Σ
¡
 −

¢2
2;−1

; ∞
#

or

"
0;
Σ
¡
 −

¢2
21−;−1

#
or

⎡⎣Σ ( − )2

21
2
;

;
Σ ( − )2

2
1−1
2
;

⎤⎦ or"
Σ ( − )2

2;
; ∞

#

2. Consider the following sample from a 
¡
; 2

¢
distribution:

6 10 14 12 4 11 15 8 7 10 13

(a) Test 0 :  = 5 against the alternative 1 :   5 at the 5% level assuming

(i)  is unknown

(ii)  = 9

(b) Find a 95% one-sided confidence interval of the form (0; ) for  assuming

(i)  is unknown

(ii)  = 9

3. A 90% two-sided confidence interval for 2 is constructed from a sample of 10 observations from

a 
¡
; 2

¢
distribution. What is the expected length of the interval in the following cases?

(a)  is known

(b)  is unknown

4. Suppose a 95% confidence interval is to be constructed for the variance of a normal distribution

with unknown mean. What is the smallest sample size  which would ensure that the expected

length of the confidence interval is at most 252?
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5. At a certain factory a product is produced in two identical plants. A modification of the process is

suggested for increasing the daily yield. The one plant was then modified and the yields of the

two plants were recorded on six consecutive days:

Unmodified: 24; 35; 30; 28; 31; 32 metric tons
Modified: 29; 35; 32; 28; 36; 32 metric tons

Treating the data as 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
samples respectively, test 0 : 

2
1 = 22 (two-

sidedly) at the 10% level. Also find a 90% confidence interval for 21
2
2

6. Two independent random samples, from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions respectively,

yielded the following statistics:

Sample 1: 1 = 10 Σ1 = 20 Σ2
1 = 148

Sample 2: 2 = 12 Σ2 = 36 Σ2
2 = 152

(a) Test the claim that the standard deviation of the first population is more than twice the standard

deviation of the second population (5% level of significance).

(b) Compute a 95% one-sided confidence interval for 12

7. Consider the following 11 observations from a bivariate normal distribution:

1 29 37 23 42 14 36 39 25 31 38 16

2 27 31 25 34 22 28 37 31 33 34 28

Test 0 : 
2
1 = 22 against 1 : 

2
1  22 at the 10% level.

8. A random sample of 10 students were subjected to an arithmetic test, the result of which is

denoted by  The students were then given remedial training and tested again, the result being

denoted by  :

 25 26 27 29 30 31 32 33 33 34

 47 51 49 50 50 53 48 49 52 53

Regard these results as a random sample from a bivariate normal distribution, and test, at the

10% level of significance, whether the students were more uniform after the remedial training

than before..3
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9. In order to test whether four operators maintain the same uniformity in determining the sodium

content of a mixture, each operator was given six samples containing exactly 20% sodium. Their

determinations were as follows:

Operator 1 200 204 197 195 207 203

Operator 2 194 204 192 202 197 205

Operator 3 190 192 207 214 211 198

Operator 4 201 199 203 195 206 196

Test at the 5% level whether there is a difference in the variances of the four populations.

10. Three independent random samples of size  = 10 from 
¡
 ; 

2
¢

distributions, with 1 = 5

2 = 7 and 3 = 8 (known) yielded the following statistics:

Σ2
1 = 390 Σ2

2 = 730 Σ2
3 = 740

Σ1 = 60 Σ2 = 80 Σ3 = 85

Test 0 : 
2
1 = 22 = 23 at the 5% level of significance. (Be careful with your definition of 2 since

 is known!)
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6.6 Learning outcomes

After studying study unit 6, you should be able to

¥ perform hypothesis tests concerning the variance of a single sample

¥ derive one or two-sided confidence intervals for the variance of a single sample

¥ perform hypothesis tests concerning the equality of the variances of two
independent samples

¥ derive one or two-sided confidence intervals for the ratio
22
21

of two

independent samples

¥ perform hypothesis tests concerning the equality of the variances of paired observations

¥ perform hypothesis tests concerning the equality of the variances of more than two
independent samples

¥ interpret the computer output of JMP concerning the homogeneity of variance tests
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STUDY UNIT 7

Inference on means

7.1 One-sample problem

Let 1   be independent random variables with  ∼ 
¡
; 2

¢
. In previous study units we

have seen how one would investigate the two basic assumptions, independence and normality, and

how one would find out more about the variance, 2 We now turn our attention to 

We already know that  =
1


Σ is an unbiased estimator for  irrespective of whether the

underlying distribution is normal or not. The assumption of normality enables us to do more than

just estimate  The basic result, which you learned in first-year statistics and will have gathered by

now is of prime importance in statistical inference, is repeated here.

Theorem 7.1

Let 1   be independent 
¡
; 2

¢
variates and let

 =
1


Σ; 2 =

1

− 1Σ
¡
 −

¢2
. Then

(a)  is a 
¡
; 2

¢
variate, that is

√

¡
 − 

¢
 is a  (0; 1) variate;

(b) (− 1)22 is a 2−1 variate;

(c)  and 2 are independent;

(d)  =
√

¡
 − 

¢
 is a −1 variate.

This theorem is used in various ways to test one or two-sided hypotheses about  or to find one or

two-sided confidence intervals for  If 2 is known (a very rare occurrence in practice) we use (a). If

2 is unknown, we use (d).
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In result (a) we have  ∼  (0; 1) which implies that we use table II (Stoker) to obtain the critical

value and in result (d) we have  ∼ −1 which implies that we use table III (Stoker) to obtain the

critical value.

To test 0 :  = 0 against

1 :   0 or

1 :   0 or

1 :  6= 0

we summarise the application of theorem 7.1 in the following flow chart (which is a revision of first-

year statistics!)

(a) 2 is known
... 2 is unknown (b)
...

We use as a test statistic
. &

 =
 − 0

√


...  =
 − 0

√


...
We use the critical value

. &
One-sided: 

... ;−1

Two-sided: 
2

... 2;−1

...
A (1− ) 100% confidence interval for 

. &
 − 2

√

≤  ≤  + 2

√


...  − 2;−1
√

≤  ≤  + 2;−1

√


For a lower (1− ) 100% one-sided confidence interval, the probability statement  ( ≤ ) = 1−
is reorganised to obtain

 ≥  − 
√


µ
ie the interval

µ
 − 

√

; ∞

¶¶
.

(This confidence interval may be used to test the alternative 1 :   0.)

For an upper (1− ) 100% one sided confidence interval, the probability statement  ( ≥ −) =
1−  is reorganised to obtain

 ≤  + 
√


µ
ie the interval

µ
−∞;  + 

√


¶¶
.

(This confidence interval may be used to test the alternative 1 :   0.)
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Tolerance intervals

If 1 2   is a random sample from a distribution, say a 
¡
; 2

¢
distribution, then we have

already seen that a confidence interval for  is given by

 − 1
2
;−1

√

≤  ≤  + 1

2
;−1

√



As  → ∞ the width of this interval tends towards zero. Suppose, for example, the random variable

 represents the breaking strength of a beam selected at random from a population of beams to be

used in constructing house roofs. If a random sample of these beams is selected to construct the

roof of my house, and if the roof were to cave in later, it would be small consolation to me knowing

that the mean  of all the beams conformed to tight specifications. A tolerance interval would be

more appropriate. Define two percentiles 1 and 2 such that  (1    2) = 

Then a tolerance interval is of the form
¡
 −;  +

¢
where  is read from a table, and

where


¡
 − ≤ 1 ≤ 2 ≤  +

¢
= 1− 

For example if  = 09 and  = 005 then we would be 95% sure that at least 90% of all the individuals

in the population lie between  − and  +

Tolerance intervals are generally wider than confidence intervals for the mean, and as →∞

 − → 1

 + → 2

We would not expect you to compute a tolerance interval manually but only electronically using JMP.

Please see activity 7.5 in the workbook.
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7.2 The power of the test and the noncentral t-distribution
Something that was not discussed in detail in your first-year modules is the power of the test.

In definition 2.7 of section 2.5 of study unit 2 we defined the power of the test as the probability that

0 is rejected when 1 is true. We actually defined the power as 1−  where  is the probability of

a type II error.

How will we compute the power for situation (a) of theorem 7.1?

We know that 0 =
 − 0

√


is a  (0; 1) variate provided that 0 :  = 0 is trueµ
⇒  ∼ 

µ
0;

2



¶¶


What is the distribution of 0 if 0 is not true?

Suppose 1 :  = 1 is true. Then 1 =
 − 1

√

∼  (0; 1)⇒  ∼ 

µ
1;

2



¶


   
 

β = P(accept H0 / H1 true)

μ0

α

μ1

1-β 

Figure 7.1: Illustration of  and  for right-sided testing

It is a laborious process, but  can be computed for different values of 1 where 1  0 The closer

1 lies to 0, the bigger a type II error becomes, and the further 1 moves to the right the smaller 

becomes. (See activity 7.1 of the workbook.)

The authors of the textbook say that "statisticians are often unaware that they use certain words in a

completely different way than other professionals" [p. 102]. They give a list of definitions for model;

parameters; hypotheses, et cetera and you can read at the bottom of page 103 how they define

"Power, β level" in general.
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What is now very ironic and confusing, is that Sall, Creighton and Lehman use exactly the opposite

symbols than we do! They define 1−  = probability of type II error and thus  = power of the test.

If you click on the help function of JMP, you will see that JMP uses the same symbols as our study

guide.

READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Pages 138 - 139 Testing hypotheses: Terminology

This does not matter! As long as we define the concept "type II error" and "the complement of a type

II error" the same! What they define as "power" is exactly the same as what we define as power.

How will we compute the power for situation (b) of theorem 7.1?

We know that 0 =
 − 0

√

=
√

¡
 − 0

¢
 is a −1 variate provided 0 :  = 0 is true. The

-distribution is symmetric about zero and has about the same shape as the normal distribution,

except that it is more peaked and has more probability in the tails. What is the distribution of 0 if 0

is not true?

The noncentral t-distribution

If we know that  6= 0 then 0 =

√

¡
 − 0

¢


has a so-called non-central t-distribution with

noncentrality parameter  =
p
 (− 0)

It is not necessary for our purposes to derive an expression for the pdf of the distribution. It is

sufficient to know that the distribution is not symmetric and lies more to the right of zero if   0 and

more to the left of zero if   0

Figure 7.2

This is a situation where a computer can be a marvellous educational tool!
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READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Pages 148-149 Power of the t-test

See activity 7.2 of the workbook on how to do a "Power animation" with JMP.

Formally, we may define a noncentral variate  ; as follows:

Definition 7.1

Let  and  be independent with  ∼ 
¡
; 2

¢
and



2
∼ 2  Then

 = 
p
 =

p
(2) 

is a noncentral t-variate with  degrees of freedom and noncentrality

parameter  =





To find the noncentrality parameter of any t-statistic, we replace the numerator (the normal variate)

by its expected value and the denominator, which is the square root of a chi-square variate divided

by its degrees of freedom, by the square root of the expected value of the square of the denominator.

Thus, in definition 7.1 we have

 =
p

(2) 


Now

 ∼  (; 1) ∴  () = 

2 ∼ 2 ∴ 
¡
2

¢
= 

∴ 
¡
2

¢
 = 1

∴  =
√
1
=






In the expression

0 =

√

¡
 − 0

¢


=

√
 −√0 → numerator√

2 → denominator



184

we replace "numerator" by "E(numerator)" =
√


¡

¢−√0

=
√
−√0

=
√
 (− 0)

(because we know that 
¡

¢
= ). Similarly  (squared denominator) = 

¡
2
¢
= 2

So that  =
 (numerator)p

 (squared denominator)

=

√
 (− 0)√

2

=

√
 (− 0)




It is important to note that  is a function of three different quantities:
√
; difference (− 0) and 

The figure below illustrates the connection between   and  and it is apparent from the figure that

 will decrease as  increases.

Figure 7.3

Since the power of the test = 1−  the power will increase as  increases.

Table F contains the power of the two-sided -test. In order to use the table

one has to compute  = 
√
2;  represents the degrees of freedom as

usual. The table gives 100× (power) to the nearest integer.

Example 7.1

It is desired to test 0 :  = 20 against 1 :  6= 20 using a sample of size  = 8 from a 
¡
; 2

¢
distribution. What will the power of the test be if  = 20 + 15 (ie if the true mean is 11

2
standard

deviations away from the hypothesised value)?
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Solution

We know that 0 is tested against 1 with the test statistic 0 =

√

¡
 − 0

¢


∼ −1

where  =

√
 (− 0)




We have  = − 1 = 7;  =

√
8 [(20 + 15)− 20]



=
√
8 (15)

and  =
1√
2
 =

r
8

2
× 15 = 3

From table F we read off the power, namely (approximately) 095 if  = 005 (or 075 if  = 001).
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Table F:
100× (power) of the two-sided -test with level 

 6 7 8 9 10 12 15 20 30 60 ∞  = degrees of freedom
12 30 31 32 33 34 35 36 37 38 39 40

13 35 36 37 38 39 40 41 42 43 44 45

14 39 40 41 42 43 45 46 47 49 50 51

15 43 45 46 47 48 50 51 52 54 55 56

16 48 50 52 53 54 55 57 58 59 61 62

17 52 55 57 58 59 60 62 64 65 66 67

18 57 60 62 63 64 65 67 69 70 71 72

19 62 64 65 67 68 69 71 73 74 76 77

20 66 68 70 71 72 74 75 77 78 80 81

21 70 72 74 75 77 78 79 81 82 83 85

22 74 76 78 79 80 81 83 84 86 87 88

23 77 80 81 83 84 85 86 87 88 89 90

24 81 83 85 86 87 88 89 90 91 92 93

25 84 86 87 88 89 90 91 92 93 94 94

26 86 88 90 91 91 92 93 94 95 95 96

27 89 90 92 93 93 94 95 95 96 96 97

28 91 92 93 94 95 95 96 96 97 97 98

29 92 94 95 95 96 96 97 97 98 98 98

30 94 95 96 96 97 97 98 98 98 99 99

31 95 96 97 97 98 98 98 99 99 · ·
32 96 97 98 98 98 99 99 · · · ·
33 97 98 98 99 99 · · · · · ·
34 98 98 99 · · · · · · · ·
35 98 99 · · · · · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

 = 005

20 31 33 37 40 42 45 48 50 54 57 60

22 39 42 46 49 51 54 58 61 64 67 70

24 47 51 55 58 60 63 67 70 74 77 80

26 55 60 63 67 69 72 76 79 82 85 87

28 62 68 71 74 77 80 83 86 88 90 92

30 69 75 78 81 83 86 89 91 92 94 95

32 75 81 84 87 88 90 93 94 96 97 97

34 81 86 88 91 92 94 95 97 98 98 99

36 86 90 92 94 95 96 97 98 99 99 ·
38 90 93 95 96 97 98 99 99 · · ·
40 93 95 97 98 98 99 · · · · ·
42 95 97 98 99 99 · · · · · ·
44 96 98 99 · · · · · · · ·
46 97 99 · · · · · · · · ·
48 98 · · · · · · · · · ·
50 99 · · · · · · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

 = 001
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Notes on the use of table F

(a) If a two-sided test is performed, the power does not depend on the sign of  Due to the symmetry

of the problem, 0 :  = 0 is equally likely to be rejected if  = 0+ or  = 0−; in the one

case  =
√
 and in the other  = −√ Thus, when dealing with a two-sided test, the definition

of  should actually be  =
||√
2


(b) Table F enables one to decide on the sample size required to ensure a chosen power (eg

1 −  = 099) when  is a specified multiple of  away from 0 This is done by reading off

the power of a number of sample sizes, and selecting the smallest  such that 1−  ≥ 099

(c)  (or ) contains two unknown parameters: −0 and  If the problem is stated as in (a) and (b),

this does not complicate the problem, since  is actually a function of
(− 0)


 Sometimes a small

pilot sample is drawn to estimate  and  and these estimated values are used to estimate  This

estimate is subject to a random variation, but does give a rough idea of the sample size required.

Sample size tables exist which make it unnecessary to compute  for a number of sample sizes

and find the sample size by trial and error, but since such tables are not included in our book of

tables they will not be dealt with here.

(d) From table F it is obvious that the power of the -test increases as  increases. The definition of 

(as amended) is  =

r


2

|− 0|


and it is clear that  and thus the power, increases as

(i)  increases

(ii) |− 0| increases

(iii)  decreases

7.3 Two-sample problem; independent samples
We now consider the following problem: we have two independent random samples of sizes 1 and

2 respectively, and we want to test whether the population means are equal. We use the notation

(11  11) and (21  22) for the two samples. A model which is generally used for this

problem is the following:

Assume that  ;  = 1  ;  = 1 2 are independent random variables with  ∼ 
¡
; 

2
¢
.

We wish to test 0 : 1 = 2 or find a confidence interval for 1 − 2 Note the assumptions:

(a) Not only are the observations in each sample independent, but the two samples are mutually

independent.
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(b) The observations are normally distributed.

(c) The two population variances are equal, that is the variance of  does not depend on  This is

rather important. If we think the two variances are equal and they are unequal, it could have a

serious effect on the significance level and the power of the test or on the confidence level of the

confidence interval.

Luckily we already know how to verify (or at least investigate) these assumptions!

In order to make probability statements about 1 − 2 we simply use the results already known:

Let

 =
1



P
=1

 ; 2 =
1

 − 1
P
=1

¡
 −

¢2
;  = 1; 2

Then:

(a) 1 2 
2
1 and 22 are independent;

(b) 1 ∼ 

µ
1;

2

1

¶
; 2 ∼ 

µ
2;

2

2

¶

∴ 1 −2 ∼ 

µ
1 − 2;

2

1
+

2

2

¶
(Question: Would this be true if 1 and 2 were not independent?)

so that  =

¡
1 −2

¢− (1 − 2)



r
1

1
+
1

2

∼  (0; 1) ;

(c)
(1 − 1)21

2
∼ 21−1 and

(2 − 1)22
2

∼ 22−1 (see result 1.3)

so that  =

£
(1 − 1)21 + (2 − 1)22

¤
2

∼ 21+2−2

(Question: Would this be true if 21 and 22 were not independent?)

From (a), (b) and (c) and using the notation defined above, we rewrite theorem 1.4 as follows:
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Theorem 7.2

 =
r


(1 + 2 − 2)
∼ 1+2−2

where  =

£¡
1 −2

¢− (1 − 2)
¤


r
1

1
+
1

2q£
(1 − 1)21 + (2 − 1)22

¤
 (1 + 2 − 2)

=

¡
1 −2

¢− (1 − 2)



r
1

1
+
1

2

and 2 =

£
(1 − 1)21 + (2 − 1)22

¤
(1 + 2 − 2)

=

"
1P
=1

¡
1 −1

¢2
+

2P
=1

¡
2 −2

¢2#
(1 + 2 − 2)

2 is the (unbiased) estimator of 2 and is called a "pooled" (hence the subscript "p") estimator, since

we pool the sums of squares of deviations from the sample means of the two samples.

This is the well-known -statistic you used in first-year modules to test for the difference between two

means.

This -statistic is used in the usual way to test

0 : 1 − 2 = 0 (or 1 − 2 =  for that matter) against

1 : 1 − 2 6= 0 (ie 1 6= 2) or against

1 : 1 − 2  0 (ie 1  2) or against

1 : 1 − 2  0 (ie 1  2).

We simply replace (1 − 2) by 0 (or ) and compare  with 
2
;1+2−2

for two-sided testing or with ;1+2−2 for one-sided testing.
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A two-sided confidence interval for 1 − 2 is given by the probability statement



µ
1 −2 − 

2
;1+2−2

r
1

1
+
1

2
≤ 1 − 2 ≤ 1 −2 + 

2
;1+2−2

r
1

1
+
1

2

¶
= 1− 

Are you able to derive the confidence limits?

What is the power of the test? If 0 : 1 − 2 = 0 is not true, the

distribution of  is noncentral  with noncentrality parameter

 =
1 − 2



r
1

1
+
1

2



We may use table F as before to compute the power.

Example 7.2

Suppose we have two independent samples of size 16 each, and we wish to test 0 : 1 = 2

against 1 : 1 6= 2 What will the power of the test be if 1 − 2 = 15?

Solution

We know that 0 is tested against 1 using the test statistic  where  =
1 − 2



r
1

1
+
1

2



We have  = 1 + 2 − 2 = 30;  =
15



r
1

16
+
1

16

= 15
√
8 so that  =

1√
2
|| = 3

From table F we see that the power will be 0.98 at the 5% level and 0.92 at the 1% level.
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7.4 Paired observations
In certain problems, as also illustrated in study unit 6, we do not have two independent samples, but

rather  pairs of observations (1; 2)   = 1   such that

 (1) = 1  (2) = 2;   (1) = 21;   (2) = 22;  (1; 2) = 12

The problem is to test 0 : 1 = 2

In this case 21 and 22 (as defined in the previous section) are not independent, and it is not possible

to construct a statistic with a -distribution in a similar manner to that of the previous section. There

is a simple solution, however.

Let

 = 1 −2  = 1  

Then 1   form a random sample such that  ∼ 
¡
1 − 2; 

2
1 + 22 − 212

¢


Since we are not interested in 21 
2
2 and  we set 21 + 22 − 212 = 2 and also let  = 1 − 2

We consider 1   to be a random sample from a 
¡
; 2

¢
distribution and

we wish to test 0 :  = 0 This is exactly the one-sample problem dealt with in

section 7.1.

This means we "transform" the paired observations to a one-sample problem by means of

subtraction.

Example 7.3

Twelve people are randomly chosen and their pulse rate measured before and after being given a

specific dosage of a new drug. Do the results confirm a researcher’s theory that the drug quickens

heartbeat?

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Pulse rate before 90 70 68 68 75 80 75 74 70 88 65 64

Pulse rate after 80 59 80 77 87 70 82 62 61 79 58 75
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Solution

Let  = pulse rate before − pulse rate after, for  = 1 2  12

Patient () 1 2 3 4 5 6 7 8 9 10 11 12

 10 11 −12 −9 −12 10 −7 12 9 9 7 −11

We want to test 0 :  = 0 against 1 :   0 (If the drug increases heartbeat, the difference of

before minus after will be negative.)

 =

√

¡
 − 

¢


∼ −1

where

 =
12P
=1



12
=
17

12
= 14167;

2 =
1

11

12P
=1

¡
 − 

¢2
=
1

11

Ã
Σ 2 −

(Σ)
2

12

!

=
1

11

Ã
1 215− (17)

2

12

!

=
1215− 24083333333

11

= 1082652

 = 104051

∴  =

√
12 (14167− 0)
104051

≈ 04717

From table III we find 005;11 = 1796 Reject 0 if   1796 Since −1796  04717 we cannot reject

0 at the 5% level of significance. The drug does not increase heartbeat.

JMP offers a special platform for the analysis of paired data called "Matched Pairs".

READ THROUGH
Sall, Creighton and Lehman, Chapter 8 The difference between two means

Pages 186-193 Testing means for matched pairs
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7.5 Independent samples with unequal variances
As was said before, if the two population variances are unequal and we nevertheless proceed as

if they are equal, the significance level and power will be affected. Suppose 1   = 1  1 and

2   = 1  2 are two independent random samples such that

 ∼ 
¡
 

2


¢
 = 1  ;  = 1 2

Then we could have constructed a -statistic using the fact that 1 2 
2
1 and 22 (defined before)

are independent with  ∼ 

µ
;

2


¶
and

( − 1)2
2

∼ −1  = 1; 2 but unfortunately the 2

will not "cancel out" as 2 did in section 7.3. The result is that the -statistic will contain unknown

parameters (except in the unlikely event that
21
22

is known). This problem is known as the Behrens-

Fisher problem, named after the two people who studied it in the previous century. A completely

satisfactory solution does not exist, but certain practical solutions have evolved.

The Welch solution is as follows:

We want to test 0 : 1 − 2 =  (with  specified) against
1 : 1 − 2 6=  or
1 : 1 − 2   or
1 : 1 − 2  

We use the statistic

 =
1 −2 − s

21
1
+

22
2

where

 =
1



P


  = 1 or 2

2 =
1

 − 1
P


¡
 −

¢2
 = 1 or 2

Under 0 this statistic has an approximate Student’s -distribution for large samples. However, the

degrees of freedom are not 1 + 2 − 2 as was the case in section 7.3 but the approximate degrees

of freedom are

 =

µ
21
1
+

22
2

¶2
41

21 (1 − 1)
+

42
22 (2 − 1)



Since  is usually not an integer, one would have to interpolate in table III (Stoker). If  = + where

 is an integer and 0 ≤   1 then
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; ≈ (1− ) ; + ;+1

Example 7.4

Two independent random samples from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions respectively, yielded

the following statistics:

1 = 11 Σ1 = 330 Σ2
1 = 9950

2 = 16 Σ2 = 560 Σ2
2 = 19 720

Test 0 : 1 = 2 − 3 against
1 : 1  2 − 3 at the 2.5% level of significance.

Solution

We compute

1 = 30; 2 = 35;

21 =
1

10

h
9 950− (11) (30)2

i
= 5 22 =

1

15

h
19 720− (16) (35)2

i
= 8

The null hypothesis implies that 1 − 2 = −3⇒  = −3

∴  =
(30− 35)− (−3)r

5

11
+
8

16

=
−2

0977000842

≈ −20471

We compute the approximate degrees of freedom as

 =

∙
5

11
+
8

16

¸2
25

112 × 10 +
64

162 × 15

=
0911157024

0037327823

≈ 2441

Since table III (Stoker) only gives integer values for  we need to interpolate between  = 24 and

 = 25

∴ 0025;24;41 ≈ 2064 + 041 (2060− 2064) = 2062

Thus our critical value is 2062 and we will reject 0 at the 2.5% level (one-sided) if   −0025;
that is if   −2062
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Since  = −20471  −2062 we do not reject 0 at the 21
2
% level of significance. We cannot

conclude that 1  2 − 3

7.6 More than two independent samples
(One-way analysis of variance)

We discuss the problem of comparing  sample means with equal sample sizes. In a more advanced

module it will be shown how the test can be modified if the sample sizes are unequal.

Thus we suppose that we have  independent random samples (11  1) ; (21  2) ; ;

(1  )  such that the i-th sample comes from a normal distribution with mean  and variance

2

From this it follows that the essential assumptions are

(a) independence

(b) normality

(c) equal variances

The assumption of equal sample sizes is made here for convenience and is not essential. The model

is therefore as follows:

 ;  = 1  ;  = 1  

are independent random variables such that  ∼ 
¡
; 

2
¢
. We wish to test the null hypothesis

0 : 1 = 2 =  against the general alternative 1 :  6=  for at least one pair  6= 

We shall derive our test statistic for 0 from the following results, stated here as a theorem and which

is a summary of results from study unit 1.

Theorem 7.3

Let  =
1



P
=1

 ; 2 =
1

− 1
P

=1

¡
 −

¢2
. Then

(a) 1   21   
2
 are independent

(b)  ∼ 

µ
;

2



¶
⇒
√

¡
 − 

¢


∼  (0; 1)

(c)
(− 1)2

2
∼ 2−1

Let  =
1



P
1

 =
1



P
=1

P
=1

 be the overall mean of all the observations.
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We need to study the following two random variables:

 =


P
=1

¡
 −

¢2
2

and  =

P
=1

(− 1)2
2

=

P
=1

P
=1

¡
 −

¢2
2

What are the distributions? Are they independently distributed?

Theorem 7.4

(a)  ∼ 2−

(b)  ∼ 2−1 if 0 : 1 = 2 =  =  is true.

(b)  and  are independent.

Proof

(a) Follows directly from theorem 7.3 and property (ii) of result 1.1.

(b) Suppose 1 = 2 =  =  =  Then 1   are

independent

µ
;

2



¶
variates. (The  means can be considered

to be a single sample of size .) From study unit 1 it follows that

 =
Σ
¡
 −

¢2
(2)

∼ 2−1

(If 0 is not true, the distribution of  is called noncentral chi-square.)

(c) Since 1   are independent of 21   
2
  any function of

1   such as  is independent of any function of 21   
2
 

such as V.

Theorem 7.5

Let 2 =

P


P


¡
 −

¢2
(− )

 Then 
¡
2
¢
= 2

Proof

2 =
2

(− )
 Since  ∼ 2−  ( ) = − 

∴ 
¡
2
¢
= 2

Thus 2 is an unbiased estimator of 2 How do we interpret 2?
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We may write 2 =
1



¡
21 + + 2

¢
, which is an ordinary average. So, 2 is the average of all the

sample variances. Now 2 is a measure of the variation within the i-th sample. The only reason why

2 6= 0 in other words why 1   are not identical, is random variation which is called "error"

(not to be confused with "mistake"). Any variation which cannot be explained except as random

variation is called variation due to error. (NB This does not imply that someone erred.)

Definition 7.2

 =
P
=1

P
=1

¡
 −

¢2
is called the sum of squares due to error or error sum of squares and

 =


(− )

is called the mean square error.

Definition 7.3

 = 
P
=1

¡
 −

¢2
= 2

measures the variation between samples and is called the

sum of squares due to treatments.

 =


P
=1

¡
 −

¢2
 − 1 =

2

( − 1)

is called the mean square treatment.

The  samples may be regarded as the result of  treatments, and the reason why  6= 0 is

(a) random variation and

(b) the fact that 1   may differ.

Let  =
1



P
1


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Theorem 7.6

 () = 2 +
Σ ( − )2

( − 1)

Proof

Let  =
√

¡
 − 

¢
  = 1  

∴  =
1



P
=1

 =
1


Σ
√

¡
 − 

¢
=
√

¡
 − 

¢
.

Then 1   are independent 
¡
0; 2

¢
variates, and from study unit 1

(see result 1.3) it follows that

P
=1

¡
 − 

¢2
2

∼ 2−1

∴ 
³
Σ
¡
 − 

¢2´
= 2 ( − 1) (see property (i) of result 1.1).

Consider  = 
P
=1

¡
 −

¢2
= Σ

£√

¡
 −

¢¤2
= Σ

£√

¡
 −  − + +  − 

¢¤2
= Σ

£¡
 − 

¢
+
√
 ( − )

¤2
= Σ

¡
 − 

¢2
+ Σ ( − )2 + 2

√
Σ ( − )

¡
 − 

¢
∴  () = Σ

¡
 − 

¢2
+ Σ ( − )2 + 2

√
Σ ( − )

¡
 − 

¢
= 2 ( − 1) + Σ ( − )2 + 0

since  () = 
¡

¢
= 0

∴  () =
 ()

( − 1) = 2 +
Σ ( − )2

( − 1) 
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Note that, if 1 = 2 =  =  =  then  () = 2 and  is then also an unbiased

estimator for 2 However, if the means are not equal,  ()  2

Aha! Here we have the beginnings of a test statistic.

Theorem 7.7

Let  =



=

2 ( − 1)
2 (− )

=


P
=1

¡
 −

¢2
 ( − 1)

P
=1

P
=1

¡
 −

¢2
 (− )



Then  ∼ −1;− if 0 : 1 = 2 =  =  is true.

The theorem follows directly from theorem 7.4.

This result is used to test 0 The  -statistic is computed and compared to ;−1;− If 0 is true

 ∼ −1;− and if 0 is not true we expect  and therefore  to have a large value. 0 is

rejected if   ;−1;−

Example 7.5

A company manufacturing medicine is screening various chemicals for possible use against cancer.

They have three possible chemicals which they wish to test. Twenty mice are selected, and cancer

cells are implanted into each. The mice are then divided at random (eg by lottery) into four groups

of five mice each; three groups are treated by means of the three chemicals and the other group

serves as a control group which receives no treatment. After a fixed period the tumours in the mice

are removed and weighed. The mass (in grams) of the tumours were found to be as follows:

Chemical A: 160; 150; 180; 130; 180

Chemical B: 170; 205; 180; 215; 180

Chemical C: 170; 175; 150; 140; 190

Control: 190; 205; 235; 185; 210

Do these results indicate that the tumors respond differently to the treatments?

Solution

We want to test 0 : 1 = 2 = 3 = 4 against
1 :  6=  for at least one pair  6= 

We assume the tumour masses () ∼ 
¡
; 

2
¢

for  = 1 2  4

We choose  = 005 (ie rather large) in order for  to be smaller. We would like to keep the probability

small for potential medicines to be discarded (ie to reject 1 when it is true = type II error = .) If a

type I error is committed, it only means that further tests will be performed on a useless chemical.
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We have

 = 4;  = 5; −  = 16;  − 1 = 3;

1 =
80

5
= 16; 1 = Σ

¡
1 −1

¢2
= 018

2 = 19 2 = 0145

3 = 165 3 = 016

4 = 205 4 = 0155

 =
72

4
= 18  = 1 + + 4 = 064

 = 2 =
064

16
= 004

Furthermore
4P

=1

¡
 −

¢2
= (196− 18)2 + · · ·+ (205− 18)2 = 0135

 = Σ
¡
 −

¢2
= 6(0135) = 0675

 =
Σ
¡
 −

¢2
( − 1) =

0675

3
= 0225

 =



=
0225

004
= 5625

From table V we find 005;3;16 = 324 Since   005;3;16 we reject 0

The analysis is often summarised in tabular form called an ANOVA table.

ANOVA table

Source of variation Sum of squares Degrees of freedom Mean square F
Treatments 0675 3 0225 5625

Error 0640 16 004

Total 1315 19

The "total sum of squares" is

 =
P
=1

P
=1

¡
 −

¢2
which measures the total variation in all the observations. If we did not know that the groups of mice

had received different treatments, this would have been used to estimate 2; its degrees of freedom

are, in general terms, − 1 = ( − 1) + (− ) 
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Multiple comparisons

The  -test we have just discussed, leads to one of two decisions: either 0 is accepted and we

believe the  population means are equal, or 0 is rejected and we believe they are unequal.

However, the latter decision includes many possibilities, for example

1 = 2 6= 3 6= 4 or 1 6= 2 6= 3 6= 4 or 1 = 2 = 3 6= 4 et cetera,

and we often want to know which of these alternatives is a likely representation of the truth. We may

compute, for each pair of means  and  a -statistic

 =
 −



r
1


+
1



=

√

¡
 −

¢
√
2

and reject 0 (; ) :  =  in favour of

1 (; ) :  6=  if || exceeds a critical value.

However, this means that
¡

2

¢
different hypotheses are tested on the same data set, and the overall

significance level would be much larger than we think. (Please refer to section 2.7 of study unit

2.) However, it can be proved that, for all  and   2 ≤ ( − 1) where  =



 Since

0 is rejected if   ;−1;− our significance level would remain  if we reject 0 (; ) if

 2  ( − 1);−1;− that is if

|| 
p
( − 1);−1;−

Example 7.5 (continued)

( − 1);−1;− = 3005;3;16 = 3 (324) = 972

 =

√

¡
 −

¢
√
2

=

√
5
¡
 −

¢
√
2
√
004

=
√
625

¡
 −

¢
We reject 0 (; ) :  =  if

|| 
√
972

∴
¯̄
 −

¯̄


r
972

625
≈ 03944

Now 4 −1 = 045 (the largest observed difference) and 4 −3 = 04 are both significant. We

note, however, that 1 = 16 and 3 = 165 are rather close together, that 2 = 19 and 4 = 205

are close together, but that the two pairs are comparatively more different.

We therefore assume that 1 = 3 6= 2 = 4 which would imply that further research could be done

on chemicals A and C as potential remedies for cancer.
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Exercise 7.1

1. A machine is set to produce washers with a thickness of 0.50 mm. To test whether the machine

is working properly, 11 washers are chosen at random and their thickness measured. The results

are

053 052 060 045 055 053 063 048 049 062 043

(a) Test 0 :  = 05 at the 10% significance level against 1 :  6= 05.
(b) Find a 90% (two-sided) confidence interval for .

2. The following is the yield (kg) per plant of a certain tomato cultivar:

154 160 142 136 148 160

(a) Test 0 :  = 16 against 1 :   16 at the 5% level.

(b) Find a 95% upper confidence limit for 

3. 0 :  = 100 is tested against 1 :  6= 100 using a sample of size  = 16 Find the power of the

test if  = 100−
√
0722 at the level

(a)  = 005

(b)  = 001

4. An aptitude test based on spatial orientation was given to 10 students studying for a diploma in

engineering and to 12 students studying for a diploma in graphical design. The following results

were computed:

Engineering:  = 10; Σ1 = 1070; Σ2
1 = 115 990

Graphical design:  = 12; Σ2 = 1344; Σ2
2 = 152 328

(a) Test 0 : 1 = 2 against 1 : 1  2 at the 5% level.

(b) Find a 90% two-sided confidence interval for 1 − 2
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5. Suppose we wish to draw two random samples in order to test 0 : 1 = 2 against 1 : 1 6= 2

and let the total sample size 1 + 2 be fixed, say 1 + 2 = 20 Which sample sizes 1 and 2

(subject to 1 + 2 = 20) will yield the highest power?

6. Two samples of sizes 1 = 3 and 2 = 9 are used to test 0 : 1 = 2 against 1 : 1 6= 2 What

will the power of the test be if 1 = 2 + 18
√
2 and the significance level is as follows?

(a)  = 005

(b)  = 001

7. Derive a -statistic to test 0 : 1 = 22 against 1 : 1  22 Base your -statistic on 1 − 22

which is an estimator for 1 − 22

8. The blood sugar content of eight patients was measured, each patient was given a fixed amount of

glucose and the blood sugar content measured again after one hour. The results were as follows:

Patient: 1 2 3 4 5 6 7 8

Blood sugar (Before): 60 75 69 63 64 72 68 73

Blood sugar (After): 68 81 76 66 76 79 72 82

(a) Test the hypothesis that the expected blood sugar content increases by more than five units

after dosage (5% level).

(b) Find a 95% lower confidence limit for the increase in blood sugar after dosage.

9. Suppose in two samples from normal distributions with unequal variances, it is found that:

1 = 110; 2 = 120; 21 = 180; 22 = 55;

1 = 9; 2 = 11

Test 0 : 1 = 2 against 1 : 1 6= 2 at the 10% level.

10. Suppose we have two independent samples as before, with  ∼ 
¡
; 

2


¢
but with 21 = 222

where 21 and 22 are unknown. Construct a -statistic for testing 0 : 1 = 2
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11. Two independent random samples of sizes 10 and 12 respectively from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions yielded the following results:

1 = 40; 2 = 60; 21 = 400; 22 = 720

Find a 95% confidence interval for 1 − 2

12. Twenty-one babies were weighed, and divided at random into three groups of seven each. Each

group of seven babies was fed a different kind of baby food, and their increase in body mass (kg)

determined after a fixed period:

Food A: 22; 18; 24; 15; 19; 21; 14

Food B: 19; 21; 15; 18; 23; 14; 16

Food C: 27; 21; 26; 23; 20; 18; 26

Test at the 5% level whether there is a difference in the mean response to the three baby foods.

(Note: normally such an experiment would be performed on a much larger scale. The present

problem could be a preliminary trial.)

13. Each of four brands of feed was fed to eight animals selected at random. The following mass

gains (kg) were obtained:

Brand A: 135 126 140 150 132 144 110 103

Brand B: 105 90 111 92 101 112 110 79

Brand C: 135 140 122 115 110 132 117 89

Brand D: 90 102 92 89 85 92 96 74

(a) Assuming the population variances to be equal, test at the 5% level whether the means differ.

(b) Perform multiple comparisons on all pairs of means. Discuss your results.
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7.7 Learning outcomes

After studying study unit 7, you should be able to

¥ perform hypothesis tests concerning the mean of a single sample

¥ derive one or two-sided confidence intervals for the mean of a single sample

¥ interpret the computer output of JMP concerning the power of the test for means

¥ perform hypothesis tests concerning the difference between means of two
independent samples

¥ derive one- or two-sided confidence intervals for the difference between means
of two independent samples

¥ perform hypothesis tests concerning the equality of the means of paired observations

¥ perform hypothesis tests concerning the equality of the means of more than two
independent samples

¥ interpret the computer output of JMP concerning the tests of means
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STUDY UNIT 8

Regression

8.1 Correlation and regression

Correlation problems occur when we have two (or more) random variables, and we want to know

whether the variables are related in the sense that they tend to vary together – the conditional

expectation of one variate, given values of the other variate, is a function of these values:

 (1|2 = 2) =  (2)

If two variates are correlated, it does not necessarily mean that a change in the value of one variate

causes the other variate to change. It may happen that two random variables are correlated because

there is an unknown factor that causes both variates to vary.

In such experiments it is often desired to estimate the conditional expectation of 1 given 2 in other

words the regression of 1 on 2 in order to be able to predict 1 when 2 is given. We shall not

discuss this type of problem in this module.

Regression problems as discussed here, that is causal relationships, occur when we have a random

variable and one (or more) mathematical variables which are not random. The mathematical

variables are called "control variables", "predictors" or "independent variables" and the random

variable is called the "response variable", "predictand" or "dependent variable". An ideal (causal)

regression experiment is performed as follows:

A number of values of the control variables are chosen (eg 100◦C; 120◦C; 140◦C and 160◦C if the

control variable is temperature) and the response (eg hardness of the product) is observed at each

setting of the control variable. Usually the experiment is repeated a few times at each setting.

A correlation or non-causal regression study, on the other hand, involves taking pairs of observations

(eg height and body mass) on a number of individuals (not necessarily people). The correlation

study is passive – individuals are selected at random and the two variables are measured on each

individual. Regression studies in the sense discussed here, are active – the control variable is

changed deliberately in order to observe what effect the change has on the response variable.
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The distinction between the two models is not always observed. Regression lines are computed

from correlation data and correlation coefficients are computed from regression data. One must be

careful when inference on correlation or regression coefficients is the object of the study. We shall

show that there is some justification for the practice of mixing the models but only to a certain extent.

8.2 The simple linear regression model
We consider here the simple linear regression model

 = 0 + 1 +

where  is the response variable,  the non-random control variable, 0 and 1 are the unknown

regression coefficients and  is a random variable (called the "error" or "random component") with a


¡
0; 2

¢
distribution where 2 is unknown. In order to estimate 0 1 and 2 we choose a number

of values of  (at least two different values of ) and observe the response one or more times at

each setting of  (at least three observations are needed but we should preferably have more). The

experiments should be run in random order. We may for example write each setting of  on a piece

of paper with as many repetitions of the same  as we intend to repeat the experiment at that value

of  The pieces of paper are thrown into a hat, shuffled thoroughly and retrieved one by one to give

the order in which the experiment should be run.

Our first task after obtaining the data is to make sure that the simple linear regression model is

appropriate. To do this we plot the data on graph paper with  on the vertical axis and  on the

horizontal axis. We inspect the graph to see whether the data cluster around a straight line and

whether the variance remains about the same for all values of 

If the data show curvature we can try transforming the data into a straight line by plotting 

versus log log  versus  log  versus log
1


versus  et cetera Sometimes we succeed

in straightening out the data in this way and change our model accordingly. If, for example, we find

log  versus log to form a straight line then our model becomes

log  = 0 + 1 log +

If we do not succeed in finding a suitable transformation we may consider a polynomial model :

 = 0 + 1 + 2
2 + + 

 +

and if this fails we have a non-linear regression problem which is much more difficult to solve. Ideally

the model should be chosen on theoretical grounds without looking at the data, if this is at all possible.
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Example 8.1

In order to evaluate the effect of temperature () on the yield ( ) of a chemical process, an

experiment was run in the plant with the following results:

 

205 12; 13; 16; 16

210 18; 19; 20; 18

215 22; 26; 24; 28

220 35; 31; 33; 34

225 53; 44; 46; 43

230 64; 62; 59; 67

Solution

Start by plotting  against  as in figure 8.1.

10
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50
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70

Y

200 205 210 215 220 225 230 235

X

Figure 8.1

It is obvious from the graph that there is no linear relationship between  and 

Transform  by finding log10  and then plot  against log10  (see figure 8.2).

 log10 

205 1079 1114 1204 1204

210 1255 1279 1301 1255

215 1342 1415 1380 1447

220 1544 1491 1519 1531

225 1724 1643 1662 1633

230 1806 1792 1771 1826
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Figure 8.2

It is obvious from figure 8.2 that this transformation gives a good linear relationship. The "best" model

seems to be

log10  = 0 + 1 +

If the variance does not remain constant then we should apply weighted regression. This can

sometimes also be done by means of transformation. Suppose the model is

 = 0 + 1 +

where   () = 2 () and where  () is a known function of  Then

p
 ()

= 0
1p
 ()

+ 1
p
 ()

+
p
 ()

where
p
 ()

is 
¡
0; 2

¢
. This method is especially useful if  () = 2

The scatter diagram for this model is typically as follows:
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Figure 8.3

The model becomes




= 0

1


+ 1 +






If we plot



versus

1


we should obtain a straight line with constant variance.

(This is left to you as an exercise – see activity 8.2 in the workbook.)

8.3 Estimation
We now assume the following model: 1   are independent random variables with

 ∼ 
¡
0 + 1; 

2
¢
  = 1  

The problem is to estimate 0; 1 and 2 We use the method of maximum likelihood:

 =
Q
=1


¡
; 0 1 

2
¢

∴  =
1


√
2

−
1
2
(1−0−11)

2

2 
1


√
2

−
1
2
(−0−1)

2

2

=

µ
1



¶

(2)−
1
2
 −

1
2
Σ(−0−1)

2

2

∴ ln = − ln − 1
2
 ln (2)− 1

2

Σ ( − 0 − 1)
2

2
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In order to maximise ln (and therefore ), the partial derivatives with respect to 0 1 and  are

equated to zero:

 ln

0
=
Σ ( − 0 − 1)

2

=
(Σ − 0 − 1Σ)

2

= 0 if 0 + 1Σ = Σ  (1)

 ln

1
=
Σ ( − 0 − 1)

2

=

¡
Σ − 0Σ − 1Σ

2


¢
2

= 0 if 0Σ + 1Σ
2
 = Σ  (2)

From (1) and (2) follows:

1 =
Σ −ΣΣ

Σ2
 − (Σ)

2

=
Σ −Σ

Σ2
 − 

2

=
Σ

¡
 −

¢
Σ
¡
 −

¢2
0 =

1


Σ − 1

1


Σ =  − 1

 ln


= −


+
Σ ( − 0 − 1)

2

3

= 0 if 2 =
1


Σ ( − 0 − 1)

2
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We have therefore derived the following result:

Result 8.1

The maximum likelihood estimators for 0 1 and 2 are

̂0 =  − ̂1

̂1 =
Σ

¡
 −

¢
Σ
¡
 −

¢2
̂2 =

1



P
=1

³
 − ̂0 − ̂1

´2
.

These estimators are also the least squares estimators. (Under the assumption of normality they are

the MLEs.)

Only ̂2 is biased; it may be shown that


¡
̂2
¢
=

− 2


2

so that

2 =
1

− 2Σ
³
 − ̂0 − ̂1

´2
.

is an unbiased estimator for 2.

Keep in mind that 2 is a measure of the variation around the regression line and that³
 − ̂0 − 1

´2
is computed for each observed pair (; ) as the squared difference of

the observed -value and the estimated  value by using the equation of the regression line.

Sometimes 2 is also indicated as

2 =
1

− 2
P
=1

³
 − ̂

´2
.

Distribution of the estimators

If we want to derive test statistics to test hypotheses about the theoretical parameters of a regression

line (ie 0 and 1) we need to understand the "behaviour" of the estimators of the parameters. In

other words we are interested in the distribution of ̂0 and ̂1

From study unit 1 it can be deduced that, if 1   are independent with  ∼ 
¡
; 

2
¢

then

 = Σ and  = Σ are jointly normally distributed with means  () = Σ and  ( ) =

Σ, variances   () = 2Σ2 and   ( ) = 2Σ2 and covariance  (  ) = 2Σ (See

"sums of independent normal variates" just above theorem 1.2.)
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Let us apply these powerful (and handy!) results to ̂0 and ̂1

We will start with ̂1:

̂1 =
Σ

¡
 −

¢
Σ
¡
 −

¢2
Suppose we use the notation 2 = Σ

¡
 −

¢2
= Σ

¡
 −

¢
.

Then, ̂1 =
1

2
Σ

¡
 −

¢
= Σ where  =

 −

2


(a) 
³
̂1

´
= Σ ()

= Σ
 −

2
(0 + 1)

=
1

2
0Σ

¡
 −

¢
+
1

2
1Σ

¡
 −

¢
= 0 +

1

2
1

2

= 1

Thus ̂1 is an unbiased estimator for 1

(b)  
³
̂1

´
= 2Σ2

=
2

4
Σ
¡
 −

¢2
=

22

4

=
2

2

Now we do the same for ̂0

̂0 =  − ̂1

=
1


Σ − 

2
Σ

¡
 −

¢
= Σ

∙
1


− 

2

¡
 −

¢¸


= Σ where  =
1


− 

2

¡
 −

¢
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(a) 
³
̂0

´
= Σ

∙
1


− 

2

¡
 −

¢¸
[0 + 1]

= 0Σ

∙
1


− 

2

¡
 −

¢¸
+ 1Σ

∙
1


− 

2

¡
 −

¢¸

= 0

∙
1− 

2
Σ
¡
 −

¢¸
+ 1

∙
 − 

2
Σ

¡
 −

¢¸

= 0 − 0 + 1 − 1


2
2

= 0

∴ ̂0 is an unbiased estimator for 0

(b)  
³
̂0

´
= 2Σ

∙
1


− 

2

¡
 −

¢¸2

= 2Σ

"
1

2
− 2

2

¡
 −

¢
+


2

4

¡
 −

¢2#

= 2

"


2
− 0 + 

2

4
2

#

= 2

"
1


+


2

2

#

If you go back to the introduction of this subsection you will notice that all that remains is to simplify

 (  ) = 
³
̂0; ̂1

´
= 2Σ

= 2Σ
 −

2

∙
1


− 

2

¡
 −

¢¸

=
−2
2

This long derivation was actually the proof of the following theorem:
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Theorem 8.1

̂0 and ̂1 are jointly normally distributed with


³
̂0

´
= 0; 

³
̂1

´
= 1;

 
³
̂0

´
= 2

Ã
1


+


2

2

!
;  

³
̂1

´
=

2

2
;


³
̂0; ̂1

´
=
−2
2

with 2 = Σ
¡
 −

¢2
.

The next theorem is also very important and it is assumed without proof here.

Theorem 8.2

P
=1

³
 − ̂0 − ̂1

´2
2

∼ 2−2

and is independent of ̂0 and ̂1

Example 8.2

An experiment is performed to estimate the relationship between the yield (bags per hectare) of a

certain variety of maize and the amount of fertilizer (metric tons per hectare) applied, using a new

kind of fertilizer. Twelve farms are chosen in a certain district, and divided into four groups of three

farms each in a random fashion. Each group receives a certain amount of fertilizer per hectare, and

the yields are recorded:

Fertilizer Yield
Metric tons/hectare Bags/hectare

0 15; 12; 17
2 24; 20; 21
4 21; 31; 28
6 36; 32; 31

The problem is to estimate the relationship between yield and amount of fertilizer.
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Before proceeding, draw a graph of the data of example 8.2, plotting  (fertilizer) on the horizontal

axis and the response  (yield) on the vertical axis. By inspection of this graph we conclude that a

straight line would probably be adequate. Theoretically we should know the form of the regression

line even before the data are collected. However, in practice this is very often impossible and we

have to be guided by a graph or other means. We shall assume the straight line to be the true model.

Our data and computations may be summarised in tabular form as follows:

   −
¡
 −

¢2

¡
 −

¢
̂  − ̂

³
 − ̂

´2
0 15 −3 9 −45 15 0 0

0 12 −3 9 −36 15 −3 9

0 17 −3 9 −51 15 2 4

2 24 −1 1 −24 21 3 9

2 20 −1 1 −20 21 −1 1

2 21 −1 1 −21 21 0 0

4 21 1 1 21 27 −6 36

4 31 1 1 31 27 4 16

4 28 1 1 28 27 1 1

6 36 3 9 108 33 3 9

6 32 3 9 96 33 −1 1

6 31 3 9 93 33 −2 4

Total 36 288 0 60 180 288 0 90| {z }
This is computed after you
have solved the equation
of the regression line.

 = 3;  = 24; ̂1 =
180

60
= 3;

̂0 =  − ̂1 = 24− 9 = 15;

The estimated regression line is  = 15 + 3

We use this line to compute ̂ = ̂0+̂1 for example if  = 0 ⇒ ̂ = 15

if  = 2 ⇒ ̂ = 15 + 3 (2) = 21 et cetera

∴ 2 =
1

− 2
X
=1

³
 − ̂

´2
=
90

10
= 9

We call ̂ = ̂0 + ̂1 the predictions and  − ̂ =  − ̂0 − ̂1 the residuals,

that is the difference between the observations and predictions.

As a final step one usually draws the estimated regression line on the scatter plot. (We repeat this

example electronically with JMP in activity 8.10 of the workbook.)
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8.4 Inference on the coefficients
We are interested especially in the coefficients 0 and 1 We would like to test hypotheses and

construct confidence intervals.

The following two theorems follow directly from the definition of a -variable:

Theorem 8.2

0 =
̂0 − 0



s
1


+


2

2

is a −2 variate.

Theorem 8.3

1 =
̂1 − 1





is a −2 variate.

These two theorems may be used to test the significance of ̂0 and ̂1 or to construct confidence

intervals for 0 and 1

(a) Inference on β0

Suppose we wish to test whether  ( ) =  if  = 0 in other words whether the regression line

has a particular intercept on the  -axis. The null hypothesis is 0 : 0 = 

We compute

0; =

³
̂0 − 

´


s
1


+


2

2

and reject 0 against 1 : 0 6=  at the  level of significance if |0;|  
2
;−2 similarly for one-

sided tests. (The most common null hypothesis is 0 : 0 = 0 that is the regression line passes

through the origin.)

A 100 (1− )% confidence interval for 0 is

⎛⎝̂0 − 
2
;−2

s
1


+


2

2
; ̂0 + 

2
;−2

s
1


+


2

2

⎞⎠.
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(b) Inference on β1

Suppose we wish to test whether the regression line has a particular slope. The null hypothesis

is 0 : 1 =  which may be rejected in favour of 1 : 1 6=  at the  level if |1;|  
2
;−2 where

1; =
̂1 − 







In a similar fashion we will perform a one-sided test. A 100 (1− )% confidence interval for 1 is

easily seen to be

µ
̂1 − 

2
;−2




; ̂1 + 

2
;−2





¶


Example 8.2(a) (example 8.2 continued)

Test 0 : 0 = 0 against 1 : 0 6= 0 and compute a 95% confidence interval for 1

Solution

For this example we have already computed

 = 3; ̂0 = 15; ̂1 = 3; 2 = 60; 2 =
90

10
= 9 and  = 12

To test 0 : 0 = 0 we compute

0;0 =
̂0 − 0



s
1


+


2

2

=
15− 0

3

r
1

12
+
9

60

≈ 103510

We will reject 0 at the 5% level of significance in favour of 1 : 0 6= 0 if

|0;0|  0025;−2 = 0025;10 = 2228 (table III).

Since 10351  2228 we reject 0 and conclude that the regression line does not pass through the

origin. This could be expected in this example, since we do not expect "no yield" if we do not apply

fertilizer.

A 95% confidence interval for 1 is ̂1 ± 0025;10



=

∙
3− (2228) (3)√

60
; 3 +

(2228) (3)√
60

¸
 that is

(214; 386).

We can use this two-sided interval to test a two-sided alternative, for example:

Test 0 : 1 = 0 against 1 : 1 6= 0



219 STA2601/1

Since the confidence interval does not include zero, it implies the slope 1 is significantly different

from zero. This means that we could expect an increase of between 2.14 and 3.86 bags/ha for

every additional metric ton/ha fertilizer applied. The farmer may now decide whether the price/ton of

fertilizer is comparable with the price he or she receives for 2.14 and 3.86 bags of maize. Of course

the yield will not increase indefinitely as more and more fertilizer is added. Strictly speaking, we

can only make predictions between 0 and 6 tons/ha.

8.5 Inference on the regression line

(a) Confidence limits for the regression line

Suppose we choose a value  of the independent variable. We predict that the response will be

̂() = ̂0 + ̂1

How accurate is this prediction? We note that ̂() is a normal variate, being a linear combination

of two normal variates ̂0 and ̂1 For the same reason ̂ () is independent of ̂2 Its mean and

variance are


h
̂()

i
= 

³
̂0

´
+

³
̂1

´
= 0 + 1

 
h
̂()

i
=  

³
̂0

´
+2 

³
̂1

´
+ 2

³
̂0; ̂1

´

= 2

"Ã
1


+


2

2
+

2

2
− 2

2

!#

= 2

"
1


+

¡
 −

¢2
2

#

A confidence interval for (0 + 1) is seen to be

³
̂0 + ̂1

´
± 

2
;−2

s
1


+

¡
 −

¢2
2
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Example 8.2(b) (example 8.2 continued)

We tabulate the calculations for the 95% confidence interval for 0 + 1 for the different values of

, using 0025;10 = 2228

 ̂0 + ̂1 

s
1


+

¡
 −

¢2
2

= 3

r
1

12
+
( − 3)2
60

Lower limit Upper limit

0 15 144914 1177 1823

1 18 11619 1541 2059

2 21 094868 1889 2311

3 24 086603 2207 2593

4 27 094868 2489 2911

5 30 11619 2741 3259

6 33 144914 2977 3623

For example we are 95% sure that the mean yield on farms where 5 tons/ha fertilizer is applied is

between 27.41 and 32.59 bags/ha.

Plot these limits on the graph constructed for this example, and connect the points by means of a

smooth curve.

In general, the confidence limits have the following form:

Figure 8.4
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The limits form a "confidence band". The band is at its narrowest where  =  The limits

show how accurately we have estimated the regression line. We can obtain a narrower band by

increasing  and Σ
¡
 −

¢2


(b) Confidence limits for a future observation

Suppose we choose a value of  with the intention of obtaining a further observation 0 ()

independent of 1   Where can we expect this observation to lie? 0 () is a random

variable with mean 0 + 1 and variance 2 according to the assumptions of our model. We

predict 0 () to be

̂0 () = ̂0 + ̂1

Consider the random variable 0 ()− ̂0 (). We see that


h
0 ()− ̂0 ()

i
= 0

 
h
0 ()− ̂0 ()

i
=   (0 ()) +  

³
̂0 ()

´

(if 0 () and ̂0 () are independent)

= 2 + 2

"
1


+

¡
 −

¢2
2

#

= 2

"
1 +

1


+

¡
 −

¢2
2

#

It follows that the 100 (1− )% confidence limits for 0 () are

̂0 + ̂1 ± 
2
;−2

s
1 +

1


+

¡
 −

¢2
2

which appear rather similar to those of the previous paragraph but which are wider because of the

extra term under the square root sign.
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Example 8.2(c) (example 8.2 continued)

Similar to example 8.2(b) we can do the calculations in tabular form. We leave this for an activity in

the workbook. With 0025;10 = 2228 we find

 Lower limit Upper limit
0 758 2242

1 1083 2517

2 1399 2801

3 1704 3096

4 1999 3401

5 2283 3717

6 2558 4042

Suppose a farmer applies 4 tons of fertilizer to 1 ha of land. He or she can be 95% sure that the yield

will be between about 20 and 34 bags (not allowing for meteorological variations). Now plot these

limits on the graph of the data and join these with smooth curves.

The fact that the variance expressions differ is a rather technical point because the latter variance

expression is derived on the assumption that this "future" observation is independent of the

observations used and hence 
³
̂1 

´
= 0 You will learn more about this in some of our

honours courses where we deal with the mathematical detail!

8.6 Relationship between tests for correlation

and regression
Theorem 5.4 deals with a correlation problem and theorem 8.2 deals with a regression problem. The

two -statistics are computationally the same, however, as will now be shown.

For the correlation problem let

11 = Σ
¡
1 −  1

¢2
22 = Σ

¡
2 −  2

¢2
12 = Σ

¡
1 −  1

¢ ¡
2 −  2

¢
then  = 12

√
1122 and the -statistic of theorem 5.4 for testing 0 :  = 0 can be written
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 =
√
− 2 12

√
1122p

1− 2121122

=
√
− 2 12√

1122
·

√
1122p

1122 − 212

=
√
− 2 12p

1122 − 212


Likewise, for the regression model, let

11 = Σ
¡
1 −

¢2
22 = Σ

¡
 − 

¢2
12 = Σ

¡
 −

¢ ¡
 − 

¢
= Σ

¡
 −

¢
as can be shown easily.

Then

̂1 =
12

11

2 = 11

2 =
Σ
³
 − ̂0 − ̂1

´2
(− 2)

(− 2)2 = Σ
³
 −  + ̂1 − ̂1

´2
= Σ

h¡
 − 

¢− ̂1
¡
 −

¢i2
= Σ

¡
 − 

¢2 − 2̂1Σ ¡ − 
¢ ¡
 −

¢
+ ̂

2

1Σ
¡
 −

¢2
= 22 − 212

11
12 +

212
211

11

= 22 − 212
11
⇒ 2 =

22 − 212
11

(− 2)

This is a very handy alternative formula if you do not like to compute ̂ for each different 
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The test statistic for testing 0 : 1 = 0 is

1;0 =
̂1


=
1211q¡

22 − 21211
¢
 ((− 2)11)

=

³
12
11

´p
(− 2)11s

2211 − 212
11

=
√
− 2 12p

1122 − 212


The two -statistics are therefore computed in exactly the same way and their distributions under the

two null hypotheses ( = 0 and 1 = 0, respectively) are the same. When we draw inference on 0

or (0 + 1), however, the control variable should not be a random variable, or at least the variance

of  must be much smaller than the variance of 

The last section of this study unit is optional and you will not be examined on it. It does, however, give

a smooth transition from second-year level statistics to third year if you intend to major in Statistics.

You will appreciate the matrix approach when you start working with more complicated models.

8.7 Simple linear regression in matrix notation
In matrix notation we may write the simple linear regression model as⎡⎢⎢⎢⎣

1
2
...


⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 1
1 2
...

...
1 

⎤⎥⎥⎥⎦
∙
0
1

¸
+

⎡⎢⎢⎢⎣
1
2
...


⎤⎥⎥⎥⎦
or  =  +  say.

(Please note that we now use small letters for the independent -variates because we reserve the

capital letter  for the so-called design matrix.)

The least squares criterion states that we should minimise¡
 −

¢0 ¡
 −

¢
which is the same as Σ ( − 0 − 1)

2.

The first derivative with respect to  is set equal to zero to obtain

( 0) =  0
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which is the same as ∙
 Σ
Σ Σ

2


¸ ∙
0
1

¸
=

∙
Σ
Σ

¸


The solution yields the least squares estimators:

ˆ

 = ( 0)−1 0

=
1

Σ2 − (Σ)2
∙
Σ2 −Σ
−Σ 

¸ ∙
Σ
Σ

¸

which yields the same estimators ̂0 and ̂1 as before. To find the covariance matrix of
ˆ

 note that

the covariance matrix of  is


¡
 0

¢
= 2

while
ˆ

 =  where  = ( 0)−1 0

∴ 

Ã
ˆ


ˆ



0!
= 

¡
 0

¢
0

= 2 ( 0)−1 0
h
( 0)−1 0

i0
= 2 ( 0)−1 0 ( 0)−1

= 2 ( 0)−1

=
2

Σ ( − )2

∙
Σ2 −Σ
−Σ 

¸

which is what we obtained before.
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Exercise 8.1

1. The amount of lime in a concrete mixture () and the hardness of the mixture ( ) were measured

and found to be as follows:
 

5 1041; 1047; 1023

10 1060; 1050; 1069

15 1046; 1075; 1054

20 1066; 1075; 1077

25 1080; 1069; 1073

30 1095; 1061; 1069

Find a suitable regression model.

2. A study was done to find the effect of temperature () on the yield ( ) of a chemical process.

The following data were obtained (where  = (temp− 300) 20).
 −5 −4 −3 −2 −1 0 1 2 3 4 5

 12 7 20 13 21 18 22 18 28 32 29

(a) Plot the data to verify that simple linear regression is a suitable model.

(b) Estimate 0 1 and 2

(c) Find a 95% confidence interval for 1

(d) Find a 95% confidence interval for 0 + 21 (ie the mean yield at 340◦C).

(e) Find a 95% confidence interval for the yield if a further experiment is performed at 360◦C.

3. Eleven plots of land were each treated with a certain dosage of fertilizer () and the yield ( )

recorded:
 2 3 4 1 0 2 4 0 1 2 3

 30 36 47 28 12 31 54 5 18 29 42

(a) Plot the points to determine whether a straight line would represent an adequate model.

(b) Compute the regression line and draw it on the graph.

(c) Assume normality and find a 95% confidence interval for the slope; interpret the result.

(d) What is the expected yield at  = 4?

(e) Find a 95% confidence interval for the expected yield at  = 4

(f) Find a 95% confidence interval for the yield which one may expect to obtain if, in a new

experiment, a dosage of  = 4 is applied.
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4. Let  ∼ 
¡
0 + 1; 

2
¢
;  = 1  ; and let ̂0 and ̂1 be the least squares estimators for 0

and 1

(a) Write down  
³
̂0 + ̂1

´
and show that this is a minimum at  = 

(b) Calculate the covariance between ̂0 + ̂11 and ̂0 + ̂12

(c) Find  such that ̂0 + ̂1
¡
 − 

¢
and ̂0 + ̂1

¡
 + 

¢
are uncorrelated.
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8.8 Learning outcomes

After studying study unit 8, you should be able to

¥ define the concepts bivariate data analysis and regression experiment

¥ draw a scatter plot of two numerical variables and describe the nature of the relationship
between the two variables

¥ determine the coefficients of a linear equation using the method of least squares

¥ compute the estimate of the variance around the line and explain its use

¥ perform and interpret the hypothesis test 0 : 0 = 

¥ derive a confidence interval for the population regression intercept, 0

¥ perform and interpret the hypothesis test 0 : 1 = 

¥ derive a confidence interval for the population regression slope

¥ derive confidence limits for the regression line

¥ derive confidence limits for a future observation of a value for a regression experiment

¥ explain the relationship between tests for correlation and tests for the regression slope
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A. Solutions to exercises

Exercise 1.1

1.  ∼ 10

 ( ≥ ) = 001 with  = 10 and  = 001 we therefore find  = 2764

=⇒  ( ≥ 2764) = 001

If  ( ≥ ) = 001 =⇒  ( ≤ ) = 1− 001 = 099

=⇒  ( ≤ 2764) = 099

Since the -distribution is symmetric
 ( ≥ ) = 001 =⇒  ( ≤ −) = 001

=⇒  ( ≤ −2764) = 001

Now  ( ≤ −2764) = 001 and  ( ≥ 2764) = 001

=⇒  (−2764 ≤  ≤ 2764) = 1− (001 + 001)

Thus  (−2764 ≤  ≤ 2764) = 098

 ( ≥ ) = 025 =⇒  = 07

 ( ≥ 07) = 025 by symmetry  ( ≤ −07) = 025

=⇒  (−07 ≤  ≤ 07) = 1− (025 + 025)

=⇒  (−07 ≤  ≤ 07) = 05

2.  ∼ 5;12

 (  ) = 005 with 1 = 5 and 2 = 12

=⇒  = 311 (Note: 005;5;12 = 311)

Thus  (  311) = 005

 (  ) = 0025 0025;5;12 = 389

=⇒  (  389) = 0025

 (  389) = 1−  (  389)

= 1− 0025
= 0975
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Thus  (  389) = 0975

 (  ) = 001 001;5;12 = 506

=⇒  (  506) = 001 =⇒  (  506) = 1−  (  506)

 (  389) = 1− 001
= 099

Thus,  (  506) = 099

* * * * *

Exercise 2.1

1. Let  = 1
−1

X
=1

( −)2

( ) = 

Ã
1

− 1
X
=1

( −)2

!

= 

Ã
1

− 1

Ã
X
=1

2
 − 2

X
=1

 +

X
=1


2

!!

= 

Ã
1

− 1

Ã
X
=1

2
 − 22

+ 
2

!!

= 

Ã
1

− 1

Ã
X
=1

2
 − 

2

!!

=
1

− 1

Ã
X
=1


¡
2


¢− 
³

2
´!

Now

 () = (2
 )− 2

=⇒ (2
 ) =  () + 2

=  + 2

 () = (
2
)− 2

=⇒ (
2
) =  () + 2

=



+ 2
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Thus

( ) =
1

− 1

Ã
X
=1


¡
2


¢− 
³

2
´!

=
1

− 1

Ã
X
=1

¡
 + 2

¢− 

µ



+ 2

¶!

=
1

− 1
µ
 + 2 − 


− 2

¶
=

1

− 1 ( − )

=


− 1 (− 1)
= 

2. 1 =
1



X


( − )2 and 2 =
1

− 1
X


¡
 −

¢2

(1) = 

Ã
1



X


( − )2

!

= 

Ã
1



X


( − ) ( − )

!

= 

Ã
1



Ã
X


¡
2
 − 2 + 2

¢!!

= 

Ã
1



Ã
X


2
 − 2

X


 +

X


2

!!

=
1



Ã
X



¡
2


¢− 2 X


 () +

X



¡
2
¢!

=
1



Ã
X


¡
 + 2

¢− 2 X


+

X


2

!

=
1



¡
 + 2 − 2+ 2

¢
=

1



¡
 + 2 − 22 + 2

¢
=

1


()

= 
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(2) = 

Ã
1

− 1
X
=1

( −)2

!
=  result from 1

Note
X
1

( − )2

2
∼ 2 and

X¡
 −

¢2
2

∼ 2−1

Now

1 =
1



X


( − )2

=
2



X


( − )2

2
multiply numerator and denominator by 2

=
2


 where  =

X


( − )2

2

  (1) =  

µ
2




¶
=

4

2
  ( ) now   ( ) = 2 since  ∼ 2

=
4

2
× 2

=
24



2 =
1

− 1
X
1

( −)2

=
2

− 1
X
1

¡
 −

¢2
2

=
2

− 1
X
1

µ
 −



¶2
=

2

− 1 where  =

X


µ
 −



¶2
. Thus  ∼ 2−1 and   ( ) = 2 (− 1)
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  (2) =  

µ
2

− 1
¶

=
4

(− 1)2  ( )

=
4

(− 1)2 × 2 (− 1)

=
24

− 1

Thus
24




24

− 1 ∴ 1 has a smaller variance than 2

3 () = 1 + 2 2

 () =

X


( −())
2

=

X


¡
 −

¡
1 + 2 2

¢¢2
=

X


¡
 − 1 − 2 2

¢2



1
= 2

X


¡
 − 1 − 2 2

¢×−
= −2

X


¡
 − 2 1 − 3 2

¢

Now 
1

= 0

=⇒ 0 = −2
X


¡
 − 2 1 − 3 2

¢
= −2

Ã
X


 − 1

X


2 − 2

X


3

!
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Making 1 subject of the formula

1

X


2 =

X


 − 2

X


3

1 =

X


 − 2

X


3

X


2

(1)

Making 2 subject of the formula

2

X


3 =

X


 − 1

X


2

2 =

X


 − 1

X


2

X


3

(2)

Now



2
= 2

X


¡
 − 1 − 2 2

¢×−2
= −2

X


¡
2 − 3 1 − 4 2

¢
= −2

Ã
X


2 − 1

X


3 − 2

X


4

!

0 = −2
Ã

X


2 − 1

X


3 − 2

X


4

!

Making 1 subject of the formula

1

X


3 =

X


2 − 2

X


4

1 =

X


2 − 2

X


4

X


3

(3)
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Making 2 subject of the formula

2

X


4 =

X


2 − 1

X


3

2 =

X


2 − 1

X


3

X


4

(4)

Finding 1 by equating equations 2 and 4
X


 − 1

X


2

X


3

=

X


2 − 1

X


3

X


4

X


4

Ã
X


 − 1

X


2

!
=

X


3

Ã
X


2 − 1

X


3

!
Ã

X


4

!Ã
X




!
− 1

Ã
X


2

!Ã
X


4

!
=

Ã
X


2

!Ã
X


3

!
− 1

Ã
X


3

!2
Ã

X


4

!Ã
X




!
−
Ã

X


2

!Ã
X


3

!
= 1

Ã
X


2

!Ã
X


4

!
− 1

Ã
X


3

!2
Ã

X


4

!Ã
X




!
−
Ã

X


2

!Ã
X


3

!
= 1

⎛⎝Ã X


2

!Ã
X


4

!
−
Ã

X


3

!2⎞⎠

b1 =

Ã
X




!Ã
X


4

!
−
Ã

X


2

!Ã
X


3

!
⎛⎝Ã X



2

!Ã
X


4

!
−
Ã

X


3

!2⎞⎠
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Finding 2 by equating equations 1 and 3

X


 − 2

X


3

X


2

=

X


2 − 2

X


4

X


3

X


3

Ã
X


 − 2

X


3

!
=

X


2

Ã
X


2 − 2

X


4

!
Ã

X




!Ã
X


3

!
− 2

Ã
X


3

!2
=

Ã
X


2

!Ã
X


2

!
− 2

Ã
X


4

!Ã
X


2

!
Ã

X




!Ã
X


3

!
−
Ã

X


2

!Ã
X


2

!
= 2

Ã
X


3

!2
− 2

Ã
X


4

!Ã
X


2

!
Ã

X




!Ã
X


3

!
−
Ã

X


2

!Ã
X


2

!
= 2

⎛⎝Ã X


3

!2
−
Ã

X


4

!Ã
X


2

!⎞⎠

b2 =

Ã
X




!Ã
X


3

!
−
Ã

X


2

!Ã
X


2

!
⎛⎝Ã X



3

!2
−
Ã

X


4

!Ã
X


2

!⎞⎠
4.

 () =

X
=1

( −())
2

=

−1X
=1

( −())
2 + ( −())

2

=

−1X
=1

( − 1)
2 + ( − (1 + 2))

2

=

−1X
=1

( − 1)
2 + ( − (1 + 2))

2

=

−1X
=1

( − 1)
2 + ( − 1 − 2)

2



1
= 2

−1X
=1

( − 1)×−1 + 2 ( − 1 − 2)×−1

= −2
Ã
−1X
=1

( − 1) + − 1 − 2

!
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0 = −2
Ã
−1X
=1

( − 1) + − 1 − 2

!

0 =

−1X
=1

( − 1) + − 1 − 2

0 =

−1X
=1

 −
−1X
=1

1 + − 1 − 2

0 =

−1X
=1

 − (− 1) 1 − 1 + − 2

0 =

−1X
=1

 − 1 + 1 − 1 + − 2

0 =

−1X
=1

 − 1 + − 2

0 =

X
=1

 − 1 − 2

=⇒ b1 =
X
=1

 − 2


(1)

b2 =

X
=1

 − 1(2)



2
= 2 ( − 1 − 2)×−1

0 = −2 ( − 1 − 2)

0 =  − 1 − 2

=⇒ 1 =  − 2(3)

=⇒ 2 =  − 1(4)
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Equating 2 and 4

 − 1 =

X
=1

 − 1

1 − 1 =

X
=1

 −

1 (− 1) =

−1X
=1

 + −

1 (− 1) =

−1X
=1



1 =

−1X
=1



− 1
1 = 

Equating 1 and 3
X
=1

 − 2


=  − 2

X
=1

 − 2 =  − 2

X
=1

 −  = 2 − 2

X
=1

 −  = 2 (1− )

 −
X
=1

 = 2 (− 1)

 − −
−1X
=1

 = 2 (− 1)

 (− 1)−
−1X
=1

 = 2 (− 1)

 −

−1X
=1



− 1 = 2

 − = 2

=⇒ b2 =  − b1
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5. ( ) =
1√
2


− 1
2 (−)

2



The maximum likelihood is

 () =
Q
=1

( )

=
Q
=1

1√
2


− 1
2 (−)

2



=
1

(2)2

− 1
2

P
(−)

2



  () =
−
2
log 2 − −

2
log  − 1

2

P
( − )2



  ()


=
−
2
− 1
2
×−1

ÃP
( − )2

2

!

0 =
−
2

+
1

2

ÃP
( − )2

2

!


2
=

1

2

ÃP
( − )2

2

!



=

P
( − )2

2

 =
P
( − )2b =

1



P
( − )2

6. ( ) =  (1− )−1   1

The maximum likelihood is

 () =
Q
=1

( )

=
Q
=1

 (1− )−1

=  (1− )


−

  () =  log  +
³X

 − 
´
log(1− )

  ()


=




+

1

1− 
×
³X

 − 
´
×−1

0 =



− 1

1− 

³X
 − 

´
1

1− 

³X
 − 

´
=






³X

 − 
´

= (1− )


X

 −  = − 


X

 −  +  = 
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
X

 = 

 =
P
b =

1



7. ( ) =
1


−


   0

The maximum likelihood is

 () =
Q
=1

( )

=
Q
=1

1



−




=
1


−





  () = − log  −
P




  ()


=
−

+

P


2

0 =
−

+

P


2

0 = − +
X



 =
X



 =

P


b = 

8. () follows a normal distribution

1−  =  (− ≤ () ≤ )

095 =  (−196 ≤ () ≤ 196)

=  (−196 ≤  − 
√


≤ 196)

= 

µ
−196× √


≤  −  ≤ 196× √



¶
= 

µ
− − 196× √


≤  ≤ − + 196× √



¶
= 

µ
 − 196× √


≤  ≤  + 196× √



¶
∴The interval is

³
 − 196× √


; − 196× √



´
* * * * *
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Exercise 4.1

1. We want to test
0 : 1 = 010; 2 = 020; 3 = 020; and 4 = 05

1 : At least one of the proportions is different from the one specified above.

Now 1 = 125; 2 = 185; 3 = 230; 4 = 460

Thus,

 = 1 +2 +3 +4

= 125 + 185 + 230 + 460

= 1 000

The expected values are

1 = 1000× 01 = 100; 2 = 1000× 02 = 200
3 = 1000× 02 = 200; 4 = 1000× 05 = 500

The test statistic

 2 =
4P

=1

( − )
2



=
(125− 100)2

100
+
(185− 200)2

200
+
(230− 200)2

200

(460− 500)2
500

= 625 + 1125 + 45 + 32

= 15075

From table IV, we see that 2;−1 = 2001;3 = 113449 We will reject 0 if  2 ≥ 113449

Since 15075  113449, we reject 0 at the 1% level and conclude that at least one of the

proportions is different from the one specified.

2. We want to test 0 : The probabilities for the four classes will be in the ratio  : 2 : 4 : 1− 7

Let 0 1 2 and 3 denote the plants bearing white flowers, yellow flowers, orange flowers and

those that fail to germinate, respectively, where  = 0+ 1 +2 +3
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Estimate  according to the maximum likelihood method gives

() =
Q
=1

 ( = )

= | {z }
0 times

× 222| {z }
1 times

× 444| {z }
2 times

× (1− 7)  (1− 7)| {z }
3 times

= ()0 (2)1 (4)2 (1− 7)3

 () = 0 log  +1 log 2 +2 log 4 +3 log (1− 7)
 ()


=

0


+
21

2
+
42

4
+
−73
1− 7 

Setting  ()


= 0

0 =
0


+
21

2
+
42

4
− 73

1− 7
0 =

0


+

1


+

2


− 73

1− 7
73

1− 7 =
0


+

1


+

2



73 = (1− 7)
µ
0 +1 +2



¶
73 = (1− 7) (0 +1 +2)

73 = 0 +1 +2 − 70 − 71 − 72
70 + 71 + 72 + 73 = 0 +1 +2

7(0 +1 +2 +3) = 0 +1 +2b =
0 +1 +2

7(0 +1 +2 +3)

In this case b =
16 + 28 + 40

7(100)

=
84

700

= 012

The estimated probabilities are therefore b = 012; 2b = 024; 4b = 048; 1− 7b = 016
The expected frequencies are b

Class Observed frequencies Expected frequencies
White 16 12

Yellow 28 24

Orange 40 48

Fail to germinate 16 16
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Therefore

 2 =
4P

=1

( − b)2
b

=
(16− 12)2

12
+
(28− 24)2

24
+
(40− 48)2

48
+
(16− 16)2

16

= 13333 + 06667 + 13333 + 0

= 33333

We have  −  − 1 = 4 − 1 − 1 = 3 degrees of freedom (one parameter estimated) and

2005;2 = 599147 We reject 0 if  2 ≥ 5991

Since 33333  599147, 0 cannot be rejected at the 5% level, thus the seed man’s claim may be

true, that is, there is no sufficient evidence to refute the seed man’s claim.

3.
0 : The sample comes from a ( 100) distribution.
1 : The sample does not come from a ( 100) distribution.

-interval -interval Expected Observed Expected
probability () frequency frequency

  3255   −067 02514 7 10056

3255 ≤   10 −067 ≤  ≤ 0 02486 6 9944

10 ≤   16745 0 ≤   067 02486 15 9944

 ≥ 16745  ≥ 067 02514 12 10056

 2 =
4P

=1

( − b)2b
=

(7− 10056)2
10056

+
(6− 9944)2
9944

+
(15− 9944)2

9944
+
(12− 10056)2

10056

= 09287 + 15643 + 25707 + 03758

= 54395

(a) 2;−1 = 2010;3 = 625139

2;−−1 = 2010;2 = 460517

Since 460517  54395  625139, the decision is uncertain at the 10% level of significance.
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(b) 2;−1 = 2005;3 = 781473

2;−−1 = 2005;2 = 599147

Since 54395  599147, we do not reject 0 at the 5% and conclude that the sample is from a

normal distribution with 2 = 100 in other words, ( 100)

4. (a)
0 : The sample comes from a Poisson distribution with  = 2

1 : The sample does not come from a Poisson distribution with  = 2

Numbers Observed Expected Expected
frequency probability, () frequency

0 21 01353 14

1 30 02707 27

2 27 02707 27

3 16 01804 18

4 3 00902 9

5 2 00361 4

6 1 00121 1

Because of small expected frequencies, pool the classes " = 5" and " = 6".

 2 =
P
=1

( − )
2



=
(21− 14)2

14
+
(30− 27)2

27
+
(27− 27)2

27
+
(16− 18)2

18
+
(3− 9)2
9

+
(3− 5)2
5

= 35 + 03333 + 0 + 02222 + 4 + 08

= 88555

Reject 0 if  2 ≥ 2005;5 = 110705 Since  2 = 88555  110705 we do not reject 0 at

the 5% level of significance and conclude that the data come from a Poisson distribution with

 = 2

(b)
0 : The data come from a Poisson distribution.
1 : The data do not come from a Poisson distribution.

The maximum likelihood estimator is b = 

=⇒ b = (0× 21) + (1× 30) + (2× 27) + (3× 16) + (4× 3) + (5× 2) + (6× 1)
100

=
160

100

= 16
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Numbers Observed Expected Expected
frequency probability, () frequency

0 21 02019 20

1 30 0323 32

2 27 02584 26

3 16 01378 14

4 3 00551 6

5 2 00176 2

6 1 00047 0

Pool " = 4", " = 5" and " = 6".

 2 =
P
=1

( − b)2
b

=
(21− 20)2

20
+
(30− 32)2

32
+
(27− 26)2

26
+
(16− 14)2

14
+
(6− 8)2
8

= 005 + 0125 + 00385 + 02857 + 05

= 09992

Reject 0 if  2 ≥ 2005;5−1−1 =  2 ≥ 2005;3 = 781473 Since  2 = 09992  781473

we cannot reject 0 at the 5% level of significance and conclude that the data come from a

Poisson distribution. Thus, ̂ = 16

5.
0 : The sample comes from a (32 64) distribution.
1 : The sample does not come from a (32 64) distribution

Lifetime -interval Expected Observed Expected
-interval probability, () frequency frequency
less than 16   −2 00228 6 228

16 to 20 −2    −15 0044 9 44

20 to 24 −15    −1 00919 12 919

24 to 28 −1    −05 01498 16 1498 −→ 15

28 to 32 −05    0 01915 20 1915 −→ 19

32 to 36 0    05 01915 22 1915 −→ 19

36 to 40 05    1 01498 10 1498 −→ 15

above 40   1 01587 5 1587 −→ 16
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Pool first three classes.

Expected frequencies: 16 15 19 19 15 16

 2 =
P
=1

( − b)2
b

=
(27− 16)2

16
+
(16− 15)2

15
+
(20− 19)2

19
+
(22− 19)2

19
+
(10− 15)2

15
+
(5− 16)2
16

= 75625 + 00667 + 00526 + 04737 + 16667 + 75625

= 173847

Reject 0 if  2 ≥ 2005;5 = 110705 Since  2 = 173847  110705 we reject 0 at the 5% level

of significance and conclude that the sample does not come from a (32 64) distribution.

6.
0 : The sample comes from a (25 122) distribution.
1 : The sample does not come from a (25 122) distribution.

The probability of each interval is 1
5
= 02

We know that
 ( ≤ −0842) = 02

 ( ≤ −0253) = 04

 ( ≤ 0253) = 06

 ( ≤ 0842) = 08

-interval Equal probability Expected Tally Observed ( − b)
intervals frequency,  frequency, 

 ≤ −0842 −∞   ≤ 14896 6 8 2

−0842 ≤  ≤ −0253 14896   ≤ 21964 6 5 −1

−0253 ≤  ≤ 0253 21964   ≤ 28036 6   
3 −3

0253 ≤  ≤ 0842 28036   ≤ 35104 6 5 −1

 ≥ 0842 35104   ≤ ∞ 6 9 3

Total 30 30
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 2 =
P
=1

( − )
2



=
4

6
+
1

6
+
9

6
+
1

6
+
9

6

=
24

6

= 4

We reject 0 at the 10% level if  2 ≥ 2;−1 = 2010;4 = 777944 Since  2 = 4  777944 we do

not reject 0 at the 10% level of significance and conclude that the data come from a (25 122)

distribution.

7. We have to test 0 : 2 = 3 against 1 : 2 6= 3

We will reject 0 at the 10% level of significance (two-sided) if   09073 or if   07153

Since  = 11  50 we will use the test statistic  that is,  =

1


X
=1

¯̄
 −

¯̄
vuut 1



X
=1

¡
 −

¢2
where

 = 220
11

= 20

X
=1

¯̄
 −

¯̄
= |−3|+ |2|+ · · ·+ |4| = 40

X
=1

¡
 −

¢2
=

X
2
 − 

2
= 4576− 11(20)2 = 176

 =

1


X
=1

¯̄
 −

¯̄
vuut 1



X
=1

¡
 −

¢2 =
1
11
(40)q
1
11
(176)

=
3636363636

4
≈ 09091

Since 09091  09073 we reject 0 at the 10% level and conclude that the kurtosis of the sample

is significantly different from the kurtosis of the normal distribution.
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8.

 = 25

X
=1

¡
 −

¢2
= 200

X
=1

¡
 −

¢3
= −320

X
=1

¡
 −

¢4
= 4000

We have to test for skewness and kurtosis.

Test for skewness:

We have to test 0 : 1 = 0 against 1 : 1 6= 0

We will reject 0 if |1|  0534 (in other words if 1  −0534 or if 1  0534).

1 =

1


X
=1

¡
 −

¢3
"
1


X
=1

¡
 −

¢2# 3

2

=
1
50
(−320)£

1
50
(200)

¤ 3
2

=
−64
[4]

3

2

=
−64
8

= −08

Since −08  −0534 we reject 0 at the 10% level.

Test for kurtosis:

We have to test 0 : 2 = 3 against 1 : 2 6= 3

We will reject 0 if 2  399 or 2  215.

2 =

1


X
=1

¡
 −

¢4
"
1


X
=1

¡
 −

¢2#2

=
1
50
(4 000)£

1
50
(200)

¤2
=

80

16

= 5

Since 5  399 we reject 0 at the 10% level.
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The sample failed both tests and hence we conclude that the sample is not from a normal

distribution.

9.

 = 50
1



X
=1

¡
 −

¢2
= 16

1



X
=1

¡
 −

¢3
= 64

1



X
=1

¡
 −

¢4
= 8192

We have to test for skewness and kurtosis.

Test for skewness:

We have to test 0 : 1 = 0 against 1 : 1 6= 0

We will reject 0 if 1  −0127 or if 1  0127 in other words if |1|  0127.

1 =

1


X
=1

¡
 −

¢3
"
1


X
=1

¡
 −

¢2# 3

2

=
64

[16)]
3

2

=
64

64

= 01

Since 01  0127 we do not reject 0 at the 10% level.

Test for kurtosis:

We have to test 0 : 2 = 3 against 1 : 2 6= 3

We will reject 0 if 2  326 or 2  276.

2 =

1


X
=1

¡
 −

¢4
"
1


X
=1

¡
 −

¢2#2
=

8192

[16]2

= 32

Since 276  32  326 we do not reject 0 at the 10% level.
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The sample shows that the data are from a normal distribution.

* * * * *

Exercise 5.1

1.
0 : There is no relationship between gender and smoking.
1 : There is a relationship between gender and smoking.

Observed frequencies are:

Gender
Smoked Male Female Total
Yes 26 14 40

No 24 36 60

Total 50 50 100

Expected values are  =
 ×




The expected frequencies are:

Gender
Smoked Male Female Total
Yes 20 20 40

No 30 30 60

Total 50 50 100

 2 =
P
=1

P
=1

( − )
2



=
(26− 20)2

20
+
(14− 20)2

20
+
(24− 30)2

30
+
(36− 30)2

30

= 18 + 18 + 12 + 12

= 6

We reject 0 if  2 ≥ 2
;(−1)(−1) = 20025;1 = 502389 Since  2 = 6  502389 we reject 0 at

the 21
2
% level and conclude that there is a relationship between gender and smoking.

2.
0 : There is no association between appearance and intelligence.
1 : There is an association between appearance and intelligence.
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The expected values are:

     Total
 6 9 9 6 30

 8 12 12 8 40

 6 9 9 6 30

Total 20 30 30 20 100

 2 =
P
=1

P
=1

( − )
2



=
(9− 6)2
6

+
(12− 9)2

9
+ · · ·+ (9− 9)

2

9
+
(11− 6)2

6

= 15 + 1 + 04444 + 26667 + 0 + 00833 + 03333 + 0125 + 15 + 04444 + 0 + 41667

= 122638

We reject 0 if  2 ≥ 2
;(−1)(−1) = 201;6 = 106446 Since  2 = 122638  106446 0 is

rejected at the 10% level and we conclude that there is an association between appearance and

gender. High IQ tends to go with attractiveness.

3.

A scatter plot of  against 

The scatter plot shows that there is a linear relationship between  and 

0 :  = 0

1 :  6= 0
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 = 30
P

 = 90
P

2 = 27488P
 = 23791

P
 = 78

P
2 = 21114

 = 3  = 26P
(− )2 =

P
2 − (

P
)2



P
( − )2 =

P
2 − (

P
)2



= 27488− (90)
2

30
= 21114− (78)

2

30

= 488 = 834

P
(− ) ( − ) =

P
 − (

P
) (

P
)



= 23791− (90)(78)
30

= 391

 =
391√

488
√
834

=
391

6379592463
≈ 06129

Using table IX, the critical value = 04226. Since 0.6129  04226, we reject 0 at the 1% level of

significance and conclude that there is a significant positive correlation.

4. 0 :  = 0 against 1 :  6= 0

 = 39  = −035

 =
1

2
log

1− 035
1 + 035

≈ −03654

 =
1

2
log

1− 

1 + 
=
1

2
log

1− 02
1 + 02

≈ −02027

The test statistic is

 =
√
− 3( − )

=
√
39− 3(−03654 + 02027)

=
√
36×−01627

= −09762

We reject 0 if   −2 = −196 or greater than 196. Since −196  −09762  196, we do

not reject 0 and conclude that  = −02 at the 5% level.

5. 0 : 1 = 2 against 1 : 1 6= 2

1 = −06 1 = 33

2 = −08 2 = 153

1 =
1

2
log

1− 06
1 + 06

≈ −06931
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2 =
1

2
log

1− 08
1 + 08

≈ −10986

 =
1

2
log

1− 
1 + 

  = 1 2

The test statistic is

 =
1 − 2q
1

1−3 +
1

2−3

=
−06931 + 10986q

1
33−3 +

1
153−3

=
04055√
004

= 20275

 = 005 2 = 0025 and 0025 = 196 We reject 0 if   196 or   −196.

Since 20275  196, we reject 0 at the 5% level and conclude that 1 6= 2

6.  = 07  = 10

 =
1

2
log

1 + 07

1− 07 ≈ 08673

The 95% confidence interval is



µ
 − 196√

− 3     +
196√
− 3

¶


µ
08673− 196√

7
   08673 +

196√
7

¶
 (01265    16081) 

Now
01265 − −01265

01265 + −01265
=
11348− 08812
11348 + 08812

≈ 01258

and
16081 − −16081

16081 + −16081
=
49933− 02003
49933 + 02003

≈ 09229

in other words, 95% confidence interval for  is (01258; 09229).

7. The contingency table is

1 2 Total
1 0 5 5

2 6 1 7

Total 6 6 12

Note  = 0 and  ( ≤ 0) = 0008



254

8. The contingency table is

Contracted Brown White Total
influenza
Yes 1 5 6

No 5 1 6

Total 6 6 12

0 : The two strains are equally susceptible
1 : The white mice are more susceptible

 = 12  = 6  = 6  = 1

 ( ≤ 1) = 004 ⇒ Since 004  005 we reject 0 and conclude that white mice are more

susceptible than brown mice.

9.
0 : The number of children is independent of father’s level of training.
1 : The number of children is not independent of father’s level of training.

The expected frequencies are:

Number of children
Training 0 1 2 more than 2 Total
Primary school 15 25 30 30 100

Secondary school 9 15 18 18 60

College 45 75 9 9 30

University 15 25 3 3 10

Total 30 50 60 60 200

Since the expected frequency for university is less than five we combine the categories college

and university to produce the following table:

Number of children
Training 0 1 2 more than 2 Total
Primary school 15 25 30 30 100

Secondary school 9 15 18 18 60

College & university 6 10 12 12 40

Total 30 50 60 60 200

The test statistic is

 2 =
P
=1

P
=1

( − )
2



=
(18− 15)2

15
+
(22− 25)2

25
+ · · ·+ (15− 12)

2

12
+
(15− 12)2

12

= 06 + 036 + 0 + 0 + 1 + 54 + 05 + 05 + 0 + 36 + 075 + 075

= 1346
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We reject 0 if  2 ≥ 2
;(−1)(−1) = 2005;6 = 125916

Since  2 = 1346  125916 we reject 0 at the 5% level and conclude that the number of children

depends on the father’s level of training.

10. (a) 0 :  = 02 against 1 :   02

 = 19  = 05

 =
1

2
log

1 + 05

1− 05 ≈ 05493

 =
1

2
log

1− 

1 + 
=
1

2
log

1 + 02

1− 02 ≈ 02027

The test statistic is

 =
√
− 3( − )

=
√
19− 3(05493− 02027)

=
√
16× 03466

= 13864

 = 005 and 005 = 1645 Reject 0 if   −1645.

Since 13864  −1645 we do not reject 0 and conclude that  = 02 at the 5% level.

(b)  = 005 2 = 0025 and 0025 = 196

The 95% confidence interval for  is

 − 196√
− 3     +

196√
− 3

05493− 196√
16

   05493 +
196√
16

05493− 196
4

   05493 +
196

4

00593    10393

Now
00593 − −00593

00593 + −00593
=
10611− 09424
10611 + 09424

≈ 00592

and
10393 − −10393

10393 + −10393
=
28272− 03537
28272 + 03537

≈ 07776

Thus, the 95% confidence interval for  is 00592    07776
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11. 0 : 1 = 2 against 1 : 1  2

1 = 06 1 = 53

2 = 09 2 = 53

1 =
1

2
log

1 + 06

1− 06 ≈ 06931

2 =
1

2
log

1 + 09

1− 09 ≈ 14722

The test statistic is

 =
1 − 2q
1

1−3 +
1

2−3

=
06931− 14722q

1
53−3 +

1
53−3

=
−07791√
004

= −38955

 = 005 and 005 = 1645 We reject 0 if   −1645.

Since −38955  −1645, we reject 0 at the 5% level and conclude that 1  2

12.  = 10
P

 = 500
P

2 = 26 600P
 = 10 090

P
 = 200

P
2 = 4400

 = 50  = 20

P
(− )2 =

P
2 −

P




P
( − )2 =

P
2 −

P




= 26 600− (500)
2

10
= 4 400− (200)

2

10

= 1 600 = 400

P
(− ) ( − ) =

P
 −

P

P





= 10 090− (500)(400)
10

= 90

 =
90√

400
√
1 600

=
90

800
≈ 01125

0 :  = 0 against 1 :  6= 0

The critical value is 06319.
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Since 01125  06319, we do not reject 0 and conclude that the correlation is not significant.

OR

 =

√
− 2√
1−2

=
01125

√
8√

1− 011252
=

0318198051√
098734375

≈ 03202

The critical value is 2;(−2) = 0025;8 = 2306

Since 03202  2306 we do not reject 0 at the 5% level of significance and conclude that the

correlation is not significant.

This is also evidenced by the scatter plot since the scatter diagram shows that the relationship

might not be linear. Thus, there is no significant linear relationship between rainfall and yield.

A scatter plot of yield versus rainfall

* * * * *
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Exercise 6.1

1. Let  =
Σ
¡
 −

¢2
2

then  ∼ 2−1 From this we may derive the probability expression

1−  = 
£
2;−1  

¤
= 

"
2;−1 

Σ
¡
 −

¢2
2

#

= 

"
1

2;−1


2

Σ
¡
 −

¢2
#

= 

"
Σ
¡
 −

¢2
2;−1

 2

#


Therefore

"
Σ
¡
 −

¢2
2;−1

; ∞
#

is a 100 (1− )% one-sided confidence interval for 2 which tests

the hypothesis 0 : 
2 =  against 1 : 

2   where  is unknown.

Let  =
Σ
¡
 −

¢2
2

then  ∼ 2−1 From this we may derive the probability expression

1−  = 
£
21−;−1  

¤
= 

"
21−;−1 

Σ
¡
 −

¢2
2

#

= 

"
1

21−;−1


2

Σ
¡
 −

¢2
#

= 

"
Σ
¡
 −

¢2
21−;−1

 2

#

= 

"
2 

Σ
¡
 −

¢2
21−;−1

#


Therefore

"
0;
Σ
¡
 −

¢2
21−;−1

#
is a 100 (1− )% one-sided confidence interval for 2 which tests

the hypothesis 0 : 
2 =  against 1 : 

2   where  is known.

Let  =
Σ ( − )2

2
then  ∼ 2
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1−  = 

µ
2
1−1
2
;

   21
2
;

¶

= 

"
2
1−1
2
;


Σ ( − )2

2
 21

2
;

#

= 

⎡⎣ 1

2
1−1
2
;


2

Σ ( − )2


1

21
2
;

⎤⎦

= 

⎡⎣Σ ( − )2

21
2
;

 2 
Σ ( − )2

2
1−1
2
;

⎤⎦

Therefore

⎡⎣Σ ( − )2

21
2
;

;
Σ ( − )2

2
1−1
2
;

⎤⎦ is a 100 (1− )% two-sided confidence interval for 2

which tests the hypothesis 0 : 
2 =  against 1 : 

2 6=  where  is known.

Let  =
Σ ( − )2

2
then  ∼ 2

1−  = 
£
2;  

¤
= 

"
2; 

Σ ( − )2

2

#

= 

∙
1

2;


2

Σ ( − )2

¸

= 

"
Σ ( − )2

2;
 2

#

Therefore

"
Σ ( − )2

2;
; ∞

#
is a 100 (1− )% one-sided confidence interval for 2 which tests

the hypothesis 0 : 
2 =  against 1 : 

2   where  is known.

2.  = 11
P

 = 110
P

2
 = 1220

Σ
¡
 −

¢2
= Σ2

 −
(Σ)

2



= 1220− (110)
2

11

= 120
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Σ ( − )2 = (6− 9)2 + (10− 9)2 + · · ·+ (13− 9)2

= 131

(a) 0 :  = 5 against 1 :   5

(i)  is unknown, then the test statistic is

 =
Σ
¡
 −

¢2
2

=
120

25

= 48

The critical value is 21−;−1 = 2095;10 = 39403 Reject 0 if   39403.

Since 48  39403 we do not reject 0 at the 5% level and conclude that  = 5

(ii)  = 9, then the test statistic is

 =
Σ ( − )2

2

=
131

25

= 524

The critical value is 21−; = 2095;11 = 457481 Reject 0 if   457481.

Since 524  457481 we do not reject 0 at the 5% level and conclude that  = 5

(b) (i) If  is unknown, a 95% one-sided confidence interval for 2 is"
0;
Σ
¡
 −

¢2
21−;−1

#
"
0;

120

2095;10

#
∙
0;

120

39403

¸
[0; 304545] 

Thus, the 95% one-sided confidence interval for  ish√
0;
√
304545

i
[0; 55186] 
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(ii) If  = 9 a 95% one-sided confidence interval for 2 is

"
0;
Σ ( − )2

21−;

#
"
0;

131

2095;11

#
∙
0;

131

457481

¸
0; 286351

Thus, the 95% one-sided confidence interval for  ish√
0;
√
286351

i
[0; 53512] 

3. (a)  = 10  = 010 2 = 005

21
2
;

= 2005;10 = 18307

2
1−1
2
;

= 2095;10 = 39403

The 90% confidence interval for 2,  is known and  = 10 is⎡⎣Σ ( − )2

21
2
;

 2 
Σ ( − )2

2
1−1

2
;

⎤⎦
"
Σ ( − )2

18307
 2 

Σ ( − )2

39403

#


The length of the interval is

Σ ( − )2 =

µ
1

39403
− 1

18307

¶
Σ ( − )2 = 01992

The expected length of the interval is

= 01992
³
Σ ( − )2

´
= 01992× 2() since 

³
Σ ( − )2

´
= 2

= 01992× 2 × 10
= 19922
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(b) 21
2
;−1

= 2005;9 = 16919

2
1−1
2
;−1

= 2095;9 = 332511

The 90% confidence interval for 2,  is unknown and  = 10 is

⎡⎣Σ ¡ −
¢2

21
2
;−1

 2 
Σ
¡
 −

¢2
2
1−1

2
;−1

⎤⎦
"
Σ
¡
 −

¢2
16919

 2 
Σ
¡
 −

¢2
332511

#


The length of the interval is

Σ
¡
 −

¢2
=

µ
1

3325
− 1

16919

¶
Σ
¡
 −

¢2
= 02416

The expected length of the interval is

= 02416
³
Σ
¡
 −

¢2´
= 02416× 2(− 1) since 

³
Σ
¡
 −

¢2´
= 2(− 1)

= 02416× 2 × 9
= 217442

4. The 95% confidence interval for 2,  is unknown is⎡⎣Σ ¡ −
¢2

21
2
;−1

 2 
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ 
The expected length of the interval is

= 
³
Σ
¡
 −

¢2´⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦
= 2(− 1)

⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦ 
Thus,

2(− 1)
⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦ ≤ 252

(− 1)
⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦ ≤ 25
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By trial and error, taking  = 11 :

=⇒ 10

∙
1

324697
− 1

204831

¸
≈ 25916 £ 25

taking  = 12 :

=⇒ 11

∙
1

381575
− 1

2192

¸
≈ 2381  25

taking  = 13 :

=⇒ 12

∙
1

440379
− 1

233367

¸
≈ 22107  25

Thus, the largest value of  satisfying the condition is  = 12

5. Let sample 1 be unmodified and sample 2 be modified.

1 = 6
P

1 = 180
P

2
1 = 5470

Σ
¡
1 −

¢2
= Σ2

1 −
(Σ1)

2



= 5470− (180)
2

6

= 70

2 = 6
P

2 = 192
P

2
2 = 6194

Σ
¡
2 −

¢2
= Σ2

2 −
(Σ2)

2



= 6 194− (192)
2

6

= 50

0 : 
2
1 = 22 against 1 : 

2
1 6= 22

The test statistic is

 =
22
21
·

1P
=1

(1 − 1)
2 1

2P
=1

(2 − 2)
2 2

= 1 · 705
505

=
14

10

= 14



264

The critical values are 005;55 = 505 and 095;55 =
1

005;55
=

1

505
≈ 0198

Since 0198    505 we cannot reject 0. The two processes do not differ with respect to

precision.

The 90% confidence interval for
21
22

is



µ

1−

2
;2−1;1−1 

22
21

21
22

 
2
;2−1;1−1

¶
= 1− 

"

1−

2
;2−1;1−1
22

2
1

;

2
;2−1;1−1
22

2
1

#

 = 010 2 = 005


1−

2
;2−1;1−1 = 095;5;5 =

1

005;5;5
=

1

505
≈ 0198


2
;2−1;1−1 = 005;5;5 = 505

21 =
1

1 − 1Σ
¡
1 −

¢2
=
1

5
(70) = 14

22 =
1

2 − 1Σ
¡
2 −

¢2
=
1

5
(50) = 10

∴The 90% confidence interval is ∙
0198

1014
;
505

1014

¸
[02772; 707] 

Note the confidence interval for
1

2
will beh√

02772;
√
707

i
[05265; 26589] 

6. 1 = 10
P

1 = 20
P

2
1 = 148

Σ
¡
1 −

¢2
= Σ2

1 −
(Σ1)

2



= 148− (20)
2

10

= 108
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2 = 12
P

2 = 36
P

2
2 = 152

Σ
¡
1 −

¢2
= Σ2

1 −
(Σ1)

2



= 152− (36)
2

12

= 44

21 =
1

1 − 1Σ
¡
1 −

¢2
=
1

9
(108) = 12

22 =
1

2 − 1Σ
¡
2 −

¢2
=
1

11
(44) = 4

(a) We need to test: 0 :
2

1
=
1

2

0 :
22
21
=
1

4
against 1 :

22
21


1

4
=⇒ 0 : 

2
1 = 4

2
2 against 1 : 

2
1  4

2
2

The test statistic is

 =
22
21
· 

2
1

22

=
1

4
× 12
4

= 075

The critical value is ;1−1;2−1 = 005;911 = 29

Since 075  29 we do not reject 0 and conclude that 21 = 4
2
2

(b) The 95% one-sided confidence interval for
22
21

is∙
0;
;1−1;2−1

21
2
2

¸
∙
0;
005;9;11

124

¸
∙
0;
29

3

¸
[0; 09667] 

Now the 95% one-sided confidence interval for
21
22

is

∙
1

09667
;∞
¸

[10344;∞] 
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Note 1
0000000001

≈ 1 000 000 000, thus values close to 0 goes to∞

Thus the 95% one-sided confidence interval for
1

2
is

h√
10344;∞

i
[10171;∞] 

7.  = 11
P

1 = 330
P

2
1 = 10 802P

12 = 10 230
P

2 = 330
P

2
2 = 10 098

1 = 30 2 = 30

P¡
1 −1

¢2
=

P
2
1 −

(
P

1)
2



P¡
2 −2

¢2
=

P
2
2 −

(
P

2)
2



= 10 802− (330)
2

11
= 10 098− (330)

2

11

= 902 = 198

P¡
1 −1

¢ ¡
2 −2

¢
=

P
12 − (

P
1) (

P
2)



= 10 230− (330)(330)
11

= 330

0 : 
2
1 = 22 against 1 : 

2
1  22

11 = 902 12 = 330 22 = 198

 =

√
− 2 (11 − 22)

2
p
1122 − 212

=

√
11− 2 (902− 198)

2
√
902× 198− 3302

=
3 (704)

2
√
69 696

=
2 112

528

= 4

 = 010; ;(−2) = 01;9 = 1383 Reject 0 if   1383

Since 4  1383, 0 is rejected at the 10% level. We conclude that 21  22
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8. We want to test 0 : 
2
1 = 22 against 1 : 

2
1  22

 = 30
P

 = 300
P

2 = 9090

 = 502
P

 = 502
P

2 = 25 238

 = 10
P

 = 15 088

P
(− )2 =

P
2 − (

P
)2



P
( − )2 =

P
2 − (

P
)2



= 9090− (300)
2

10
= 25 238− (502)

2

10

= 90 = 376

P
(− ) ( − ) =

P
 − (

P
) (

P
)



= 15 088− (300)(502)
10

= 28

11 = 90 12 = 28 22 = 376

 =

√
− 2 (11 − 22)

2
p
1122 − 212

=

√
10− 2 (90− 376)
2
√
90× 376− 282

=

√
8 (524)

2
√
2 600

=
1482095813

1019803903

≈ 14533

 = 010; ;(−2) = 01;8 = 1397 Reject 0 if   1397

Since 14533  1397, we reject 0 at the 10% level and conclude that the students were more

uniform after the remedial training than before that is, 21  22

9.
1 = 201

P
1 = 1206

P
2
1 = 242508

2 = 199
P

2 = 1194
P

2
2 = 237754

3 = 202
P

3 = 1212
P

2
3 = 245334

4 = 20
P

4 = 120
P

2
4 = 240088

 = 6
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21 =
1

− 1

ÃP
2
1 −

(
P

1)
2



!
22 =

1

− 1

ÃP
2
2 −

(
P

2)
2



!

=
1

6− 1

Ã
2 42508− (1206)

2

6

!
=

1

6− 1

Ã
2 37754− (1194)

2

6

!

=
1

5
(102) =

1

5
(148)

= 0204 = 0296

23 =
1

− 1

ÃP
2
3 −

(
P

3)
2



!
24 =

1

− 1

ÃP
2
4 −

(
P

4)
2



!

=
1

6− 1

Ã
2 45334− (1212)

2

6

!
=

1

6− 1

Ã
2 40088− (120)

2

6

!

=
1

5
(51) =

1

5
(088)

= 102 = 0176

0 : 
2
1 = 22 = 23 = 24 against 1 : 

2
 6= 2 for at least one  6= 

The test statistic is

 =
max

2

min

2

=
102

0176

≈ 57955

The critical value is 137 0 is rejected if   137

Since 57955  137, we do not reject 0 at the 5% level and conclude that the variances of the

four populations are equal.

10.
1 = 5

P
1 = 60

P
2
1 = 390

2 = 7
P

2 = 80
P

2
2 = 730

3 = 8
P

3 = 85
P

2
3 = 740
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21 =
1

1

P
(1 − 1)

2 22 =
1

2

P
(2 − 2)

2

=
1

1

¡P
2
1 − 21

P
1 + 21

¢
=

1

2

¡P
2
2 − 22

P
2 + 22

¢
=

1

10

¡
390− 2× 5(60) + 10× 52¢ =

1

10

¡
730− 2× 7(80) + 10× 72¢

=
1

10
(390− 600 + 250) =

1

10
(730− 1 120 + 490)

=
1

10
(40) =

1

10
(100)

= 4 = 10

23 =
1

3

P
(3 − 3)

2

=
1

3

¡P
2
3 − 23

P
3 + 23

¢
=

1

10

¡
740− 2× 8(85) + 10× 82¢

=
1

10
(740− 1 360 + 640)

=
1

10
(20)

= 2

Testing 0 : 
2
1 = 22 = 23 against 1 : 

2
 6= 2 for at least one  6= 

Test statistic is

 =
max

2

min

2

=
10

2

= 5

The critical value is 485 0 is rejected if   485

Since 5  485, we reject 0 at the 5% level and conclude that the variances of the three

populations are not the same.

Note that 2 =
1


Σ2

 − 2 + 2 has  degrees of freedom.

* * * * *
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Exercise 7.1

1. (a) 0 :  = 05 against 1 :  6= 05
 = 11

P
 = 583

P
2
 = 31339

Since 2 is unknown, we have

2 =
1

− 1
³
Σ
¡
 −

¢2´
=

1

− 1

Ã
Σ2

 −
(Σ)

2



!

=
1

11− 1
µ
31339− (583)

2

11

¶
=

1

10
(0044)

= 00044

Thus,  =
√
00044 ≈ 00663

 =
1


Σ =

1

11
(583) = 053

The test statistic is

 =

√

¡
 − 

¢


=

√
11 (053− 05)
00663

=

√
11 (003)

00663

≈ 15007

The critical value is 2;(−1) = 005;10 = 1812 Reject 0 if   1812 or if   −1812

Since−1812  15007  1812, we do not reject 0 at the 10% level and conclude that  = 05

(b) The 90% confidence interval for  is

 − 2;(−1) ×
√

≤  ≤  + 2;(−1) ×

√


053− 005;10 × 00663√
11

≤  ≤ 053 + 005;10 × 00663√
11

053− 1812× 00663√
11

≤  ≤ 053 + 1812× 00663√
11

053− 00362 ≤  ≤ 053 + 00362
04938 ≤  ≤ 05662



271 STA2601/1

2. (a) 0 :  = 16 against 1 :   16

 = 6
P

 = 9
P

2
 = 13548

Since 2 is unknown, we have

2 =
1

− 1
³
Σ
¡
 −

¢2´
=

1

− 1

Ã
Σ2

 −
(Σ)

2



!

=
1

6− 1
µ
13548− (9)

2

6

¶
=

1

5
(0048)

= 00096

Thus,  =
√
00096 ≈ 0098

 =
1


Σ =

1

6
(9) = 15

The test statistic is

 =

√

¡
 − 

¢


=

√
6 (15− 16)
0098

=

√
6 (−01)
0098

≈ −24995

The critical value is ;(−1) = 005;5 = 2015 Reject 0 if   −2015

Since −24995  −2015, we reject 0 at the 5% level and conclude that   16

(b) The 95% upper confidence limit for  isµ
−∞; + ;(−1) ×

√


¶
µ
−∞; + 005;5 × √



¶
µ
−∞; 15 + 2015× 0098√

6

¶
(−∞; 15 + 00806)
(−∞; 15806) 

3. 0 :  = 100 against 1 :  6= 100

 = 16  = 100−
√
0722 0 =

√

¡
 − 0

¢


∼ −1
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Now

 =

√
 (− 0)



=

√

³
100−

√
0722 − 100

´


=

√

¡−√072¢



= −√
√
072

= −
√
16
√
072

≈ −33941

Since test is two-sided  =
||√
2
=
|−33941|√

2
≈ 24

Thus, at  = 005 the power of the test is approximately 89%

Also at  = 001 the power of the test is approximately 67%

4. (a) 0 : 1 = 2 against 1 : 1  2

1 = 10
P

1 = 1070
P

2
1 = 115 990

2 = 12
P

2 = 1344
P

2
2 = 152 328

1 =
1

1

P
1 =

1

10
× 1 070 = 107 2 =

1

2

P
2 =

1

12
× 1 344 = 112

21 =
1

1 − 1

ÃP
2
1 −

(
P

1)
2



!
22 =

1

2 − 1

ÃP
2
2 −

(
P

2)
2



!

=
1

10− 1

Ã
115 990− (1 070)

2

10

!
=

1

12− 1

Ã
152 328− (1 344)

2

12

!

=
1

9
(1 500) =

1

11
(1 800)

≈ 1666667 ≈ 1636364

2 =
(1 − 1)21 + (2 − 1)22

1 + 2 − 2

=
9(1666667) + 11(1636364)

10 + 12− 2
=

3 3000007

20

≈ 165

=⇒  =
√
165 ≈ 128452
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The test statistic is

 =
(1 −2)− (1 − 2)



q
1
1
+ 1

2

=
(107− 112)− 0
128452

q
1
10
+ 1

12

=
−5

5499986051

≈ −09091

Test is one-tailed. The critical value is ;(1+2−2) = 005;20 = 1725 Reject 0 if   −1725

Since −09091  −1725 we do not reject 0 at the 5% level and conclude that the means are

equal, that is, 1 = 2

(b) The 90% two-sided confidence interval for 1 − 2 is

¡
1 −2

¢− 2;(1+2−2) × 

r
1

1
+
1

2
≤ 1 − 2 ≤

¡
1 −2

¢− 2;(1+2−2) × 

r
1

1
+
1

2

(107− 112)− 005;20 × 128452
r
1

10
+
1

12
≤ 1 − 2 ≤ (107− 112) + 005;20 × 128452

r
1

10
+
1

12

−5− 1725× 128452
r
11

60
≤ 1 − 2 ≤ −5 + 1725× 128452

r
11

60

−5− 94875 ≤ 1 − 2 ≤ −5 + 94875
−144875 ≤ 1 − 2 ≤ 44875

5. A large value of  will increase the power =⇒ || should be the largest, in other words, the

maximum.

Now

 =
1 − 2


q

1
1
+ 1

2



This can only be maximised if
q

1
1
+ 1

2
is the smallest. This is achieved if 1 = 2 = 10 for all

1 − 2 and 

 is maximised if 1 = 2 = 10
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6. 1 = 3 2 = 9 1 = 2 + 18
√
2

Now

 =
1 − 2


q

1
1
+ 1

2

=
2 + 18

√
2− 2



q
1
3
+ 1
9

=
18
√
2



q
4
9

=
18
√
2

2
3

≈ 38184

Now  =
||√
2
=
|38184|√

2
≈ 27

 = 1 + 2 − 2 = 3 + 9− 2 = 10

(a) Thus, at  = 005 the power of the test is approximately 93%

(b) Also at  = 001 the power of the test is approximately 73%
¡
69+77
2

¢
.

7. 0 : 1 = 22 against 1 : 1  22

=⇒ 0 : 1 − 22 = 0 against 1 : 1 − 22  0

Now 22 =⇒ 
¡
22

¢
= 2

¡
2

¢
= 22  

¡
22

¢
= 4 

¡
2

¢
1 ∼ 

µ
1

2

1

¶
2 ∼ 

µ
2

2

2

¶
22 ∼ 

µ
22

42

2

¶
1 − 22 ∼ 

µ
1 − 22

2

1
+
42

2

¶
 =

(1 − 22)− (1 − 22)

q

1
1
+ 4

2

Now
(1 − 1)21

2
∼ 21−1 and

(2 − 1)22
2

∼ 22−1

 =

∙
(1 − 1)21

2
+
(2 − 1)22

2

¸
∼ 21+2−2

 =
q


1+1−2
∼ 1+1−2
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where

 =

Ã
(1−22)−(1−22)

1

1
+ 4

2

!
s
(1 − 1)21 + (2 − 1)22

1 + 1 − 2

=
(1 − 22)− (1 − 22)



q
1
1
+ 4

2

where 2 =
(1 − 1)21 + (2 − 1)22

1 + 2 − 2

If 0 : 1 = 22 =⇒ 1 − 22 = 0 Thus,

 =
(1 − 22



q
1
1
+ 4

2



8. (a) Let  = blood sugar (after) – blood sugar (before)

Patient  1 2 3 4 5 6 7 8
 8 6 7 3 12 7 4 9

 = 8
P

 = 56
P

2 = 448

 =
1



P
 =

56

8
= 7

2 =
1

− 1

ÃP
2 −

(
P

)
2



!

=
1

8− 1

Ã
448− (56)

2

8

!
=

1

7
(56)

= 8

 =
√
8 ≈ 28284

0 :  = 5 against 1 :   5

The test statistic is

 =

√

¡
 − 

¢


=

√
8 (7− 5)
28284

=

√
8 (2)

28284

≈ 2



276

The critical value is ;(−1) = 005;7 = 1895 Reject 0 if   1895

Since 2  1895 we reject 0 at the 5% level and conclude that the blood sugar content

increases by more than 5 units.

(b) The 95% lower confidence interval isµ
 − ;(−1) ×

√

;∞
¶

µ
 − 005;7 × √


;∞
¶

µ
7− 1895× 28284√

8
;∞
¶

(7− 1895;∞)
(5105;∞) 

9. 1 = 9 1 = 110 21 = 180

2 = 11 2 = 120 22 = 56

0 : 1 = 2 against 1 : 1 6= 2

The test statistic is

 =
(1 −2)− (1 − 2)q

21
1
+

22
2

=
(110− 120)− 0q

180
9
+ 55

11

=
−10√
25

≈ −2

 =

³
21
1
+

22
2

´2
41

21(1−1) +
42

22(2−1)

=

¡
180
9
+ 55

11

¢2
1802

92(8)
+ 552

112(10)

=
(25)2

50 + 250

≈ 1190

Interpolating between  = 11 and  = 12
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 = 010 2 = 005

005;1190 = 1796 + 090(1782− 1796)
= 1796− 00126
≈ 1783

We reject 0 if   −1783 or   1783

Since −2  −1783 we reject 0 at the 10% level and conclude that the means are not the same.

10.  ∼ 
¡
 

2


¢
. Now 1 ∼ 

µ
1

21
1

¶
=⇒ 1 ∼ 

µ
1

222
1

¶
and 2 ∼ 

µ
2

22
2

¶
(1 −2) = 1 − 2

 (1 −2) =  (1) +  (2)

=
222
1

+
22
2

= 22

µ
2

1
+
1

2

¶
The test statistic

 =
(1 −2)− (1 − 2)


q

2
1
+ 1

2

=
(1 −2)− (1 − 2)


q

2
1
+ 1

2

where 2 =
1
2
(1 − 1)21 + (2 − 1)22

1 + 2 − 2

11. 1 = 40 21 = 400 1 = 10

2 = 60 22 = 720 2 = 12

 = 005 2 = 0025

The degrees of freedom are

 =

³
21
1
+

22
2

´2
41

21(1−1) +
42

22(2−1)

=

¡
400
10
+ 720

12

¢2
4002

102(9)
+ 7202

122(11)

=
(100)2

5050505051

≈ 198
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Interpolating between  = 19 and  = 20 =⇒ critical value is

0025;198 = 2093 + 08(2086− 2093)
= 2093− 00056
≈ 2087

The 95% two-sided confidence interval for 1 − 2 is¡
1 −2

¢− 2; ×
s

21
1
+

22
2

≤ 1 − 2 ≤
¡
1 −2

¢− 2; ×
s

21
1
+

22
2

(40− 60)− 2087
r
400

10
+
720

12
≤ 1 − 2 ≤ (40− 60) + 2087

r
400

10
+
720

12

−20− 2087
√
100 ≤ 1 − 2 ≤ −20 + 2087

√
100

−20− 2087 ≤ 1 − 2 ≤ −20 + 2087
−4087 ≤ 1 − 2 ≤ 087

12. Testing 0 : 1 = 2 = 3 against 1 :  6=  for at least one pair  6= 

 = 3  = 7 −  = 18  − 1 = 2
1 = 19

X
1 = 133

X
2
1 = 2607

1 =
X
(1 −1)

2

=
X

2
1 −

³X
1

´2


= 2607− (133)
2

7

= 08

[Note: After entering data in statistics mode this is equal to 2 or (− 1)2]
2 = 18

X
2 = 126

X
2
2 = 2332

2 =
X
(2 −2)

2

=
X

2
2 −

³X
2

´2


= 2332− (126)
2

7

= 064
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3 = 23
X

3 = 161
X

2
3 = 3775

3 =
X
(3 −3)

2

=
X

2
3 −

³X
3

´2


= 3775− (161)
2

7

= 072

 = 2
XX

 = 42
XX

2
 = 8714

 =

X
=1

X
=1

( − )2

=
XX

2
 −

³XX


´2


= 8714− (42)
2

21

= 314

 = 1 + 2 + 3

= 08 + 064 + 072

= 216

 =


− 
=
216

18
= 012

3X
=1

( −)2 = (19− 2)2 + (18− 2)2 + (23− 2)2

= 014

 = 

3X
=1

( −)2

= 7(014)

= 098

 =

X3

=1
( −)2

 − 1 =
098

2
= 049

 =



=
049

012
≈ 40833

The ANOVA table is
Source of Sum of Degrees of Mean 

variation squares freedom square
Treatments 098 2 049 40833

Error 216 18 012

Total 314 20

The critical value is 005;2;18 = 355 Reject 0 if   355.
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Since 40833  355 we reject 0 at the 5% level and conclude that there is sufficient evidence to

indicate a difference in means.

Multiple comparisons:

( − 1);−1;− = 2× 005;2;18

= 2× 355
= 71

 =

√
( −)√

2

=

√
7( −)√
2
√
012

=

r
7

024
( −)

Reject 0 :  =  if : Now || 
√
71 ∴

¯̄
 −

¯̄


√
71q
7
024

≈ 04934

Testing 0 : 1 = 2 against 1 : 1 6= 2¯̄
1 −2

¯̄
= |19− 18| = 01

Since 01  04934, we do not reject 0 and conclude that the mean for food A is the same as the

mean for food B.

Testing 0 : 1 = 3 against 1 : 1 6= 3¯̄
1 −3

¯̄
= |19− 23| = 04

Since 04  04934, we do not reject 0 and conclude that the mean for food A is the same as the

mean for food C.

Testing 0 : 2 = 3 against 1 : 2 6= 3

¯̄
2 −3

¯̄
= |18− 23| = 05

Since 05  04934, we reject 0 and conclude that the mean for food B is not the same as the

mean for food C.

13. (a) Testing 0 : 1 = 2 = 3 = 4 against 1 :  6=  for at least one pair  6= 

 = 4  = 8 −  = 28  − 1 = 3
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1 = 13
X

1 = 104
X

2
1 = 13707

1 =
X
(1 −1)

2

=
X

2
1 −

³X
1

´2


= 13707− (104)
2

8

= 187

2 = 10
X

2 = 80
X

2
2 = 80996

2 =
X
(2 −2)

2

=
X

2
2 −

³X
2

´2


= 80996− (80)
2

8

= 996

3 = 12
X

3 = 96
X

2
3 = 117068

3 =
X
(3 −3)

2

=
X

2
3 −

³X
3

´2


= 117068− (96)
2

8

= 1868

4 = 9
X

4 = 72
X

2
4 = 6527

4 =
X
(4 −4)

2

=
X

2
4 −

³X
4

´2


= 6527− (72)
2

8

= 47

 = 11
XX

 = 352
XX

2
 = 400404

 =

X
=1

X
=1

( − )2

=
XX

2
 −

³XX


´2


= 400404− (352)
2

32

= 13204
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 = 1 + 2 + 3 + 4

= 187 + 996 + 1868 + 47

= 5204

 =


− 
=
5204

28
≈ 18586

4X
=1

( −)2 = (13− 11)2 + (10− 11)2 + (12− 11)2 + (9− 11)2

= 10

 = 

3X
=1

( −)2

= 8(10)

= 80

 =

X4

=1
( −)2

 − 1 =
80

3
≈ 266667

 =



=
266667

18586
≈ 143477

The ANOVA table is

Source of Sum of Degrees of Mean 

variation squares freedom square
Treatments 80 3 266667 143477

Error 5204 28 18586

Total 13204 31

The critical value is 005;3;28 = 295 Reject 0 if   295.

Since 143477  295 0 is rejected at the 5% level and we conclude that there is sufficient

evidence to indicate a significant difference in the means of the four brands of feed.

(b) Multiple comparisons

( − 1);−1;− = 3× 005;3;28

= 3× 295
= 885
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 =

√
( −)√

2

=

√
8( −)√
2
√
18586

=

r
8

37172
( −)

We reject 0 :  =  if

||  885

∴
¯̄
 −

¯̄


√
885q
8

37172¯̄
 −

¯̄
 20278

Testing 0 : 1 = 2 against 1 : 1 6= 2¯̄
1 −2

¯̄
= |13− 10| = 3

Since 3  20278, we reject 0 and conclude that there is a significant difference between the

mean for brand A and the mean for brand B.

Testing 0 : 1 = 3 against 1 : 1 6= 3¯̄
1 −3

¯̄
= |13− 12| = 1

Since 1  20278, we do not reject 0 and conclude that the means for brand A and brand C

are the same.

Testing 0 : 1 = 4 against 1 : 1 6= 4¯̄
1 −4

¯̄
= |13− 9| = 4

Since 4  20278, we reject 0 and conclude that there is a significant difference between the

means for brand A and brand D.

Testing 0 : 2 = 3 against 1 : 2 6= 3¯̄
2 −3

¯̄
= |10− 12| = 2

Since 2  20278, we do not reject 0 and conclude that the means for brand B and brand C

are the same.

Testing 0 : 2 = 4 against 1 : 2 6= 4¯̄
2 −4

¯̄
= |10− 9| = 1
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Since 1  20278, we do not reject 0 and conclude that there is no significant difference

between the means for brand B and brand D.

Testing 0 : 3 = 4 against 1 : 3 6= 4¯̄
3 −4

¯̄
= |12− 9| = 3

Since 3  20278, we reject 0 and conclude that there is a significant difference between the

means for brand C and brand D.

* * * * *

Exercise 8.1

1.

A scatter plot of Y versus X
The scatter plot reveals that there is no strong linear relationship. A transformation of the data

after taking logs is given below:

10 10

07 0017 0020 0010

1 0025 0021 0029

12 0020 0031 0023

13 0028 0031 0032

14 0033 0029 0031

15 0039 0026 0029

The transformation makes the points to be more clustered together than the previous original

data. Here a suitable transformation is

10 = 0 + 110 + 
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This is also evidenced by the scatter plot of the transformed variables shown below:

A scatter plot of 10 versus 10

2. (a)

The points seem to be clustered along a straight line, thus simple linear regression is a suitable

model.

(b)

   −
¡
 −

¢2

¡
 −

¢ b  − b ³
 − b´2

−5 12 −5 25 −60 10 2 4

−4 7 −4 16 −28 12 −5 25

−3 20 −3 9 −60 14 6 36

−2 13 −2 4 −26 16 −3 9

−1 21 −1 1 −21 18 3 9

0 18 0 0 0 20 −2 4

1 22 1 1 22 22 0 0

2 18 2 4 36 24 −6 36

3 28 3 9 84 26 2 4

4 32 4 16 128 28 4 16

5 29 5 25 145 30 −1 1

Total 220 0 110 220 144
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 = 0 and  = 0 b1 =

P
(−)P
(−)2

= 220
110

= 2b0 =  − b1 = 20− 2(0) = 20

The estimated regression line is b = 20 + 2
b2 = 2

=
1

− 2
P³

 − b´2
=

144

11− 2
=

144

9

= 16

(c) The confidence interval for 1 isµb1 − 2;−2 ×



; b1 + 2;−2 ×





¶
⎛⎝b1 − 2;−2 ×

qP¡
 −

¢2 ; b1 + 2;−2 ×
qP¡
 −

¢2
⎞⎠

 = 005 2 = 0025 2;−2 = 0025;9 = 2262b1 = 2  =
√
16 = 4  =

√
110

Thus, the 95% confidence interval for b1 is⎛⎝b1 − 2;−2 ×
qP¡
 −

¢2 ; b1 + 2;−2 ×
qP¡
 −

¢2
⎞⎠

µ
2− 2262× 4√

110
; 2 + 2262× 4√

110

¶
(2− 08627; 2 + 08627)
(11373; 28627) 

(d) The mean yield at 340 is b = 0 + 21

= 20 + 2(2)

= 24



287 STA2601/1

The confidence interval for 0 + 21 is³b0 + 2b1´± 2;−2 × 

s
1


+

¡
 −

¢2
2³b0 + 2b1´± 2;−2 × 

vuut 1


+

¡
 −

¢2P¡
 −

¢2
24± 2262× 4

s
1

11
+
(2− 0)2
110

24± 9048
√
0127272727

24± 32279
(207721; 272279) 

(e) At 360C

 = (temp− 300)20
= (360− 300)20
= 3

The 95% confidence interval for the yield if a further experiment is performed at 360C is³b0 + 2b1´± 2;−2 × 

vuut1 + 1


+

¡
 −

¢2P¡
 −

¢2
(20 + 2(3))± 2262× 4

s
1 +

1

11
+
(3− 0)2
110

26± 9048
√
1127272727

26± 97983
(162017; 357983) 

3. (a)

The plot shows that the points are clustered along a straight line. Thus, the simple linear

regression would be a suitable model.
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(b)

   −
¡
 −

¢2

¡
 −

¢ b  − b ³
 − b´2

2 30 0 0 0 3018 −018 00324

3 36 1 1 36 4018 −418 174724

4 47 2 4 94 5018 −318 101124

1 28 −1 1 −28 2018 782 611524

0 12 −2 4 −24 1018 182 33124

2 31 0 0 0 3018 082 06724

4 54 2 4 108 5018 382 145924

0 5 −2 4 −10 1018 −518 268324

1 18 −1 1 −18 2018 −218 47524

2 29 0 0 0 3018 −118 13924

3 42 1 1 42 4018 182 33124P
= 22 332 0 20 200 1436364

 = 22
11
= 2 and  = 301818

b1 =

P
(−)P
(−)2

= 200
20

= 10

b0 =  − b1 = 301818− 10(2) = 101818

∴The estimated regression line isb = 101818 + 10

(c) The 95% confidence interval for 1 isµb1 − 2;−2 ×



; b1 + 2;−2 ×





¶

2;−2 = 0025;9 = 2262 b1 = 10 2 = 1436364
9

= 159596

 =
√
159596 ≈ 39949  =

√
20

Thus, the 95% confidence interval for b1 is

µb1 − 2;−2 ×



; b1 + 2;−2 ×





¶
µ
10− 2262× 39949√

20
; 2 + 2262× 39949√

20

¶
(10− 20206; 10 + 20206)
(79794; 120206) 

We are 95% confident that the slope will lie between 798 and 1202 Thus, for every increase

of 1 unit in  we expect an increase in  to range from (798 to 1202)

(d) The expected yield at  = 4 is

 = 101818 + 10(4)

= 501818
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(e) The 95% confidence interval for the expected yield at  = 4 is³b0 + b1´± 2;−2 × 

vuut 1


+

¡
 −

¢2P¡
 −

¢2
501818± 2262× 39949

s
1

11
+
(4− 2)2
20

501818± 90364638
√
029090909

501818± 48739
(501818− 48739; 501818 + 48739)
(453079; 550557) 

(f) The 95% confidence interval for the yield which one may expect to obtain, if in a new

experiment a dosage of  = 4 is applied is³b0 + b1´± 2;−2 × 

vuut1 + 1


+

¡
 −

¢2P¡
 −

¢2
501818± 2262× 39949

s
1 +

1

11
+
(4− 2)2
20

501818± 90364638
√
1290909091

501818± 102671
(501818− 102671; 501818 + 102671)
(399147; 604489) 

4. (a)  
³b0 + b1´ = 2

"
1


+

¡
 −

¢2
2

#
It is a minimum when ¡

 −
¢2

2
= 0

=⇒ ¡
 −

¢2
= 0

=⇒  − = 0

=⇒  = 

(b) The covariance between b0 + b11 and b0 + b12 is

(b0 + b11 b0 + b12) =  (b0) +1(b0 b1) +2(b0 b1) +12 (b1)
= 2

"
1


+


2

2

#
+

1

¡−2¢
2

+
2

¡−2¢
2

+21
2

2

=
2


+

2
2

2
+
−2 (1 +2)

2
+12

2

2
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(c) They are uncorrelated if  = 0

(b0 + b1 ¡ − 
¢
 b0 + b1 ¡ + 

¢
) =  (b0) + ¡ − 

¢
(b0 b1) + ¡ + 

¢
(b0c 1)

+
¡
 − 

¢ ¡
 + 

¢
 (b1)

=  (b0) + ¡ − 
¢
(b0 b1) + ¡ + 

¢
(b0c 1)

+
³

2 − 2

´
 (b1)

= 2

Ã
1


+


2

2

!
+
¡
 − 

¢µ−2
2

¶
+
¡
 + 

¢µ−2
2

¶
+
³

2 − 2

´µ2
2

¶

=
2


+

2
2

2
− 2

2

2
+

2
2

2
− 2

2

2

−
2

2

2
+

2
2

2
− 22

2

=
2


+
22

2

2
− 2

2
2

2
+

2

2
− 2

2
− 22

2

=
2


− 22

2

Now =⇒
2


− 22

2
= 0

2


=

22

2

1


=

2

2

2


= 2r

2


= 

√


= 

Thus,  =
√


If you have worked through all the activities in the workbook and tried

to do all the exercises in the study guide, there is a good chance that you

will pass STA2601 with a distinction!!


