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ORIENTATION
Introduction
Welcome to STA2601. If you are a student at the College of Science, Engineering and Technology,

the four modules STA2601, STA2602, STA2603 and STA2604 form the second-year modules in

statistics. The module is the followup on the module STA1502 (Statistical Inference I). The name

Applied Statistics was chosen because of its double meaning: Data analysis is in effect applied

statistical theory and you will learn how to apply the statistical software package JMP. This means

that you must have access to a suitable computer for a component of practical work. (Please read

carefully through the section "Role of computers and statistical calculators" following below.)

This module forms part of the new statistics curriculum and it will equip you with a proper basis

in statistical knowledge, introduce you to a statistical package and highlight the value of thorough

statistical know-how that the business and outside world require of students who major in Statistics!

Knowledge of statistics will enable you to conduct quantitative research and statistical literacy will

enable you to understand research reports you might encounter as a scientist in your everyday life

or enable you to understand statistical reports you might encounter as a manager in your business.

There will be times when you feel frustrated and discouraged and then only your attitude will pull you

through!

Learning outcomes
At the end of each study unit we will list the learning outcomes for that unit but there are also very

specific overall outcomes for this module which we list below. Throughout your study of this module

you must come back to this page, sit back and reflect upon these outcomes, think them through,

digest them and feel confident in the end that you have mastered them.

• Describing various probability distributions and illustrating their applications as probabilities

associated with critical values from tables.

• Describing desirable properties of estimators for population parameters and deriving these

estimators through the methods of maximum likelihood and least squares.

• Evaluating the reliability of estimates of the population parameters by means of the sampling

distributions of the corresponding sample statistics.

• Describing the behaviour of sample statistics (eg the sample mean, the sample variance et cetera)

in repeated sampling focusing on various sampling distributions.

• Considering point and interval estimators for single or compound population parameters.
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• Testing for normality by employing various tests (eg testing for skewness and for kurtosis, normal

quantile plots et cetera).

• Statistical estimation and hypothesis testing involving population variances, means, correlation

coefficients and regression coefficients.

The prescribed textbook(s)
You have to buy the following prescribed textbook: Sall, J, Creighton, L and Lehman, A. (2007

fourth edition or any later edition) JMP Start Statistics, (ISBN 978-1-59994-572-9) Cary, NC:

SAS Institute Inc.

This is the official handbook for JMP, the powerful statistical software developed by the SAS Institute.

You will be instructed to study specific sections from specific chapters, and it is a guide book that

you will use for more than one module, in other words for whatever statistical techniques you

might encounter at different levels of your studies in statistics. (This includes modules such as

STA2602, Statistical Inference II, STA2604, Forecasting II, and even for postgraduate modules such

as STA4806, Advanced Research Methods in Statistics.)

You should also buy the following prescribed book of tables: Stoker, DJ. (1977 3 edition)

Statistical tables, Academica, Pretoria.

Feel free to use any other book of tables, but then it is up to you to find the correct table for a given

problem.

The study guide, the textbook and the workbook
Your formal study material consists of a study guide, a textbook and a workbook which are

intertwined and together they cover the syllabus. The study guide is more than what its name

implies: it contains the major part of the theoretical contents of the course and it also serves as a

guide through the textbook in a systematic way. There is a separate workbook which will provide

you with an opportunity to apply your knowledge of the material that is covered in the guide and

textbook. For each separate study unit you should first study the work in the study guide and/or

textbook and then utilise the workbook to assess your progress, test your knowledge and prepare for

the examination.

The workbook serves as an interactive workbook, where spaces are provided for your convenience.

Should you so prefer, you are welcome to write and reference your solutions in your own book or file,

if the space we supply is insufficient or not to your liking. The workbook will also serve as a kind of

manual for beginners to help you with the computer exercises.

You will find the study of this module very unrewarding if you

do not work actively through the workbook.
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You should make sure that you receive both the study guide and the workbook. You cannot do

your assignments without the workbook. Please feel free to give us feedback on any aspect of any

study unit in the workbook. Negative feedback will motivate us to rectify what is wrong and positive

feedback will give us inspiration to complete the workbook.

Study units and workload

We realise that you might feel overwhelmed by the volumes and volumes of printed matter that you

have to absorb as a student! How do you eat an elephant? Bite by bite! Make very sure about the

sections of the textbook in each study unit since some sections of the textbook are not included and

we do not want you frustrated by working through unnecessary work. The study units vary in length

but you should try to spend on average 12 hours on each unit. Practically everybody should be able

to do statistics. It depends on the amount of TIME you spend on the subject. Regular contact with

statistics will ensure that your study becomes personally rewarding.

Try to work through as many of the exercises and activities as possible

Doing exercises on your own will not only enhance your understanding of the work, but it will give

you confidence as well. Feedback is given immediately after each activity in the workbook to help

you check whether you understand the specific concept. The activities are designed (ie specific

exercises are selected) so that you can reflect on a concept discussed in the study guide. You can

only derive maximum benefit from this activity-feedback process if you discipline yourself not to peep

at the solution before you have attempted it on your own! You should also not misuse it by merely

glancing at sections needed for similar questions in the assignments.

Role of computers and statistical calculators
The emphasis in the study guide is well beyond the arithmetic of calculating statistics and the focus

is on the identification of the correct technique, interpretation and decision making. This is achieved

by a flexible design giving both manual calculations and computer steps. The statistical software

package will give you the feeling that you are really practising statistics. I give the following quote

from the textbook: "If you give someone a large truck, they will find someone to drive it for them.

But if you give them a sports car, they will learn to drive it themselves. Believe that statistics can be

interesting and reachable so that people will want to drive that vehicle."

We try our best to illustrate every statistical technique that needs computation in a two-step

approach:

Step 1 MANUALLY

Step 2 JMP

It is a good idea that you initially go through the laborious manual computations to enhance your

understanding of the principles and mathematics. However, you must be able to manage the JMP
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computations because using computers reflects the real world outside. The additional advantage of

using a computer is that you can do calculations for larger and more realistic data sets.

It is impossible and impractical to do assessment of computer skills on computers in the examination

but it does not preclude us from providing you with printed output which you have to interpret.

We will give you definite instructions on where and how to use a computer for your calculations in

assignments. You must be able to use both a computer program and a statistical calculator as tool

for your calculations. However, the emphasis in this module will always be on the interpretation and

how to articulate the results.

Licence agreement

Unisa has a campus licence to supply one CD (a student version of JMP) free of charge to every
student enrolled for STA2601. This is for your academic use only and you are not allowed to
make copies of this product. Your licence will automatically expire after one year.

(This CD is included with your study material when you register at Unisa.)

You will be instructed in a tutorial letter on how to update your licence.

Access to a suitable computer

For the smooth running of JMP 8 you will need the following hardware:

CPU: At least a Pentium II or equivalent processor

RAM: 128 MB minimum, 256+ MB recommended

Drive space: 110 MB minimum

For your PC operating system JMP 8 requires:

Windows NT 4.X with service pack

or Windows 2000

or Windows XP

or Windows 7

Please note: JMP 8 will not run on Windows 98 or ME. It is not compatible with Vista.

Something about the author(s)
This study guide is a second revision by Ms Suwisa Muchengetwa after the major revision by Dr

Reina Nieuwoudt of the previous STA203-N guide which was compiled by Prof FE Steffens, who has

now retired.

As this is an applied statistics course, it needs continuous improvement since we are living in

a dynamic world. A graduate of statistics needs to know about analysing data using statistical

packages. It is a dream the authors shared to equip modern students interested in the world around

them with the know-how to use a statistical package.
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STUDY UNIT 1

Revision of statistical distributions

1.1 Introduction
The first study unit is designed to provide you with some background knowledge and to summarise

what prior knowledge we assume you to have. These results are important building blocks and we

often refer to them in the study units to follow. You will not be examined explicitly on this section

as the emphasis of this module is on applied statistics.

A successful practical statistician must be courageous. Whereas a theoretical statistician can simply

declare 1 2   to be independently normally distributed with mean  and variance 2 the

practical statistician has to worry about these assumptions: are they valid for my data, and what if

they are not valid but approximately so?

Before the statistician can proceed with the analysis, he or she has to make a decision about this. In

this respect one should avoid the two extremes: those who do not worry about the appropriateness

of the analysis at all, who simply shove the data into the computer and believe what the computer

says (also known as cookbook statisticians) and those who worry so much about the assumptions

that they never get to analyse the data.

If a complex set of data is given to four highly skilled practical statisticians, then they could come up

with four different analyses. Not that only one of them is correct and the others wrong! They will have

analysed different aspects of the problem, and often such analyses are complementary. Combined

it could lead to greater insight into the practical problem.

That is what makes Applied Statistics so exciting. It is not a rigid system, but allows an inventive

person to use his or her originality to the full.

We trust that you will experience the thrill of practical statistics when you use JMP to enter data

sets, perform the analyses and draw the final conclusions. Throughout this module, whenever a new

technique is explained you should concentrate on the two aspects: what does it assume and what

does it hope to achieve?
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1.2 General concepts of continuous and

discrete distributions

Many students get confused by statistics because different authors use different notation. In this

study guide  will denote a random variable, and  a value assumed by 

Definition 1.1

With every random variable  is associated a distribution function  ()

which is defined as follows for all :

 () =  ( ≤ )

The two main types of distribution functions are discrete and continuous distribution functions.

Discrete distributions
A discrete distribution function typically appears as in figure 1.1.

FX(x)

X2 X3X1 XXk

1

0

Figure 1.1: A discrete distribution function

The properties of a discrete distribution function are:

(a)  (−∞) = 0 and  (+∞) = 1
(b) If    then  () ≥  ()  ie  () is nondecreasing.

(c)  () has jumps at a number of points called the discrete points of the distribution. A distribution

can have at most countably many discrete points.

(d)  () remains constant between the discrete points.
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(e) The size of the jump at a discrete point  is the probability that the random variable  will assume

the value :

 ( = ) =  ( ≤ )−  (  )

=  ()−  (−)

where  (−) = lim
→0

 ( − ) ( a small positive number).

Suppose now that A is the set of discrete points of 

ie  ( = )  0 if  ∈ A

= 0 if  ∈ A

As was indicated before, A can have either finitely many or countably many elements.

Definition 1.2

The probability function of  is defined as

 () =  ( = ) 

 () has the properties:

(a)  () ≥ 0 for all 

(b)
P
∈A

 () = 1

Moments and other special coefficients of a discrete variable 

The -th central moment of  is computed as

 =  ( − )

where  is the mean or expected value of .

 =  () =
P
∈A

 ()

2 is called the variance of  and denoted as 2

2 =  ( − )2 =
P
∈A

(− )2  ()

The third central moment of  is

3 =  ( − )3 =
P
∈A

(− )3  () 
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The fourth central moment of  is

4 =  ( − )4 =
P
∈A

(− )4  () 

From the last two central moments we define the following two special coefficients:

The coefficient of skewness of  is

1 =
3
3



The coefficient of kurtosis of  is

2 =
4
4



Continuous distributions
The distribution function  () =  ( ≤ ) of a continuous random variable  appears typically

as follows:

(a)

FX(x)

X

1

0

(b)

FX(x)

X2 X3X1 XXk

1

0

Figure 1.2: A continuous distribution function
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A continuous distribution function has the following properties:

(a)  (−∞) = 0 and  (+∞) = 1
(b)  () is nondecreasing, ie if    then  () ≥  () 

(c)  () has no jumps, ie  (−) =  (+) for all  or lim
→0

 (− ) = lim
→0

 (+ ) for all 

(d)  () may have bend points (like 1 2 3 and 4 in figure 1.2(b) and it may remain constant

in certain intervals, (eg between 2 and 3 in figure 1.2(b)).  () can have at most countably

many bend points.

Since  () has no jumps, and at most countably many bend points, the derivative

 0 () =
 ()



exists for all  except in the bend points.

Definition 1.3

The probability density function (pdf)  () is defined as

 () =  0 () =



 () 

 () may have any arbitrary value if the derivative does not exist, eg

 () = 0

or

 () = lim
→0

 (+ )−  ()


(the derivative from the right)

or

 () = lim
→0

 ()−  (− )


(the derivative from the left)

Probabilities concerning  are computed as follows:

If    then  (   ≤ ) =  ()−  ()

=
R


 () 

This probability may be regarded as the area under the probability density function between  = 

and  =  as in figure 1.3.
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fX(x)

a b

P(a<X<b)

Figure 1.3: Probability equals area

Note that  ( = ) =  ( ≤  ≤ )

=
R


 () 

= 0

ie the probability that  assumes any specific value is 0. In this case (ie in the case of continuous

random variables), we have

 ( ≤  ≤ ) =  (   ≤ ) =  ( ≤   ) =  (    ) 

Moments and other special coefficients of a continuous variable 

The -th central moment of  is computed as  =
∞R
−∞

(− )  () where the mean or expected

value of  is

 =  () =
∞R
−∞

 () 

2 is called the variance of  and is denoted as 2

2 =  ( − )2 =
∞R
−∞

(− )2  () 

The third and fourth central moments are

3 =  ( − )3 =
∞R
−∞

(− )3  () 

4 =  ( − )4 =
∞R
−∞

(− )4  () 

From these two central moments we define the following two special coefficients:
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The coefficient of skewness of  is

1 =
3
3

and the coefficient of kurtosis of  is

2 =
4
4



If 1 = 0 the distribution is called symmetric;

if 1  0 the distribution is called negatively skew; and

if 1  0 the distribution is called positively skew. A negatively skew distribution has a long tail to the

left and a positively skew distribution has a long tail to the right:

B>0
B<0B=0

Figure 1.4: Types of skewness

Rare events
Given a random variable  with pdf  (), we have seen that, for given ,

 (  ) =
∞R


 () 

Suppose a very small value  has been chosen between 0 and 1, eg  = 005 and the corresponding

value of  calculated such that

 (  ) = 

If a value of  is found which is larger than  we say a rare event (or unlikely event) has occurred,

ie an event with a small probability. Likewise we say a rare event has occurred if a value    has

been obtained where

 (  ) =
R

−∞
 ()  = 
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fX(x)

"

c

←− rare events−→

fX(x)

"
   

 
d

←− rare events−→
Figure 1.5: Rare events

Bivariate distributions
Sometimes one is interested in studying a number of variables jointly; their joint distribution may

contain some information which is not available if they are studied separately. In this section some

theory of bivariate distributions is given but this is treated in detail in STA2603. (In the next section

we generalise it to multivariate distributions.)

Definition 1.4
Let 1 and 2 be two random variables. If a function 1;2

(1; 2) exists such that

 (1 ≤ 1; 2 ≤ 2) =
2R
−∞

1R
−∞

1;2
(1; 2) 12

for all 1 and 2 then 1;2
(1; 2) is called the joint probability density function

of 1 and 2

1;2
(1; 2) has the following characteristics:

(a) 1;2
(1; 2) ≥ 0 for all 1 and 2

(b)
∞R
−∞

∞R
−∞

12
(1; 2) 12 =  (1 ≤ ∞; 2 ≤ ∞) = 1



9 STA2601/1

Definition 1.5
The function

1;2
(1; 2) =

2R
−∞

1R
−∞

1;2
(; )  =  (1 ≤ 1; 2 ≤ 2)

is called the joint distribution function of 1 and 2

Note that

1;2
(1; 2) =

2

12
1;2

(1; 2)

ie 1;2
(1; 2) is the second order partial derivative of 1;2

(1; 2) with respect to 1 and 2

Definition 1.6
The function

1
(1) =

∞R
−∞

1;2
(1; 2) 2

is called the marginal probability density function of 1

Likewise,

2
(2) =

∞R
−∞

1;2
(1; 2) 1

is called the marginal probability density function of 2

Definition 1.7
The function

1|2 (1; 2) =
1;2

(1; 2)

2
(2)

is called the conditional probability density function of 1 given that 2 = 2

The conditional pdf of 2 given that 1 = 1 is defined in a similar manner.

Definition 1.8
The conditional expectation of the random variable 1 given that 2 = 2 is defined as

 [1|2 = 2] =
∞R
−∞

11|2 (1; 2) 1
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The conditional expectation of 1 given that 2 = 2 is also called the regression function of 1 on

2

The roles of 1 and 2 can of course be reversed in the above discussion.

Definition 1.9

 (1 − 1) (2 − 2) =
∞R
−∞

∞R
−∞

(1 − 1) (2 − 2) 12
(1; 2) 12

=  (12)− (1) (2)

is called the covariance of 1 and 2

\

Definition 1.10

 =
 (12)p

  (1)  (2)

is called the correlation coefficient between 1 and 2 if

  (1) 6= 0 and   (2) 6= 0

The correlation coefficient is a quantity which lies between −1 and 1.

Definition 1.11

If the correlation coefficient between two random variables is zero, the two

variables are said to be uncorrelated.

NB From the definition  it follows that  = 0 if and only if the covariance is zero.

Definition 1.12

The random variables 1 and 2 are said to be independent if their joint

pdf can be factorised:

1;2
(1; 2) = 1

(1) 2
(2) 
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The term independent has this special technical meaning when used in connection with random

variables. Remember this! The following theorem is given without proof.

Theorem 1.1

If 1 and 2 are independent random variables then they are uncorrelated.

The converse is not true: two uncorrelated random variables need not be independent. This is very

important.

Multivariate distributions
Generalisation of the bivariate distribution theory of the previous section is straightforward, and will

not be done in detail here. The multivariate pdf of the  random variables 1   is the function

1;2;;
(1; 2; ; )

such that

 (1 ≤ 1; ;  ≤ ) =

Z
−∞



1Z
−∞

1;;
(1; ; ) 1

for all 1  

The marginal pdf of 1 is

1
(1) =

∞Z
−∞



∞Z
−∞

1;;
(1; ; ) 23

Similarly

2
(2) =

∞Z
−∞



∞Z
−∞

1;;
(1; ; ) 13, et cetera

Definition 1.13

The random variables 1   are said to be mutually independent if

1;;
(1; ; ) = 1

(1) 
()

for all values of 1; ; 
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An important special case is the following:

Let 1   be independent and identically distributed, ie

1
() = 2

() =  = 
() =  () 

say, for all , and

1;;
(1; ; ) =  (1)  ()

then 1   are said to constitute a random sample of size  from the distribution with pdf  () 

1.3 Standard distributions
In this section a number of standard distributions are dealt with. These distributions are

very important in statistical applications. The binomial and Poisson distributions are discrete

distributions, while the normal, chi-square, t- and  -distributions are continuous distributions.

The bivariate normal distribution is an example of a continuous bivariate distribution.

You should remember the mathematical formulae for the binomial, Poisson,

normal and bivariate normal distributions; it is not imperative that you

memorise the probability density functions of the chi-square, t- and

F-distributions. A random variable will sometimes be called a variate in this

section.

The following book of tables is referred to in this section. This book is prescribed for this module.

DJ. Stoker: Statistical tables, Academia, Third Edition, 1977.

Bernoulli trials

Suppose the outcome of a random experiment is either a success or a failure. For example, if a

patient is operated on, he or she may either recover (success) or die (failure). If we select a person

at random and ask him or her whether he or she smokes, he or she may either say "Yes" (success)

or "No" (failure). The labelling of one possible outcome as "success" and the other as "failure" is of

course arbitrary, and may be switched according to the context of the problem.
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The following mathematical model is used to describe such an experiment. Let the probability of a

success be  where  is a constant with 0    1 Define the random variable  as follows:

 = 0 if the outcome is a failure

= 1 if the outcome is a success.

∴  ( = 1) =  and  ( = 0) = 1− 

Then  () =  (1) + (1− ) (0) = 

and 
¡
2
¢
=  (1)2 + (1− ) (0)2 = 

∴   () = 
¡
2
¢− ( ())2 =  − 2 =  (1− ) 

An experiment of this type is called a Bernoulli trial (named after the Swiss mathematician, Jacques

Bernoulli (1664-1705)) and  is called a Bernoulli variate.

The binomial distribution

The binomial distribution was also derived by Jacques Bernoulli. Suppose a Bernoulli experiment is

repeated  times, such that the outcomes 1 2   are independent Bernoulli variates with

the same probability  of a success. The implications of these two assumptions, independence and

constant probability of a success, are important. If a random sample is drawn from a finite population

these conditions may hold if sampling is done with replacement. However, if the sample is drawn

without replacement, the proportion of the population having the "success" property changes after

each draw and the outcome of one draw depends on the outcomes of the previous draws. However,

if the population is very large and the sample size  relatively small, the conditions of independence

and constant probability of a success are approximately satisfied, and the model described here will

be a good approximation to the true situation.

We are interested in the number of successes in the sample of size . Let

 = 1 +2 + +

then  represents the number of successes in the sample.

Definition 1.14

 is a binomial variate, denoted by  ∼  (; ) if

 ( = ) =
¡



¢
 (1− )− ;

where  = 0; 1; 2; ;  and 0    1
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It can be shown that

 ( ) =  and   ( ) =  (1− ) 

Binomial variates have the following important additive property: If 1 ∼  (1; ) and 2 ∼  (2; )

and if 1 and 2 are independent, then 1 + 2 ∼  (1 + 2; ) 

This property follows simply from the fact that, if 1 is the number of successes in 1 independent

Bernoulli trials and 2 is the number of successes in 2 independent Bernoulli trials, if these

1 + 2 trials are mutually independent and the probability of a success is  throughout the 1 + 2

experiments, then 1 + 2 is the number of successes in 1 + 2 independent Bernoulli trials.

Table XI of Stoker gives the cumulative binomial distribution:  ( ≤ ) for a given  and  (In

table XI  is used instead of our  and  instead of our ), ie

 ( = ) =
¡



¢
 (1− )−

and

 ( ≤ ) =

X
=0

¡



¢
 (1− )− 

Individual probabilities are obtained by subtraction.

Example 1.1

Let  ∼  (10; 04)  then

 (  7) =  ( ≤ 6) = 09452 (table XI)

 (  6) =  ( ≤ 5) = 08338 (table XI)

 ( ≥ 7) =  (  6) = 1−  ( ≤ 6) = 00548

 ( ≥ 6) =  (  5) = 1−  ( ≤ 5) = 01662

 ( = 6) =  ( ≤ 6) − ( ≤ 5) = 01114

 (3 ≤  ≤ 8) =  ( ≤ 8) − ( ≤ 2) = 09983− 01673 = 08310 (table XI).
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Note

Table XI gives the cumulative distribution of a  (; ) variate for 0   ≤ 1
2
 In the case   1

2
we

could interchange the successes and failures: if  ∼  (; )  ie if  is the number of successes

in  trials with probability of success  then  −  is the number of failures; if we let  =  − 

then  may be regarded as the number of successes in  trials with probability of success 1−  ie

 ∼  (; 1− ) 

Example 1.2

Let  ∼  (12; 07)  Find

(i)  ( = 7)

(ii)  (3    7) 

Solution

Let  = 12−; then  ∼  (12; 03) and therefore probabilities concerning  are catered for in table

XI.

(i)  ( = 7) =  (12− = 12− 7)
=  ( = 5)

=  ( ≤ 5)−  ( ≤ 4)
= 08821− 07237
= 01584

(ii)  (3    7) =  (−7  −  −3)
=  (12− 7  12−  12− 3)
=  (5    9)

=  (5   ≤ 8)
=  ( ≤ 8)−  ( ≤ 5)
= 09983− 08821
= 01162
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The Poisson distribution

Definition 1.15

Let  be a discrete random variable with probability function

 ( = ) =
−

!
 = 0; 1; 2; 

where   0 is a constant. Then  is said to be a Poisson variate with

parameter  which we denote by  ∼  () 

The Poisson distribution (pronounced pwa-sòn) is named after its discoverer, the French

mathematician Simeon Denis Poisson, who published the distribution in 1837. The Greek letter

 is pronounced "lambda".

The Poisson distribution is used extensively in practice for the number of occurrences of an event

in a given time period. The number of telephone calls which arrive at an exchange in one minute,

the number of customers who arrive at a supermarket in one hour and the number of vehicles which

pass a certain point in five minutes are examples of random variables which have been found to be

approximately distributed as Poisson variates under certain circumstances.

Important properties of the Poisson distribution

(i) If  ∼  () then  () =  and   () =  (note that the mean and the variance are the

same).

(ii) If 1 and 2 are independent  (1) and  (2) variates respectively, then 1 + 2 is a

 (1 + 2) variate (additive property).

Table XII gives the cumulative Poisson distribution.

Example 1.3

Let  ∼  (25) 

Then

 ( ≤ 6) = 09858 (table XII)

 ( ≤ 5) = 09580 (table XII)

 ( = 6) =  ( ≤ 6)−  ( ≤ 5) = 09858− 09580 = 00278

 ( ≥ 6) =  (  5) = 1−  ( ≤ 5) = 1− 09580 = 00420

 (3    7) =  (3   ≤ 6) =  ( ≤ 6)−  ( ≤ 3)
= 09858− 07576 = 02282 (table XII).
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In STA1503 (and also in STA1501) you learned that the normal distribution is used as a limiting

distribution for the binomial distribution if  is large and  is close to 05 but the Poisson distribution

is used as a limiting function for the binomial distribution if  is large and  is small.

Example 1.4

Let  ∼  (20; 005)  the largest  and smallest  in table XI. Then  is approximately  () with

 =  = 20 (005) = 1

We compare probabilities from tables XI and XII.

  ( ≤ ) table XII  ( ≤ ) table XI

0 03679 03585

1 07358 07358

2 09197 09245

3 09810 09841

The approximations are fair, and for larger  the approximations become much better.

The normal distribution

Definition 1.16

If  is a continuous variate with pdf

 () =
1


√
2

−
1
2
(−)22 ; −∞   ∞

then  is said to be a normal variate with mean  and variance 2

We write  ∼ 
¡
; 2

¢


Let  =
 − 


 Then  is a normal variate with mean 0 and variance 1, ie  ∼  (0; 1) 

The pdf of  is obtained by setting  = 0 and  = 1 in the pdf of 
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Definition 1.17

If  is a continuous variate with pdf

 () =
1√
2

−
1
2
2 ; −∞   ∞

then  is a standard normal variate

This pdf is often denoted by  () and the corresponding distribution function by Φ ()  ie

 () =
1√
2

−
1
2
2

Φ () =

Z
−∞

 () 

These two functions are depicted in the next two graphs.

 ()

-5 -3 -1 1 3 5
0

0.1

0.2

0.3

0.4

Figure 1.6:
The standardised normal probability density function

Φ ()

-5 -3 -1 1 3 5
0

0.2

0.4

0.6

0.8

1

Figure 1.7:
The standardized normal distribution function
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Notice that the standardised normal density function is symmetric about zero from which it follows

that:

(i)  ( ≤ 0) =  ( ≥ 0) = 1

2

   

 

0

0.5

(ii)  ( ≥ ) =  ( ≤ −)

   

 
-c

   

 
P(Z>c)

c

P(Z<-c)

(iii)  (  ) = 1−  (  −)

   

 

P(Z<c)

c

   

 

1-P(Z<-c)

-c

In table I we find areas under the normal density function specifically  (  ) =

Z
−∞

 () 

Please note that some editions of normal tables tabulate  (0    ) =

Z
0

 () 

These values enable us to compute other probabilities, as the following examples will show. Always

try to draw sketches which indicate the probabilities under consideration.
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Example 1.5

Let  ∼  (0; 1). Then

(a)  (  13) = 09032 (table I)

(b)  (  13) = 1−  (  13) = 00968

(c)  (−13    13) =  (  13)−  (  −13)
=  (  13)− [1−  (  13)] from (b) above
= 2 (  13)− 1
= 08064

(d)  (||  13) =  (−13    13) = 08064 as above

(Please note: || is the absolute value of  ignoring the sign of 

||   if and only if −     and

||   if and only if   − or   )

(e)  (  −13) =  (  13) = 00968 from (b)

(f)  (  −13) = 1−  (  −13) = 09032

   

 
0

   

 

0.09680.0968 0.4032 0.4032

-1.3 1.3

Furthermore

(g)  (−02    18) =  (  18)−  (  −02)
=  (  18)− [1−  (  02)]

= 09641− 1 + 05793 (table I)
= 05434
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(h)  (055    196) =  (  196)−  (  055)

= 09750− 07088 (table I)
= 02662

(i)  (−132    −035) =  (  −035)−  (  −132)
= [1−  (  035)]− [1−  (  132)]

= (1− 06368)− (1− 09066)
= 09066− 06368
= 02698

You should acquaint yourself well with the use of table I - it is used more often by statisticians

than any other table.

Example 1.6

Let  ∼  (3; 16)  Find  (1    7) 

Solution

We use  =
 − 


(where for this example  = 3 and  =

√
16).

∴  (1    7) = 

µ
1− 3
4


 − 3
4


7− 3
4

¶
=  (−05    1)

=  (  1)−  (  −05)
= 08413− (1− 06915) (table I)
= 05328

Table II works in an almost inverse manner, and we will use it mainly to obtain so-called critical values

of the  (0; 1) distribution. Given  it gives  such that

 (  ) =

∞Z


 ()  = 
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ie  (  ) =

Z
−∞

 ()  = 1− 

   

 

N(z)

"

z0

We denote such values of  by  ie it is our agreement that  (  ) = 

We illustrate the use of table II by means of examples:

Example 1.7

(a) Find  such that  (  ) = 095

(b) Find  such that  (−    ) = 095

Solution

(a)

   

 

0.95

1.6450

   

 

0.95

-1.645

We can look up  in table II directly, because it is given that  ( ≤ ) ≡ Φ () = 095 and we find

 = 1645

∴  (  1 645) = 095

Therefore  (  −1645) = 095 by symmetry.
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(b) Now we cannot look up  in table II directly, because  (−    ) is not Φ () 

   

 

0.95

z-z

095 =  (−    )

=  (  )−  (  −)
=  (  )− [1−  (  −)]
=  (  )− 1 +  (  )

= 2 (  )− 1

∴ 2 (  ) = 195

∴  (  ) = 0975 = Φ ()

∴  = 1960 from table II

 (−196    196) = 095

 

 
0

   

 

0.0250.025 0.95

-1.96 1.96
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Sums of independent normal variates

Let 1 2   be independent normal variates such that  ∼ 
¡
; 

2


¢
. Let  =

X




Then  is a normal variate with mean and variance given by

 ( ) = Σ and   ( ) = Σ2
2
 

In particular, if 1 = 2 =  =  =  and 21 = 22 =  = 2 = 2 then

 ( ) = Σ and   ( ) = 2Σ2 

An important special case:

If  =  =
1



X
1

 then 
¡

¢
= 

X
1

1


=  and  

¡

¢
= 2

X
1

1

2
= 2

Theorem 1.2

If 1   are independent 
¡
; 2

¢
variates then

 =
1



X
1



is a 
¡
; 2

¢
variate.

The central limit theorem

We have seen above that, if 1   are independent 
¡
; 2

¢
variates, then  =

1



X
1

 is a


¡
; 2

¢
variate.

However, if 1   are independent variates from a general distribution having pdf  ()  with

mean  and variance 2 then  still has mean and variance


¡

¢
= ;  

¡

¢
= 2

whether the distribution of  is normal or not. However, in general the distribution of  is not normal.

What is the distribution of  then? Unfortunately this depends on  ()  However, the central limit

theorem is of great use in this respect and reads as follows:
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Theorem 1.3

Let 1   be independent variables from a general distribution with pdf  ()

with mean  and variance 2 Then 
¡

¢
=  and  

¡

¢
= 2 and

 =
 − 


√


(provided 2 is finite)

is asymptotically normally distributed with mean 0 and variance 1.

In practical terms this means that the distribution of  can, for large  be approximated by the

standardised normal distribution, and we may use tables I and II to obtain approximate probabilities

and critical values with respect to  The condition that 2 must be finite is not a trivial one – there

are distributions for which the variance does not even exist, for example the Cauchy distribution.

The question of how large  should be before the approximation becomes satisfactory, is not easily

answered. It depends on the specific  () 

Example 1.8

Let 1 2  36 be a random sample from a distribution with mean 10 and variance 25. Find an

approximate value for 
¡
9    11

¢


Solution

 =
 − 10p
2536

= 12
¡
 − 10¢ is approximately  (0; 1) 

∴ 
¡
9    11

¢
= 

£
12 (9− 10)  1 2 ¡ − 10¢  12 (11− 10)¤

=  (−12    12)

≈ 07698 (table I)
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The chi-square distribution

Definition 1.18

If  is a random variable with pdf

 () =

1
2
−1−

1
2


2
1
2
Γ

µ
1

2


¶  for   0

= 0 otherwise

where  is a positive integer, then  is said to have a chi-square distribution with

 degrees of freedom. We write  ∼ 2

The pdf, which depends on the parameter  is represented graphically for  = 1; 4; 10 and 20 in figure

1.8.

 ()

d =

1

4

10

20

x
0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

Figure 1.8:
The pdf of the chi-square distribution with  degrees of freedom

Table IV gives critical values of this distribution.

Example 1.9

Verify that, if  ∼ 26 then

(a)  ( ≥ 125916) = 005
(b)  ( ≤ 106446) = 090
(c)  ( ≥ 163539) = 095
(d)  ( ≤ 0872085) = 001
(e)  (1237347 ≤  ≤ 144494) = 095



27 STA2601/1

Solution

(a) We can look up  ( ≥ ) = 005 directly in table IV because the one-sided exceedance

probability  is given as 0.05. With  = 6 and  = 005 we therefore find  = 125916 We

also write 26;005 = 125916

d = 6

x

0 4 8 12 16 20 24

0

0.03

0.06

0.09

0.12

0.15

0.05

12.5916

(b)  ( ≤ ) = 090

⇒ 1−  (  ) = 090

⇒  ( ≥ ) = 010

so that it follows from table IV that  = 106446

We also write 26;010 = 106446

d = 6

x
0 4 8 12 16 20 24

0

0.03

0.06

0.09

0.12

0.15

0.10

10.6446

(c) We can also look up this value directly because now  = 095 and  ( ≥ ) = 095 so that it

follows from table IV that  = 163539

x
0 4 8 12 16 20 24

0

0.03

0.06

0.09

0.12

0.15

  

 

0.95

 

1.63539
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(d)  ( ≤ ) = 1−  ( ≥ )⇒  ( ≥ ) = 099 so that it follows from table IV that  = 0872085

d = 6

x

0 4 8 12 16 20 24

0.872085

0.01

(e)

d = 6

x

0 4 8 12 16 20 24

0.025

1.237347 14.4494

0.025

It follows from table IV that  (1237347 ≤  ≤ 144494) = 0975− 0025

= 095

Result 1.1
Properties of the chi-square distribution

(i) If  ∼ 2 then  ( ) =  and   ( ) = 2

(ii) If 1 and 2 are independent and 1 ∼ 21 and 2 ∼ 22 

then 1 + 2 ∼ 21+2 (additive property)

(iii) Relation to normal sampling theory (a very important result)
If 1   are independent  (0; 1) variates (ie 1  

is a random sample from a standardised normal distribution) and if

 = 2
1 +2

2 + +2


then  ∼ 2

(iv) Special case  = 1

If  ∼  (0; 1) then 2 ∼ 21
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Example 1.10

Let  ∼  (0; 1) and  = 2 Then  ∼ 21

From table IV:

 (  384146) = 1−  ( ≥ 384146) = 1− 005 = 095
∴ 

¡
2  384146

¢
= 095

∴ 
¡−√384146   

√
384146

¢
= 095

∴  (−196    196) = 095

which is in accordance with tables I and II.

From (iii) above we can deduce the following important result:

Result 1.2

If 1   are independent 
¡
; 2

¢
variates, then

1 − 


 

 − 


are independent  (0; 1) variates and

 =

X
=1

∙
 − 



¸2
∼ 2

The following is also an important result. Note that we have "lost" one degree of freedom because 

was replaced by  and we already know that  ∼ 
¡
; 2

¢


Result 1.3

Let 1   be independent 
¡
; 2

¢
variates,  =

1



X
1



and let  =

X
=1

∙
 −



¸2
 Then  ∼ 2−1 and  and  are

independent variates, ie ; (; ) =  ()  () 

Note that  can also be expressed as  =
(− 1)2

2
with 2 the sample variance.
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Student’s t distribution

This distribution was derived by WS Gossett who worked for a brewery and was not allowed to

publish his results under his own name. He therefore used the pseudonym "Student".

Definition 1.19

If  is a random variable with pdf

 () =
Γ
£
1
2
(+ 1)

¤
Γ
¡
1
2

¢
Γ
¡
1
2

¢√


µ
1 +

2



¶−1
2
(+1)

; −∞   ∞

where  is a positive integer, then  is called a Student t-variate with

 degrees of freedom. We write  ∼ 

The pdf of this distribution is illustrated in the following graph:

-5 -3 -1 1 3 5

n(0,1)

t8

t30

t4

Figure 1.9:
The pdf of Student’s t-distribution with  = 4  = 8 and  = 30 degrees of freedom

When  = ∞ the pdf of  is identical to the standardised normal probability density function.

(Compare the last line of table III with table II.)

Table III gives critical values of the t-distribution. Notice that the t-distribution is, like the standardised

normal distribution, symmetric about zero.



31 STA2601/1

Relation to normal sampling theory

Theorem 1.4

Let  and  be independent variates such that  ∼  (0; 1) and  ∼ 2 and let

 =
p


 Then  ∼ 

Theorem 1.5

Let 1   be independent 
¡
; 2

¢
variates and let

 =
1



X
1

 Then  =

√

¡
 − 

¢s
Σ
¡
 −

¢2
− 1

is a −1 variate.

The F-distribution

Definition 1.20

Let  be a random variable with pdf

 () =
Γ
£
1
2
(1 + 2)

¤
Γ
¡
1
2
1
¢
Γ
¡
1
2
2
¢1211 

1
2
2

2 
1
2
1−1 (2 + 1)

−1
2
(1+2)   0

= 0 elsewhere,

where 1 and 2 are positive integers. Then  is said to have an F-distribution with

1 and 2 degrees of freedom. We write  ∼ 1;2 

This is a two-parameter family of distributions, and the pdf is illustrated for 1 = 10 and 2 = 4; 10; 50

and∞ in the following graph:
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x
0 1 2

10

4 5
0

0.2

0.4

0.6

0.8

1

4

4
50

3

Figure 1.10:
The pdf of the F-distribution for 1 = 10 and 2 = 4; 10; 50 and∞

Tables V, VI and VII list critical values of this distribution. Note that the first degrees of freedom 1 is

always listed at the top of the table and the second degrees of freedom 2 on the left.

We will use the shorthand notation ;12 for the upper-tail probability 

Definition 1.21

Let 1 and 2 be independent random variables with

1 ∼ 21 and 2 ∼ 22  and let  =
11

22


Then  ∼ 1;2 .

Since the roles of 1 and 2 may be switched the following result is easily proved:

Result 1.4

If  ∼ 1;2 then
1


∼ 2;1 

This result enables us to find a two-sided interval for an F-variate, as is shown in the next example.
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Example 1.11

Find a 95% two-sided confidence interval for the F-variate  where  ∼ 8;20

Solution

 (  291) = 0975 (table VI). From the previous result  =
1


∼ 20;8

∴  (  4) = 0025 (table VI) (ie 0025;20;8 = 4)

∴ 

µ
1


 4

¶
= 0025

∴ 

µ
 

1

4

¶
= 0025 (ie 0975;8;20 =

1

0025;20;8
)

∴ 

µ
1

4
   291

¶
=  (  291)− 

µ
 

1

4

¶
= 0975− 0025 = 095

x
0 1 2 3 4 5

0

0.4

0.6

0.8
F8 ; 20

0.25 2.91

0.025 0.025

The bivariate normal distribution

Definition 1.22

Let 1 and 2 be two random variables with joint pdf

1;2
(1;2) =

1

212
p
1− 2




−1
2
(1;2)


;

for −∞  1 ∞; −∞  2 ∞; 1  0; 2  0; −1    1 where

 (1;2) =
1

1− 2

(µ
1 − 1

1

¶2
+

µ
2 − 2

2

¶2
− 2

µ
1 − 1

1

¶µ
2 − 2

2

¶)


Then 1 and 2 are said to have a bivariate normal distribution.
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The significance of the various constants is:

1 =  (1) ; 2 =  (2) ; 21 =   (1) ; 22 =   (2);

 = correlation coefficient between 1 and 2

Remember that it was pointed out previously that, if 1 and 2 are independent variates then they

are uncorrelated; and also that the converse is not always true. The converse is true in the case of

the bivariate normal distribution, however. If we set  = 0 in the joint pdf of 1 and 2 we obtain

1;2
(1;2) =

1

212

−1
2


1−1
1

2

+


2−2
2

2

=
1√
21


−1
2


1−1
1

2

1√
22


−1
2


2−2
2

2

= 1
(1) 2

(2) 

The following result is therefore true:

Result 1.5

Let 1 and 2 have a bivariate normal distribution. Then 1 and 2

are independent if and only if they are uncorrelated.

In the general case ( not necessarily equal to zero) it can be shown that, if 1 and 2 have a

bivariate normal distribution, then the marginal distributions of 1 and 2 are normal distributions, ie

∞Z
−∞

1;2
(1;2) 2 = 1

(1)

where 1
(1) is the 

¡
1;

2
1

¢
density function and likewise for 2
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The exponential distribution

Definition 1.23

Let  be a random variable with pdf

 () =
1


−  ≥ 0; 1


 0

Then  is said to have an exponential distribution with parameter
µ
1



¶


Mean

0.5

1

2

x
0 2 4 6 8 10 12

0

0.4

0.8

1.2

1.6

2

Figure 1.11:
The pdf of the exponential distribution

Result 1.6

For the exponential distribution:

(i)  () = 

(ii)   () = 2

(iii)  ( ≤ ) = 0 for  ≤ 0
= 1− − for   0

The parameter
µ
1



¶
is sometimes referred to as the failure rate.
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Exercise 1.1

1. Verify that if  ∼ 10 then

 ( ≥ 2764) = 001 note that we write 001;10 = 2764

 (  2764) = 099 =⇒  (  −2764) = 001
 (−2764    2764) = 098

 (−07    07) = 05

2. Verify that, if  ∼ 5;12 then

 (  311) = 005 (table V) ∴ 005;5;12 = 311

 (  389) = 0975 (table VI) ∴ 0025;5;12 = 389

 (  506) = 099 (table VIII) ∴ 001;5;12 = 506
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1.4 Learning outcomes

After studying unit 1 you should know the following concepts:

¥ random variable

¥ probability density function (pdf)

¥ the mean or expected value of a random variable

¥ the variance of a random variable

¥ the covariance of two random variables

¥ uncorrelated random variables

¥ the probability functions of the following two discrete random variables:

 ∼  ()

 ∼  (; )

(Poisson)
(binomial)

¥ the probability density function of  ∼ 
¡
; 2

¢
(normal)

¥ the central limit theorem

¥ properties of the chi-square distribution

¥ the relation of the t-distribution to normal sampling theory

¥ the relation of the F-distribution to two independent 2-variables

¥ the pdf and properties of the exponential distribution

You should be able to look up a value in your prescribed book of tables that links an

outcome of a variable with a given probability (or vice versa) for the following

distributions:

¥ normal

¥ 

¥ 

¥ 2
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STUDY UNIT 2

Concepts of estimation and inference

2.1 Introduction
It is always difficult to summarise a subject in a nutshell but we could say that Statistics as a science

is focused on the following overall objective: To collect, organise, analyse and interpret data for the

purpose of making better decisions.

In the previous study unit we stressed that the shape of the normal distribution is determined

by the value of the mean  and the variance 2 whilst the shape of the binomial distribution is

determined by the sample size  and the probability of a success . These critical values are

called parameters. (If you might recall, parameters are numerical measures that describe the

characteristics of a population.) We most often don’t know what the values of the parameters

are and thus we cannot "utilise" these distributions (ie use the mathematical formula to draw a

probability density graph or compute specific probabilities) unless we somehow estimate these

unknown parameters. In introductory courses it is usually simply stated that it makes perfect logical

sense that to estimate the value of an unknown population parameter, we compute a corresponding

or comparable characteristic of the sample. Is this always the best estimate? What does "best

estimate" mean? In this study unit you will learn that there are mathematical techniques that will

"lead" us to estimators of parameters!

In your first-year modules we dealt with probability and probability distributions, and emphasised

that unless one has a proper understanding of the laws of probability, the mechanisms underlying

statistical data analysis will not be understood properly. Probability theory is the tool that makes

statistical inference possible. In dictionary terms, inference is the act or process of inferring and to

infer means to conclude or judge from premises or evidence which means to derive by reasoning.

In general the term implies a conclusion based on experience or knowledge. More specifically in

statistics, we have as evidence the limited information contained in the outcome of a sample and

we want to conclude something about the unknown population from which the sample was drawn.

The set of principles, procedures and methods that we use to study populations by making use of

information obtained from samples is called statistical inference. Thus our objective will be to draw

inference about a population (a complete set of data) based on the limited information contained in

a sample.

How will we link the information from a sample to a population? You have already learned from

first-year modules that the sampling distribution of a statistic is the vehicle to move between the

sample and the population. For example, we showed you how to derive the sampling distribution of

the sample mean, , and how to apply this sampling distribution in developing an interval estimate
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for a population mean and how to perform a hypothesis test. In this study unit we will return to

concepts of hypothesis testing and confidence intervals in general.

2.2 Defining a random sample and a statistic
At first-year level, we were very specific with our examples and explanations of the sampling

distribution of a statistic in developing an interval estimate for a population parameter or to perform

a hypothesis test for a population parameter. For example, we explained how a confidence interval is

derived for  using the sampling distribution of  how a confidence interval is derived for  using

the sampling distribution of b and how a confidence interval is derived for 1−2 using the sampling

distribution of 1 −2

How can we generalise these principles?

In general, we are interested in a random variable  with probability density function (pdf)  ()

which depends on a parameter  which is (usually) unknown. We sometimes write  (; ) to

emphasise that the pdf depends on  We are interested specifically in obtaining information about

the parameter  for example that  =  () ;  =   () or  =  ( ≥ ) for a specific 

Consider for example the random variable  which represents the life (in thousands of kilometres) of

a tyre of given size and manufacture. We may be interested in the expected life, in which case

 =  ()  or in the probability that the tyre will last for more than 50 000 km, in which case

 =  (  50) 

In order to obtain information about the unknown parameter  we usually make use of a random

sample. Suppose in the above example we select five tyres at random and determine the life of

each tyre, say 1  5 In order for 1  5 to be regarded as a random sample for a given

distribution, we require that 1  5 be independent and that each of them has the prescribed

distribution.

Definition 2.1

The random variables 1   constitute a random sample from the

distribution with pdf  () if 1   are independent random

variables, each with pdf  () 

It follows that the joint pdf of 1   is given by

1
(1  ) =  (1)  () 

After such a random sample has been obtained, it must be analysed. This may be done in many

ways, depending on the objective. Firstly the data are represented graphically in different ways in
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order to try to find out what information about the population may be obtained from the sample. This

graphical analysis is followed by statistical computations. These computations lead to quantities

which we shall call statistics.

Definition 2.2

Any function  ≡  (1  ) of the random sample 1  

is called a statistic if it can be computed without using unknown parameters.

NB: Since a statistic is a function of random variables, it is itself a random variable.

Example 2.1

If 1   is a random sample from a distribution with mean  and variance 2 then the following

functions are examples of statistics:

(a)
1



P
1



(b)
P
1

¡
 −

¢2
(c) max (1  )

(d) 3

The following is not a statistic:
P
1

( − )2

(unless  is known).
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The remainder of this study unit is devoted to the general introduction to the three main subjects

falling under statistical inference:

• Point estimation

We want to find a statistic T which may be used as an estimator for the unknown parameter.

• Hypothesis testing

We are looking for a decision rule by means of which we may choose between the two hypotheses

0 (the null hypothesis) and 1 (the alternative hypothesis). Such a hypothesis is some or other

statement about the unknown parameter  for example  = 0;   10;  6= 6.

• Interval estimation

We are trying to find two statistics 1 ≡ 1 (1  ) and 2 ≡ 2 (1  ) such that

 (1    2) = 1−  where  is a small number between 0 and 1, for example  = 005

2.3 Point estimation
Given a random sample 1   from a distribution with pdf  (; ) which depends on the

unknown parameter  we wish to find a statistic  ≡  (1  ) which may serve as an estimator

for  An estimator for  is sometimes denoted by ̂ ("theta-hat"). The sample 1   consists

of  random variables and the estimator  is also a random variable. The values which 1  

assume in a specific example, 1   say, are constants and the corresponding value of  namely

 (1  ) which is a realisation of the estimator, is called an estimate of 

An estimator may be regarded as a formula by means of which an estimate is obtained from a given

set of data.

Thus, for example, we shall show that  =
1



P
1

 is a possible estimator for the population mean

; if we obtain a sample 1 = 10; 2 = 20; 3 = 15 then  = (10 + 20 + 15) 3 = 15 is an estimate of



In order to ensure that there is some connection between the estimator and the parameter, in other

words to prevent the possibility that just any old statistic be used as an estimator of  certain

restrictions are imposed on the estimator. Such restrictions are treated more fully in advanced

courses, but we mention briefly the property of unbiasedness. This is a logical property for an

estimator to have, but the requirement of unbiasedness is sometimes replaced by other requirements

which may lead to better estimators.

Definition 2.3

The statistic  is called an unbiased estimator for the parameter  if  ( ) = 
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Example 2.2

Let 1   be a random sample from a distribution with expected value  Prove that  =
1



P
1



is an unbiased estimator for 

Solution


¡

¢
= 

µ
1


1 + +

1




¶

=
1


 (1) + +

1


 ()

=
1


 + +

1




= 

Example 2.3

Let 1 and 2 be random variables from a 
¡
; 2

¢
distribution. Show that both

̂1 =
1

3
1 +

2

3
2

and

̂2 =
1

2
1 +

1

2
2

¡
= 

¢
are unbiased estimators of the mean.

Solution

 (̂1) = 

µ
1

3
1 +

2

3
2

¶

=
1

3
 (1) +

2

3
 (2)

=
1

3
+

2

3


= 
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 (̂2) = 

µ
1

2
1 +

1

2
2

¶

=
1

2
+

1

2


= 

Thus both ̂1 and ̂2 are unbiased estimators of 

Definition 2.4

If we have two or more unbiased estimators for the parameter  then

we select the estimator with the smallest variance. Such an estimator is

called the most efficient of the estimators.

Example 2.4

For example 2.3 we have

  (̂1) =  

µ
1

3
1 +

2

3
2

¶

=
1

9
  (1) +

4

9
  (2)

=
1

9
2 +

4

9
2

=
5

9
2

  (̂2) =  

µ
1

2
1 +

1

2
2

¶

=
1

4
2 +

1

4
2

=
1

2
2

Therefore ̂2 is a more efficient estimator of  than ̂1 is.
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2.4 Methods of finding estimators
Some highly sophisticated methods exist for finding estimators. Some of these methods involve

complicated theories and are treated in more advanced courses. We discuss two methods here:

(A) least squares

(B) maximum likelihood.

(A) Least squares estimation

The method of least squares is used especially in problems where the unknown parameters are

linear functions of known constants.

Theorem 2.1

Let 1   be independent random variables such that

 () = 11 + 22 + + ;

  () = 2;  = 1  ; where

   = 1   and  = 1   are known constants.

The least squares estimators of 1   are found by minimising

 (1  ) =
P
=1

( − ())
2

=
P
=1

( − 11 − 22 − − )
2 

This is achieved by setting




= 0;  = 1  

thus obtaining  equations with  unknowns, which are solved to obtain ̂1  ̂
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Example 2.5

Let 1 2      be independent random variables from a distribution with expected value .

Show that  =
1



X
=1

 is the least squares estimator for .

Solution

 () =   = 1 2     

 () =

X
=1

[ − ()]
2

=

X
=1

( − )2




=

X
=1

2 ( − ) (−1)

= −2
X
=1

 + 2 (Do you recall that
X
=1

 = ?)

Set



= 0

⇒ 2 = 2

X
=1



̂ =

X
=1





Example 2.6

Let 1   be independent random variables such that  () =   = 1   where 1  

are known constants. Find the least squares estimator for 

Solution

We estimate  by minimising  () where

 () =

X
=1

( − )
2 =

X
=1

¡
2
 − 2 + 2 

2
¢
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 ()


= −2

X
=1

¡
 − 2 

¢
= −2 ¡Σ − Σ2

¢
= 0 if  =

Σ

Σ2


Thus the least squares estimator of  is ̂ =

X
=1



X
=1

2



(B) Maximum likelihood estimation (mle)

Before we formally define this method, consider the following concrete example:

Example 2.7

Suppose the number of visits a child pays the dentist per year, has a Poisson distribution with

unknown parameter . A random sample of 4 children paid the following observed number of visits

to the dentist:

1 = 0; 2 = 2; 3 = 1 and 4 = 3.

This means we have a random sample of size  = 4 from a distribution with pdf

 (; ) =
−

!
for  = 0; 1; 2;  (see definition 1.15)

where  () =  and   () = 

The probability of any outcome  therefore depends on  only so that we can write

 (1 = 0) = (1; ) =
−0

0!
;

 (2 = 2) = (2; ) =
−2

2!
;

 (3 = 1) = (3; ) =
−1

1!
and

 (4 = 3) = (4; ) =
−3

3!




47 STA2601/1

Assuming independence of 1 2     4 the joint probability function of the sample can therefore

be written as

 (1; 2; 3; 4; ) =
−0

0!
· 
−2

2!
· 
−1

1!
· 
−3

3!

=
−40+2+1+3

1× 2× 1× 1× 3× 2× 1

=
−46

12


Please note that this specific probability expression is not a "general case" but specifically derived

for a sample of four, with very specific outcomes, ie it is  (1 = 0 2 = 2 3 = 1 4 = 3).

Since it is a function of  only, we denote it by () and call it the likelihood function (from there the

).

For each different value of , we can compute a different value for (). This means we could use

the "connect-the-dots" method to draw a graph of (). (See figure 2.1.)

If  = 1 we have  (1) =
−416

12
=
00183156

12
= 00015263 (and we interpret it as the joint probability

of the specific sample for the case where  = 1).

If  = 2 we have  (2) =
−826

12
=
00003355× 64

12
= 0001789

In the following table () has been computed for seven different values of .

 ()

0 0

05 0000176

10 0001526

15 0002353

20 0001789

25 0000924

30 0000373
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These likelihood values are plotted in figure 2.1 and it is obvious from the graph that () reaches

a maximum at  = 15. We therefore say that  = 15 is our maximum likelihood estimator for this

specific sample.

But, what is now very interesting is to note that  =

4X
=1



4
=
0 + 2 + 1 + 3

4
= 15

Instead of this "trial and error" or graphical method we will mostly use analytical methods to determine

 – although it is instructive to look at the problem this way.

Figure 2.1

The method of maximum likelihood is in effect that one has to find that value of  that will maximise

() for the observed sample.

Definition 2.5

The method of maximum likelihood for estimating a parameter ,

selects that value of  as a point estimator that maximises the

likelihood function

 () =  (1; )  (2; )  (; ) =

Y
=1

 (; ).

In the same way that the symbol
X
=1

denotes the sum of  terms, the symbol
Y
=1

can be used to

denote the product of  terms.
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Theorem 2.2

In many problems it is easier to maximise log () than  ()  The value of  that

maximises log () will also maximise  () since log () is a strictly increasing

function of  () 

Example 2.7 (continued)

Suppose that we now want to keep it abstract and use 1 2 3 and 4 without replacing them

with the observed values.

 () =

4Y
=1

 (; )

=
−1

1!
· 
−2

2!
· 
−3

3!
· 
−4

4!

=
−4

4P
=1



4Q
=1

!

Now log () = −4 +
4X

=1

 log  −
4X

=1

log (!)

 log ()


= −4 +

4X
=1

 · 1

+ 0

Let
 log ()


= 0 then

4X
=1

 = 4

Therefore b =
4X

=1



4
=  is the maximum likelihood estimator of .

[Strictly speaking (mathematically) we should also inspect the second-order derivative to ascertain

whether we in fact have a maximum value and not a minimum!]
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We already know that (see exercise 2.1, question 1)
1

− 1
X
=1

¡
 −

¢2
is an unbiased estimator

for the variance of a distribution and also that  =
1



X
=1

 is an unbiased estimator for the mean.

We began example 2.7 with the statement that the number of visits has a Poisson distribution.

Paging back to the properties of this discrete distribution (see the heading after definition 1.15) we

may write down that

() =  and

 () = 

Why don’t we choose 2 =
1

− 1
X
=1

¡
 −

¢2
as our unbiased estimator for ?

It is because the method of maximum likelihood has "guided" us to  (and not 2) and

usually (under general conditions) the maximum likelihood estimators are more efficient than other

estimators, but they are not necessarily always unbiased.

Example 2.8

Let 1      be a random sample from a distribution with pdf

() = −−1   1

Find the MLE for .

Solution

() =

Y
=1

 (; ) = 
Y
=1

−−1


log () =  log − (+ 1)
X
=1

log

 log


=




−

X
=1

log = 0 if

 =


X
=1

log



Therefore the MLE of  is

̂ =


X
=1

log
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In cases where more than one, say , unknown parameters are to be estimated, the partial derivative

of  (or log) with respect to each parameter is equated to zero to obtain  equations with 

unknowns. These equations cannot always be solved very easily if they are nonlinear; sometimes it

is necessary to employ an iterative method to obtain a numerical solution.

2.5 Hypothesis testing
One of the most commonly used techniques in the analysis of data is hypothesis testing. The basis

for it was laid in the thirties of the previous century by two statisticians: Jerzy Neyman, originally from

Poland, and Egon S Pearson of the UK, son of the famous statistician Karl Pearson.

The technique of hypothesis testing is discussed here generally, but using an example to illustrate the

concepts. The details of how to find the decision rule in specific types of problems will be discussed

in later study units. The process is described here in a number of steps. The order of these steps

represents more or less the ideal order. In practice one may sometimes have to change the order

due to practical necessity. Such changes in the order may, however, change the characteristics of

the test.

Step 1. The brainwave

A researcher develops a theory about a natural phenomenon, economic law, production process, et

cetera which he or she is in the process of investigating. The researcher decides that the theory is

of sufficient importance to try to verify or discard by means of an experiment.

Example 2.9

A farmer wants to find a better feed which will make his piglets grow faster. He knows from past

experience that his piglets seldom reach a mass of 40 kg or more after four months. A salesman

assures him that his piglets will on average weigh more that 40 kg after four months if they are fed

on Yumyum Balanced Pig Feed. He decides to try Yumyum on a few piglets for a trial period.
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Step 2. Choice of a model

At this stage it is desirable that a statistical model be formulated as carefully as possible for the

proposed experiment. Sometimes the model can be formulated only partially at this stage, since

one may want to gain information about the model from the data after experimentation. In such a

case one would formulate a tentative model with the idea that it may be altered later.

Example 2.9(a) (example 2.9 continued)

For the piglets we could formulate the following model: Let  denote the mass after four months of

a piglet selected at random and fed on Yumyum. Let  be the mean and 2 the variance of the

distribution of . We assume for the moment that

 ∼ (;2)

In some applications the researcher may know from past experience that data of the type which he

or she is going to collect, usually follow a certain distribution. Sometimes, however, the distribution

may have to be investigated after the data become available and the model adjusted accordingly.

Step 3. Specification of the hypothesis and significance level

At this stage the null and alternative hypotheses must be specified. These hypotheses consist of

specifications for one or more parameters. The null hypothesis usually specifies a single value for

each parameter being tested; the alternative is usually less specific.
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Example 2.9 (b) (example 2.9 continued)

In the piglet example the obvious null hypothesis is

0 :  = 40

and the alternative

1 :   40

This is a one-sided alternative: the farmer only wants to know whether the expected mass is more

than 40 kg; he will not be interested in Yumyum if the expected mass is less than 40 kg. Actually

one could say that the null hypothesis is 0 :  ≤ 40, but usually only the extreme value (closest to

1) is specified.

In many problems the alternative would be two-sided.

Suppose, for example, a dealer orders ball bearings with the specification that the mean diameter

must be  = 10 . Ball bearings which are too large or too small are unacceptable. Thus

0 :  = 10 is regarded as false if either   10 or   10 and the alternative is 1 :  6= 10.

This is an example of a two-sided alternative.

Note

The research worker must know before the experiment is conducted what the null and alternative

hypotheses are. If he or she does not know which specific hypotheses will be tested, he or she

must specify the hypotheses as generally as is necessary in order to provide for all possibilities.

The practice of generating hypotheses by first studying the data is not to be recommended. It may

promote the drawing of false conclusions. If one searches carefully enough, one could find false

hypotheses in any set of data. It may be necessary to collect further data to confirm hypotheses

generated from the original data. The statistician who does consultation work may have to question

his or her client carefully in order to establish whether the latter had good reason to expect the

hypotheses before seeing the data.
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As was said earlier, an experiment will be conducted in order to gain information which will enable

the investigator to choose between 0 and 1. In the final decision two types of error can be

committed:

A type I error is committed if we reject 0 when 0 is in fact true.

A type II error is committed if we do not reject 0 when 0 is false.

Note: We never say "we accept 0", we say "we do not reject 0" or "we fail to reject 0"

This is represented in the following table:

Decision based on the data

Do not reject H0 Reject H0

The true state 0 is true Good decision Type I error

of nature 1 is true Type II error Good decision

The decisions to "fail to reject" or "reject" 0 must be interpreted as follows: If 0 is rejected (and

1 is not rejected) it means either that 0 is true and a rare event has occurred, or that 1 is

true. Since a rare event occurs only rarely, however, we are inclined to lean towards the belief that

1 is true. If 0 is not rejected (and 1 is rejected) it does not mean that we have proved that

0 is true; we could have made a type II error. It means only that there is not sufficient evidence in

the data to reject 0.

In every hypothesis testing procedure, there are probabilities associated with the two types of error:

P(type I error) = 

P(type II error) = .

We consider the two cases: 0 true and 1 true.

(a) 0 is true.

Example 2.9 (c) (example 2.9 continued)

Assume for illustration purposes that we know that 2 = 4, so that  ∼ (; 4).

Now "0 is true" means that  = 40 (ie  ∼ (40; 4)) and we graphically represent the mass

distribution of the piglets by drawing a normal curve.
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 = 40

Figure 2.2: Curve of a (40; 4) distribution

With some manipulation and using table I (Stoker) we find that  ( ≥ 4329) = 005.

To graphically display a type I error, we shade the area where 0 is rejected. In this example, if

 = 005 then  ( ≥ 4329) =  (assuming  ∼ (40; 4)).

"

 

 

 = 40 4329

Figure 2.3:  (0 is rejected| 0 is true) = 

   

 

 = 40 4329

Figure 2.4:  (0 is not rejected| 0 is true) = 1− 
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There are two possibilities: 0 may not be rejected or rejected. The probabilities are

 (0 is not rejected| 0 is true) = 1− ;

 (0 is rejected| 0 is true) = 

Definition 2.6

 is called the significance level of the test, if  (0 is rejected| 0 is true) = .

The significance level is selected in advance, depending on the seriousness of a type I error.

If a type I error means that the farmer will use a somewhat poorer feed for his pigs, he may use

 = 005 or even  = 010. However, if a type I error means that a patient will die, a much smaller

 (like  = 0001) will have to be used. The most generally used choices of  are 005 and 001.

To a certain extent the choice of  is restricted by the availability of statistical tables, when we

perform hypothesis tests manually. However, when you perform a hypothesis test using a statistical

package, the -value will be used more often to draw a conclusion. (The definition and interpretation

of a -value is discussed at the end of this section.)

Although  is selected in advance, the eventual significance level may differ from . The assumptions

in the model, like normality and independence, are not always satisfied exactly. There is probably no

such thing as a normal population in real life. The model being used will only be an approximation to

the true situation. Certain types of deviations from the model may cause the true significance level

to be larger than the chosen ; other deviations may cause it to be smaller.

(b) H1 is true

There are again two possibilities: we may reject 0 and not reject 1 or do not reject 0 and

reject 1. The probabilities are

 (not rejecting 0 | 1 is true) = 

 (not rejecting 1 | 1 is true) = 1− 
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Example 2.9 (d) (example 2.9 continued)

If we continue with the example of the piglets and assume that 2 = 4 (once again simply for

illustration purposes) then  is still ∼ (; 4). Now "1 is true" means that   40. There is not

simply a single graph which captures this scenario but trillions of possible graphs! How can you draw

a graph where "  40"? What value will you choose?

If we want to try to represent this graphically, we have to assign specific values to  (where of course

  40).

For example, let us consider where  = 405;  = 4329 and  = 45362. This means we draw the

following three normal probability distributions:

(405; 4) (4329; 4) and (45362; 4)

(1)  = 405

 

 

:=40

=405 4329

(2)  = 4329
   

 

1-$

43.29

0.5

(2)  = 45362

   

 

0.85

1-$

43.29

Figure 2.5:  (not rejecting 1|1is true) = 1− 

Definition 2.7

The probability, 1− , is called the power of the test, where

 (not rejecting 0 | 1 is true) = 

The power of the test depends on the following factors:

(i) The significance level :

The larger  is, the smaller is  and thus the larger the power. In the choice of  we have a

trade-off between  and  If  is small the test is called conservative and the result is that the

power is small. Similarly, if  is large then the power is large.
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(ii) The correctness of the model:

Just as deviations from the model influence the significance level, they may cause the power to

decrease or increase.

(iii) The value of :

Suppose, as before, the null hypothesis and the alternative are 0 :  = 0 and 1 :   0 where

0 is a specified constant. The power of the test will depend on the deviation of the true value of

 from the hypothesised value 0 In general  → 0 and (1− )→ 1 as →∞ (for the alternative

  0). A graph of 1−  versus  will have the following general form:

Figure 2.6

On the other hand if 0 :  = 0 is tested against 1 :  6= 0 the power curve will appear as

follows:

Figure 2.7

If the curve is symmetrical about 0 one would obtain a graph like the graph for the one-sided test

by plotting | − 0| on the horizontal axis.
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(iv) The planning of the experiment including the choice of the sample size :

The larger the sample size, the larger the power. If all other factors remain constant and 1

is true, it will be true in general that  → 0 as  → ∞ and thus the power increases to 1 as

the sample size increases. Thus it would seem as if the ideal situation can be approached by

simply collecting a very large sample. If even the smallest little deviation from 0 is of practical

importance, this would be a good strategy. However, one must remember that, if 0 :  = 0 is not

true,  could still be equal to 0 +  where  is a very small number; in fact  could be so small as

to be of no practical importance. Yet if a very large sample is taken, the power could be close to 1

even if  = 0 +  A very large sample may often be analysed more informatively by constructing

confidence intervals rather than by testing hypotheses. The power curves look something like the

following for different sample sizes:

Figure 2.8

Such power curves may be used to select the sample size which would ensure that the test will

have a selected power for a given value of 

(v) Other factors:

The amount of variation in the population may, for example, also play a role in determining the

power of the test, depending on the parameter being tested. In general, if the parameter being

tested is a mean of a population, then  → 0 as 2 → 0 where 2 is the population variance, so

that the power→ 1 Such a parameter, like 2 above, which is of no importance in itself, but which

has a profound influence on the test, is sometimes called a "nuisance parameter".

Step 4. Planning of the experiment

We shall not say much about this aspect here except to stress the importance of designing a

well-planned experiment. The module STA2602 treats the subject more fully. For some types of

experiment tables and graphs are available to enable one to select a sample size – more about this

later.
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Example 2.9 (e) (example 2.9 continued)

Suppose we assume that a significance level of 0.05 has been selected and that a sample of

size  = 10 was decided upon. For the piglet example, this means the farmer must try to obtain

10 independent observations of four-month-old piglets which have been raised on Yumyum. It is

preferable that 10 piglets out of different litters be selected rather than ten of the same litter. Ten

piglets out of the same litter cannot be considered as a random sample of independent observations

and will be much more similar than 10 piglets from different litters. The same litter possesses certain

common factors. In the final analysis the farmer wants to say something about all his pigs, not just

about the one litter. The crucial question will always be which population does the sample represent?

Step 5. Choice of a test

At this stage (and remember the experiment has not even been started) the researcher must already

know how the data is going to be analysed once they have been obtained. If difficulties arise at this

stage, the plan could still be altered. Once the experiment is started, it would probably be too late to

change the plan. Planning the analysis of the data at this stage helps to ensure objectivity.

A decision rule is formulated, and very often this can be done in terms of an estimator of  If  is the

population mean, for example, one may decide that 0 will be rejected if , the sample mean, lies

in a certain region, called the critical region.

[Note that in figure 2.3, for example, the "critical region" was taken as { :   4329} for  = 005

Here the distribution of  was not yet taken into account. We do however know that if 1 2  

constitute a random sample from a 
¡
; 2

¢
distribution, then  ∼ 

¡
; 2

¢
 Only for a sample

size of  = 1 will 4329 be the critical value. If  = 4 then  ∼  (; 44) =  (; 1) and if 0 =  = 40

is true, then 
¡
  41645

¢
= 005 so that the critical value becomes  = 41645.]

In the case of a population mean, we say  is significantly different from 0, the hypothesised value

at the -level (or 100% level). In this case ( the population mean) the critical region is usually of

the form: ©
 :   

ª
if the alternative is 1 :   0;©

 :   
ª

if the alternative is 1 :   0 or©
 :

¯̄
 − 0

¯̄
 
ª

if the alternative is 1 :  6= 0

(We are going to devote a whole study unit to the testing of means, where the specific details of how

the critical region must be obtained, will be discussed in detail. This is simply an overview to refresh

your lnowledge of the statistical jargon of hypothesis testing.)
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The constant  is determined by the sample size, the significance level and the variance (the

population variance if known; otherwise the sample variance).

If  does not lie in the critical region, in other words if  lies in the complement of the critical region,

called the acceptance region, then 0 is not rejected and we say that  is not significantly different

from 0 at the -level. It does not make sense to say that  is (or is not) significantly different from

0 without specifying the level of significance. The words significant and significantly different imply

that a statistical test has been performed at a certain level.

Step 6. The experiment

We shall not elaborate on this step except to say that the statistician should, if possible, observe the

experimentation. In this way he or she may prevent unwanted factors from confusing the experiment

without his or her being aware of it, like operator fatigue which could have the effect that some

observations are made less carefully than others, or a breakdown of the machine with the result that

the machine setting is changed during the experiment. Even the statistician may not always be able

to prevent these occurrences,he or she may be able to take them into account when analysing the

data.

Step 7. Analysis of the data

Once the data have been received, the statistician will start analysing them. The first step is to

draw graphs and represent the data in various ways in order to decide whether the chosen model

is a reasonable approximation or not. With some types of experiment one may know from past

experience that the chosen model usually holds in similar situations, but sometimes one may have

to rely almost entirely on the data. A word of warning, however. The fact that the model may possibly

be changed after the experiment will certainly have an effect on the ultimate significance level, but

the size of this effect is unknown. However, this is not a good reason to be blind to obvious and

gross deviations from the model. If the model, and possibly the hypotheses, are changed drastically

after the data have been studied, one may have to confirm the conclusions by means of a further

experiment. Remember that no two samples from the same population are the same, and the danger

always exists that a phenomenon in the sample which is due to sampling variation, will be interpreted

as a phenomenon in the population.

Finally a choice between 0 and 1 is made. In a research environment this usually leads to further

theories which are investigated in turn.

This concludes the description of the steps in hypothesis testing.

The p-value

One of the criticisms against hypothesis testing is that it is too much of an all-or-nothing procedure:

the final decision is either that 0 is true or that 1 is true without specifying how close to the truth

0 is. The procedure makes no distinction between 1 :  = 0 +  and 1 :  = 0 +  where  is

very small and  is very large. Thus if the decision rule is to reject 0 if   45 we shall reject 0
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if  = 451 and if  = 10451 where the values  = 451 and  = 10451 are treated as completely

equivalent results with regard to the procedure of hypothesis testing. One way of overcoming this

criticism at least partially, is by quoting the so-called -value or exceedance probability.

Definition 2.8

The -value is the probability that a value of the statistic, which is equal to or more

than the observed value, will be obtained if 0 is true.

For example if  is the statistic and  the observed value and we have the case where the alternative

is 1 :   0 we will compute the -value as

-value = 
¡
 ≥  | 0 is true

¢
.

If we have the two-sided alternative where 1 :  6= 0 we will compute the -value as

-value = 
¡¯̄
 − 0

¯̄
 |− 0| | 0 is true

¢
• If this -value is very small,  is said to be highly significant (usually if ¿ ).

• If the -value is fairly small,  is said to be significant (usually if   ).

• If the -value is large,  is said to be not significant (usually if   ).

[NB We read the symbol "¿" as "is much smaller than" whereas we read "" only as "is smaller

than".]

2.6 Confidence intervals
It was said in the previous paragraph that a criticism against hypothesis testing is that it is too much of

an all-or-nothing procedure. If we decide that  6= 0 we still do not know by how much  differs from

0 Unfortunately it is not possible to say what the exact value of  is, but we may be able to construct

an interval such that we can say with a given certainty that  lies within the interval. This interval is

called a confidence interval. Hypothesis testing and the construction of a confidence interval are not

mutually exclusive or opposing procedures. They are based on the same statistical theory. In fact

one may test the hypothesis 0 :  = 0 by first constructing a confidence interval for  and rejecting

0 if 0 is outside the interval.
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A confidence interval may be two-sided, ie of the form (1; 2) where 1 and 2 are statistics, or

one-sided, ie of the form (−∞;  ) or ( ; ∞) according to the needs of the experimenter. Basically

the construction of a two-sided confidence interval implies that one finds the smallest and largest

values of  such that the sample is not a rare event. For example, if  is the mean of the distribution

and  the sample mean, we may represent 1 and 2 as follows:

Figure 2.9

If   1 then  is a rare event; similarly if   2

The method of construction is usually based on a function of  say (), which would be a statistic if

 were known. ()must be a function of  but not of any other unknown parameter. The distribution

of () must be known and independent of  so that a probability statement of the form

 ( ≤ () ≤ ) = 1− 

may be made, where  and  are found from tables of the distribution of (). For a one-sided interval

we select  = −∞ or  = +∞ as the case may be. In the above equation  is again a small number

between 0 and 1, such as  = 005 or  = 001

The number 1 −  is called the confidence level of the interval (compared to the term "significance

level" for  in hypothesis testing). The inequality  ≤ () ≤  is then manipulated algebraically to

obtain an inequality of the form 1 ≤  ≤ 2 so that we may say that

 (1 ≤  ≤ 2) = 1− 

Note that we now have the unknown parameter inside the interval (1; 2)  The end points of the

interval are statistics and therefore random variables. Technically, this means we cannot say that the

probability that  lies between 1 and 2 is (1− ). We therefore call it a confidence interval and

not a probability interval. An interpretation of the confidence interval is the following:
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If we draw repeated samples from the same population and compute the
confidence interval every time, the true value of  will lie inside the interval
100 (1− )% of the time and outside the interval 100% of the time.

When we deal with a specific sample,  lies either inside or outside the interval; it would seem strange

to write

 (16 ≤  ≤ 20) = 095

if we obtain 1 = 16 and 2 = 20 in a specific sample, because it would appear that  is regarded as

a random variable. Rather, we regard (16; 20) as an interval chosen at random from a population

of intervals, 95% of which contain  and 5% of which do not contain 

Example 2.10

Let 1   be a random sample from a 
¡
; 2

¢
distribution with 2 unknown. Let

 =
1



P
=1

 and 2 =
1

− 1
P
=1

¡
 −

¢2


From theorem 1.2, study unit 1, we know that  ∼ 
¡
; 2

¢
and therefore

 =
 − 


√

=
√

¡
 − 

¢


is a  (0; 1) variate which is independent of (− 1)22 which in turn is a 2−1 variate (see result

1.3). Employing theorem 1.4 we obtain the following Student’s t-variate:

() =

√

¡
 − 

¢
p

((− 1)22)  (− 1)

=
√

¡
 − 

¢
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which is a Student’s t-variate with  − 1 degrees of freedom. From tables of the t-distribution we

obtain  = 1
2
; −1 such that

1−  =  [− ≤ () ≤ ]

= 

"
− ≤

√

¡
 − 

¢


≤ 

#

= 

∙−√

≤  −  ≤ √



¸

= 

∙
− − √


≤ − ≤ − +

√


¸

= 

∙
 − √


≤  ≤  +

√


¸

therefore the interval
∙
 − √


;  +

√


¸
is a 100 (1− )% confidence interval for 

2.7 Simultaneous inference
In analysing the results of complex experiments, one may sometimes want to test a number of

hypotheses or construct a number of confidence intervals.

Social scientists, for example, who carry out surveys may sometimes want to test several hundred

hypotheses on the results of one survey. The problem is that the probability of a type I error increases

as the number of tests or confidence intervals increases. For example, if 100 significance tests are

performed, each at a 5% level of significance, then the probability of one or more type I errors could

be very close to 1.

Definition 2.9

If  hypotheses 01  0 are tested simultaneously, then

the overall significance level is defined as

 (at least one 0 is rejected|all 0 are true) = 1−  (no 0 is rejected|all 0 are true) 
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Definition 2.10

If  confidence intervals 1   are constructed for parameters 1   then the

overall significance level is defined as

 ( ∈  ;  = 1  )

ie the probability that all the intervals will contain the true values of the respective parameters.

The problem is: how to perform the  significance tests so that the overall significance level is  or

how to construct the  confidence intervals so that the overall confidence level is 1− This problem

has been studied in great detail in the literature, and the best solution depends on the specific type

of problem. One very general solution that can be applied to any simultaneous inference problem is

based on the Bonferroni inequality.

Theorem 2.3

Let 1 2   be any  events in a sample space  Then

 (1 ∪2 ∪  ∪) ≤  (1) +  (2) + +  () 

To apply this theorem to a simultaneous testing problem, assume 01  0 are true and let

 =  ( reject 0 |0 is true) = 

say, the significance level of the -th test. Then the overall significance level

=  (at least one 0 rejected|all 0 true)

=  (1 ∪2 ∪  ∪|all 0 true)

≤ 1 + 2 + + 

Thus if we choose  =



  = 1   then the overall significance level is




+




+ +




= 

Thus if each test is performed at level



then the overall significance level is at most equal to 

Similarly, if each of  confidence intervals has confidence level 1 − 


then the overall confidence

level is at least 1− 

One point of criticism against using the Bonferroni inequality for this purpose is that the resulting

procedure may be very conservative if  is large: the individual tests may have low power or the

individual confidence intervals may be very wide because



is so very small.
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One solution may be that the investigator (the biologist, engineer, social scientist, et cetera) should

formulate the research problem better before starting, thus eliminating any fancy hypotheses that

may have very little meaning. A practice that should be guarded against very carefully, and that is all

too prevalent in certain disciplines, unfortunately, is to test many hypotheses on the same data and

then to report only the significant ones as if they were the only ones tested. While this is downright

dishonest, many scientists without a statistical training fail to see it that way. If you have trouble

convincing a client, ask him or her whether he or she would be willing to play the following game:

We toss a coin: "Heads" I win, "Tails" we toss again. "Heads" I win, "Tails" we toss again. "Heads" I

win, "Tails" we toss again ...

2.8 Bayesian inference
In the classical inference theory, as described in sections 2.4 and 2.5, we test a hypothesis about

a parameter  or construct a confidence interval for  where  is regarded as a fixed (but unknown)

constant for a specified population. An alternative view is that  is a random variable (or may be

treated as if it were a random variable), and this leads to Bayesian inference. 1 2   is a

random sample from a distribution with pdf  (| ) that depends on the parameter ;  is regarded

as a random variable with prior distribution with pdf  ()  Using Bayes’ theorem, the posterior pdf

of  given 1 2   is found, say  (|1  ) and then the Bayes estimator of  is the

expected value of the posterior distribution. Significance tests and confidence limits are likewise

based on the posterior distribution, but the subject is not pursued further in this module.



68

Exercise 2.1

1. Let 1   be a random sample from a distribution with expected value  and variance 

Prove that
1

− 1
P
=1

¡
 −

¢2
is an unbiased estimator for 

(Hint: Remember that 
¡
2


¢
=  + 2 and 

³

2
´
=




+ 2)

2. Let 1   be a random sample from a  (; ) distribution with  known. Prove that the two

statistics

1 =
1



P
1

( − )2 and 2 =
1

− 1
P
1

¡
 −

¢2
are both unbiased estimators for  and that 1 has a smaller variance than 2

(Hint: from study unit 1 it is known that multiples of 1 and 2 are 2 variates.)

3. Let 1 2      be independent random variables from a distribution such that

() = 1 + 2 2  = 1     

where 1 and 2 are known parameters while 1 2      are known constants. Find the least

squares estimators for 1 and 2.

4. Let 1 2      be independent random variables such that

() = 1  = 1     (− 1)

() = 1 + 2.

Find the least squares estimators for 1 and 2.

5. Let 1      be a random sample from a (; ) distribution with  known.

Show that the MLE of  is
1


Σ ( − )2 
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6. Let 1      be a random sample from a distribution with pdf

(; ) = (1− )−1;   1

Find the maximum likelihood estimator of .

7. Let 1      be a random sample from an exponential distribution with pdf

(; ) =
1


−


   0

Find the M.L.E. for .

8. Let 1   be a random sample from a 
¡
; 2

¢
distribution with σ2 known. Use the

distribution of () =
√

¡
 − 

¢
 to show that

¡
 − 196√;  + 196

√

¢

is a 95%

confidence interval for  (Hint: () does not have a t-distribution.)
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2.9 Learning outcomes

Use the following learning outcomes as a checklist after you have completed this study unit to

evaluate the knowledge you have acquired.

After studying study unit 2, you should know (and understand!) the following definitions:

¥ a random sample

¥ a statistic

¥ an unbiased estimator

¥ the most efficient estimator

¥ the method of least squares estimation

¥ the likelihood function of a random sample

¥ the method of maximum likelihood estimation

¥ a type I error for hypothesis testing

¥ a type II error for hypothesis testing

¥ the significance level of a hypothesis test

¥ the power of a test

¥ the exceedance probability for hypothesis testing

¥ a confidence interval

¥ the overall significance level for  simultaneous hypothesis tests
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STUDY UNIT 3

Introduction to statistical software: JMP

3.1 Introduction
Before we continue with any new statistical concepts in our study guide it would be a good idea nice

to make the contents of the previous two study units more alive and applied – which calls for the use

of a statistical package.

In the preface of your textbook, you will read that JMP is "statistical discovery software" created by

the SAS Institute whose principal commercial product is the SAS System. Whereas the SAS System

is used by large institutions such as STATSA or large banks to perform large-scale statistical data

processing, JMP is used to perform smaller, personal data analyses. You will also read that the

textbook is a mix of software manual and statistics text. This study unit will reflect that same mix

– slanting a bit more towards the statistics text whereas the workbook will slant a bit more towards

the software manual. You should also always keep in mind that the statistical software includes

many advanced methods that will only be dealt with at honours level. Even the textbook deals with

and include methods that are not in the syllabus of STA2601. Hence, it is very important for this

specific study unit that you only go to your workbook when I instruct you to do so and that

you do not study sections at random.

If you are using your computer for the first time I advise you

to do activity 3.1 before you continue with the next section.

3.2 Familiarise yourself with JMP
I do hope that your brain tricked you into reading the three letters JMP as jump? That is correct! It is

exactly why the textbook is called JMP Start Statistics! In this section we are even more bold to jump

right into the software! It means that the time has come to get practical and to open your prescribed

textbook: Sall, J, Creighton, L and Lehman, A. (2007 4 edition) JMP Start Statistics. The only

way to familiarise yourself with JMP and to get to know the program is to work with the program! Of

course the first step will be to install the software on your computer. You will notice as we proceed

through the study guide that whenever you have to perform an action, the workbook will guide you

step by step. Hence it seems logical that the workbook on study unit 3 will
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be rather lengthy! Especially section 3.2 of the workbook will guide you in detail through the first

sessions on the computer and I do hope that you enjoy your introduction to statistical software!

Data analysis starts with a data set. In this module our focus is not the methods of obtaining data

but rather on the methods of analysing data. Don’t get confused by the action of "obtaining data" in

the context of a computer program – it will mostly mean the capturing of values such that you (and

the computer) will have them displayed on the screen. We will guide you in the workbook to create

new data tables and to open existing data tables.

Please note that I deviate from the chronological order of the textbook in a systematic and logical

way to synchronise with the syllabus for STA2601. This different manner (which now differs from the

authors’ order) will seem haphazard if you do not follow my guidance. Thus I urge you to do all the

activities in the workbook and also to try to stick to the order in which they are given.

Please work through section 3.2 of the workbook and do

activities 3.2-3.4 before you continue with the next section.

3.3 Generating random data
The heading of this section is in itself an important concept to grasp. To "generate data" will imply

that the computer goes through a process whereby random sampling from a specific population is

simulated. (This seems like the marriage of the different nuances of the concept of "obtaining data"

as explained in the context of a computer program as the capturing of values – both happening at

the same time!)

The end result is that you will have a set of observations (data) that was drawn from a familiar

distribution. "Familiar" means that we know the parameters which underlie the theoretical model.

This is hardly the scenario when you are a real-life botanist or market researcher or whatever you do

when you are busy with statistics in the outside world! However, analysing simulated data is useful

because you more or less know what to expect of the data and thus it enhances your understanding

of statistical theory. It also helps you to learn in an almost relaxed manner how to work with the

powerful analysing and graphing techniques of JMP.

As we have stressed in the previous section, your first step with any statistical software application

will be to have a data file in front of you – whether you play around with simulated data or have the

task of analysing proper real-world data. In this specific section we will only work with generated

data, which are synonymous to simulated data.
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READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Start reading on page 122 "Probability distributions" and read up to
..."Generating random data".

Now it is time to go back to your workbook!

Work through section 3.3 and do activities 3.5–3.7.

It is important that you understand how to use "Randdist.Jmp" to create a "Randdist Data Table" on

your computer screen and to make use of the "Random Number Functions" to generate a random

sample of any specified size from a normal distribution with specified parameters.

From this point onwards I assume that you have worked through activities 3.5–3.7 of the workbook

and that the table of values shown below, makes sense to you. (I have used the "Random Number

Functions" to generate a random sample of size  = 200 from a normal distribution with  = 100 and

 = 15 and copied table 3.1 of the workbook.)

Table 3.1:
Random sample of size  = 200

from a (100; 225) distribution
95.0261248 108.673703 105.207311 110.408931 98.9287494
86.1807082 96.2371431 106.816181 107.087295 82.90295529

87.342583 117.648554 101.143465 112.640705 105.2734719
92.4497588 72.3515123 104.007397 103.663943 103.7060315
126.273761 114.532135 115.480004 98.1667769 117.8774362
93.6972172 111.960113 104.757367 94.9082184 95.22628788

62.424483 103.720267 90.1301899 85.0839447 99.14806757
95.898603 141.104107 99.9642251 139.267817 119.396389

66.2798598 106.326517 99.9886544 99.3918981 102.4184193
129.34403 112.684672 110.858622 84.3003421 94.67080258

78.2592288 89.9198078 87.2774164 101.775315 108.8261539
107.376692 119.114798 101.275262 93.4032787 108.1526353
103.810744 105.537401 99.1559323 91.1256385 96.85622495
82.4671237 66.7534075 83.6001245 123.476955 89.6895426
104.694594 111.037693 87.4646249 90.6632368 80.52620825
92.5576878 102.564492 101.181145 87.1398378 83.05907006
122.128304 133.365777 84.5410086 72.9854585 92.24317298
103.351207 128.352053 80.2313952 74.2713204 99.72134987
100.057557 90.1970603 104.810991 74.1823075 130.6309563
116.711154 109.026082 90.1970885 89.200611 112.2280531
107.787393 106.157907 88.6430137 125.523816 89.41168103
80.1134694 110.778756 83.9120401 97.8748482 89.99950408
81.4338672 93.5407744 136.327297 77.8211061 114.2349559
92.1540742 84.0132972 104.421598 65.8111435 117.2293545
76.2920105 88.5202731 87.2445124 75.8592492 69.99247073
123.418881 108.651368 123.113381 90.6374495 78.14600043
114.467747 101.456106 95.646771 76.3839556 95.44716284
138.083185 94.5051387 110.344685 82.1228564 100.3929758
71.3594482 119.834766 77.9323831 99.9087132 92.66709382

81.678026 106.062303 73.1089372 106.766464 139.1394087
122.76004 102.337755 98.3795826 113.471127 82.39709488

90.8229834 101.591442 99.4115982 100.816091 108.5461405
104.705267 109.518999 105.527789 97.0364265 99.11854042
105.897602 77.0303965 95.9793677 82.4503798 79.25422393
85.5100171 125.286512 105.539517 106.99005 126.8929464
103.604254 83.9999384 93.2895136 106.061077 97.64914891
92.8974992 115.522558 91.3454019 95.3115182 93.40381505
98.1679818 113.289158 112.63634 121.9373 113.7370493
117.295325 99.6360811 99.2160423 114.7977 107.8258572
117.922741 123.820001 106.642021 99.7218702 87.18216867
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We started this study unit with the wish to make the contents of the previous two study units more

alive and applied and then detoured to introduce you to the very basics of JMP. So, you might well

ask now, what do we make of the generated data and what they have to do with the previous two

study units?

For starters, they cement your understanding of section 1.3 "Standard distributions" and more

specifically it enhances your understanding of the normal distribution. (This is not trivial since the

normal distribution is the workhorse of statistics!)

In section 1.3 you learned that if the theoretical model of a variable  is a normal distribution with

mean  and variance 2 , we write it as  ∼ (;2) Thus, if we know that  = 100 and 2 = 225 we

write it as  ∼ (100; 225) Since the two parameters are known, it means that we have a workable

probability distribution for which we may draw the following bell-shaped normal probability graph:

n(100; 225)

100 115 1308570 14555

Note that
√
225 = 15 =  (the SD) and that there are vertical lines at respectively one, two and three

standard deviations above and below the mean.

From what we have learned in study unit 1 and employing the table of normal probabilities, we are

99% sure that the theoretical -values will vary between 55 and 145.

Suppose we plan to draw a random sample from this specific normal population, what could

we expect?

• We would expect that the smallest observed value will be  55 and that the largest observed value

will be  145

• We would expect 50% of the sample values to be above the mean  = 100 and 50% of the sample

values to be below the mean  = 100 (This follows from the symmetrical property of the normal

distribution.)

• Furthermore, we would not expect the "tail values" to dominate the sample as we would expect

most (±68%) of the sample values to lie within one standard deviation below and above the mean,

ie between 85 and 115.
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Let us return to the generated sample of size  = 200 given in table 3.1: Keep in mind that what

we expect is based on a theoretical model and always remember that anything is possible in

sampling and that randomness makes the world interesting. This means that we can never be

certain how a sample is going to turn out! This is of course also true for a generated sample. The

authors of the textbook talk about the two sides of statistics that are "forever interacting, catalyzed

by Random, the agent of uncertainty".

Did what-we-may-expect happen with the generated sample?

• The smallest observed value was 6242448 and the largest observed value was 1411041 (within

our expectancy of the theoretical -values varying between 55 and 145)

• There were 97 = 485% of the sample values above the mean and 103 = 515% of the sample

values below the mean (again within our expectancy of the 5050 split)

• Did the "tail values" dominate the sample? We observe that there were 37 values below 85 and

31 values above 115, hence there were 200− 37− 31 = 132 values between 85 and 115, in other

words, 132
200

= 66% (again within our expectancy that ±68% of the sample values will lie within one

standard deviation below and above the mean).

Big deal! The sample behaved as we would expect of a sample from a normal population because

it came from a normal population! So what did you learn from this? Somehow we would like to

assess if a sample really "passes a test" as coming from a normal population. In real life this whole

process will be in reversed order! We will not know from what kind of distribution our sample comes.

Remember that statistics, as seen as a discovery tool, would like to find patterns in the data and to

fit models. What we did above was merely an intuitive test. In the next study unit you will formally

learn about "Testing for normality".

What does this sample have to do with study unit 2?

Firstly, it illustrates in a practical way the concepts random sample and statistic which we defined in

section 2.2. (In activities 3.8 and 3.9 of the workbook you will learn how to compute various statistics

for this sample.)

According to the definition of a statistic, we may say that the following statistics have been computed

for the generated sample of table 3.1 above:
200P
=1

 = 19 9807108;
200P
=1

2
 = 2045 28817;  = 9990; () = 246956;  = 998152

1 = 8948 and 3 = 10898

Secondly, we could use this sample to illustrate concepts of estimation:

We could say that the sample mean,  = 9990 and the sample median,  = 998152 are both

unbiased point estimates (section 2.3 ) of the population mean . With the knowledge of section 2.4

we could even go a step further and say that  is a maximum likelihood estimator for 
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We could also say that  is a more efficient estimator than the median. This is the kind of theoretical

information you will hardly ever see as output from a computer!

Thirdly, we could use this sample to illustrate sections 2.5 and 2.6 regarding hypothesis testing and

confidence intervals.

From activities 3.8 and 3.9 we may state that a 95% confidence interval for the population mean  is

given by (9771; 10209)

This confidence interval was computed in the blink of an eye by the computer. Are you able to do it

manually? How do you interpret the interval? What about the hypothesis test? Questions like these

will be discussed in detail when we deal with "Tests for means" in study unit 7.

To summarise:

In this study unit you were introduced to JMP which will not only be used to perform smaller,

personal data analyses but which must be seen as "statistical discovery software". This powerful

tool enhances understanding of the terminology of statistics and statistical thinking. One such an

application was to create simulated data or generated data which implies that the computer goes

through a process whereby random sampling from a specific population is simulated. The end result

is that you will have a set of observations (data) that was drawn from a familiar distribution of whom

you know the parameters which underlie the theoretical model. In this study unit we have only

illustrated generated data for the normal distribution. However, if you are enrolled for the module

STA2603: Distribution Theory II, you will use JMP again to generate random samples from other

important theoretical distributions.
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3.4 Learning outcomes

After studying study unit 3, you should be able to

¥ create a new data table in JMP

¥ open an existing data table in JMP

¥ generate data (ie simulate a random sample) from a specified

(;2) distribution using JMP

¥ draw a histogram for a given sample using JMP

¥ draw an Outlier and Quantile Box Plot for a given sample using JMP

¥ compute basic sample statistics for a given sample using JMP
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STUDY UNIT 4

Testing for normality and goodness-of-fit
tests in general

4.1 Introduction
The normal distribution is probably the distribution which is used most often as model for statistical

experiments. To some extent the use of the normal distribution can be justified because of the

central limit theorem. If an observation  can be regarded as the sum of a large number of random

components, for example

 = + 1 + 2 + + 

where  =  ()  then  will, under fairly general conditions, be approximately normally distributed.

If  is the size of a product manufactured in a factory, the deviation of  from its expected value may

be the result of such factors as variation in the electrical current, machine setting, variations in the

raw materials and the fact that the operator does not repeat his or her actions identically each time.

The analysis of the observations is therefore often based on the assumption that they come from a

normal distribution. Sometimes this assumption is not very crucial, especially when the sample is

large and the parameters which are being investigated are expected values. As a result of the central

limit theorem it may be shown that Student’s t-distribution is, for large samples, a good approximation

to the distribution of

 =
√

¡
 − 

¢


even if 1   are not normally distributed. However, if the parameters under investigation

are variances or correlation coefficients, the assumption of normality becomes more crucial.

There is no "central limit theorem" which states, for example, that (− 1)22 (where 2 =

Σ
¡
 −

¢2
 (− 1)) is asymptotically distributed as a 2−1 variate.

How do we know whether a sample comes from a normal distribution? How can we test whether a

sample comes from a normal distribution?
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4.2 Graphical techniques
Suppose we have a random sample 1 2   from a distribution. How will we investigate the

possibility that this is a sample from a normal distribution?

A. Drawing a histogram

If the sample is large enough, we could construct a histogram in order to see whether it resembles

the typical bell-shaped pdf of the normal distribution. If we draw a histogram with JMP, there is the

option to superimpose the normal density curve corresponding with  =  and  =  over the

histogram. If this superimposed pdf fits snugly over the histogram, and the intervals of the histogram

are not too wide, we may subjectively conclude "a good fit". The problem is, when will you decide

the "fit is not good"? Secondly, a histogram based on a small sample will not be very informative.

B. Using normal probability paper

We know from section 1.3 that the (cumulative) standardised normal distribution function is given by

Φ () =
1√
2

R
−∞

−
1
2
2 (see definition 1.17).

Let for example  ∼  (10; 4)  ie  =
 − 10
2

∼  (0; 1) 

∴  (  ) = 

µ
 − 10
2


− 10
2

¶
= 

µ
 

− 10
2

¶
= Φ

µ
− 10
2

¶


In pre-computer days, special graph paper, called normal probability paper, was constructed such

that, if Φ () was plotted against  the result was a straight line. (See figure 4.1.) Note that 100Φ ()

is marked on the vertical axis rather than Φ () 
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Figure 4.1
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The idea behind the graphical technique is to compare computed percentiles of the observed sample

with theoretical percentiles of a normal distribution. In other words, you will have to draw the set of

"paired" points (observed; expected) on the graph and hope that they fall more or less on the straight

line. The interpretation remains subjective (whether by hand or by computer). Keep in mind that

because points constitute a random sample, they will not lie exactly on a straight line and we will

only conclude non-normality if there appears to be a systematic deviation from the line. Doing this

by hand is rather outdated and the special probability paper is difficult to obtain because computers

have taken over all the tedious tasks!

Although we will not draw such graphs by hand, you need to understand the principle behind the

technique.

Theoretical percentiles of normal distribution

For a normal distribution, the mean  is also the median or the 50th percentile. Note that in figure

4.1 the mean of  is zero and hence the value  = 0 corresponds to 100Φ () = 50

For any normal distribution, the value  +  will represent the 84th percentile. For the  (0; 1)

distribution +  = 0 + 1 and hence the value  = 1 corresponds to 100Φ () = 84 in figure 4.1.

Why is this the case? (Please see activity 4.4 of the workbook.)

Similarly the value −  will represent the 16th percentile. Using table I of Stoker, we could compile

the following table:

Table 4.1

 100Φ ()

−3 0135

−25 0621

−2 228

−15 668

−1 1587

−05 3085

0 5000

05 6915

10 8413

15 9332

2 9772

25 99379

3 99865
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If we plot these points on ordinary graph paper we will get the curved standardised normal

distribution function looking like the one in figure 1.7 of section 1.3, but if we plot them on the paper

of figure 4.1 they will all fall on the straight line.

The special probability paper makes it easier to detect deviations from the cumulative distribution

function because our eyes are trained to detect deviations from a straight line.

C. Normal quantile plots

The discussion in Sall, Creighton and Lehman is a little confusing at first glance because their

histograms and accompanying normal quantile plots look "tilted by 90◦". Let us first understand the

principle in terms of an ordinary  -graph before you work through this section in the textbook. The

horizontal axis will represent the observed values and the vertical axis will represent the expected

value under the normal distribution associated with a specific probability  One of the problems will

be to decide on the value of this probability 

Let 1   be a random sample from a 
¡
; 2

¢
distribution (with  and 2 unknown). Arrange

the observations in order of magnitude, and call the result ∗
1   

∗
, so that ∗

1  ∗
2   

∗
 Then ∗

1   
∗
 are the order statistics of a sample of size  from a normal distribution. On

the probability paper ∗
 will be plotted on the horizontal axis. What is the vertical coordinate which

corresponds to ∗
 ?

You will see that Sall, Creighton and Lehman state that the normal quantile values are Φ−1
µ



+ 1

¶
where  is the rank of the observation being scored.

How will you do this manually?
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Example 4.1

Consider the following sample (1 2  19) of 19 observations:

275 680 451 745 649 499 872 628 612 340 730

700 766 534 488 420 947 581 830

If we rank the values from small to large (to obtain ∗
 ) and compute



+ 1
for each ranked value,

we get:

Table 4.2

 1 2 3 4 5 6 7 8 9 10

∗
 275 340 420 451 488 499 534 581 612 628

 (+ 1) 005 010 015 020 025 030 035 040 045 050

 11 12 13 14 15 16 17 18 19

∗
 649 680 700 730 745 766 830 872 947

 (+ 1) 055 060 065 070 075 080 085 090 095

Please note that in pre-computer days you would plot
µ
∗
 ; 100

µ


(+ 1)

¶¶
on the special

probability paper and if the coordinates fell more or less on the straight line, without any systematic

deviation, you could conclude that the sample comes from a normal distribution.

But, the computer does not use the special probability paper because it CONVERTS
µ



(+ 1)

¶
to

an expected normal score. What does this mean?

The formula


(+ 1)
is called Van der Waerden’s formula. Van der Waerden argued that we may

associate a probability of 0.05 with the smallest observation in a sample; we may associate a

cumulative probability of 0.10 with the second smallest observation, et cetera, up to a cumulative

probability of 0.95 with the largest observation. [This is when  = 19 For a sample of size  = 99 we

will assume a probability of 0.01 with the smallest observation and a cumulative probability of 0.99

with the largest observation.] Other statisticians have proposed different formulae to compute the

corresponding cumulative probability associated with the rank 

For example Tukey’s formula is
(3 − 1)
(3+ 1)

and

Blom’s formula is
(8 − 3)
(8+ 2)



We will only consider Van der Waerden’s method seeing that this is the one the authors of the

textbook also prefer.

So far so good! Now, how will you compute Φ−1
µ



+ 1

¶
?
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For example, Φ−1 (005) translated into ordinary English means "find a -value such that  ( ≤ ) =

005". This means that we have to use the inverse normal table. From first-year applications of the

normal distribution we know that we have to manipulate table II if   050 Are you able to show that

Φ−1 (005) = −1645: (See activity 4.5 of the workbook.)

This means that  ( ≤ −1645) = 005

In a similar fashion, Φ−1 (010) = −1282
Φ−1 (015) = −1036

et cetera

...

Φ−1 (095) = 1645

Keep in mind that these Φ−1
µ



+ 1

¶
values are the standardised -values and we are interested in

the values corresponding to the ∗
 -scale.

Thus, the final step is to transform the variable  to ∗ and for this we need  and  We do not have

 and 2 for the population but we use the estimates from the sample.

̂ =  = 61826

̂ =  = 17973

Hence, the expected ∗
 -value for a 

³
61826; (17973)2

´
distribution associated with a probability

of 0.05 is (−1645) (17973) + 61826 = 323 Similarly, the expected ∗
 -value for Φ−1 (010) is 388

Do you agree that it is very laborious to do this for all 19 observations by hand? This is why we rely

on JMP to draw the normal quantile plot.

We can summarize all the calculations in the following table:
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Table 4.3

 ∗




(+ 1)
Φ−1

µ


+ 1

¶
Expected ∗

 -score

1 275 005 −1645 323

2 340 010 −1282 388

3 420 015 −1036 432

4 451 020 −0842 467

5 488 025 −0674 497

6 499 030 −0524 524

7 534 035 −0385 549

8 581 040 −0253 573

9 612 045 −0126 596

10 628 050 0000 618

11 649 055 0126 641

12 680 060 0253 664

13 700 065 0385 687

14 730 070 0524 712

15 745 075 0674 739

16 766 080 0842 770

17 830 085 1036 804

18 872 090 1282 849

19 947 095 1645 914

To draw a normal quantile plot similar to the one produced by JMP, you will have to draw a scatter

plot of the data pairs (∗
 ; expected ∗

 -score) on ordinary graph paper.
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READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Start reading on page 127 "Histograms" and read up to
..........."Outlier and quantile box plots".

Then read page 152 "Examining for normality- normal quantile plots".

It will not be expected of you to draw a normal quantile plot manually,

but you must be able to do it with JMP. (See activity 4.6.)

Please note that the data for example 4.1 were in fact generated from a  (6; 4) distribution for

illustrative purposes. In order to show what a sample from a non-normal distribution may look like

when plotted on probability paper and converted to a normal quantile plot, consider the following 19

observations:

Example 4.2

The following are the order statistics of a random sample from a non-normal distribution:

606 732 864 906 948 966

1008 1050 1086 1104 1122 1152

1170 1194 1206 1224 1272 1302

1350

In order to perform a manual normal quantile plot we have to go through the same laborious process

as in example 4.1.

For this sample  = 1066421 and  = 194369
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Table 4.4


(rank)

Observed
value



20
Φ−1

µ


+ 1

¶
Expected normal quantile

1 606 005 −1645 747

2 732 010 −1282 817

3 864 015 −1036 865

4 906 020 −0842 903

5 948 025 −0674 935

6 966 030 −0524 964

7 1008 035 −0385 992

8 1050 040 −0253 1017

9 1086 045 −0126 1042

10 1104 050 0000 1066

11 1122 055 0126 1091

12 1152 060 0253 1116

13 1170 065 0385 1141

14 1194 070 0524 1168

15 1206 075 0674 1197

16 1224 080 0842 1230

17 1272 085 1036 1268

18 1302 090 1282 1316

19 1350 095 1645 1386

If we plot the observed values versus the expected normal values on ordinary graph paper we get

figure 4.3.

Figure 4.3

If we plot the observed values versus 100
µ



+ 1

¶
on the special probability paper we get figure 4.4.
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Figure 4.4

We get exactly the same picture for both methods and we see that there is a systematic deviation

from a straight line. The first few points on the left and the last few points on the right are above the

line, while the points in the middle are below the line. We conclude that the sample is probably not

from a normal distribution.

This graphical method is rather subjective, but is often sufficient to enable us to make a decision.

Usually we only want to know whether the normal distribution is a fair approximation to the true (but

unknown) distribution from which the sample came.

If a subjective graphic investigation of the data is not sufficient, one may decide to perform a test for

normality. A number of tests for normality exist, for example one based on the correlation coefficient

of the points on the probability plot – if the points fall close to a straight line, one would expect the

correlation coefficient to be close to 1. Special tables are needed for this test, and we shall not

consider it further.

We will consider two other possible tests for normality, namely the goodness-of-fit test and the

method-of-moments test.

4.3 Goodness-of-fit test for normality
We started our discussion on graphical techniques with the possibility of drawing a histogram which

we had to judge subjectively to decide whether it deviates from the form of a normal distribution. In a

sense we are now going to continue with a histogram but we are going to try and "measure" how far

it deviates from a histogram of a normal distribution and we do it by way of a proper hypothesis test.
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In general a test for goodness of fit checks the agreement (consistency) between a set of observed

data and a proposed model. In other words, it is a test that can be used to test a distribution type.

(In this section we specify the type as normal but any other known statistical distribution can be

specified.)

The null hypothesis must always specify the distribution that is being tested, and the distribution

must be fully specified (no unknown parameters) in order to compute the theoretical or expected

values for the given intervals. Suppose there are  intervals into which the data are classified. For

the time being, please accept the following result which is an application of theorem 4.1 that follows

in the next section of this study unit. (In section 4.4 you will also see why it makes sense to denote

the test statistic as a squared value.)

The appropriate test statistic is the chi-square statistic

 2 =
P
=1

(observed frequency − expected frequency)2

expected frequency

which is approximately distributed as 2−1 This is only true if the theoretical distribution is completely

specified (for example 0 :  has a  (25; 46) distribution).

If the distribution is not completely specified (for example 0 :  has a 
¡
; 2

¢
distribution) the test

statistic will be approximately a 2−1− variable where  = number of unknown parameters that are

estimated).

Example 4.3

Suppose we have the following random sample of 100 observations and we wish to test the null

hypothesis that the sample comes from a  (50; 100) distribution. Use ten class intervals of equal

expected frequencies to perform the test.

(Please note that the sample values have been ordered from small to large to ease the classification

into intervals.)

320 325 333 334 338 340 344 346 350 354

360 364 368 370 374 375 377 381 386 387

391 394 397 402 403 405 408 410 411 415

416 423 428 435 437 441 444 447 449 454

457 463 468 474 475 475 477 478 481 483

484 488 493 497 499 501 503 506 514 517

519 524 526 537 541 548 552 553 564 568

573 576 582 588 590 591 593 598 602 606

610 613 619 624 626 627 629 632 635 638

641 643 650 654 657 665 668 672 677 680
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Solution

If we have to use 10 class intervals of equal expected frequencies, it means the theoretical model

(which is the normal distribution) will have five classes below the mean and five classes above the

mean. (This is because the normal distribution is symmetrical.) The most difficult part of this problem

is to find the limits of the intervals in order to classify the observed values.

Since we know that the probability of each interval must be
1

10
 we will use table II of Stoker which

gives a -value for a known area. Thus, the first step will be to find the limits in terms of the -scale

and then to transform back to the -scale where

 =
 − 


=

 − 50√
100

.

(We can even take a "shortcut" for our use of table II and use every second line of table 4.3 where

Φ−1
µ



+ 1

¶
is actually the -value associated with a given probability!)

Hence we know that  (  −1282) = 010

 ( ≤ −0842) = 020

 ( ≤ −0524) = 030
... et cetera

...
 ( ≤ 0842) = 080

 ( ≤ 1282) = 090

From this it follows that the 10 intervals are

-scale -scale
 ≤ −1282  ≤ 3718

−1282 ≤  ≤ −0842 3718 ≤  ≤ 4158

−0842 ≤  ≤ −0524 4158 ≤  ≤ 4476

−0524 ≤  ≤ −0253 4476 ≤  ≤ 4747

−0253 ≤  ≤ 0 4747 ≤  ≤ 5000

0 ≤  ≤ 0253 5000 ≤  ≤ 5253

0253 ≤  ≤ 0524 5253 ≤  ≤ 5524

0524 ≤  ≤ 0842 5524 ≤  ≤ 5842

0842 ≤  ≤ 1282 5842 ≤  ≤ 6282

 ≥ 1282  ≥ 6282

This conversion can be represented in the following figure:



91 STA2601/1

Figure 4.5

Using the 10 intervals, we may now classify the data to obtain the following table:

(I have added a second column called "Tally marks" which is what one would normally have to do if

your data are not arranged from small to large and you have to classify them by hand. It is a simple

way of counting where represents five observations.)

Table 4.5

Interval Tally marks
Observed

frequency, 

Expected frequency,
̂ = ̂

( − ̂)

  3718   
14 10 +4

3718 ≤   4158  16 10 +6

4158 ≤   4476  8 10 −2
4476 ≤   4747  6 10 −4
4747 ≤   5000  11 10 1

5000 ≤   5253   
7 10 −3

5253 ≤   5524 5 10 −5
5524 ≤   5842  6 10 −4
5842 ≤   6282  13 10 +3

 ≥ 6282   
14 10 +4

Totals 100 100
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We have to test the following hypotheses:

0 : The sample comes from a  (50; 100) distribution.

1 : The sample does not come from a  (50; 100) distribution.

We compute the test statistic as

 2 =
10P
=1

( − ̂)
2 ̂

=
16

10
+
36

10
+ +

16

10

= 148

We will reject the null hypothesis at the 5% level of significance if  2 ≥ 2005; 10−1 = 2005;9 = 16919

Since 148  16919 we cannot reject the null hypothesis and conclude that the sample could

have come from a  (50; 100) distribution. Suppose, however, we had chosen  = 010 Now

2010;9 = 146837 Since  2  146837 we reject 0 at the 10% level of significance and conclude that

the underlying distribution is not normal.

It is informative in this case to look at the discrepancies  − ̂ We see that these are mostly

positive in the tails and negative in the middle. This suggests that the distribution is rather leptokurtic

compared to the normal distribution. (This will be discussed in detail in section 4.5.)

In a more realistic or real-life situation, we will most often not know what the parameters of the

distribution are, and the instruction for the hypothesis test will change to: "Use ten class intervals of

equal expected frequencies and perform a hypothesis test to test for normality".

How will this change the solution to example 4.3?

Example 4.4

Refer to the data of example 4.3. Use ten class intervals of equal expected frequencies and test

whether the data come from a 
¡
; 2

¢
distribution.
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Solution

The first part of the solution will be the same as the first part for example 4.3 (in other words where

we find the -values corresponding to probabilities of
1

10
)

The difference is that  and  are unknown and have to be estimated from the sample. We have to

use the maximum likelihood estimators of  and 2 (This is an application of theorem 4.3 which

follows towards the end of the following section.)

For this sample ̂ =  =
49457

100
= 49457

and the M.L.E. ̂ =

s
Σ
¡
 −

¢2


(note that we divide by  and not by (− 1))

hence ̂ =

r
10 81241

100
= 10398

If we now use  =
 − ̂

̂
=

 − 49457
10398

we will get the following 10 intervals:

-scale -scale
 ≤ −1282  ≤ 3613

−1282 ≤  ≤ −0842 3613 ≤  ≤ 4070
−0842 ≤  ≤ −0524 4070 ≤  ≤ 4401
−0524 ≤  ≤ −0253 4401 ≤  ≤ 4683

−0253 ≤  ≤ 0 4683 ≤  ≤ 4946
0 ≤  ≤ 0253 4946 ≤  ≤ 5209

0253 ≤  ≤ 0524 5209 ≤  ≤ 5491
0524 ≤  ≤ 0842 5491 ≤  ≤ 5821
0842 ≤  ≤ 1282 5821 ≤  ≤ 6279

 ≥ 1282  ≥ 6279

Classifying the data into these classes leads to the following table:

Table 4.6

Interval
Observed

frequency, 

Expected frequency,
̂ = ̂

( − ̂)
2

 ≤ 3613 11 10 1

3613 ≤  ≤ 4070 15 10 25

4070 ≤  ≤ 4401 9 10 1

4401 ≤  ≤ 4683 8 10 4

4683 ≤  ≤ 4946 10 10 0

4946 ≤  ≤ 5209 8 10 4

5209 ≤  ≤ 5491 5 10 25

5491 ≤  ≤ 5821 7 10 9

5821 ≤  ≤ 6279 13 10 9

 ≥ 6279 14 10 16

Totals 100 100
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We have to test:

0 : The sample comes from a normal distribution.

1 : The sample does not come from a normal distribution.

 2 =
10P
=1

( − ̂)
2

̂

=
1

10
+
25

10
+
1

10
+
4

10
+ 0 +

4

10
+
25

10
+
9

10
+
9

10
+
16

10

= 940

We have  − 1 = 9 and  −  − 1 = 7; 2005;7 = 140671

Since 940  140671 we cannot reject 0 We may conclude that the sample comes from a normal

distribution.

A variation on the theme of goodness of fit for a normal distribution, is that a specific set of intervals

with observed data is given and then one has to test for normality. In other words you are given the

tabular equivalent of a histogram (which most often consists of a number of intervals with the same

length). This means that you need not compute the limits because you are given a set of intervals (all

with the same lengths) as well as the observed frequencies. The problem will be to find the expected

frequencies under the assumption that a normal curve will be superimposed over these intervals.

So, here we have a proper statistical test appropriate for the first graphical technique of the previous

section.

Example 4.5

Refer to the data of example 4.3. These 100 values can be classified into the following frequency

table:
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Table 4.7

Interval Observed frequency
2995− 3395 5

3395− 3795 12

3795− 4195 14

4195− 4549 10

4595− 4995 14

4995− 5395 9

5395− 5795 8

5795− 6195 11

6195− 6595 12

6595− 6995 5

Total 100

Suppose the instruction is similar to that of example 4.3: "Test the null hypothesis that the sample

comes from a  (50; 100) distribution".

Solution

The trap is to assume that the expected frequencies are 10 for each interval (as we had in the

previous two examples). Please note that this is not the case. We now have a different scenario

where the expected probability for each interval has to be computed by making use of table I (Stoker).

The first step is to standardise the interval limits of the -scale to the corresponding interval limits

of the -scale. Since it was given as part of the null hypothesis that  = 50 and  = 10 we use

 =
 − 50
10



The second step is to compute the corresponding probabilities  ( ≤  ≤ ) for each interval by

making use of table I (Stoker). This is laborious work!

Both these steps are summarised in the following table:

Table 4.8

Intervals Expected
-scale -scale probability ()

2995− 3395  ≤ −161 00537

3395− 3795 −161 ≤  ≤ −121 00594

3795− 4195 −121 ≤  ≤ −081 00959

4195− 4549 −081 ≤  ≤ −041 01319

4595− 4995 −041 ≤  ≤ −001 01551

4995− 5395 −001 ≤  ≤ 040 01594

5395− 5795 040 ≤  ≤ 080 01327

5795− 6195 080 ≤  ≤ 120 00968

6195− 6595 120 ≤  ≤ 160 00603

6595− 6995  ≥ 160 00548

10033
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The expected frequencies for the intervals are found by multiplying the expected probability by the

sample size.

Do you notice that the first and the last interval for the -scale are open-ended? This is necessary

to ensure that
10P
=1

 = 1 However, if we add the values in the last column we get 1.0033. This is due

to rounding in table 1 which results in a cumulative rounding error.

We use the same goodness-of-fit test statistic:

 2 =
10P
=1

(observed − expected)2

expected

=
(5− 537)2
537

+
(12− 594)2

594
+
(14− 959)2

959
+ +

(5− 548)2
548

= 0086 + 6182 + 2028 + + 0042

= 20462

Since the number of classes did not change, we use the same critical value 2 as for example 4.3.

2005;10−1 = 2005;9 = 16919

We notice that 20462  16919 and hence we reject the null hypothesis.

Table 4.7 can be displayed graphically as the following histogram:

Figure 4.6: Histogram of sample data

Looking at this graph, would you say this is a sample from a normal distribution?
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Superimposing a normal curve over the histogram makes our decision easier and it seems as if the

sample does not come from a normal distribution. Is this what you conclude from the next figure?

Figure 4.7: Histogram and normal curve

Our subjective conclusion based on the graphical method is confirmed by the formal hypothesis test.

We conclude that the sample is most probably not from a normal distribution.

So, why is there a discrepancy between the results of the 2-test of example 4.3 and this example?

Please see activity 4.8 of the workbook.

The 2 goodness-of-fit test can be used to test for any distribution type where the null hypothesis

always specifies the type of distribution.

4.4 Goodness-of-fit tests in general
A. The multinomial distribution

The multinomial distribution is a generalisation of the binomial distribution in the sense that the latter

is a special case of the former.

Consider an infinite population of items, each of which belongs to one of  categories. Let the

proportion belonging to category  be  thus

1 + 2 + +  = 1
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If we select an element of the population at random, the probability that it will belong to category

 is  Suppose we draw a random sample of size  from a population. Let  be the number of

elements of the sample which belong to category  Thus 1+2+ + =  The joint distribution

of 1   is called the multinomial distribution. (In the special case  = 2, 1 is a binomial

variate.)

Suppose now we have a number of random variables 1   and suppose we select class

intervals (0; 1) ; (1; 2) ; ; (−1; ) which cover the whole range of variation of these

variables. (We could choose 0 = −∞ and  = +∞ if necessary.) If 1   is a random

sample from a continuous distribution with pdf  ()  let

 =  (−1   ≤ ) =
R

−1

 () 

On the other hand, if 1   is a random sample from a discrete distribution,  =

 (−1   ≤ ) is found by summation rather than by integration.

If we now let  be the number of s which fall in the -th class interval, then 1   will have a

multinomial distribution with parameters 1   We use this fact to test whether a sample comes

from a given distribution.

We distinguish between two types of problems:

(i) The distribution is completely specified by the null hypothesis, including all parameters, for

example 0 :  is  (25; 46) 

(ii) The type of distribution is specified but not all the parameters, for example 0 :  is  (; 5) with

 not specified; or 0 :  is 
¡
; 2

¢
with  and 2 not specified.

B. Distribution completely specified

We make use of the following theorem which we shall prove for a special case only.

Theorem 4.1

Let 1   be observed frequencies in a random sample of size 

from a multinomial distribution with probabilities 1   where

1 + + =  and 1 + −+ = 1 Then

 2 =
P
=1

( − )
2 

is approximately distributed as 2−1
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The proof of this theorem falls beyond the scope of this module. However, it is interesting to look at

the case where  = 2 please see activity 4.9 of the workbook.

The reason why we have only  − 1 degrees of freedom is the linear restriction 1 + + =  in

other words we have freedom to vary − 1 of the frequencies, but after − 1 frequencies have been

chosen the -th frequency is fixed.

An interesting fact to prove is to show that 
¡
 2
¢
=  − 1 This will strengthen our belief in theorem

4.1 since we know that the expected value of a chi-squared variate is equal to its degrees of freedom.

Theorem 4.2

¡
 2
¢
=  − 1

Proof

Every observation can fall in category  with probability  and not in

category  with probability 1−  Therefore  the number of

observations falling in category  is a binomial variate with

expectation  and variance  (1− ) 

Therefore

 ( − )
2 =  (1− )

∴  ( − )
2  = 1− 

∴ 
¡
 2
¢
= 

P
=1

( − )
2 

= (1− 1) + (1− 2) + + (1− )

= 1 + 1 + 1 + · · ·+ 1| {z }
 

− (1 + 2 + + | {z })
=1

=  − 1

The quantities  are usually called expected frequencies (they need not be integers).  2 is

sometimes written as

 2 =
P
=1

( − )
2  where  = 

[It is easier to remember this formula as:
P
=1

[observed − expected]2

expected
]



100

How do we use theorem 4.1 to test goodness of fit?

We divide the data into categories (if the distribution is discrete then the data will already form

categories; otherwise we group the data into intervals). We compute the probabilities that an

observation will fall into each class according to the distribution specified by the null hypothesis, and

compute  2 The value we obtain is compared with a critical value of the appropriate 2-distribution.

We illustrate applications other than the normal distribution by means of examples.

Example 4.6

According to genetic theory the offspring of parents of genetic types  and  will be the following:

type  with probability
1

4
;

type  with probability
1

4
and

type  with probability
1

2


In an experiment with pea plants a geneticist crossed plants of type  with plants of type  and

from 132 seeds he reported the following counts:

 = 35;  = 30 and  = 67

Test this genetic theory at the 10% level.

Solution

We want to test 0 : 1 =
1

4
; 2 =

1

4
; 3 =

1

2


We have 1 = 35; 2 = 30; 3 = 67;  = 132; so that 1 = 33; 2 = 33; 3 = 66

We use the test statistic  2 =
4P

=1

( − )
2 

=
(35− 33)2

33
+
(30− 33)2

33
+
(67− 66)2

66

= 04091

From table IV we see that 2010;2 = 460517 This implies that we will reject 0 if  2 ≥ 460517
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Since  2  460571 we cannot reject 0 at the 10% level.

Three points to remember

1. Note that large values of  2 are obtained when the differences between the theoretical and

observed frequencies are large. Small values of  2 are obtained when the observed and

theoretical frequencies are close. Therefore we reject 0 if  2 is large, in other words we do

a one-sided test.

2. Large values of  2 may also be obtained by having small values of  (because we divide by

), and large values obtained in this way do not necessarily imply that 0 is not true. We should

therefore not have small frequencies  If we have small expected frequencies, we pool two

or more cells by adding both their observed and expected frequencies. As a general rule we

should not have expected frequencies of less than five, otherwise the approximation of the

distribution of  2 by 2−1 may not be adequate.

3. Large values of  2 can also arise from very large samples.

Example 4.7

The times to failure of 50 electronic components were recorded in minutes and are given below:

Using an Excel spreadsheet, the observations have been arranged from small to large:

106 113 157 189 192

213 224 236 271 282

309 346 360 395 406

459 478 492 508 621

673 718 742 837 851

892 904 967 1071 1222

1278 1351 1368 1391 1426

1474 1506 1534 1573 1629

1693 1712 1783 1858 1902

1935 1994 2038 2116 2194

Test the null hypothesis that the data are from an exponential distribution with pdf

 () =
1

100
−


100 for  ≥ 0

Perform a goodness-of-fit test by making use of five classes with equal expected frequencies.
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Solution

If  is the time to failure of an electronic component, we have to test whether

0 :  has an exponential distribution with  = 100

We have to use five class intervals of equal expected frequencies. In other words, we have to find

the unknown class limits such that if we divide the observations into these classes we will know that

the expected frequency for each class is
50

5
= 10

In other words  = 02 for  = 1 2  5

Unlike example 4.3 we do not have tables for the exponential distribution and thus we have to follow

the theoretical route!

For any continuous distribution, we know from calculus that

 ( ≤  ≤ ) =
R


() 

So, if we assume that  = 100 for this specific exponential distribution, we may write that

 ( ≤  ≤ ) =
1

100

R


−

100

= −

100 − −


100 (which is a result from calculus).

For the first interval we know that  = 0 and we also know that 0 = 1 If we set  (0 ≤  ≤ ) = 02

we obtain  (0 ≤  ≤ ) = −
0
100 − −


100 = 02

In other words 1− −

100 = 02

∴ −

100 = 08

∴ − 

100
= ln (08)

− 

100
= −02231

⇒  = 2231



103 STA2601/1

For the second interval we replace  by 22.31 and hence

 (2231 ≤  ≤ ) = −
2231
100 − −


100 = 02

∴ −

100 = −

2231
100 − 02

= 08− 02

= 06

∴  = (−100) (ln 06) = 5108

In a similar fashion we derive 3 = 9163 and 4 = 16094 Thus 0 = 0; 1 = 2231; 2 =

5108; 3 = 9163 and 4 = 16094 in figure 4.8 showing the pdf of an exponential distribution with

 = 100

Figure 4.8: The pdf of an exponential distribution with  = 100

If we classify the 50 observations into these intervals we get the following:

Time to failure in minutes Observed frequencies Expected frequencies
0 ≤   2231 6 10

2231 ≤   5108 13 10

5108 ≤   9163 8 10

9163 ≤   16094 12 10

16094 ≤  ∞ 11 10

Total 50 50
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Thus,

 2 =
(6− 10)2
10

+
(13− 10)2

10
+
(8− 10)2
10

+
(12− 10)2

10
+
(11− 10)2

10
= 34

Since 2010;4 = 777944 we do not reject the null hypothesis that the sample is from an exponential

distribution with  = 100 at the 10% level of significance.

Note

In the above example we chose to divide the range of the observations into classes with equal

expected frequencies, since that makes the computations easier. The problem is dealt with

differently, namely by choosing intervals of equal length (eg 0 ≤   30; 30 ≤   60; 60 ≤   90

et cetera) and the corresponding expected frequencies are computed by integration. This is a valid

method, but the computations are more messy because the expected frequencies are usually not

integers.

C. Distribution not completely specified

We use the following theorem which we shall also not prove.

Theorem 4.3

Let 1   be observed frequencies with 1 + + =  and let

1   be the corresponding cell probabilities, with 1 + +  = 1

such that 1   depend on  unknown parameters 1  

Then  2 =
P
=1

( − ̂)
2 ̂ is approximately a 2−−1 variate

provided the ̂ are computed by substituting the maximum likelihood

estimators of 1  

Example 4.8

A sociologist is studying the distribution of TV sets per household in a certain area. According to a

theory developed by him, the ratio of the number of TV sets in a household will be  : 5 : 1−6 where

the first group represents households with no TVs; the second group represents households with 1

TV and the last group represents households with 2 or more TVs. (In other words, if  represents

the number of TV sets in a household chosen at random from this specific area, the probabilities

should be related as follows:
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 ( = 0) = ;  ( = 1) = 5;  ( ≥ 2) = 1− 6

where  is an unknown constant.

In a random sample of 50 households the sociologist observed the following distribution:

Number of TV sets Observed frequency
0 12

1 33

≥ 2 5

Total 50

Is this distribution in accordance with the theory?

Solution

We have to test 0 : The probabilities for the three classes will be in the ratio  : 5 : 1− 6
We first have to estimate  according to the maximum likelihood method.

Let 0 1 and 2, respectively, denote the number of households with 0, 1 and more than 1 TV set

where  = 0 +1 +2 The likelihood function is the product of the probabilities for the observed

sample. (Revise this in section 2.4 of the study guide.)

 () =
Q
=1

 ( = )

=  | {z }
0 times

55  5| {z }
1 times

(1− 6)  (1− 6)   (1− 6) | {z }
2 times

= 0 (5)1 (1− 6)2

∴ ln () = 0 ln () +1 ln (5) +1 ln () +2 ln (1− 6)

∴  ln ()


=

0


+

1


+
−62
1− 6

Setting
 ln ()


= 0 (to obtain the maximum value) we get

0


+

1


=

62

1− 6 

∴ 0 +1


=

62

1− 6
∴ 62 = (0 +1) (1− 6)

∴ 6 (0 +1 +2)  = 0 +1

∴ ̂ =
0 +1

6 (0 +1 +2)
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In the present example

̂ =
12 + 33

6 (50)
=
45

300
= 015

The estimated probabilities are therefore

̂ = 015; 5̂ = 075; 1− 6̂ = 010

Multiplying by 50 we obtain the expected frequencies:

Class Observed frequencies Expected frequencies
0 12 75

1 33 375

≥ 2 5 50

Therefore

 2 =
(12− 75)2

75
+
(33− 375)2

375
+
(5− 5)2
5

= 27 + 054 + 0

= 324

We have 3 − 1 − 1 = 1 degree of freedom (one parameter estimated) and 2005;1 = 384146 Since

324  384146 the theory cannot be rejected at the 5% level of significance.

We conclude this section where the distribution is not completely specified by returning to the

goodness-of-fit test for a normal distribution (which was illustrated in section 4.3).

The MLEs based on the ungrouped data are as follows:

 known: ̂2 =
1


Σ ( − )2

2 known: ̂ =
1


Σ = 

 and 2 unknown: ̂ =
1


Σ = 

̂2 =
1


Σ
¡
 −

¢2

[NB You should be able to derive the above yourself!]
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The MLEs based on the grouped data present some computational difficulties. If  is the number of

observations lying in the interval (−1 ) for  = 1   and ̂ and ̂2 are the MLEs to be computed,

then the likelihood function is


¡
 2

¢
=

Q
=1

[ (−1   ≤ )]

=
Q
=1

"
R

−1

1


√
2


−1
2


−


2



#



Maximising this likelihood function with respect to  and 2 will not be done easily without a computer.

Consequently we are faced with a dilemma:

- If we use the MLEs based on the grouped data, then the distribution of  2 is asymptotically 2−−1
where  is the number of parameters so estimated; the problem is that the MLEs are not easily

computed.

- The MLEs based on the ungrouped data are easily computed, but now the distribution of  2 is

not easily computed. It has been found that the distribution of  2 lies between 2−1 and 2−−1
in this case.

A pragmatic solution would be as follows:

Compute the MLEs based on the ungrouped data. Compute  2 as before.
If  2  2;−−1 : do not reject 0

If  2  2;−1 : reject 0

If 2;−−1   2  2;−1 : decision uncertain

In the latter case there are two possibilities:

(a) Obtain a larger sample.

(b) Choose another significance level according to the circumstances.

For the purpose of this module it is sufficient simply to state: "Decision uncertain".

D. The Kolmogorov-Smirnov test

We briefly mention an alternative test which can be applied to test whether a random sample comes

from a specified distribution (with all the parameters specified). For any  we have

 () =  () =  ( ≤ ) which is completely specified

 () = ̂ () =
number of observations in the sample ≤ 

total number of observations

= cumulative relative frequency
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A one-sided test is based on

+
 = supremum over all  of { ()−  ()} 

The value thus computed is compared to a critical value read from table XIX (Stoker). If +
 is larger

than the critical value, reject 0

For a two-sided test, compute

 = supremum over all  of | ()−  ()| 

The critical value for a two-sided -level test is approximately the same as the critical value for the

one-sided 1
2
-level test. Reject 0 if  is larger than this critical value.

This is the test JMP employs for a goodness-of-fit test. (See activity 4.10 of the workbook.) A

computer, however, does not use critical values but only computes the -value which has to be

interpreted.

You will not be required to know this test for examination purposes.

4.5 Using the method of moments to test for normality
Another test procedure is based on skewness and kurtosis. For any distribution with mean  and pdf

 () the r-th central moment is defined as

 =
∞R
−∞

(− )  () 

The third moment is zero if  () is symmetric.

The third standardised moment

1 =
3
3
=

3

(2)
3
2

is a measure of the skewness of the distribution. For the normal distribution,

as for any symmetric distribution, 1 = 0
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The fourth standardised moment

2 =
4
22
=

4
4

is a measure of the kurtosis of the distribution. For the normal distribution

2 = 3

If 1   is a random sample from a normal distribution we can estimate  by

̂ =
1



P
=1

¡
 −

¢


A. Test for skewness

We can test the null hypothesis that the distribution is symmetrical,that is 0 : 1 = 0 against a

two-sided or one-sided alternative. The critical values are tabulated in table A for different sample

sizes but not for different levels of significance.

The null hypothesis is that the distribution is normal, namely 0 : 1 = 0

If the alternative hypothesis is positive skewness (one-sided testing), namely 1 : 1  0

we reject 0 at the 5% level if 1  tabulated percentage point.

If the alternative is negative skewness (one-sided testing), that is 1 : 1  0

we reject 0 at the 5% level if 1  − (tabulated percentage point) 

If the alternative is skewness (two-sided testing), namely 1 : 1 6= 0
we reject 0 at the 10% level if |1|  tabulated percentage point.

We use the test statistic

1 =
̂3

(̂2)
3
2

=

1



P
=1

¡
 −

¢3
µ
1



P
=1

¡
 −

¢2¶32 

For a symmetrical distribution (as the normal distribution) we would expect this test statistic to vary

in the region of 0. We do not expect you to know the distribution of 1, but critical values have been

computed for this distribution and are summarised in the table below. We are restricted to either test

5% one-sided or 10% two-sided. In other words, we cannot choose freely what the significance level

is going to be.
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Table A: Percentage points for the distribution of 1
(Lower percentage point = − (tabulated upper percentage point)

Size of sample Percentage points Size of sample Percentage points
 5%  5%

25 0711 200 0280

30 0662 250 0251

35 0621 300 0230

40 0587 350 0213

45 0558 400 0200

50 0534 450 0188

500 0179

60 0492 550 0171

70 0459 600 0163

80 0432 650 0157

90 0409 700 0151

100 0389 750 0146

800 0142

125 0350 850 0138

150 0321 900 0134

175 0298 950 0130

200 0280 1000 0127

Please note:

Because the sampling distribution of 1 is symmetrical about zero, the same values, with negative

sign, correspond to the lower limits.

B. Test for kurtosis

To test for kurtosis the null hypothesis is that the distribution is normal, namely. 0 : 2 = 3

A distribution with 2  3 is called leptokurtic: the pdf has a sharper peak than the normal distribution

and has longer tails.

A distribution with 2  3 is said to be platykurtic: the pdf is flat and has shorter tails than the normal

distribution.

Figure 4.9: Degrees of kurtosis
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To test for kurtosis, we could use two different test statistics.

We may use the test statistic

2 =
̂4

(̂2)
2
=

1



P
=1

¡
 −

¢4
µ
1



P
=1

¡
 −

¢2¶2 

For the normal distribution we would expect this test statistic to vary in the region of 3. We do not

expect you to know the distribution of 2, but only to realise that critical values (associated with a

significance level of 5%) have been computed and are tabulated in table B. Again (as with 1) we

are restricted to test 5% one-sided or 10% two-sided, and we cannot freely choose the significance

level.

Table B:. Percentage points of the distribution of 2

Size of Percentage points
sample  Upper 5% Lower 5%

50 399 215

75 387 227

100 377 235

125 371 240

150 365 245

200 357 251

250 352 255

300 347 259

350 344 262

400 341 264

450 339 266

500 337 267

550 335 269

600 334 270

650 333 271

700 331 272

800 329 274

900 328 275

1000 326 276

Test based on B2

If the alternative is 2  3 reject 0 at the 5% level if 2  lower 5% point in table B.

If the alternative is 2  3 reject 0 at the 5% level if 2  upper 5% point in table B.

If the alternative is 2 6= 3 reject 0 at the 10% level if 2  lower 5% point or if 2  upper 5%

point in table B.
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Example 4.9

From a random sample of size  = 100 the following were computed:

Σ = 200; Σ
2
 = 416; Σ

¡
 −

¢3
= 128; Σ

¡
 −

¢4
= 1024

We wish to test the sample for normality. We shall test

(a) for skewness (two-sided) at the 10% level;

(b) for kurtosis (two-sided) at the 10% level.

A sample from a normal distribution should pass both tests with a high probability.

Solution

(a) Test for skewness

We have to test 0 : 1 = 0 against
1 : 1 6= 0

We will reject 0 if |1|  0389 (in other words if 1  −0389 or if 1  0389 (using table A.)

The value of the test statistic is 1 =

1


Σ
¡
 −

¢3
∙
1


Σ
¡
 −

¢2¸32 

We do not have Σ
¡
 −

¢2
but it can be derived from the given information.

Σ
¡
 −

¢2
= Σ2

 − 
2
= 416− 100

µ
200

100

¶2
= 416− 400

= 16

∴ 1 =

128

100Ãr
1

100
(16)

!3 = 0128

(04)3
= 2

Since 2  0389 we reject 0 at the 10% level.
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(b) Test for kurtosis

We have to test 0 : 2 = 3 against
1 : 2 6= 3

We will reject 0 at the 10% level of significance (two-sided) if 2  377 or if 2  235 (from

table B).

The value of the test statistic is 2 =

1



P
=1

¡
 −

¢4
∙
1


Σ
¡
 −

¢2¸2 =
1024

100

[016]2
=
01024

00256
= 4

Since 4  377 we reject 0 at the 10% level.

The sample failed both tests and hence we conclude that the sample is not from a normal

population.

Another statistic which is a measure of kurtosis is the standardised mean deviation,

 =

1


Σ
¯̄
 −

¯̄
r
1


Σ
¡
 −

¢2 = mean deviation
standard deviation



(
¯̄
 −

¯̄
is read as "the absolute value of  −" and it means you take the positive value of the

difference.)

The test statistic you choose depends on the sample size: for small samples (  50) we usually use

; for larger samples ( ≥ 50) use 2
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Table C: Percentage points for the distribution of  =
mean deviation

standard deviation

Size of Percentage points
sample  − 1 Upper 5% Upper 10% Lower 10% Lower 5%

11 10 09073 08899 07409 07153

16 15 08884 08733 07452 07236

21 20 08768 08631 07495 07304

26 25 08686 08570 07530 07360

31 30 08625 08511 07559 07404

36 35 08578 08468 07583 07440

41 40 08540 08436 07604 07470

46 45 08508 08409 07621 07496

51 50 08481 08385 07636 07518

61 60 08434 08349 07662 07554

71 70 08403 08321 07683 07583

81 80 08376 08298 07700 07607

91 90 08353 08279 07714 07626

101 100 08344 08264 07726 07644

Test based on A

If the alternative is that the distribution is leptokurtic, namely 1 : 2  3

we reject 0 at the 5% level of significance if   upper 5% point in table C (or at the 10% level if

  upper 10% point in table C).

If the alternative is that the distribution is platykurtic, namely 1 : 2  3

we reject 0 at the 5% level of significance if   lower 5% point in table C (or at the 10% level if

  lower 10% point in table C).

If the alternative is two-sided, namely 1 : 2 6= 3
we reject 0 at the 10% significance level if   lower 5% point or if   upper 5% point in table C.
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Example 4.10

We wish to test the kurtosis of the following sample:

18 26 21 25 20 16 12 24 17 19 22

Test two-sided at the 10% level of significance.

Solution

We have to test 0 : 2 = 3 against
1 : 2 6= 3

Since  = 11  50 we will use the test statistic A.

 =

1



P
=1

¯̄
 −

¯̄
r
1


Σ
¡
 −

¢2
where  =

220

11
= 20; Σ

¯̄
 −

¯̄
= 36 and Σ

¡
 −

¢2
= 176

Thus  =

36

11r
176

11

= 08182

We will reject 0 two-sided if   07153 or if   09073 (from table C).

Since 07153  08182  09073 we conclude that the kurtosis of the sample is not significantly

different from the kurtosis of the normal distribution, at the 10% level (two-sided).

What about statistical packages and moments?

The statistical package SPSS computes the third and fourth moments as standard output under

"descriptive statistics" for any data set. It is, however, not part of the standard output of JMP. We

need to manipulate our output if we want to compute 1 and 2 (Please see activity 4.15 of the

workbook.)
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Exercise 4.1

1. The blood of a random sample of 1 000 people from a certain population was classified into 4

blood groups, and the results are as follows:

1 = 125; 2 = 185; 3 = 230; 4 = 460

It is postulated that the population is divided into the four blood groups in the following proportions:

1 = 010; 2 = 020; 3 = 020; 4 = 050

Test this hypothesis at the 1% level.

2. According to a seed man’s claim, of the plants that germinate from a packet of "Colorglo"

Namaqualand daisy seeds, there will be twice as many plants bearing yellow flowers as white

flowers, and twice as many bearing orange flowers as yellow flowers. It is admitted implicitly that

a certain proportion will not germinate at all. The theory can be written as a model as follows:

 (White) = ;  (Yellow) = 2;  (Orange) = 4;  (Fail to germinate) = 1− 7

I sow 100 of these seeds (presumably a random sample) and 84 germinate. Of these 84 plants,

16 bear white flowers, 28 bear yellow flowers and 40 bear orange flowers. Can the seed man’s

claim be rejected at the 5% level of significance?

3. A sample of size 40 from a distribution with known variance 2 = 100 has mean  = 10 The

following classification was obtained:

 Frequency
  3255 7

3255 ≤   10 6

10 ≤   16745 15

 ≥ 16745 12

Compute the goodness-of-fit statistic to test whether the distribution is normal. Determine whether

the sample is significantly different from normal

(a) at the 10% level

(b) at the 5% level.
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4. The number of bees arriving at a peach tree was recorded during 100 non-overlapping one-minute

intervals. The observed frequencies were as follows:

Number of bees 0 1 2 3 4 5 6

Frequencies 21 30 27 16 3 2 1

Test the null hypothesis, at the 5% level of significance, that this is a random sample from a

Poisson distribution

(a) with mean  = 2

(b) with  not specified.

(For ease of computation, round off the expected frequencies to the nearest integer.)

Hint: −16 = 02019

5. On the assumption that the lifetime of a product is normally distributed with mean 32 months

and standard deviation eight months, a guarantee was determined. The following data were

subsequently collected:
Lifetime (months) Frequency
Less than 16 6

16 to 20 9

20 to 24 12

24 to 28 16

28 to 32 20

32 to 36 22

36 to 40 10

more than 40 5

Test the assumption of normality with mean 32 and variance 64 at the 5% level of significance.

6. The following data have been observed in an experiment:

29 12 28 46 15 13 25 44 20 14

37 41 11 38 28 12 40 47 19 29

13 39 6 13 29 15 34 17 33 51

Test the null hypothesis that the sample comes from a (25; 122) distribution. Use five classes of

equal probability to derive the intervals.
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7. Test the following sample for kurtosis:

17; 22; 15; 25; 22; 26; 16; 14; 18; 21; 24

(10% level).

8. From a sample of 50 observations the following statistics were computed:

 = 25; Σ
¡
 −

¢2
= 200; Σ

¡
 −

¢3
= −320; Σ ¡ −

¢4
= 4000

Would you regard this as a sample from a normal distribution? Use the 10% level (two-sided).

9. From a sample of 1 000 observations it was found that

 = 50;
1


Σ
¡
 −

¢2
= 16;

1


Σ
¡
 −

¢3
= 64;

1


Σ
¡
 −

¢4
= 8192

Test at the 10% level (two-sided) whether the sample comes from a normal distribution.



119 STA2601/1

4.6 Learning outcomes

After studying unit 4 you should understand and be able to apply and interpret
the following tests for normality:

¥ using normal probability paper to plot the order statistics  against 100 (+ 1)

¥ a normal quantile graph (using JMP)

¥ a goodness-of-fit test (ie 2-test) where the expected frequencies are

obtained by
%
&

assuming equal probabilities and computing the

corresponding set of intervals

computing the areas under the pdf of a normal

distribution for a given set of intervals

¥
test for skewness

test for kurtosis

⎤⎦ which together form one test for normality

You should be able to perform a goodness-of-fit test (2-test) for any

other type of distribution (which will be specified).
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STUDY UNIT 5

Statistical independence

5.1 The meaning of independence
The assumption of independence is an integral part of most statistical models. Thus, for example,

independence forms part of the definition of a random sample. Sometimes it is possible to test

whether certain observations are independent, but in most cases the independence, or lack thereof,

must be deduced from the way in which the experiment was conducted. The formal definition of

independence is: the random variables 1 and 2 are independent if their joint pdf is given by

1;2
(1; 2) = 1

(1) 2
(2) for all 1 and 2

The definition of the independence of  random variables is given in unit 1. An equivalent definition,

in terms of conditional distributions, is that 1 and 2 are independent if the conditional pdf of 2

given that 1 = 1 for all values 1 is not a function of 1

The question is: how do we know that this condition holds good for our experiment? The answer to

this question is not easy, but the acid test is to ask the following question: does the outcome of one

observation have any influence on the outcome of any other observation? We shall discuss a few

examples of non-independence which may help you in answering this question.

To begin with, we have to point out that there is a difference in the definitions of a random sample

for finite and infinite populations. The results of sampling with replacement from a finite population

may be regarded as independent observations, but such samples are usually not desirable since one

does not want to observe one number of the population more than once. On the other hand, if one

draws a sample without replacement, the composition of the population changes after each draw

and the consecutive observations are not independent. A random sample from a finite population

requires only that each and every distinct sample of size  of the
¡



¢
different samples must have the

same probability 1
¡



¢
of being selected. Mutual independence of the  observations in the sample

is not part of the definition.

If the population is finite but very large, and the sample to be drawn from it is comparatively small, the

population is regarded as an infinite population for practical purposes. The change in the composition

of the population after each draw is then so small as to be negligible. In principle it is easy to draw a

random sample from a finite population (small or large) provided each member of the population can
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be identified uniquely by means of a number. In such a case one may draw a sample of the numbers,

using numbers in a hat, tables, random numbers or random numbers generated by a computer.

We shall now concentrate on samples from an infinite population.

5.2 Examples of dependence
The problem with dependence is that one cannot really do analyses or applications without being

able to quantify this dependency in a model, that is to set up a model for the dependence.

A. Repeated measurements on the same individual

The following type of experiment is often performed: an individual is subjected to a treatment and the

result is observed at a number of specified times. Examples of this are a patient who consumes an

amount of sugar and has his or her blood sugar tested every 30 minutes in order to determine his or

her sugar curve; a learner who is taught arithmetic and whose arithmetic ability is tested every term;

a pig that is placed on a certain diet and whose mass is determined every week.

The result of such an experiment is a number of observations 1   It is not safe to assume

automatically that the observations are independent. If we select a patient at random from a

population, measure his or her blood pressure 1 administer a treatment and measure his or her

blood pressure 2 then 2 will depend on 1 because the response of the patient to the treatment

will depend on his or her initial blood pressure. Given 1, we cannot regard 2 as the blood pressure

after treatment of a patient selected at random from the population.

In repeated measurements there is also the possibility of a carry-over effect. If we administer one

treatment to an individual and measure the result, then administer another treatment to the same

individual and measure the effect again, there is a possibility that the effect of the first treatment has

not "worn off" and had an effect on the second measurement. Think of an experiment to test the

effect of two methods of teaching arithmetic. If we teach a learner by the one method and measure

his or her ability, the knowledge acquired by the learner in the first phase of the experiment will not

be forgotten, and the second measurement will not be independent of the first.

To summarise, the results 1 ...  of  measurements on one individual may have to be analysed

in a completely different way from the results 1   of one measurement on each of 

individuals.
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B. Paired observations

Very similar to the discussion in A above is the difference between the following two experiments to

determine the effect of a treatment on a group of individuals.

One experiment is done by measuring every individual with respect to the variable being studied,

administering the treatment and measuring every individual again.

The other experiment is done by dividing the individuals in a random manner into two groups. The

one group, called the control group, is measured without treatment, and the other group is treated

and then measured.

The results of these two experiments will be analysed differently. In the first case we have paired

observations with dependence in each pair, and in the second case we have two independent

samples.

This dependence between measurements on the same individual will of course hold good for

measurements of different variables on the individual, like height and mass, as well.

C. Ordering of observations

Let 1   be a random sample; we know that 1   are mutually independent. Suppose

we arrange the observations from the smallest to the largest, and call the result 1   Then

1   are called the order statistics of the sample. There is an ordering in these statistics:

1 ≤ 2 ≤  ≤ 

Although 1 and 2 are independent, it is no longer true that 1 and 2 are independent. For one

thing, 2 is bounded from below by 1 and, given 1 2 cannot assume all possible values. The

distribution of the order statistics is not the same as the distribution of 1  

D. Recognisable subsets

In many populations there are recognisable subsets of individuals who are more similar than the

population as a whole. Children from the same family, piglets from the same litter and people living

in the same suburb are examples of such subsets. If we select a number of individuals from the

same subset they may be regarded as a random sample from that subset. However, regarded as a

sample from the whole population, there is a definite dependence and the sample is not a random

sample from that population.



123 STA2601/1

E. Time dependence

In economic data especially, there is often a time dependence which may result in a special kind of

mutual dependence between the observations. Consider an inflation rate which is computed monthly.

One feels intuitively that the inflation rate in April will not be completely independent of the inflation

rate in March of the same year, but will be less dependent on the inflation rate in April of the previous

year. A curve which joins the points in the following graph will be fairly smooth:

Figure 5.1

In a random sample one would expect all rearrangements of the data to be equally likely to occur.

The following rearrangement of the same points will be less likely in this application, however.

Figure 5.2
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The data in the first graph are subject to autocorrelation: each observation depends in a specific way

on the previous one. Such data must be analysed in a special way. (This is covered in STA2604 and

STA3704.)

In the rest of this study unit we are going to look at a few types of analysis that test for dependence.

When we talk about "tests of independence/dependence, we are usually interested in the possibility

that one variable could affect or influence a second variable. This means we are moving into the

field of studying the variables simultaneously (as opposed to studying them one at a time). This

immediately alerts us to the type of variable involved in the analysis. We could have the situation

where both variables are nominal, or one could be nominal and one continuous or both could be

continuous!

In the next section we explain the technique of how to test for dependence when we have two nominal

(or also called categorical) variables.

5.3 Contingency table analysis
Contingency tables generally consist of frequencies arranged into a two-way table according to

two categorical variables (eg A and B). Sometimes the variables are truly categorical (eg gender,

profession, city) and sometimes the variables are continuous, but are divided or forced into categories

(for example age group).

In general we have frequencies  ;  = 1  ;  = 1   which are random variables. We use

the following notation:

· =
P

=1

 ; ·
P
=1

 ; ·· =
P
=1

P
=1



where 1·  · are the row totals; ·1  · are the column totals and ·· is the grand total.

· and · are called the marginal totals. The general ×  (" by ") contingency table with  rows

and  columns is as follows:

Categories of variable 

1 2 · · · · ·  Total
Categories 1 11 12 · · · · · 1 1·

of 2 21 22 · · · · · 2 2·

variable
...

...
...

...
...

  1 2 · · · · ·  ·
Total ·1 ·2 · · · · · · ··

The example below is a typical example of a contingency table.
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Example 5.1

A monkey was fitted with a radio transmitter and its position was determined 100 times at various

times of the day over a period of a few months. The observation times were classified into one of

the following categories: Early morning () ; Late morning () ; Early afternoon () and

Late afternoon ()  The monkey’s distance from the river was computed every time, and these

distances were classified as Close to, Near and Far from the river. Counting the number of times

(frequencies) the observations fell into each of these categories, the results are as follows:

Time
    Total

Distance Close 12 11 4 13 40

from Near 6 0 20 4 30

river Far 2 19 6 3 30

Total 20 30 30 20 100

(Eg of the 30 late morning observations, the monkey was close to the river on 11 occasions, near

the river on 0 occasions and far from the river on 19 occasions.)

The question is: does the distance from the river depend on the time of day or are the two variables

independent?

Contingency tables may be obtained in various ways, and we will discuss two. The method of analysis

will be identical, but theoretically the hypotheses are not the same.

A. Fixed grand total

We assume a random sample of ·· individuals was chosen, and two variables were recorded for

each individual (eg home language and type of work). The problem is to test whether the two

variables are independent. In this case · and · are random variables. Let

 =  (individual falls into row  and column )

· =
P

=1

 =  (individual falls into row )

· =
P
=1

 =  (individual falls into column )

·· =
P
=1

P
=1

 = 1
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The null hypothesis of independence is

0 :  = ·· ;  = 1  ;  = 1  

B. Fixed row (or column) totals

Assume we have  populations, and each individual from each population can be classified into one

of  categories. We choose a random sample of size · from population  where · is not a random

variable but a chosen sample size. In this case

 =  (individual from population  falls into category )

and

· =
P
=1

 = 1

The null hypothesis of independence is that the probability of falling

into category  is the same for all  populations:

0 : 1 = 2 =  =  for  = 1  

(For example, in the case  =  = 2 we want to test whether two probabilities are equal.) Example

5.1 is an example of this kind since the experimenter presumably selected his or her observation

times, and the column totals are therefore not random.

Analysis

Let  =
··
··

(in other words the expected frequency for a cell equals the row total times the

column total divided by the grand total).

The test statistic we use for testing the null hypothesis is

 2 =
P
=1

P
=1

( − )
2




(Does this look familiar?)

The distribution of  2 (under 0) is given by the following theorem which we shall not prove here.
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Theorem 5.1

Under the null hypothesis the distribution of  2 is approximately that of 2

with (− 1) ( − 1) degrees of freedom.

Please note the following:

We could have called the test statistic  or  or whatever, but we stick to the notation  2 to have

the connection with the "square" in the 2-variable. Please do not try to create your own test statistic

by taking the square root of whatever you compute. Stick to  2 and report it as  2

Why do you think we have (− 1) ( − 1) for the degrees of freedom? Note that if we fill in the

marginal totals and choose  − 1 rows and  − 1 columns then the remaining row and column are

fixed. We have the freedom to vary (− 1) ( − 1) of the cell frequencies.

Illustration: Example 5.1 (continued)

The null hypothesis of independence is that the probability of being close to the river ( = 1) is

the same for any time of the day. It also means that we could say that the distance from the river is

independent of the time of day. The alternative hypothesis is that the two factors are not independent.

The expected frequencies are as follows:

    Total

Close
20× 40
100

= 8 12 12 8 40

Near
20× 30
100

= 6 9 9 6 30

Far
20× 30
100

= 6 9 9 6 30

Total 20 30 30 20 100

Therefore  2 =
(12− 8)2

8
+
(11− 12)2

12
+ +

(3− 6)2
6

=
3 595

72

= 499306
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We have (4− 1) (3− 1) = 6 degrees of freedom and 2001;6 = 168119 Since 499306  168119 the

null hypothesis is rejected at the 1% level of significance, and we conclude that there is a relationship

between the time of day and the distance from the river. Comparing the observed and expected

frequencies, we notice that the monkey was more often than expected close to the river in the early

morning and late afternoon, more often than expected far from the river in the late morning and more

often than expected near the river in the early afternoon.

A few important general notes:

1. Note that the statistic  2 is not changed if we exchange the roles of rows and columns (ie if  is

renamed ) or if two rows (or two columns) are switched.

2. A significant  2 only indicates association between the two variables and not a causal

relationship.

3. The expected frequencies  = ···· need not be integers. The examples in this study

guide have been chosen in such a way that the  are integers to make the computations easier.

Normally one would work with the  correct to about two decimal digits.

4. In order for the 2 approximation to the distribution of  2 to be adequate, we should not have too

many small  otherwise we should pool rows and/or columns. An empirical rule (Cochran’s rule)

states that no  should be smaller than 1 and not more than 20% of the  should be smaller

than 5. (A more stringent rule given in many textbooks is that no  should be less than 5.)

5. When choosing categories or when deciding which rows or columns should be pooled, one must

be careful not to choose categories deliberately in the way most favourable for rejection of 0 (or

acceptance, if that is what we want). The choice should be made objectively on external grounds

or be based on expected frequencies – not observed frequencies.

6. Although the chi-square test looks like a one-sided test (because the critical value is on the right

and we reject 0 if  2 ≥ 2;) it is in fact a test for two-sided alternatives! (A large numerical

value for  2 can be obtained if the observed cell frequency is very small or very large.)

7. Alternative methods of analysing contingency tables are available, but based on advanced

statistical and mathematical principles and therefore beyond the scope of this module. We

mention two such techniques briefly which are covered in STA4806 (an honours course).

(i) The log-linear model

The null hypothesis of independence  = ·· ;  = 1  ;  = 1   may be written

log () = log (·) + log (·) for all  and 
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If this null hypothesis is rejected, then it may be that alternative models are suitable for

expressing the log-probability, log  , in terms of the logs of the marginal probabilities. The

purpose of such an analysis is to find a model that will adequately explain the data. This model

can be used for multidimensional contingency tables. The analysis cannot be done without a

computer.

(ii) Correspondence analysis

Correspondence analysis is a technique that enables one to display a contingency table on a

special graph. Rows in the table that are very similar are close to one another on the graph

and likewise for columns that are very similar. If a given column is very close to a given row

on the graph, then the frequency in that row and column is very large compared to the other

frequencies in that row (and in that column).

Theorem 5.1 states that the distribution of  2 is approximately 2 and then only under certain

conditions.

There is a special case where an exact test exists. This means we may compute probabilities 100%

accurately. The exact test exists in the case of 2× 2 tables.

C. Exact test for a 2× 2 table

In the case of 2 × 2 contingency tables an exact test exists – the only problem is that extensive

tables are needed to apply it. In fact, one such table fills a whole book:

Lieberman, GJ and Owen, DB: Tables of the hypergeometric probability distribution,
Stanford, California, Stanford University Press, 1961.

It falls beyond the scope of this module to explain how the exact probabilities for a 2× 2 table can be

computed. You only need to know how to apply the table to perform a hypothesis test. For a 2 × 2
table we have four cells.

Consider the following notation:

Let  be any one of the four cell frequencies

 the column total corresponding to that cell

 the row total corresponding to that cell

 the total number of observations.
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Thus we have

Attribute A

Attribute B

1 2 Total

1  

2

Total  

The remainder of the table can now be completed in by subtraction:

1 2 Total

1  −  

2  −   −  − +   − 

Total   −  

For fixed N n and k  can be regarded as a value assumed by a random

variable which has a hypergeometric distribution, denoted by  ( ;; ) 

and this is the distribution tabulated in table D for the special case  = 12

Luckily JMP can compute these probabilities for any value of  and you need to be able to interpret

the output for JMP which is explained in the workbook. In order to see how the hypothesis test works

and how you have to use the table, we present only a very small part of the thick book of tables on

the hypergeometric distribution. Table D below is the special case where the total sample size is

 = 12 and the possible combinations of  and  go from 1 to 6.
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Table D:
The hypergeometric probability distribution:  ( ≤ ) for  = 12

           

1 1 0 0917 4 4 0 0141 6 2 0 0227

1 1 1 1000 4 4 1 0594 6 2 1 0773

4 4 2 0933 6 2 2 1000

2 1 0 0833 4 4 3 0998

2 1 1 1000 4 4 4 1000 6 3 0 0091

6 3 1 0500

2 2 0 0682 5 1 0 0583 6 3 2 0909

2 2 1 0985 5 1 1 1000 6 3 3 1000

2 2 2 1000

5 2 0 0318 6 4 0 0030

3 1 0 0750 5 2 1 0848 6 4 1 0273

3 1 1 1000 5 2 2 1000 6 4 2 0727

6 4 3 0970

3 2 0 0545 5 3 0 0159 6 4 4 1000

3 2 1 0955 5 3 1 0636

3 2 2 1000 5 3 2 0955 6 5 0 0008

5 3 3 1000 6 5 1 0121

3 3 0 0382 6 5 2 0500

3 3 1 0873 5 4 0 0071 6 5 3 0879

3 3 2 0995 5 4 1 0424 6 5 4 0992

3 3 3 1000 5 4 2 0848 6 5 5 1000

5 4 3 0990

4 1 0 0667 5 4 4 1000 6 6 0 0001

4 1 1 1000 6 6 1 0040

5 5 0 0027 6 6 2 0284

4 2 0 0424 5 5 1 0247 6 6 3 0716

4 2 1 0909 5 5 2 0689 6 6 4 0960

4 2 2 1000 5 5 3 0955 6 6 5 0999

5 5 4 0999 6 6 6 1000

4 3 0 0255 5 5 5 1000

4 3 1 0764

4 3 2 0982 6 1 0 0500

4 3 3 1000 6 1 1 1000

In real life there could be any possible value for the total sample space!

The null hypothesis is the same as for the ×  contingency table.

0 : There is no association between attribute A and attribute B.

However, unlike the chi-square test, which is a test for a two-sided alternative, the exact 2 × 2 test

can be applied for one or two-sided alternatives.

To use table D, first find the smallest marginal total (row or column) or if there is more than one

marginal total equal to the smallest value, choose any one of these, and call it  If  is a row total,

choose  the smallest column total (or any of the two column totals if they are equal). Then  is the

cell frequency corresponding to the row and column with marginal totals  and  If  is a column

total then  is the smallest row total.
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For example, in the case



↑
2 1 3 → 

4 5 9

6 6 12

↑


choose  = 3 (the smallest marginal total, in this case a row total) and  = 6 (the smallest column

total; suppose for argument’s sake we choose the second column) then x = 1 We now use the

symbol  to denote the random variable which has outcome  (ie  = 1) in the table. If  = 3 then

 can assume the values 0; 1; 2 or 3, that is ifA is the set of discrete points of , thenA = {0; 1; 2; 3}
and

 ( = 0) +  ( = 1) +  ( = 2) +  ( = 3) = 1| {z }
These probabilities are not given individually, but cumulatively in table D.

The second block from the top, in the last column of the table, gives

 ( = 0  = 3  = 6  = 12) = 0091

In that same block,  ( ≤ 1) = 0500

 ( ≤ 2) = 0909

 ( ≤ 3) = 1000

Next we have to figure out the alternative hypothesis for . (The null hypothesis is of course that

there is no association between the two attributes A and B.)

The wording "figure out" is exactly what it says! From the given problem and the cell you chose for

,you have to figure out whether the one-sided alternative would mean small values for  to favour

the alternative or large values for  to favour the alternative.

If the alternative implies small values of : reject 0 at the  level if  ( ≤ ) ≤ 

If the alternative implies large values of : reject 0 at the  level if  ( ≥ ) ≤  that is

1−  ( ≤ − 1) ≤ 

If the alternative is two-sided, in other words we want to reject 0 if  is too large or too small,

compute  ( ≤ ) and  ( ≥ ) = 1 −  ( ≤ − 1). If the smaller of these two probabilities is

≤ 1
2
 reject the null hypothesis at the  level.
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Example 5.2

We want to test whether there is an association between smoking and preference for coffee (whether

smokers tend to prefer coffee or equivalently whether coffee drinkers tend to smoke). A random

sample of 12 people yielded the following table:

Coffee Tea Total
Smokers 4 1 5

Nonsmokers 4 3 7

Total 8 4 12

Solution

0: There is no association between smoking and preference for coffee.

1: Smokers tend to prefer coffee to tea.

For this 2× 2 table we have to choose  = 4 and  = 5 (Our table D will not allow us to work with an

  6 or a   6.)

As soon as you choose  and  it "fixes the class" for  In this example  = 1 and it means there

was one person in the class of people who smoke and do not drink coffee.

Now comes the "figuring out" of the alternative hypothesis!

Tea


↑
Smokers 4 1 5 ←− 

4 3 7

8 4 12 −→ 

↑


The alternative (smokers prefer coffee) would imply a small value of  to reject 0 that is so small

that P (X ≤ x)≤ α

Now  = 1 and  ( ≤ 1) = 0424 (from table D)
 005 = 

The small -value or exceedance probability is therefore larger than  so that the test statistic is not

significant.

The null hypothesis therefore cannot be rejected at the 5% level (or any of the usual significance

levels).
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Example 5.3

Suppose we want to test for association (two-sided alternative) in the following table:

1 2 Total
1 6 1 7

2 0 5 5

Total 6 6 12

Solution

0: There is no association between attribute A and attribute B.

1: There is an association. (Since the direction cannot be specified a two-sided test has to be

done.)

Choose  = 5  = 6 and  = 5 Under 0  has a  (12; 6; 5) distribution and

 ( = 0) +  ( = 1) +  ( = 2) +  ( = 3) +  ( = 4) +  ( = 5) = 1

To show that this looks like a proper discrete distribution (and for illustration purposes) we draw the

following probability distribution. The individual probabilities are obtained from table D by subtraction.

(See the second part of activity 5.6 in the workbook for a similar example.)

Figure 5.3: Probability distribution of  ∼  ( = 12;  = 6;  = 5)

We can only reject 0 in favour of the two-sided alternative if  is too large or too small and if it

represents a "rare event", in other words only if

 ( ≤ ) ≤ 

2
or if  ( ≥ ) ≤ 

2
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For any 2× 2 table the question of hypothesis testing actually means: given the values of   and

 is the value of  unusual (too large or too small) to be ascribed to chance?

Suppose we choose  = 005⇒ 

2
= 0025

The observed value of  is 5. From table D we find that

 ( ≤ 5) = 1 and  ( ≥ 5) = 1−  ( ≤ 4) = 0008

Since the smaller of these two probabilities is  ( ≥ 5) = 0008 


2
we reject 0 and conclude

that there is an association between the two attributes A and B.

Final remarks

We introduced you to contingency table analysis by stating that it is the simultaneous study of

two nominal variables. How will you capture two nominal variables in a JMP data set? Say for

example you extend example 5.2 to capture the smoking habit and preference for coffee/tea for all

the students taking STA2601? How will you then go a step further to create a cross-tabulation and

test for independence? Please see activities 5.8 and 5.9 of the workbook.

5.4 Correlation
A. Correlation and independence

The concepts "independent" and "uncorrelated" are confused very often. We repeat two results from

unit 1.

Theorem 5.2

Let  and  be two random variables with correlation coefficient 

If  and  are independent then  = 0 (ie  and  are uncorrelated).

Theorem 5.3

Let  and  have a bivariate normal distribution with correlation coefficient 

Then  and  are independent if and only if  = 0
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Thus, if  and  do not have a bivariate normal distribution then  = 0 does not necessarily imply

independence.

Up to this point we did not explicitly mention that we are busy studying the simultaneous

behaviour of two continuous variables. So, in contrast to the previous section where we had

two categorical variables we are now interested in the independence/dependence of two interval-

measured variables.

The sample correlation coefficient is

 =
Σ
¡
 −

¢ ¡
 − 

¢q
Σ
¡
 −

¢2
Σ
¡
 − 

¢2 
An alternative formula is

 =
Σ − (Σ) (Σ)

vuutÃΣ2
 −

(Σ)
2



!Ã
Σ 2 −

(Σ)
2



! 

The first formula is "better" when using a computer.  which is computed from a random sample

(; )   = 1   where  and  are the sample means, is used as an estimator for  If  and

 follow a bivariate normal distribution then  is the MLE for  If  and  do not follow a bivariate

normal distribution, there is usually not a parameter  which is to be estimated. However,  is still

used as a measure of the strength of the relationship between  and  It must be remembered,

however, that  is a measure of linear relationship. A small value of  may mean either that there is

not a strong relationship between  and  or that the relationship is not linear. It is always necessary

to draw a graph on which each observation (; ) is represented as a dot on the (;  ) plane in

order to find out whether the relationship, if it exists, is linear.

If we intend to construct confidence intervals for  or test hypotheses about

 we must assume that  and  follow a bivariate normal distribution.

How do we know that we have a bivariate normal distribution in a practical application? This is a

difficult problem. There are indicators which are necessary but not sufficient. If certain conditions

are not satisfied, we do not have bivariate normality. If the conditions are satisfied, we can feel a bit

more confident (but not certain) of bivariate normality. The indicators are as follows:
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(a) Marginal normality

If the joint distribution of  and  is bivariate normal then the marginal distributions of  and 

are univariate normal. We plot a histogram of each variable. These histograms should have a bell

shape. We may of course perform a goodness-of-fit test for normality for the marginal distributions

if we have a large number of observations.

(b) Linearity

The product moment correlation coefficient is a measure of linear correlation. If  and  have

a bivariate normal distribution then the relationship between them must be linear. We may plot

a scatter diagram of the observations. The points should be scattered around a straight line,

otherwise we can be sure that the joint distribution is not bivariate normal.

A necessary and sufficient condition for  and  to have a bivariate normal distribution is that all

linear combinations of the form  +  (for all possible choices of  and ) should be univariate

normal. You may use your imagination to think how one would use this fact to test whether  and 

have a bivariate normal distribution.

A further point could not be stressed often enough: if  and  are correlated then it does not imply

that there is a causal relationship. A famous case in point is a study of the relationship between

smoking and the incidence of lung cancer. Although a definite correlation was observed, it was not a

proof that smoking causes lung cancer. A causal relationship could only be demonstrated by means

of carefully controlled experiments in which external factors which may contribute towards cancer

can be "held constant". An example which is often cited is that there is a high correlation between

the salary of the minister of a certain church in Xville and the price of rum in Jamaica. The question

is, which is cause and which is effect?

B. Testing for zero correlation

Theorem 5.4

Let (; )   = 1   be a random sample of size  from a bivariate normal

distribution, and let  be the sample correlation coefficient. If  = 0 the statistic

 =

√
− 2√
1−2

has a Student’s t-distribution with (− 2) degrees of freedom.
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We give this theorem without proof and use this result to test

0 :  = 0 against the alternatives

1 :   0 or

1 :   0 or

1 :  6= 0

In the latter case, for example, 0 is rejected if | |  1
2
; −2

Table IX of Stoker makes it unnecessary for us to compute  since this table gives critical

values for  itself. To see that this table is based on theorem 5.4, consider the case of testing

0 :  = 0 against 1 :  6= 0 Let  = 1
2
; −2 then 0 is accepted if

√
− 2 || 

√
1−2  

∴ (− 2)2 ¡1−2
¢

 2

∴ (− 2)2  2 − 22

∴
¡
− 2 + 2

¢
2  2

∴ 2  2
¡
− 2 + 2

¢
∴ ||  

√
− 2 + 2

Choose, for example,  = 005 and  = 20 Then  = 0025;18 = 2101 (table III).

∴ 
√
− 2 + 2 = 2101

√
18 + 4414 = 04438 which is the same as the critical value in table IX.

Example 5.4

At a certain university the 18 students who enrolled for a specific course were subjected to an

aptitude test at the beginning of the year. Their scores in the aptitude test () and their marks

in the final examinations ( ) were as follows:

Student   Student   Student  
1 13 65 7 16 45 13 5 65

2 11 75 8 11 35 14 2 45

3 5 60 9 12 50 15 7 40

4 15 70 10 8 40 16 9 60

5 10 75 11 10 80 17 12 80

6 6 60 12 14 75 18 14 60

We wish to test at the 10% level whether  and  are correlated.
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Solution

The first step is drawing a scatter diagram of  and  to determine whether the relationship, if there

is one, is indeed linear.

Figure 5.4: Scatter diagram of  and 

From figure 5.4 it seems as though there is no strong linear relationship between  and  but this

is a subjective conclusion. We formally test

0 :  = 0 against

1 :  6= 0
by computing the test statistic  (or  ).

We compute the sample correlation coefficient in tabular form.

   −
¡
 −

¢2
 − 

¡
 − 

¢2 ¡
 −

¢ ¡
 − 

¢
13 65 3 9 5 25 15

11 75 1 1 15 225 15

5 60 −5 25 0 0 0

15 70 5 25 10 100 50

10 75 0 0 15 225 0

6 60 −4 16 0 0 0

16 45 6 36 −15 225 −90
11 35 1 1 −25 625 −25
12 50 2 4 −10 100 −20
8 40 −2 4 −20 400 40

10 80 0 0 20 400 0

14 75 4 16 15 225 60

5 65 −5 25 5 25 −25
2 45 −8 64 −15 225 120

7 40 −3 9 −20 400 60

9 60 −1 1 0 0 0

12 80 2 4 20 400 40

14 60 4 16 0 0 0

180 1 080 0 256 0 3 600 240
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 = 10;  = 60

 =
240√

256× 3600 =
240

16× 60 = 025

In table IX we find the 10% two-sided critical value (which is the same as the 5% one-sided critical

value) which is equal to 0.4. Since 025  04 0 is not rejected in favour of 1 at the 10% level.

Alternatively

 =
√
− 2 √

1−2
=
√
16

025√
09375

=
1

09682
= 10328

in other words we do not reject 0 :  = 0 at the 10% level (005;16 = 1746) 

Notes about the computations of R

1. In the above example the data were chosen in such a way that  and  are integers. In practice

this would happen only rarely. If  and  are not integers or have more than a few decimal digits

then it would be preferable to compute the covariance and variances by means of the alternative

formulae

Σ
¡
 −

¢2
= Σ2

 − (Σ)
2 

Σ
¡
 − 

¢2
= Σ 2 − (Σ)2 

Σ
¡
 −

¢ ¡
 − 

¢
= Σ − (Σ) (Σ) 

2. The correlation coefficient between  and  is identical to the correlation coefficient between

1 + 1 and 2 + 2 provided 1  0 and 2  0 For ease of computation one may subtract a

constant near the mean of each variable and divide by another suitably chosen constant to reduce

the observations to smaller numbers. For example in example 5.4 we could replace  by − 10
and  by ( − 50) 5 where the constants 10; 50 and 5 were chosen by inspecting the data.

(This type of transformation is nowadays seldom done because of the availability of calculators

and the use of computers.)

C. Testing other hypotheses about the correlation coefficient

A famous British statistician, Sir Ronald Fisher, found an approximation to the distribution of the

correlation coefficient (the distribution itself is much less manageable when  6= 0). We state this as

a theorem which we give without proof.
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Theorem 5.5

Let  be the sample correlation coefficient of a random sample from a bivariate normal

distribution.

Let  =
1

2
log

1 +

1−
and  =

1

2
log

1 + 

1− 


Then, for large samples,  =
√
− 3 ( − ) is approximately a  (0; 1) variate.

Table X lists this transformation, usually called Fisher’s -transformation. Note that

1

2
log

1 +

1−
= −1

2
log

1 + (−)
1− (−)

so that for negative  one must look up the transformation of || and add a negative sign.

Suppose that the notation 0 implies a known value (other than zero) specified under the null

hypothesis.

In order to test 0 :  = 0 against

1 :   0 or

1 :   0 or

1 :  6= 0 we compute

 =
√
− 3 ( − 0) where 0 =

1

2
log [(1 + 0)  (1− 0)]

and reject 0 if this quantity exceeds a critical value of the  (0; 1) distribution.

Example 5.5

In a sample of 28 observations it is found that  = 02 We wish to test 0 :  = 05 against

1 :  6= 05 at the 5% level.

Solution

We look up in table X (Stoker):

 =
1

2
log

1 + 02

1− 02 = 02027
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0 =
1

2
log

1 + 05

1− 05 = 05493

∴  =
√
25 (02027− 05493) = −1733

In table II we find 0025 = −196

Since −196  −1733  196 we do not reject 0 :  = 05 at the 5% level.

D. Confidence interval for 

As has been said, the distribution of  when  6= 0 is very complicated. We could use theorem 5.5

to construct a confidence interval for 

For a 95% confidence interval, for example, we use the fact that

095 =  (−196    196)

≈ 
¡−196  √− 3 ( − )  196

¢
= 

µ
 − 196√

− 3     +
196√
− 3

¶

where  =
1

2
log

1 +

1−

 =
1

2
log

1 + 

1− 

and then we have to transform the confidence limits for  back to confidence limits for  by means of

the formula

 =
 − −

 + −
= tan ()

or by using table X inversely.
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Example 5.6

From a sample of 25 observations from a bivariate normal distribution  = −03 was found. To find a

95% confidence interval for  we look up for  = 03 in table X to find  = 03095; thus for  = −03
we have  = −03095 The 95% confidence interval for  is

−03095− 196√
22

≤  ≤ −03095 + 196√
22

∴ −03095− 04179 ≤  ≤ −03095 + 04179

∴ −07274 ≤  ≤ 01084

Now
−07274 − 07274

−07274 + 07274
=
04832− 20697
04832 + 20697

= −062

and
01084 − −01084

01084 + −01084
=
11145− 08973
11145 + 08973

= 011

that is a 95% confidence interval for  is (−062; 011). Using table X we have:

for  = −07250 :  = −062
for  = −07414 :  = −063

Using linear interpolation:

For  = −07274 :  = −062 + 07274− 07250
07414− 07250 (062− 063)

= −062− 00015

≈ −062

for  = 01104 :  = 011

for  = 01003 :  = 010

Once more using linear interpolation:
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If you are fond of graphs, make the following sketch:

∴ for  = 01084 :  = 010 +
01084− 01003
01104− 01003 (011− 010)

= 010 + 0008

≈ 011

which is the same result.

E. Testing the equality of two correlation coefficients

Let 1 be a correlation coefficient computed from a random sample of size 1 from a distribution

with population correlation coefficient 1 Let 2 be a correlation coefficient computed from a sample

of size 2 from a distribution with correlation coefficient 2 We assume 1 and 2 are based on

independent samples, in other words 1 and 2 are independent. We wish to test 0:1 = 2

Let 1 =
1

2
log (1 +1)  (1−1)

2 =
1

2
log (1 +2)  (1−2)

 =
1

2
log (1 + )  (1− )   = 1; 2

If 0 : 1 = 2 is true then 1 = 2
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For large values of 1 and 2

1 − 1 is approximately 

µ
0;

1

1 − 3
¶

2 − 2 is approximately 

µ
0;

1

2 − 3
¶


Therefore (1 − 2) − (1 − 2) is approximately 

µ
0;

1

1 − 3 +
1

2 − 3
¶

provided 1 and 2 are

independent.

Theorem 5.6

If 1 = 2, that is 1 = 2 then  =
1 − 2r
1

1 − 3 +
1

2 − 3
is approximately  (0; 1) 

We use this result in the usual manner to test 0

Example 5.7

In a sample of 111 schoolboys the correlation coefficient between their scores in an intelligence test

and their scores in the final examinations was found to be 0.25. In a sample of 57 girls the correlation

coefficient between the same two scores is 0.35. We wish to test at the 10% level whether the

difference between the two sample correlation coefficients is significant.

Solution

We want to test 0 : 1 = 2 against
1 : 1 6= 2

We compute

1 =
1

2
log

125

075
= 02554

2 =
1

2
log

135

065
= 03654

1

1 − 3 +
1

2 − 3 =
1

108
+
1

54
=
1

36

∴  =
1 − 2r
1

1 − 3 +
1

2 − 3
= 6 (02554− 03654) = −066
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We will reject 0 if || ≥ 1645 in other words if  ≤ −1645 or if  ≥ 1645

Since −1645  −066  1645 we cannot reject 0 at the 10% level.

Exercise 5.1

1. In a random sample of 50 men it was found that 26 smoked. In a random sample of 50 women,

14 smoked. Is there a relationship between gender and smoking? (Use the 21
2
% level.)

2. One hundred students were classified with respect to their appearance ( = attractive;  =

ordinary;  = unattractive) and their intelligence (very high; high; average; low). The frequencies

are as follows:

VH H A L
A 9 12 7 2

O 8 11 14 7

U 3 7 9 11

Test at the 10% level whether there is an association between appearance and intelligence.

Discuss the relationship between the two variables.
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3. The following table gives the high school score () (on a five-point scale) and the first-year

university score ( ) of 30 students:

     

29 23 29 19 31 28

23 25 27 22 33 32

36 29 37 31 27 18

35 38 27 26 35 27

37 35 33 28 29 21

28 29 28 27 27 17

35 30 31 24 29 17

30 27 28 30 32 23

23 21 30 33 34 26

30 29 22 18 25 27

Draw a graph of the data to decide whether the relationship is linear or not. Compute the sample

correlation coefficient and test 0 :  = 0 against 1 :   0 at the 1% level.

4. In a random sample of 39 observations the sample correlation coefficient was −035 Test

0 :  = −02 against 1 :  6= −02 at the 5% level.

5. In a random sample of 33 observations  = −06 was found, and in a second random sample of

153 observations  = −08 Test at the 5% level 0 : 1 = 2 against 1 : 1 6= 2

6. In a random sample of 10 observations  = 07 was found. Find 95% confidence limits for 

7. For the case  = 12  = 6,  = 5 construct a 2×2 contingency table for which the null hypothesis

would be rejected at the 1% level of significance in favour of a one-sided alternative.

8. In an experiment to test whether white mice are more susceptible to influenza than brown mice,

six mice of each colour were exposed to an influenza virus. One of the six brown mice contracted

influenza, compared to five of the six white mice. Construct a contingency table and test the

hypothesis that the two strains are equally susceptible, against the alternative that white mice are

more susceptible, at the 5% level of significance.

9. A random sample of 200 elderly men were classified according to level of training and number of

children:

Number of children
Training 0 1 2 more than 2

Primary school 18 22 30 30

Secondary school 6 24 15 15

College 2 0 13 15

University 4 4 2 0

Test at the 5% level whether the number of children is independent of the father’s level of training.
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10. In a random sample of 19 observations from a bivariate normal distribution, the correlation

coefficient was  = 05

(a) Test 0 :  = 02 against 1 :   02 at the 5% level of significance.

(b) Construct a 95% (two-sided) confidence interval for 

11. Two independent random samples from bivariate normal distributions yielded the following

correlation coefficients:

Sample 1: 1 = 06 1 = 53

Sample 2: 2 = 09 2 = 53

Test 0 : 1 = 2 against 1 : 1  2 at the 5% level of significance.

12. A certain agricultural product is produced in ten districts. The rainfall (cm) and yield (tons per ha)

were recorded on one farm in each district:

District 1 2 3 4 5 6 7 8 9 10

Rainfall 60 48 34 46 58 70 26 44 62 52

Yield 17 22 19 26 32 12 10 21 16 25

Compute the correlation coefficient and test at the 5% level of significance whether rainfall and

yield are correlated. Discuss your assumptions and your conclusions.
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5.5 Learning outcomes

Use the following learning outcomes as a checklist after you have completed this study unit to

evaluate the knowledge you have acquired.

After studying study unit 5, you should be able to

¥ define statistical independence

¥ check for independent observations

¥ explain the dependence of five classical examples

¥ explain what is meant by a contingency table

¥ perform and interpret the chi-square test of independence for an ×  contingency table

¥ perform an exact test for a 2× 2 contingency table

¥ define the terms sample covariance and sample correlation coefficient

¥ perform and interpret the hypothesis test 0 :  = 0

¥ compute a confidence interval for 

¥ perform and interpret the hypothesis test 0 :  = 0

¥ perform and interpret the hypothesis test for the equality of two correlation coefficients,

0 : 1 = 2
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STUDY UNIT 6

Inference on variances

We discuss four problems: inference on the variance of a normal distribution, inference on the ratio of

the variances of two normal distributions based on independent samples, testing the equality of two

variances based on paired observations and testing the equality of more than two variances. In the

first two instances we have to distinguish between problems involving known means and problems

involving unknown means.

6.1 One-sample problem

Example 6.1

A tyre manufacturer claims that a certain type of tyre will last an average of 50 000 km on a certain

make of car, and that the standard deviation is no more than 3 000 km. Eight tyres were tested by

an inspector, and they lasted the following distances (in thousands of km):

47; 48; 50; 51; 52; 55; 55; 58

Would you believe the claim that the standard deviation is at most 3 000 km

(a) if you accept that the population mean is 50 000 km?

(b) if you do not accept the specified mean?

How shall we test this?

To derive a test statistic and a proper hypothesis test, we combine result 1.2 and result 1.3 of study

unit 1 into the following theorem:
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Theorem 6.1

Let 1 2   be a random sample from a 
¡
; 2

¢
distribution. Then

(a)
P
=1

( − )2 2 ∼ 2

(b)
P
=1

¡
 −

¢2
2 ∼ 2−1 where  =

1


Σ

Hypothesis testing

We want to test the null hypothesis H0: σ
2= c

(a) μ known

The procedure is based on the statistic  =
P
=1

( − )2  which, if 0 is true, is a 2 variate.

If Σ ( − )2 is small, it is an indication that 2 is small and vice versa. We reject 0 : 
2 = 

against the alternatives

(i) 1 : 
2 6=  if   2

1−1
2
;

or   21
2
;

(ii) 1 : 
2   if   21−;

(iii) 1 : 
2   if   2;

(The explanation and the application of the critical values of the chi-square distribution are shown

in figure 6.1.)

(b) μ unknown

The procedure is based on the statistic  =
P
=1

¡
 −

¢2
 which, if 0 is true, is a 2−1

variate.

We reject 0 : 
2 =  against the alternatives

(i) 1 : 
2 6=  if   2

1−1
2
;−1

or   21
2
;−1

(ii) 1 : 
2   if   21−;−1

(iii) 1 : 
2   if   2;−1
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Suppose we use the notation of table IV (Stoker) for the critical values of the 2 distribution except

that we interchange  and  This means we first write down the tail-to-the-right area and follow

it by the degrees of freedom. [Please see activities 6.2 and 6.3 for concrete examples of this

notation.]

We define the use and the notation of the critical values of the chi-square distribution such that, if

 ∼ 2 then

(a) 
³
2
1−2;    2

2;

´
= 1− 

(b) 
³
  21−;

´
= 1− 

(c) 
³
  2;

´
= 1− 

Figure 6.1: Critical values of the 2 distribution
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Example 6.1 (continued)

This example is a one-sided problem. That means we have to test

0 : 
2 = 9 against

1 : 
2  9

To calculate the value of the test statistic, it depends on what we assume about the population mean.

(a) Suppose we assume that the population mean is 50 000 km. How will we utilise this

information?

The observations, 1 2  8 are given in thousands of km which means we must do the

same with  Hence we write: Assume that μ = 50

Now we are able to compute
8P

=1

( − 50)2 = 132

We use the test statistic  =
Σ ( − )2


which has a 2 distribution.

So,  =
132

9
= 146667

Since we have one-sided testing (to the right) we will reject 0 if  ≥ 2;8

 was not specified and we will look up the critical values for both  = 005 and  = 010

Now 2010;8 = 133616 and since 146667  13362 we reject 0 at the 10% level in favour of 1

(We do not reject 0 at the 5% level since 2005;8 = 155073.)

(b) Suppose we do not know that μ = 50

Now we have to estimate the "unknown population mean" as ̂ =  and we have to compute
8P

=1

¡
 −

¢2


 =
Σ

8
=
416

8
= 52 and

8P
=1

¡
 −

¢2
= 100



154

We use the test statistic  =
Σ
¡
 −

¢2


which has a 2−1 distribution.

So, now  =
100

9
= 111111

Now 2010;7 = 12017 and since 111111  12017 we cannot reject 0 in favour of 1 at the 10%

level.

Confidence intervals

We want to derive a confidence interval for 2

How shall we derive a two-sided 100 (1− )% confidence interval for an unknown variance?

From theorem 6.1 we know that if  =
Σ
¡
 −

¢2
2

then  ∼ 2−1 From this we may derive the

probability expression

1−  = 

µ
2
1−1
2
;−1

   21
2
;−1

¶

= 

"
2
1−1
2
;−1


Σ
¡
 −

¢2
2

 21
2
;−1

#

= 

⎡⎣ 1

21
2
;−1


2

Σ
¡
 −

¢2 
1

2
1−1
2
;−1

⎤⎦

= 

⎡⎣Σ ¡ −
¢2

21
2
;−1

 2 
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ 

Therefore

⎡⎣Σ ¡ −
¢2

21
2
;−1

;
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ is a 100 (1− )% confidence interval for 2
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Please note that this interval can also be used to test the hypothesis 0 : 
2 =  against 1 : 

2 6= 

The interval above was derived under the (b)-assumption of theorem 6.1 and for a two-sided

confidence of 1− 

As another example, we shall now derive a one-sided upper confidence interval for 2 if  is assumed

to be known.

Let  =
P
=1

( − )2 2 then  ∼ 2

∴ 1−  = 
£
21−;  

¤
= 

"
21−; 

Σ ( − )2

2

#

= 

"
1

21−;


2

Σ ( − )2

#

= 

"
2 

Σ ( − )2

21−;

#


Therefore

"
0;
Σ ( − )2

21−;

#
is a 100 (1− )% one-sided confidence interval for 2 which tests the

hypothesis 0 : 
2 =  against 1 : 

2  .

It is better (and safer) to understand how to derive these intervals than to try and memorise the

results!

You must be able to derive the other one and two-sided intervals if  is known or unknown.

Example 6.2

In a sample of size 20 from a 
¡
; 2

¢
distribution it was found that Σ = 30 and Σ2

 = 60

Construct 90% two-sided confidence limits for 2

(a) assuming  = 2

(b) assuming  is unknown.

Would you accept 0 : 
2 = 1 against 1 : 

2 6= 1 in each case?
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Solution

Σ
¡
 −

¢2
= Σ2

 − 
2

= Σ2
 − (Σ)

2 

= 60− (30)2 20

= 60− 45

= 15

Σ ( − )2 = Σ2
 − 2Σ + 2

= 60− 2 (2) (30) + 20 (2)2

= 60− 120 + 80

= 20

(a) If μ is known:

A 90% two-sided confidence interval for 2 is

Ã
20

2005;20
;

20

2095;20

!
that is

µ
20

314104
;

20

108508

¶
that is (064; 184) 

A variation on the theme is where it is required to derive a confidence interval for the standard

deviation. What will a 90% two-sided confidence interval for  be?

We simply take the square root on both sides and a 90% confidence interval for  is therefore

(080; 136) 

(b) If μ is unknown:

The 90% two-sided confidence interval for 2 now becomes

Ã
15

2005;19
;

15

2095;19

!

that is
µ

15

301435
;

15

10117

¶
that is (050; 148) 

A two-sided confidence interval may be used to test a two-sided alternative. In both cases 2 = 1

falls inside the interval and we do not reject 0 : 
2 = 1 If 2 = 1 did not fall inside the interval we

would have come to the conclusion that we reject 0 at the 10% level of significance.
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Example 6.3

Suppose we wish to construct a 95% two-sided confidence interval for 2 based on a random sample

of 16 observations from a 
¡
; 2

¢
distribution, assuming  is unknown.

(a) What is the expected length of the confidence interval?

(b) What is the expected length of the confidence interval if the sample size is 30?

Solution

The crux of this question is that we have to bring "mathematical expectation" somewhere into the

picture. This is where we have to fall back on theoretical knowledge which always takes us back to

study unit 1.

We will use the fact that
P
=1

¡
 −

¢2
2 ∼ 2−1

∴ 
h
Σ
¡
 −

¢2
2

i
= − 1 (see result 1.1)

∴ 
h
Σ
¡
 −

¢2i
= 2 (− 1)

(a) The 95% confidence interval for 2 when  = 16 is⎡⎣Σ ¡ −
¢2

21
2
;−1

;
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ = "Σ ¡ −
¢2

274884
;
Σ
¡
 −

¢2
62614

#


The length of the interval is the difference between the upper bound and the lower bound

= Σ
¡
 −

¢2µ 1

62614
− 1

274884

¶
= 01233Σ

¡
 −

¢2
 which is a random variable.

The expected length is therefore 01233
h
Σ
¡
 −

¢2i
= (01233) (15)2 = 184952

(b) Now  = 30 and the length of the interval is

Σ
¡
 −

¢2Ã 1

20975;29
− 1

20025;29

!
= Σ

¡
 −

¢2µ 1

160471
− 1

457222

¶

= Σ
¡
 −

¢2
(00404) 

The expected length is therefore 00404 (29)2 = 117162

[NB The intervals become narrower as  gets larger even though


h
Σ
¡
 −

¢2i
= (− 1)2 Convince yourself by calculating the expected length of a sample
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size of  = 10.]

6.2 Two independent samples

Example 6.4

Two operators are asked to analyse 10 samples each of a mixture which contains exactly 14.6%

iron. The one operator broke two test tubes, with the result that he has only eight analyses. Their

determinations of the iron content were as follows:

Operator A: 146 145 148 144

142 148 147 146

Operator B: 143 146 150 146

141 151 150 146

143 146

Is there reason to believe that the two operators differ with respect to precision, in other words does

one operator show greater variation in his determination than the other?

Example 6.5

A manufacturer of prestige cars has a choice between two makes of fan belts to install in the cars.

He wants to use the make with the least variation in lifetime, because the lifetime of any given fan

belt can then be predicted accurately and the belt replaced before it breaks. (The mean lifetime is

not of prime importance.) However, make A is cheaper, and he wants to use B only if its standard

deviation is less than 80% of the standard deviation of A. He tests a number of fan belts of each

make, and the results (in thousands of km) are as follows:

Make A: 44; 44; 49; 38; 46; 41; 50; 46; 50; 42

Make B: 50; 51; 50; 48; 53; 48; 50

Do these observations confirm that the standard deviation of B is less than 0.8 times that of A?

We use the following model for this type of problem:

Let (11  11) and (21  22) be two independent random samples from 
¡
1; 

2
1

¢
and
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¡
2; 

2
2

¢
distributions respectively. Thus in total 11  11  21  22 are (1 + 2)

independent random variables.

From result 1.3 we know that Σ
¡
1 −1

¢2
21 and Σ

¡
2 −2

¢2
22 are independent 21−1 and

22−1 variates respectively. Thus it follows from definition 1.21 that  =

¡
21−1

¢
 (1 − 1)¡

22−1
¢
 (2 − 1)

has an

(1−1);(2−1) distribution.

In other words

 =
Σ
¡
1 −1

¢2
21 (1 − 1)


Σ
¡
2 −2

¢2
22 (2 − 1)

=
21
21


22
22

=
22
21
· 

2
1

22

has an 1−1;2−1 distribution, where

1 =
1

1

1P
1

1; 2 =
1

2

2P
1

2;

21 =
1

1 − 1Σ
¡
1 −1

¢2
; 22 =

1

2 − 1Σ
¡
2 −2

¢2


Aha, and here we have the key to a test statistic.

We use as test statistic

 =
22
21
· 

2
1

22
∼ 1−1;2−1

Since this follows a "standard distribution" which has been studied and for which we have tables with

critical values, the last problem to solve is to express the null hypothesis in such a way that
∙
22
21

¸
will

"disappear" and thus we will only have to compute a statistic based on the sample outcomes of two

independent samples.

We wish to test 0 : 
2
1 = 22 against three possible alternatives.

(A) 1 : 
2
1 6= 22

(B) 1 : 
2
1  22
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(C) 1 : 
2
1  22

The trick is to "manipulate" 0 : 
2
1 = 22 and rewrite it as the equivalent expression 0 :

22
21
= 1

This means that the three possible alternatives will change accordingly to

(A) 1 :
22
21
6= 1

(B) 1 :
22
21

 1

(C) 1 :
22
21

 1

We can even take all the possible hypotheses a step further (to a more general expression) by

replacing the 1 with a known constant (call it ).

What does this imply?

0 :
22
21
=  means we are actually testing

0 : 
2
2 = 21 (or 0 : 

2
1 =

µ
1



¶
22 if you prefer!)

Before we apply this to our two examples (which were introduced at the beginning of this section)

we need to clarify how to obtain the critical values. Do you recall that if  ∼  ; then
1


∼ ;?

(See result 1.4.)

We assume the shorthand notation ; ; to mean  [ ≥ ; ;] =  Thus, to obtain the lower

critical value from tables V, VI and VII, we use the fact that 1−; ; =
1

;;


Please revisit exercise 1.2 and example 1.11 of study unit 1.

For example if  ∼ 3;6 then  [0975;3;6    0025;3;6] = 095

Thus 

∙
1

0025;6;3
   0025;3;6

¸
= 095

If we use table VI it follows that 
∙
1

147
   66

¸
= 095

It is important to realise that there will always be a connection between a hypothesis test and the

derivation of a confidence interval. The one is only a different algebraic manipulation of the other.

Back to the critical values, we may find critical values such that



µ

1−

2
;1−1;2−1 

22
21

21
22

 
2
;1−1;2−1

¶
= 1−   () 
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Please note that instead of writing  (lower value    upper value) = 1−  we have replaced

"lower value" with the correct notation; replaced  with
22
21
· 

2
1

22
and replaced "upper value" with the

correct notation. What is the point I am trying to make? Expression () is really simple and the

replacements make it look very complicated.

For one-sided critical values we use the following two expressions:



∙
22
21
· 

2
1

22
 ;1−1;2−1

¸
= 1−   ()

and



∙
1−;1−1;2−1 

22
21
· 

2
1

22

¸
= 1−   () 

The critical values given in expression () can be used to test

0 :
22
21
=  (where  is a specified positive number) against

1 :
22
21
6=  because we will reject 0 in favour of 1 if

 ≤ 1−2;1−1;2−1 or if  ≥ 2;1−1;2−1

Expression () is also the first step in the derivation of a two-sided confidence interval for
22
21



This we find as
µ

lower value
21

2
2

;
upper value

21
2
2

¶


In other words, we are (1− ) 100% confident that the ratio
22
21

will fall between

∙
1−2;1−1;2−1

21
2
2

;
2;1−1;2−1

21
2
2

¸


We will use expression () to test 0 against 1 :
22
21

  and we will reject 0 in favour of 1 if

 =
22
21
· 

2
1

22
≥ ;1−1;2−1

Similarly, we will use expression () to test 0 against 1 :
22
21

  and we will reject 0 in favour of

1 if  =
22
21
· 

2
1

22
≤ 1−;1−1;2−1
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Are you able to derive the relevant one-sided confidence intervals for
22
21

and how will you interpret

and apply them?

Please note:

Do you recall from section 6.1 that the 2-test statistic changed depending on whether  was known

or unknown? Exactly the same could happen with the two-sample problem resulting in an  -test.

1. If 1 and 2 are known, we simply replace the  in 2 by  (for  = 1 and 2) and then the

 -statistic has 1 and 2 degrees of freedom.

⇒  =
22
21
·

1P
=1

(1 − 1)
2 1

2P
=1

(2 − 2)
2 2

∼ 1;2

2. Either of the two samples may be regarded as the "first" sample, provided that the null and

alternative hypotheses correspond with this. (This is a way to avoid the "awkward" lower critical

value when using expression () for one-sided testing by switching to expression ().)

Example 6.4 (continued)

We assume that both the analyses represent normal distributions and that they are independent

(which seems logical). We have to test

0 : 
2
2 = 21 written as

22
21
= 1 (ie  = 1) against

1 : 
2
2 6= 21 written as

22
21
6= 1

We use the test statistic⇒  =
22
21
·

1P
=1

(1 − 1)
2 1

2P
=1

(2 − 2)
2 2

because we assume that 1 = 2 = 146 (a

known value).

Computation of  :

8P
=1

(1 − 146)2 = 030;
10P
=1

(2 − 146)2 = 100 1 = 8; 2 = 10
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∴  =
22
21
·

8P
=1

(1 − 146)2 8
10P
=1

(2 − 146)2 10

= (1)
(030) 8

(100) 10

=
00375

01

= 0375

Critical values

Under 0 the test statistic has an 8;10 distribution. We choose  = 010 and find from table V that

005;8;10 = 307

095;8;10 = 1005;10;8 = 1335 = 030

Since 030    307 we cannot reject 0 The two operators do not differ with respect to precision.

Example 6.5 (continued)

Let us call make A the first sample and make B the second sample. If we once more assume that

we have two independent random samples from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions respectively,

we can use the F-test to test whether "the standard deviation of B is less than 0.8 times that of A".

0 : 21 = 08 that is

0 :
22
21
= 064 against

1 :
22
21

 064
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We compute

1 = 45; Σ
¡
1 −1

¢2
= 144; 1 − 1 = 9; 21 = 1449 = 16

2 = 50; Σ
¡
2 −2

¢2
= 18; 2 − 1 = 6; 22 = 186 = 3

Since we have a one-sided test we use expression () to find the critical value.

In table V we find 005;9;6 = 410 We reject 0 if   410.

Now

 =
22
21
· 

2
1

22

= 064× 16
3

≈ 34133

Since  = 34133  410 we do not reject 0 There is insufficient evidence that the standard

deviation of make B is less than 0.8 times that of make A. The manufacturer will probably decide to

use make A.

It also follows from expression (B) that



∙
22
21
· 

2
1

22
 005;9;6

¸
= 1− 005

∴ 

∙
22
21


410

21
2
2

¸
= 095

This gives an upper bound for a 95% one-sided confidence interval:

410

21
2
2

=
410

163
= 077

A 95% one-sided confidence interval for
22
21

is therefore [0; 077) which shows that 0.64 is just inside

the interval. We notice that 1 is not inside the interval, in other words the two sample variances are

significantly different (0 : 
2
2

2
1 = 1 is rejected) at the 5% level.
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6.3 Paired observations

Example 6.6

A factory produces shafts which must have very high precision. An engineer has designed a device

which, he claims, can reduce the variability of the product. (Although this device also reduces

the mean diameter, this does not matter because the machine which produces the shafts can

be readjusted to produce slightly thicker shafts.) To test the idea, six shafts were produced and

measured, and then passed through the device. The results are as follows:

Shaft no 1 2 3 4 5 6

Diameter (mm) before treatment 9978 10002 9990 9986 9999 9985

Diameter (mm) after treatment 9914 9902 9910 9910 9911 9913

Do these observations indicate that the variance was decreased by the treatment?

We may again postulate the model  ∼ 
¡
; 

2


¢
  = 1  ;  = 1; 2 and assert that

P
=1

¡
 −

¢2
2 ∼ 2−1;  = 1; 2

but unfortunately these two chi-square variates are not independent and their ratio does not give

rise to an  -distribution. The distribution of their ratio depends on the joint distribution of each pair

(1  2)  If we are prepared to assume that each pair is a random observation from a bivariate

normal distribution (cf unit 1), there is a method for dealing with the problem.

NB The assumption of bivariate normality is not a trivial assumption.

The method of analysing the variances of the joint distribution is developed in theorems 6.2 and 6.3.
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Theorem 6.2

Let 1 and 2 have a bivariate normal distribution. Then   (1) =   (2)

if and only if (1 −2) and (1 +2) are uncorrelated.

Proof

Let  (1) = 1;  (2) = 2;   (1) = 21;

  (2) = 22;  (1; 2) = 12

Then  (1 −2; 1 +2) =  [(1 −2)− (1 − 2)] [(1 +2)− (1 + 2)]

=  [(1 − 2)− (2 − 2)] [(1 − 1) + (2 − 2)]

= 
h
(1 − 1)

2 − (2 − 2)
2
i

=   (1)−   (2) = 21 − 22

It follows that  (1 −2; 1 +2) = 0 (ie (1 −2) and (1 +2) are uncorrelated)

if and only if 21 = 22

Please note: If 1 and 2 have a bivariate normal distribution, and we define 1 = 1 − 2 and

2 = 1 +2 then 1 and 2 have a bivariate distribution as well. For the newly created bivariate

distribution we will have

 (1) =  (1)− (2) ;  (2) =  (1) + (2),

variances

  (1) =   (1) +   (2)− 2 (1; 2)

  (2) =   (1) +   (2) + 2 (1; 2)

and covariance

 (1; 2) =   (1)−   (2).

Now consider a random sample (1 ; 2)   = 1   from the bivariate normal distribution of 1

and 2 Let us define the following:

1 =
1


Σ1 ; 2 =

1


Σ2 ; 11 = Σ

¡
1 −1

¢2
;
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22 = Σ
¡
2 −2

¢2
; 12 = Σ

¡
1 −1

¢ ¡
2 −2

¢
.

Also let

1 = 1 −2 ; 2 = 1 +2   = 1  .

Then

 1 = 1 −2;  2 = 1 +2

Now (1 ; 2)   = 1   may be regarded as a random sample from a bivariate normal distribution,

and we may use theorem 5.4, which states that if  is the sample correlation coefficient of 1 and

2 then

 =

√
− 2√
1−2

has a −2 distribution, provided 1 and 2 are uncorrelated.
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Theorem 6.3

Let  be the sample correlation coefficient between 1 and 2 as defined above. Then
√
− 2

√
1−2 =

√
− 2 (11 − 22) 2

p
1122 − 212

Proof

 = Σ
¡
1 −  1

¢ ¡
2 −  2

¢


q
Σ
¡
1 −  1

¢2
Σ
¡
2 −  2

¢2
But Σ

¡
1 −  1

¢ ¡
2 −  2

¢
= Σ

£¡
1 −1

¢− ¡2 −2

¢¤ £¡
1 −1

¢
+
¡
2 −2

¢¤
= Σ

¡
1 −1

¢2 −Σ ¡2 −2

¢
= 11 − 22

Σ
¡
1 −  1

¢2
= Σ

£¡
1 −1

¢− ¡2 −2

¢¤2
= Σ

¡
1 −1

¢2 − 2Σ ¡1 −1

¢ ¡
2 −2

¢
+Σ

¡
2 −2

¢2
= 11 − 212 + 22

Likewise Σ
¡
2 −  2

¢2
= 11 + 212 + 22

∴ Σ
¡
1 −  1

¢2
Σ
¡
2 −  2

¢2
= (11 − 212 + 22) (11 + 212 + 22)

= (11 + 22)
2 − 4212

∴  =
11 − 22q

(11 + 22)
2 − 4212

∴ 2
¡
1−2

¢
= (11 − 22)

2 4
¡
1122 − 212

¢
(after some manipulation)

from which the theorem follows.

Result 6.1

If we apply these two theorems, we see that

 =
√
− 2 11 − 22

2
p
1122 − 212

has a −2 distribution provided 0 : 
2
1 = 22 is true.

This result may be used to perform one or two-sided tests of 0
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Example 6.6 (continued)

We want to test 0 : 
2
1 = 22 against 1 : 

2
1  22 (ie one-sided testing). For the critical value, we

choose the 5% level and find 005;4 = 2132 Reject 0 if  ≥ 2132

We perform the calculations of the data in tabular form as follows:

1 2 1 −1

¡
1 −1

¢2
2 −2

¡
2 −2

¢2 ¡
1 −1

¢ ¡
2 −2

¢
9978 9914 −012 00144 004 00016 −00048
10002 9902 012 00144 −008 00064 −00096
9990 9910 000 00000 000 00000 00000

9986 9910 −004 00016 000 00000 00000

9999 9911 009 00081 001 00001 00009

9985 9913 −005 00025 003 00009 −00015
59940 59460 000 00410 000 00090 −00150

From this it follows that

1 =
59940

6
= 999

2 =
59460

6
= 991

11 = 0041; 12 = −0015; 22 = 0009

 =

√
4 (0041− 0009)

2

q
(0041) (0009)− (0015)2

=
0032√
0000144

=
0032

0012
= 26667

Since 26667  2132 we reject 0 at the 5% level. We are inclined to agree with the engineer that

this device reduces the variance.

6.4 More than two independent samples
We now consider the following model:

Let    = 1  ;  = 1   be independent random variables with  ∼ 
¡
; 

2


¢
. We wish

to test the null hypothesis

0 : 
2
1 = 22 =  = 2 against the alternative 1 : 

2
 6= 2 for at least one  6= 

Let  be the sample mean and 2 the sample variance of the -th sample ( = 1  ), that is
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 =
1



P
=1

 ; 2 =
1

− 1
P

=1

¡
 −

¢2


Thus we have  sample variances 21   
2
 and we want to test whether they differ significantly at

the 100% level. If we select two of the sample variances at random, say 2 and 2  then we know

that 2
2
 will have an −1;−1 distribution. However, if we arrange 21   

2
 from the smallest to

the largest, the distribution of the ratio

 = max

2 min


2

will not resemble the F-distribution at all. The distribution of  has been studied by statisticians in

the past, and critical values are given in table E. Using this table is easy enough. For example, if six

sample variances are computed from six independent samples of size 11 each, then each sample

variance has 10 degrees of freedom. If the ratio of the largest to the smallest exceeds 6.92 0 is

rejected at the 5% level.

In order to use table E the sample sizes must be equal. In the case of unequal sample sizes one may

use another test known as Bartlett’s test, but you will not be required to know that test for examination

purposes.

Table E:
Percentage points of the ratio, 2max

2
min

Upper 5% points

  = 2 3 4 5 6

2 390 875 142 202 266

3 154 278 392 507 620

4 960 155 206 252 295

5 715 108 137 163 187

6 582 838 104 121 137

7 499 694 844 970 108

8 443 600 718 812 903

9 403 534 631 711 780

10 372 485 567 634 692

12 328 416 479 530 572

15 286 354 401 437 468

20 246 295 329 354 376

30 207 240 261 278 291

60 167 185 196 204 211

∞ 100 100 100 100 100

 = number of samples
 = degrees of freedom for each sample variance
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Example 6.7

Four independent samples of size  = 5 from assumed 
¡
 2

¢
distributions yield the following

results:

Sample 1 16 16 15 14 14

Sample 2 20 17 17 16 15

Sample 3 20 20 19 18 18

Sample 4 22 22 21 21 19

Test 0 : 
2
1 = 22 = 23 = 24 at the 5% level of significance.

Solution

We have to test 0 : 
2
1 = 22 = 23 = 24 against 1 : 

2
 6= 2 for at least one  6= 

1 = 15
P

1 = 75
P

2
1 = 1129

2 = 17
P

2 = 85
P

2
2 = 1459

3 = 19
P

3 = 95
P

2
3 = 1809

4 = 21
P

4 = 105
P

2
4 = 2211

 = 5

21 =
1

− 1

ÃP
2
1 −

(
P

1)
2



!
22 =

1

− 1

ÃP
2
2 −

(
P

2)
2



!

=
1

5− 1

Ã
1 129− (75)

2

5

!
=

1

5− 1

Ã
1 459− (85)

2

5

!

=
1

4
(4) =

1

4
(14)

= 1 = 35

23 =
1

− 1

ÃP
2
3 −

(
P

3)
2



!
24 =

1

− 1

ÃP
2
4 −

(
P

4)
2



!

=
1

5− 1

Ã
1 809− (95)

2

5

!
=

1

5− 1

Ã
2 211− (105)

2

5

!

=
1

4
(4) =

1

4
(6)

= 1 = 15
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The test statistic is

 =
max

2

min

2

=
35

1

= 35

The critical value is 206 0 is rejected if   206

Since 35  206, we do not reject 0 at the 5% level and conclude that the variances of the four

populations are equal.

6.5 Computers and testing for homogeneity of variance
Most statistical software packages will automatically include a test for the equality of variances when

you request to do a test for means. This also happens when you request to do an ANOVA test for

means. (Both these "tests for means" will be dealt with in the next study unit.)

In statistical software jargon, the testing of equality of variances is referred to as "testing for

homogeneity of variance". Usually these tests are not treated on their own, in other words as

separate tests, but are considered to be part of "testing the assumptions" for other tests!

The output below in figure 6.2 shows the output for a test for the difference between two means

(which you need not worry about at this stage because it will be dealt with in the next study unit) and

you must please take note of the first two lines. The output was produced by using the statistical

package SPSS.

The results for the test for the equality of variances is a so-called F-test. It is not computed in the

way we computed F in section 6.2 and the definition of Levene’s test falls beyond the scope of this

module. However, you need to be able to interpret the first two lines of the output.

The computed value of the F-statistic is 0.218 and the -value associated with this specific value is

0.641. Since -value  ⇒ we cannot reject 0 and for this specific data set we may assume that

the variances of the two groups are the same.
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Independent Samples Test

.218

.641

1.145 1.145

198 197.744

.254 .254

2.5419413 2.5419413

2.2206805 2.2206805

-1.8372795 -1.8373144

6.9211620 6.9211970

F

Sig.

Levene's Test for
Equality of Variances

t

df

Sig. (2-tailed)

Mean Difference

Std. Error Difference

Lower

Upper

95% Confidence Interval
of the Difference

t-test for Equality of
Means

Equal variances
assumed

Equal variances
not assumed

normal

Figure 6.2: SPSS output

If you compare the above with the output in figure 6.3 it shows that JMP provides more than one test

that the variances are equal. Using the same data set, JMP also computed Levene’s F as 0.2177

with a -value of 0.6413 but it gives four other tests as well. This output is again obtained as part of

the output when we test for means. JMP computes the F-test as we defined it in section 6.2 in the

study guide. (The last line of the group of F Ratio tests.)

0

5

10

15

S
td

 D
e

v

0 1

group

0

1

Level

100

100

Count

15.98282

15.41725

Std Dev

12.58769

11.94631

MeanAbsDif to Mean

12.54831

11.94125

MeanAbsDif to Median

O'Brien[.5]

Brown-Forsythe

Levene

Bartlett

F Test 2-sided

Test

0.1312

0.1921

0.2177

0.1278

1.0747

F Ratio

1

1

1

1

99

DFNum

198

198

198

.

99

DFDen

0.7176

0.6617

0.6413

0.7207

0.7207

p-Value

Welch Anova testing Means Equal, allowing Std Devs Not Equal

1.3103

F Ratio

1

DFNum

197.74

DFDen

0.2537

Prob > F

1.1447

t Test

Tests that the Variances are Equal

Figure 6.3: JMP output

Refer to activity 6.9 to produce output to test 0 : 
2
1 = 22

Refer to activity 6.14 to produce output to test 0 : 
2
1 = 22 = 23



174

Exercise 6.1

1. Explain why and under what conditions you will use the following confidence intervals for 2:

"
Σ
¡
 −

¢2
2;−1

; ∞
#

or

"
0;
Σ
¡
 −

¢2
21−;−1

#
or

⎡⎣Σ ( − )2

21
2
;

;
Σ ( − )2

2
1−1
2
;

⎤⎦ or"
Σ ( − )2

2;
; ∞

#

2. Consider the following sample from a 
¡
; 2

¢
distribution:

6 10 14 12 4 11 15 8 7 10 13

(a) Test 0 :  = 5 against the alternative 1 :   5 at the 5% level assuming

(i)  is unknown

(ii)  = 9

(b) Find a 95% one-sided confidence interval of the form (0; ) for  assuming

(i)  is unknown

(ii)  = 9

3. A 90% two-sided confidence interval for 2 is constructed from a sample of 10 observations from

a 
¡
; 2

¢
distribution. What is the expected length of the interval in the following cases?

(a)  is known

(b)  is unknown

4. Suppose a 95% confidence interval is to be constructed for the variance of a normal distribution

with unknown mean. What is the smallest sample size  which would ensure that the expected

length of the confidence interval is at most 252?
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5. At a certain factory a product is produced in two identical plants. A modification of the process is

suggested for increasing the daily yield. The one plant was then modified and the yields of the

two plants were recorded on six consecutive days:

Unmodified: 24; 35; 30; 28; 31; 32 metric tons
Modified: 29; 35; 32; 28; 36; 32 metric tons

Treating the data as 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
samples respectively, test 0 : 

2
1 = 22 (two-

sidedly) at the 10% level. Also find a 90% confidence interval for 21
2
2

6. Two independent random samples, from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions respectively,

yielded the following statistics:

Sample 1: 1 = 10 Σ1 = 20 Σ2
1 = 148

Sample 2: 2 = 12 Σ2 = 36 Σ2
2 = 152

(a) Test the claim that the standard deviation of the first population is more than twice the standard

deviation of the second population (5% level of significance).

(b) Compute a 95% one-sided confidence interval for 12

7. Consider the following 11 observations from a bivariate normal distribution:

1 29 37 23 42 14 36 39 25 31 38 16

2 27 31 25 34 22 28 37 31 33 34 28

Test 0 : 
2
1 = 22 against 1 : 

2
1  22 at the 10% level.

8. A random sample of 10 students were subjected to an arithmetic test, the result of which is

denoted by  The students were then given remedial training and tested again, the result being

denoted by  :

 25 26 27 29 30 31 32 33 33 34

 47 51 49 50 50 53 48 49 52 53

Regard these results as a random sample from a bivariate normal distribution, and test, at the

10% level of significance, whether the students were more uniform after the remedial training

than before..3
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9. In order to test whether four operators maintain the same uniformity in determining the sodium

content of a mixture, each operator was given six samples containing exactly 20% sodium. Their

determinations were as follows:

Operator 1 200 204 197 195 207 203

Operator 2 194 204 192 202 197 205

Operator 3 190 192 207 214 211 198

Operator 4 201 199 203 195 206 196

Test at the 5% level whether there is a difference in the variances of the four populations.

10. Three independent random samples of size  = 10 from 
¡
 ; 

2
¢

distributions, with 1 = 5

2 = 7 and 3 = 8 (known) yielded the following statistics:

Σ2
1 = 390 Σ2

2 = 730 Σ2
3 = 740

Σ1 = 60 Σ2 = 80 Σ3 = 85

Test 0 : 
2
1 = 22 = 23 at the 5% level of significance. (Be careful with your definition of 2 since

 is known!)
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6.6 Learning outcomes

After studying study unit 6, you should be able to

¥ perform hypothesis tests concerning the variance of a single sample

¥ derive one or two-sided confidence intervals for the variance of a single sample

¥ perform hypothesis tests concerning the equality of the variances of two
independent samples

¥ derive one or two-sided confidence intervals for the ratio
22
21

of two

independent samples

¥ perform hypothesis tests concerning the equality of the variances of paired observations

¥ perform hypothesis tests concerning the equality of the variances of more than two
independent samples

¥ interpret the computer output of JMP concerning the homogeneity of variance tests
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STUDY UNIT 7

Inference on means

7.1 One-sample problem

Let 1   be independent random variables with  ∼ 
¡
; 2

¢
. In previous study units we

have seen how one would investigate the two basic assumptions, independence and normality, and

how one would find out more about the variance, 2 We now turn our attention to 

We already know that  =
1


Σ is an unbiased estimator for  irrespective of whether the

underlying distribution is normal or not. The assumption of normality enables us to do more than

just estimate  The basic result, which you learned in first-year statistics and will have gathered by

now is of prime importance in statistical inference, is repeated here.

Theorem 7.1

Let 1   be independent 
¡
; 2

¢
variates and let

 =
1


Σ; 2 =

1

− 1Σ
¡
 −

¢2
. Then

(a)  is a 
¡
; 2

¢
variate, that is

√

¡
 − 

¢
 is a  (0; 1) variate;

(b) (− 1)22 is a 2−1 variate;

(c)  and 2 are independent;

(d)  =
√

¡
 − 

¢
 is a −1 variate.

This theorem is used in various ways to test one or two-sided hypotheses about  or to find one or

two-sided confidence intervals for  If 2 is known (a very rare occurrence in practice) we use (a). If

2 is unknown, we use (d).
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In result (a) we have  ∼  (0; 1) which implies that we use table II (Stoker) to obtain the critical

value and in result (d) we have  ∼ −1 which implies that we use table III (Stoker) to obtain the

critical value.

To test 0 :  = 0 against

1 :   0 or

1 :   0 or

1 :  6= 0

we summarise the application of theorem 7.1 in the following flow chart (which is a revision of first-

year statistics!)

(a) 2 is known
... 2 is unknown (b)
...

We use as a test statistic
. &

 =
 − 0

√


...  =
 − 0

√


...
We use the critical value

. &
One-sided: 

... ;−1

Two-sided: 
2

... 2;−1

...
A (1− ) 100% confidence interval for 

. &
 − 2

√

≤  ≤  + 2

√


...  − 2;−1
√

≤  ≤  + 2;−1

√


For a lower (1− ) 100% one-sided confidence interval, the probability statement  ( ≤ ) = 1−
is reorganised to obtain

 ≥  − 
√


µ
ie the interval

µ
 − 

√

; ∞

¶¶
.

(This confidence interval may be used to test the alternative 1 :   0.)

For an upper (1− ) 100% one sided confidence interval, the probability statement  ( ≥ −) =
1−  is reorganised to obtain

 ≤  + 
√


µ
ie the interval

µ
−∞;  + 

√


¶¶
.

(This confidence interval may be used to test the alternative 1 :   0.)
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Tolerance intervals

If 1 2   is a random sample from a distribution, say a 
¡
; 2

¢
distribution, then we have

already seen that a confidence interval for  is given by

 − 1
2
;−1

√

≤  ≤  + 1

2
;−1

√



As  → ∞ the width of this interval tends towards zero. Suppose, for example, the random variable

 represents the breaking strength of a beam selected at random from a population of beams to be

used in constructing house roofs. If a random sample of these beams is selected to construct the

roof of my house, and if the roof were to cave in later, it would be small consolation to me knowing

that the mean  of all the beams conformed to tight specifications. A tolerance interval would be

more appropriate. Define two percentiles 1 and 2 such that  (1    2) = 

Then a tolerance interval is of the form
¡
 −;  +

¢
where  is read from a table, and

where


¡
 − ≤ 1 ≤ 2 ≤  +

¢
= 1− 

For example if  = 09 and  = 005 then we would be 95% sure that at least 90% of all the individuals

in the population lie between  − and  +

Tolerance intervals are generally wider than confidence intervals for the mean, and as →∞

 − → 1

 + → 2

We would not expect you to compute a tolerance interval manually but only electronically using JMP.

Please see activity 7.5 in the workbook.
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7.2 The power of the test and the noncentral t-distribution
Something that was not discussed in detail in your first-year modules is the power of the test.

In definition 2.7 of section 2.5 of study unit 2 we defined the power of the test as the probability that

0 is rejected when 1 is true. We actually defined the power as 1−  where  is the probability of

a type II error.

How will we compute the power for situation (a) of theorem 7.1?

We know that 0 =
 − 0

√


is a  (0; 1) variate provided that 0 :  = 0 is trueµ
⇒  ∼ 

µ
0;

2



¶¶


What is the distribution of 0 if 0 is not true?

Suppose 1 :  = 1 is true. Then 1 =
 − 1

√

∼  (0; 1)⇒  ∼ 

µ
1;

2



¶


   
 

β = P(accept H0 / H1 true)

μ0

α

μ1

1-β 

Figure 7.1: Illustration of  and  for right-sided testing

It is a laborious process, but  can be computed for different values of 1 where 1  0 The closer

1 lies to 0, the bigger a type II error becomes, and the further 1 moves to the right the smaller 

becomes. (See activity 7.1 of the workbook.)

The authors of the textbook say that "statisticians are often unaware that they use certain words in a

completely different way than other professionals" [p. 102]. They give a list of definitions for model;

parameters; hypotheses, et cetera and you can read at the bottom of page 103 how they define

"Power, β level" in general.
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What is now very ironic and confusing, is that Sall, Creighton and Lehman use exactly the opposite

symbols than we do! They define 1−  = probability of type II error and thus  = power of the test.

If you click on the help function of JMP, you will see that JMP uses the same symbols as our study

guide.

READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Pages 138 - 139 Testing hypotheses: Terminology

This does not matter! As long as we define the concept "type II error" and "the complement of a type

II error" the same! What they define as "power" is exactly the same as what we define as power.

How will we compute the power for situation (b) of theorem 7.1?

We know that 0 =
 − 0

√

=
√

¡
 − 0

¢
 is a −1 variate provided 0 :  = 0 is true. The

-distribution is symmetric about zero and has about the same shape as the normal distribution,

except that it is more peaked and has more probability in the tails. What is the distribution of 0 if 0

is not true?

The noncentral t-distribution

If we know that  6= 0 then 0 =

√

¡
 − 0

¢


has a so-called non-central t-distribution with

noncentrality parameter  =
p
 (− 0)

It is not necessary for our purposes to derive an expression for the pdf of the distribution. It is

sufficient to know that the distribution is not symmetric and lies more to the right of zero if   0 and

more to the left of zero if   0

Figure 7.2

This is a situation where a computer can be a marvellous educational tool!
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READ THROUGH
Sall, Creighton and Lehman, Chapter 7 Univariate distributions:

one variable, one sample

Pages 148-149 Power of the t-test

See activity 7.2 of the workbook on how to do a "Power animation" with JMP.

Formally, we may define a noncentral variate  ; as follows:

Definition 7.1

Let  and  be independent with  ∼ 
¡
; 2

¢
and



2
∼ 2  Then

 = 
p
 =

p
(2) 

is a noncentral t-variate with  degrees of freedom and noncentrality

parameter  =





To find the noncentrality parameter of any t-statistic, we replace the numerator (the normal variate)

by its expected value and the denominator, which is the square root of a chi-square variate divided

by its degrees of freedom, by the square root of the expected value of the square of the denominator.

Thus, in definition 7.1 we have

 =
p

(2) 


Now

 ∼  (; 1) ∴  () = 

2 ∼ 2 ∴ 
¡
2

¢
= 

∴ 
¡
2

¢
 = 1

∴  =
√
1
=






In the expression

0 =

√

¡
 − 0

¢


=

√
 −√0 → numerator√

2 → denominator



184

we replace "numerator" by "E(numerator)" =
√


¡

¢−√0

=
√
−√0

=
√
 (− 0)

(because we know that 
¡

¢
= ). Similarly  (squared denominator) = 

¡
2
¢
= 2

So that  =
 (numerator)p

 (squared denominator)

=

√
 (− 0)√

2

=

√
 (− 0)




It is important to note that  is a function of three different quantities:
√
; difference (− 0) and 

The figure below illustrates the connection between   and  and it is apparent from the figure that

 will decrease as  increases.

Figure 7.3

Since the power of the test = 1−  the power will increase as  increases.

Table F contains the power of the two-sided -test. In order to use the table

one has to compute  = 
√
2;  represents the degrees of freedom as

usual. The table gives 100× (power) to the nearest integer.

Example 7.1

It is desired to test 0 :  = 20 against 1 :  6= 20 using a sample of size  = 8 from a 
¡
; 2

¢
distribution. What will the power of the test be if  = 20 + 15 (ie if the true mean is 11

2
standard

deviations away from the hypothesised value)?
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Solution

We know that 0 is tested against 1 with the test statistic 0 =

√

¡
 − 0

¢


∼ −1

where  =

√
 (− 0)




We have  = − 1 = 7;  =

√
8 [(20 + 15)− 20]



=
√
8 (15)

and  =
1√
2
 =

r
8

2
× 15 = 3

From table F we read off the power, namely (approximately) 095 if  = 005 (or 075 if  = 001).
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Table F:
100× (power) of the two-sided -test with level 

 6 7 8 9 10 12 15 20 30 60 ∞  = degrees of freedom
12 30 31 32 33 34 35 36 37 38 39 40

13 35 36 37 38 39 40 41 42 43 44 45

14 39 40 41 42 43 45 46 47 49 50 51

15 43 45 46 47 48 50 51 52 54 55 56

16 48 50 52 53 54 55 57 58 59 61 62

17 52 55 57 58 59 60 62 64 65 66 67

18 57 60 62 63 64 65 67 69 70 71 72

19 62 64 65 67 68 69 71 73 74 76 77

20 66 68 70 71 72 74 75 77 78 80 81

21 70 72 74 75 77 78 79 81 82 83 85

22 74 76 78 79 80 81 83 84 86 87 88

23 77 80 81 83 84 85 86 87 88 89 90

24 81 83 85 86 87 88 89 90 91 92 93

25 84 86 87 88 89 90 91 92 93 94 94

26 86 88 90 91 91 92 93 94 95 95 96

27 89 90 92 93 93 94 95 95 96 96 97

28 91 92 93 94 95 95 96 96 97 97 98

29 92 94 95 95 96 96 97 97 98 98 98

30 94 95 96 96 97 97 98 98 98 99 99

31 95 96 97 97 98 98 98 99 99 · ·
32 96 97 98 98 98 99 99 · · · ·
33 97 98 98 99 99 · · · · · ·
34 98 98 99 · · · · · · · ·
35 98 99 · · · · · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

 = 005

20 31 33 37 40 42 45 48 50 54 57 60

22 39 42 46 49 51 54 58 61 64 67 70

24 47 51 55 58 60 63 67 70 74 77 80

26 55 60 63 67 69 72 76 79 82 85 87

28 62 68 71 74 77 80 83 86 88 90 92

30 69 75 78 81 83 86 89 91 92 94 95

32 75 81 84 87 88 90 93 94 96 97 97

34 81 86 88 91 92 94 95 97 98 98 99

36 86 90 92 94 95 96 97 98 99 99 ·
38 90 93 95 96 97 98 99 99 · · ·
40 93 95 97 98 98 99 · · · · ·
42 95 97 98 99 99 · · · · · ·
44 96 98 99 · · · · · · · ·
46 97 99 · · · · · · · · ·
48 98 · · · · · · · · · ·
50 99 · · · · · · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

 = 001
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Notes on the use of table F

(a) If a two-sided test is performed, the power does not depend on the sign of  Due to the symmetry

of the problem, 0 :  = 0 is equally likely to be rejected if  = 0+ or  = 0−; in the one

case  =
√
 and in the other  = −√ Thus, when dealing with a two-sided test, the definition

of  should actually be  =
||√
2


(b) Table F enables one to decide on the sample size required to ensure a chosen power (eg

1 −  = 099) when  is a specified multiple of  away from 0 This is done by reading off

the power of a number of sample sizes, and selecting the smallest  such that 1−  ≥ 099

(c)  (or ) contains two unknown parameters: −0 and  If the problem is stated as in (a) and (b),

this does not complicate the problem, since  is actually a function of
(− 0)


 Sometimes a small

pilot sample is drawn to estimate  and  and these estimated values are used to estimate  This

estimate is subject to a random variation, but does give a rough idea of the sample size required.

Sample size tables exist which make it unnecessary to compute  for a number of sample sizes

and find the sample size by trial and error, but since such tables are not included in our book of

tables they will not be dealt with here.

(d) From table F it is obvious that the power of the -test increases as  increases. The definition of 

(as amended) is  =

r


2

|− 0|


and it is clear that  and thus the power, increases as

(i)  increases

(ii) |− 0| increases

(iii)  decreases

7.3 Two-sample problem; independent samples
We now consider the following problem: we have two independent random samples of sizes 1 and

2 respectively, and we want to test whether the population means are equal. We use the notation

(11  11) and (21  22) for the two samples. A model which is generally used for this

problem is the following:

Assume that  ;  = 1  ;  = 1 2 are independent random variables with  ∼ 
¡
; 

2
¢
.

We wish to test 0 : 1 = 2 or find a confidence interval for 1 − 2 Note the assumptions:

(a) Not only are the observations in each sample independent, but the two samples are mutually

independent.
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(b) The observations are normally distributed.

(c) The two population variances are equal, that is the variance of  does not depend on  This is

rather important. If we think the two variances are equal and they are unequal, it could have a

serious effect on the significance level and the power of the test or on the confidence level of the

confidence interval.

Luckily we already know how to verify (or at least investigate) these assumptions!

In order to make probability statements about 1 − 2 we simply use the results already known:

Let

 =
1



P
=1

 ; 2 =
1

 − 1
P
=1

¡
 −

¢2
;  = 1; 2

Then:

(a) 1 2 
2
1 and 22 are independent;

(b) 1 ∼ 

µ
1;

2

1

¶
; 2 ∼ 

µ
2;

2

2

¶

∴ 1 −2 ∼ 

µ
1 − 2;

2

1
+

2

2

¶
(Question: Would this be true if 1 and 2 were not independent?)

so that  =

¡
1 −2

¢− (1 − 2)



r
1

1
+
1

2

∼  (0; 1) ;

(c)
(1 − 1)21

2
∼ 21−1 and

(2 − 1)22
2

∼ 22−1 (see result 1.3)

so that  =

£
(1 − 1)21 + (2 − 1)22

¤
2

∼ 21+2−2

(Question: Would this be true if 21 and 22 were not independent?)

From (a), (b) and (c) and using the notation defined above, we rewrite theorem 1.4 as follows:
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Theorem 7.2

 =
r


(1 + 2 − 2)
∼ 1+2−2

where  =

£¡
1 −2

¢− (1 − 2)
¤


r
1

1
+
1

2q£
(1 − 1)21 + (2 − 1)22

¤
 (1 + 2 − 2)

=

¡
1 −2

¢− (1 − 2)



r
1

1
+
1

2

and 2 =

£
(1 − 1)21 + (2 − 1)22

¤
(1 + 2 − 2)

=

"
1P
=1

¡
1 −1

¢2
+

2P
=1

¡
2 −2

¢2#
(1 + 2 − 2)

2 is the (unbiased) estimator of 2 and is called a "pooled" (hence the subscript "p") estimator, since

we pool the sums of squares of deviations from the sample means of the two samples.

This is the well-known -statistic you used in first-year modules to test for the difference between two

means.

This -statistic is used in the usual way to test

0 : 1 − 2 = 0 (or 1 − 2 =  for that matter) against

1 : 1 − 2 6= 0 (ie 1 6= 2) or against

1 : 1 − 2  0 (ie 1  2) or against

1 : 1 − 2  0 (ie 1  2).

We simply replace (1 − 2) by 0 (or ) and compare  with 
2
;1+2−2

for two-sided testing or with ;1+2−2 for one-sided testing.
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A two-sided confidence interval for 1 − 2 is given by the probability statement



µ
1 −2 − 

2
;1+2−2

r
1

1
+
1

2
≤ 1 − 2 ≤ 1 −2 + 

2
;1+2−2

r
1

1
+
1

2

¶
= 1− 

Are you able to derive the confidence limits?

What is the power of the test? If 0 : 1 − 2 = 0 is not true, the

distribution of  is noncentral  with noncentrality parameter

 =
1 − 2



r
1

1
+
1

2



We may use table F as before to compute the power.

Example 7.2

Suppose we have two independent samples of size 16 each, and we wish to test 0 : 1 = 2

against 1 : 1 6= 2 What will the power of the test be if 1 − 2 = 15?

Solution

We know that 0 is tested against 1 using the test statistic  where  =
1 − 2



r
1

1
+
1

2



We have  = 1 + 2 − 2 = 30;  =
15



r
1

16
+
1

16

= 15
√
8 so that  =

1√
2
|| = 3

From table F we see that the power will be 0.98 at the 5% level and 0.92 at the 1% level.
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7.4 Paired observations
In certain problems, as also illustrated in study unit 6, we do not have two independent samples, but

rather  pairs of observations (1; 2)   = 1   such that

 (1) = 1  (2) = 2;   (1) = 21;   (2) = 22;  (1; 2) = 12

The problem is to test 0 : 1 = 2

In this case 21 and 22 (as defined in the previous section) are not independent, and it is not possible

to construct a statistic with a -distribution in a similar manner to that of the previous section. There

is a simple solution, however.

Let

 = 1 −2  = 1  

Then 1   form a random sample such that  ∼ 
¡
1 − 2; 

2
1 + 22 − 212

¢


Since we are not interested in 21 
2
2 and  we set 21 + 22 − 212 = 2 and also let  = 1 − 2

We consider 1   to be a random sample from a 
¡
; 2

¢
distribution and

we wish to test 0 :  = 0 This is exactly the one-sample problem dealt with in

section 7.1.

This means we "transform" the paired observations to a one-sample problem by means of

subtraction.

Example 7.3

Twelve people are randomly chosen and their pulse rate measured before and after being given a

specific dosage of a new drug. Do the results confirm a researcher’s theory that the drug quickens

heartbeat?

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Pulse rate before 90 70 68 68 75 80 75 74 70 88 65 64

Pulse rate after 80 59 80 77 87 70 82 62 61 79 58 75
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Solution

Let  = pulse rate before − pulse rate after, for  = 1 2  12

Patient () 1 2 3 4 5 6 7 8 9 10 11 12

 10 11 −12 −9 −12 10 −7 12 9 9 7 −11

We want to test 0 :  = 0 against 1 :   0 (If the drug increases heartbeat, the difference of

before minus after will be negative.)

 =

√

¡
 − 

¢


∼ −1

where

 =
12P
=1



12
=
17

12
= 14167;

2 =
1

11

12P
=1

¡
 − 

¢2
=
1

11

Ã
Σ 2 −

(Σ)
2

12

!

=
1

11

Ã
1 215− (17)

2

12

!

=
1215− 24083333333

11

= 1082652

 = 104051

∴  =

√
12 (14167− 0)
104051

≈ 04717

From table III we find 005;11 = 1796 Reject 0 if   1796 Since −1796  04717 we cannot reject

0 at the 5% level of significance. The drug does not increase heartbeat.

JMP offers a special platform for the analysis of paired data called "Matched Pairs".

READ THROUGH
Sall, Creighton and Lehman, Chapter 8 The difference between two means

Pages 186-193 Testing means for matched pairs
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7.5 Independent samples with unequal variances
As was said before, if the two population variances are unequal and we nevertheless proceed as

if they are equal, the significance level and power will be affected. Suppose 1   = 1  1 and

2   = 1  2 are two independent random samples such that

 ∼ 
¡
 

2


¢
 = 1  ;  = 1 2

Then we could have constructed a -statistic using the fact that 1 2 
2
1 and 22 (defined before)

are independent with  ∼ 

µ
;

2


¶
and

( − 1)2
2

∼ −1  = 1; 2 but unfortunately the 2

will not "cancel out" as 2 did in section 7.3. The result is that the -statistic will contain unknown

parameters (except in the unlikely event that
21
22

is known). This problem is known as the Behrens-

Fisher problem, named after the two people who studied it in the previous century. A completely

satisfactory solution does not exist, but certain practical solutions have evolved.

The Welch solution is as follows:

We want to test 0 : 1 − 2 =  (with  specified) against
1 : 1 − 2 6=  or
1 : 1 − 2   or
1 : 1 − 2  

We use the statistic

 =
1 −2 − s

21
1
+

22
2

where

 =
1



P


  = 1 or 2

2 =
1

 − 1
P


¡
 −

¢2
 = 1 or 2

Under 0 this statistic has an approximate Student’s -distribution for large samples. However, the

degrees of freedom are not 1 + 2 − 2 as was the case in section 7.3 but the approximate degrees

of freedom are

 =

µ
21
1
+

22
2

¶2
41

21 (1 − 1)
+

42
22 (2 − 1)



Since  is usually not an integer, one would have to interpolate in table III (Stoker). If  = + where

 is an integer and 0 ≤   1 then
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; ≈ (1− ) ; + ;+1

Example 7.4

Two independent random samples from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions respectively, yielded

the following statistics:

1 = 11 Σ1 = 330 Σ2
1 = 9950

2 = 16 Σ2 = 560 Σ2
2 = 19 720

Test 0 : 1 = 2 − 3 against
1 : 1  2 − 3 at the 2.5% level of significance.

Solution

We compute

1 = 30; 2 = 35;

21 =
1

10

h
9 950− (11) (30)2

i
= 5 22 =

1

15

h
19 720− (16) (35)2

i
= 8

The null hypothesis implies that 1 − 2 = −3⇒  = −3

∴  =
(30− 35)− (−3)r

5

11
+
8

16

=
−2

0977000842

≈ −20471

We compute the approximate degrees of freedom as

 =

∙
5

11
+
8

16

¸2
25

112 × 10 +
64

162 × 15

=
0911157024

0037327823

≈ 2441

Since table III (Stoker) only gives integer values for  we need to interpolate between  = 24 and

 = 25

∴ 0025;24;41 ≈ 2064 + 041 (2060− 2064) = 2062

Thus our critical value is 2062 and we will reject 0 at the 2.5% level (one-sided) if   −0025;
that is if   −2062
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Since  = −20471  −2062 we do not reject 0 at the 21
2
% level of significance. We cannot

conclude that 1  2 − 3

7.6 More than two independent samples
(One-way analysis of variance)

We discuss the problem of comparing  sample means with equal sample sizes. In a more advanced

module it will be shown how the test can be modified if the sample sizes are unequal.

Thus we suppose that we have  independent random samples (11  1) ; (21  2) ; ;

(1  )  such that the i-th sample comes from a normal distribution with mean  and variance

2

From this it follows that the essential assumptions are

(a) independence

(b) normality

(c) equal variances

The assumption of equal sample sizes is made here for convenience and is not essential. The model

is therefore as follows:

 ;  = 1  ;  = 1  

are independent random variables such that  ∼ 
¡
; 

2
¢
. We wish to test the null hypothesis

0 : 1 = 2 =  against the general alternative 1 :  6=  for at least one pair  6= 

We shall derive our test statistic for 0 from the following results, stated here as a theorem and which

is a summary of results from study unit 1.

Theorem 7.3

Let  =
1



P
=1

 ; 2 =
1

− 1
P

=1

¡
 −

¢2
. Then

(a) 1   21   
2
 are independent

(b)  ∼ 

µ
;

2



¶
⇒
√

¡
 − 

¢


∼  (0; 1)

(c)
(− 1)2

2
∼ 2−1

Let  =
1



P
1

 =
1



P
=1

P
=1

 be the overall mean of all the observations.
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We need to study the following two random variables:

 =


P
=1

¡
 −

¢2
2

and  =

P
=1

(− 1)2
2

=

P
=1

P
=1

¡
 −

¢2
2

What are the distributions? Are they independently distributed?

Theorem 7.4

(a)  ∼ 2−

(b)  ∼ 2−1 if 0 : 1 = 2 =  =  is true.

(b)  and  are independent.

Proof

(a) Follows directly from theorem 7.3 and property (ii) of result 1.1.

(b) Suppose 1 = 2 =  =  =  Then 1   are

independent

µ
;

2



¶
variates. (The  means can be considered

to be a single sample of size .) From study unit 1 it follows that

 =
Σ
¡
 −

¢2
(2)

∼ 2−1

(If 0 is not true, the distribution of  is called noncentral chi-square.)

(c) Since 1   are independent of 21   
2
  any function of

1   such as  is independent of any function of 21   
2
 

such as V.

Theorem 7.5

Let 2 =

P


P


¡
 −

¢2
(− )

 Then 
¡
2
¢
= 2

Proof

2 =
2

(− )
 Since  ∼ 2−  ( ) = − 

∴ 
¡
2
¢
= 2

Thus 2 is an unbiased estimator of 2 How do we interpret 2?
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We may write 2 =
1



¡
21 + + 2

¢
, which is an ordinary average. So, 2 is the average of all the

sample variances. Now 2 is a measure of the variation within the i-th sample. The only reason why

2 6= 0 in other words why 1   are not identical, is random variation which is called "error"

(not to be confused with "mistake"). Any variation which cannot be explained except as random

variation is called variation due to error. (NB This does not imply that someone erred.)

Definition 7.2

 =
P
=1

P
=1

¡
 −

¢2
is called the sum of squares due to error or error sum of squares and

 =


(− )

is called the mean square error.

Definition 7.3

 = 
P
=1

¡
 −

¢2
= 2

measures the variation between samples and is called the

sum of squares due to treatments.

 =


P
=1

¡
 −

¢2
 − 1 =

2

( − 1)

is called the mean square treatment.

The  samples may be regarded as the result of  treatments, and the reason why  6= 0 is

(a) random variation and

(b) the fact that 1   may differ.

Let  =
1



P
1
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Theorem 7.6

 () = 2 +
Σ ( − )2

( − 1)

Proof

Let  =
√

¡
 − 

¢
  = 1  

∴  =
1



P
=1

 =
1


Σ
√

¡
 − 

¢
=
√

¡
 − 

¢
.

Then 1   are independent 
¡
0; 2

¢
variates, and from study unit 1

(see result 1.3) it follows that

P
=1

¡
 − 

¢2
2

∼ 2−1

∴ 
³
Σ
¡
 − 

¢2´
= 2 ( − 1) (see property (i) of result 1.1).

Consider  = 
P
=1

¡
 −

¢2
= Σ

£√

¡
 −

¢¤2
= Σ

£√

¡
 −  − + +  − 

¢¤2
= Σ

£¡
 − 

¢
+
√
 ( − )

¤2
= Σ

¡
 − 

¢2
+ Σ ( − )2 + 2

√
Σ ( − )

¡
 − 

¢
∴  () = Σ

¡
 − 

¢2
+ Σ ( − )2 + 2

√
Σ ( − )

¡
 − 

¢
= 2 ( − 1) + Σ ( − )2 + 0

since  () = 
¡

¢
= 0

∴  () =
 ()

( − 1) = 2 +
Σ ( − )2

( − 1) 
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Note that, if 1 = 2 =  =  =  then  () = 2 and  is then also an unbiased

estimator for 2 However, if the means are not equal,  ()  2

Aha! Here we have the beginnings of a test statistic.

Theorem 7.7

Let  =



=

2 ( − 1)
2 (− )

=


P
=1

¡
 −

¢2
 ( − 1)

P
=1

P
=1

¡
 −

¢2
 (− )



Then  ∼ −1;− if 0 : 1 = 2 =  =  is true.

The theorem follows directly from theorem 7.4.

This result is used to test 0 The  -statistic is computed and compared to ;−1;− If 0 is true

 ∼ −1;− and if 0 is not true we expect  and therefore  to have a large value. 0 is

rejected if   ;−1;−

Example 7.5

A company manufacturing medicine is screening various chemicals for possible use against cancer.

They have three possible chemicals which they wish to test. Twenty mice are selected, and cancer

cells are implanted into each. The mice are then divided at random (eg by lottery) into four groups

of five mice each; three groups are treated by means of the three chemicals and the other group

serves as a control group which receives no treatment. After a fixed period the tumours in the mice

are removed and weighed. The mass (in grams) of the tumours were found to be as follows:

Chemical A: 160; 150; 180; 130; 180

Chemical B: 170; 205; 180; 215; 180

Chemical C: 170; 175; 150; 140; 190

Control: 190; 205; 235; 185; 210

Do these results indicate that the tumors respond differently to the treatments?

Solution

We want to test 0 : 1 = 2 = 3 = 4 against
1 :  6=  for at least one pair  6= 

We assume the tumour masses () ∼ 
¡
; 

2
¢

for  = 1 2  4

We choose  = 005 (ie rather large) in order for  to be smaller. We would like to keep the probability

small for potential medicines to be discarded (ie to reject 1 when it is true = type II error = .) If a

type I error is committed, it only means that further tests will be performed on a useless chemical.
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We have

 = 4;  = 5; −  = 16;  − 1 = 3;

1 =
80

5
= 16; 1 = Σ

¡
1 −1

¢2
= 018

2 = 19 2 = 0145

3 = 165 3 = 016

4 = 205 4 = 0155

 =
72

4
= 18  = 1 + + 4 = 064

 = 2 =
064

16
= 004

Furthermore
4P

=1

¡
 −

¢2
= (196− 18)2 + · · ·+ (205− 18)2 = 0135

 = Σ
¡
 −

¢2
= 6(0135) = 0675

 =
Σ
¡
 −

¢2
( − 1) =

0675

3
= 0225

 =



=
0225

004
= 5625

From table V we find 005;3;16 = 324 Since   005;3;16 we reject 0

The analysis is often summarised in tabular form called an ANOVA table.

ANOVA table

Source of variation Sum of squares Degrees of freedom Mean square F
Treatments 0675 3 0225 5625

Error 0640 16 004

Total 1315 19

The "total sum of squares" is

 =
P
=1

P
=1

¡
 −

¢2
which measures the total variation in all the observations. If we did not know that the groups of mice

had received different treatments, this would have been used to estimate 2; its degrees of freedom

are, in general terms, − 1 = ( − 1) + (− ) 
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Multiple comparisons

The  -test we have just discussed, leads to one of two decisions: either 0 is accepted and we

believe the  population means are equal, or 0 is rejected and we believe they are unequal.

However, the latter decision includes many possibilities, for example

1 = 2 6= 3 6= 4 or 1 6= 2 6= 3 6= 4 or 1 = 2 = 3 6= 4 et cetera,

and we often want to know which of these alternatives is a likely representation of the truth. We may

compute, for each pair of means  and  a -statistic

 =
 −



r
1


+
1



=

√

¡
 −

¢
√
2

and reject 0 (; ) :  =  in favour of

1 (; ) :  6=  if || exceeds a critical value.

However, this means that
¡

2

¢
different hypotheses are tested on the same data set, and the overall

significance level would be much larger than we think. (Please refer to section 2.7 of study unit

2.) However, it can be proved that, for all  and   2 ≤ ( − 1) where  =



 Since

0 is rejected if   ;−1;− our significance level would remain  if we reject 0 (; ) if

 2  ( − 1);−1;− that is if

|| 
p
( − 1);−1;−

Example 7.5 (continued)

( − 1);−1;− = 3005;3;16 = 3 (324) = 972

 =

√

¡
 −

¢
√
2

=

√
5
¡
 −

¢
√
2
√
004

=
√
625

¡
 −

¢
We reject 0 (; ) :  =  if

|| 
√
972

∴
¯̄
 −

¯̄


r
972

625
≈ 03944

Now 4 −1 = 045 (the largest observed difference) and 4 −3 = 04 are both significant. We

note, however, that 1 = 16 and 3 = 165 are rather close together, that 2 = 19 and 4 = 205

are close together, but that the two pairs are comparatively more different.

We therefore assume that 1 = 3 6= 2 = 4 which would imply that further research could be done

on chemicals A and C as potential remedies for cancer.
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Exercise 7.1

1. A machine is set to produce washers with a thickness of 0.50 mm. To test whether the machine

is working properly, 11 washers are chosen at random and their thickness measured. The results

are

053 052 060 045 055 053 063 048 049 062 043

(a) Test 0 :  = 05 at the 10% significance level against 1 :  6= 05.
(b) Find a 90% (two-sided) confidence interval for .

2. The following is the yield (kg) per plant of a certain tomato cultivar:

154 160 142 136 148 160

(a) Test 0 :  = 16 against 1 :   16 at the 5% level.

(b) Find a 95% upper confidence limit for 

3. 0 :  = 100 is tested against 1 :  6= 100 using a sample of size  = 16 Find the power of the

test if  = 100−
√
0722 at the level

(a)  = 005

(b)  = 001

4. An aptitude test based on spatial orientation was given to 10 students studying for a diploma in

engineering and to 12 students studying for a diploma in graphical design. The following results

were computed:

Engineering:  = 10; Σ1 = 1070; Σ2
1 = 115 990

Graphical design:  = 12; Σ2 = 1344; Σ2
2 = 152 328

(a) Test 0 : 1 = 2 against 1 : 1  2 at the 5% level.

(b) Find a 90% two-sided confidence interval for 1 − 2
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5. Suppose we wish to draw two random samples in order to test 0 : 1 = 2 against 1 : 1 6= 2

and let the total sample size 1 + 2 be fixed, say 1 + 2 = 20 Which sample sizes 1 and 2

(subject to 1 + 2 = 20) will yield the highest power?

6. Two samples of sizes 1 = 3 and 2 = 9 are used to test 0 : 1 = 2 against 1 : 1 6= 2 What

will the power of the test be if 1 = 2 + 18
√
2 and the significance level is as follows?

(a)  = 005

(b)  = 001

7. Derive a -statistic to test 0 : 1 = 22 against 1 : 1  22 Base your -statistic on 1 − 22

which is an estimator for 1 − 22

8. The blood sugar content of eight patients was measured, each patient was given a fixed amount of

glucose and the blood sugar content measured again after one hour. The results were as follows:

Patient: 1 2 3 4 5 6 7 8

Blood sugar (Before): 60 75 69 63 64 72 68 73

Blood sugar (After): 68 81 76 66 76 79 72 82

(a) Test the hypothesis that the expected blood sugar content increases by more than five units

after dosage (5% level).

(b) Find a 95% lower confidence limit for the increase in blood sugar after dosage.

9. Suppose in two samples from normal distributions with unequal variances, it is found that:

1 = 110; 2 = 120; 21 = 180; 22 = 55;

1 = 9; 2 = 11

Test 0 : 1 = 2 against 1 : 1 6= 2 at the 10% level.

10. Suppose we have two independent samples as before, with  ∼ 
¡
; 

2


¢
but with 21 = 222

where 21 and 22 are unknown. Construct a -statistic for testing 0 : 1 = 2
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11. Two independent random samples of sizes 10 and 12 respectively from 
¡
1; 

2
1

¢
and 

¡
2; 

2
2

¢
distributions yielded the following results:

1 = 40; 2 = 60; 21 = 400; 22 = 720

Find a 95% confidence interval for 1 − 2

12. Twenty-one babies were weighed, and divided at random into three groups of seven each. Each

group of seven babies was fed a different kind of baby food, and their increase in body mass (kg)

determined after a fixed period:

Food A: 22; 18; 24; 15; 19; 21; 14

Food B: 19; 21; 15; 18; 23; 14; 16

Food C: 27; 21; 26; 23; 20; 18; 26

Test at the 5% level whether there is a difference in the mean response to the three baby foods.

(Note: normally such an experiment would be performed on a much larger scale. The present

problem could be a preliminary trial.)

13. Each of four brands of feed was fed to eight animals selected at random. The following mass

gains (kg) were obtained:

Brand A: 135 126 140 150 132 144 110 103

Brand B: 105 90 111 92 101 112 110 79

Brand C: 135 140 122 115 110 132 117 89

Brand D: 90 102 92 89 85 92 96 74

(a) Assuming the population variances to be equal, test at the 5% level whether the means differ.

(b) Perform multiple comparisons on all pairs of means. Discuss your results.
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7.7 Learning outcomes

After studying study unit 7, you should be able to

¥ perform hypothesis tests concerning the mean of a single sample

¥ derive one or two-sided confidence intervals for the mean of a single sample

¥ interpret the computer output of JMP concerning the power of the test for means

¥ perform hypothesis tests concerning the difference between means of two
independent samples

¥ derive one- or two-sided confidence intervals for the difference between means
of two independent samples

¥ perform hypothesis tests concerning the equality of the means of paired observations

¥ perform hypothesis tests concerning the equality of the means of more than two
independent samples

¥ interpret the computer output of JMP concerning the tests of means
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STUDY UNIT 8

Regression

8.1 Correlation and regression

Correlation problems occur when we have two (or more) random variables, and we want to know

whether the variables are related in the sense that they tend to vary together – the conditional

expectation of one variate, given values of the other variate, is a function of these values:

 (1|2 = 2) =  (2)

If two variates are correlated, it does not necessarily mean that a change in the value of one variate

causes the other variate to change. It may happen that two random variables are correlated because

there is an unknown factor that causes both variates to vary.

In such experiments it is often desired to estimate the conditional expectation of 1 given 2 in other

words the regression of 1 on 2 in order to be able to predict 1 when 2 is given. We shall not

discuss this type of problem in this module.

Regression problems as discussed here, that is causal relationships, occur when we have a random

variable and one (or more) mathematical variables which are not random. The mathematical

variables are called "control variables", "predictors" or "independent variables" and the random

variable is called the "response variable", "predictand" or "dependent variable". An ideal (causal)

regression experiment is performed as follows:

A number of values of the control variables are chosen (eg 100◦C; 120◦C; 140◦C and 160◦C if the

control variable is temperature) and the response (eg hardness of the product) is observed at each

setting of the control variable. Usually the experiment is repeated a few times at each setting.

A correlation or non-causal regression study, on the other hand, involves taking pairs of observations

(eg height and body mass) on a number of individuals (not necessarily people). The correlation

study is passive – individuals are selected at random and the two variables are measured on each

individual. Regression studies in the sense discussed here, are active – the control variable is

changed deliberately in order to observe what effect the change has on the response variable.
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The distinction between the two models is not always observed. Regression lines are computed

from correlation data and correlation coefficients are computed from regression data. One must be

careful when inference on correlation or regression coefficients is the object of the study. We shall

show that there is some justification for the practice of mixing the models but only to a certain extent.

8.2 The simple linear regression model
We consider here the simple linear regression model

 = 0 + 1 +

where  is the response variable,  the non-random control variable, 0 and 1 are the unknown

regression coefficients and  is a random variable (called the "error" or "random component") with a


¡
0; 2

¢
distribution where 2 is unknown. In order to estimate 0 1 and 2 we choose a number

of values of  (at least two different values of ) and observe the response one or more times at

each setting of  (at least three observations are needed but we should preferably have more). The

experiments should be run in random order. We may for example write each setting of  on a piece

of paper with as many repetitions of the same  as we intend to repeat the experiment at that value

of  The pieces of paper are thrown into a hat, shuffled thoroughly and retrieved one by one to give

the order in which the experiment should be run.

Our first task after obtaining the data is to make sure that the simple linear regression model is

appropriate. To do this we plot the data on graph paper with  on the vertical axis and  on the

horizontal axis. We inspect the graph to see whether the data cluster around a straight line and

whether the variance remains about the same for all values of 

If the data show curvature we can try transforming the data into a straight line by plotting 

versus log log  versus  log  versus log
1


versus  et cetera Sometimes we succeed

in straightening out the data in this way and change our model accordingly. If, for example, we find

log  versus log to form a straight line then our model becomes

log  = 0 + 1 log +

If we do not succeed in finding a suitable transformation we may consider a polynomial model :

 = 0 + 1 + 2
2 + + 

 +

and if this fails we have a non-linear regression problem which is much more difficult to solve. Ideally

the model should be chosen on theoretical grounds without looking at the data, if this is at all possible.
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Example 8.1

In order to evaluate the effect of temperature () on the yield ( ) of a chemical process, an

experiment was run in the plant with the following results:

 

205 12; 13; 16; 16

210 18; 19; 20; 18

215 22; 26; 24; 28

220 35; 31; 33; 34

225 53; 44; 46; 43

230 64; 62; 59; 67

Solution

Start by plotting  against  as in figure 8.1.

10

20

30

40

50

60

70

Y

200 205 210 215 220 225 230 235

X

Figure 8.1

It is obvious from the graph that there is no linear relationship between  and 

Transform  by finding log10  and then plot  against log10  (see figure 8.2).

 log10 

205 1079 1114 1204 1204

210 1255 1279 1301 1255

215 1342 1415 1380 1447

220 1544 1491 1519 1531

225 1724 1643 1662 1633

230 1806 1792 1771 1826
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1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

lo
g

Y

200 205 210 215 220 225 230 235

X

Figure 8.2

It is obvious from figure 8.2 that this transformation gives a good linear relationship. The "best" model

seems to be

log10  = 0 + 1 +

If the variance does not remain constant then we should apply weighted regression. This can

sometimes also be done by means of transformation. Suppose the model is

 = 0 + 1 +

where   () = 2 () and where  () is a known function of  Then

p
 ()

= 0
1p
 ()

+ 1
p
 ()

+
p
 ()

where
p
 ()

is 
¡
0; 2

¢
. This method is especially useful if  () = 2

The scatter diagram for this model is typically as follows:



210

0

5

10

15

20

Y

0 1 2 3 4 5

X

Figure 8.3

The model becomes




= 0

1


+ 1 +






If we plot



versus

1


we should obtain a straight line with constant variance.

(This is left to you as an exercise – see activity 8.2 in the workbook.)

8.3 Estimation
We now assume the following model: 1   are independent random variables with

 ∼ 
¡
0 + 1; 

2
¢
  = 1  

The problem is to estimate 0; 1 and 2 We use the method of maximum likelihood:

 =
Q
=1


¡
; 0 1 

2
¢

∴  =
1


√
2

−
1
2
(1−0−11)

2

2 
1


√
2

−
1
2
(−0−1)

2

2

=

µ
1



¶

(2)−
1
2
 −

1
2
Σ(−0−1)

2

2

∴ ln = − ln − 1
2
 ln (2)− 1

2

Σ ( − 0 − 1)
2

2
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In order to maximise ln (and therefore ), the partial derivatives with respect to 0 1 and  are

equated to zero:

 ln

0
=
Σ ( − 0 − 1)

2

=
(Σ − 0 − 1Σ)

2

= 0 if 0 + 1Σ = Σ  (1)

 ln

1
=
Σ ( − 0 − 1)

2

=

¡
Σ − 0Σ − 1Σ

2


¢
2

= 0 if 0Σ + 1Σ
2
 = Σ  (2)

From (1) and (2) follows:

1 =
Σ −ΣΣ

Σ2
 − (Σ)

2

=
Σ −Σ

Σ2
 − 

2

=
Σ

¡
 −

¢
Σ
¡
 −

¢2
0 =

1


Σ − 1

1


Σ =  − 1

 ln


= −


+
Σ ( − 0 − 1)

2

3

= 0 if 2 =
1


Σ ( − 0 − 1)

2
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We have therefore derived the following result:

Result 8.1

The maximum likelihood estimators for 0 1 and 2 are

̂0 =  − ̂1

̂1 =
Σ

¡
 −

¢
Σ
¡
 −

¢2
̂2 =

1



P
=1

³
 − ̂0 − ̂1

´2
.

These estimators are also the least squares estimators. (Under the assumption of normality they are

the MLEs.)

Only ̂2 is biased; it may be shown that


¡
̂2
¢
=

− 2


2

so that

2 =
1

− 2Σ
³
 − ̂0 − ̂1

´2
.

is an unbiased estimator for 2.

Keep in mind that 2 is a measure of the variation around the regression line and that³
 − ̂0 − 1

´2
is computed for each observed pair (; ) as the squared difference of

the observed -value and the estimated  value by using the equation of the regression line.

Sometimes 2 is also indicated as

2 =
1

− 2
P
=1

³
 − ̂

´2
.

Distribution of the estimators

If we want to derive test statistics to test hypotheses about the theoretical parameters of a regression

line (ie 0 and 1) we need to understand the "behaviour" of the estimators of the parameters. In

other words we are interested in the distribution of ̂0 and ̂1

From study unit 1 it can be deduced that, if 1   are independent with  ∼ 
¡
; 

2
¢

then

 = Σ and  = Σ are jointly normally distributed with means  () = Σ and  ( ) =

Σ, variances   () = 2Σ2 and   ( ) = 2Σ2 and covariance  (  ) = 2Σ (See

"sums of independent normal variates" just above theorem 1.2.)
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Let us apply these powerful (and handy!) results to ̂0 and ̂1

We will start with ̂1:

̂1 =
Σ

¡
 −

¢
Σ
¡
 −

¢2
Suppose we use the notation 2 = Σ

¡
 −

¢2
= Σ

¡
 −

¢
.

Then, ̂1 =
1

2
Σ

¡
 −

¢
= Σ where  =

 −

2


(a) 
³
̂1

´
= Σ ()

= Σ
 −

2
(0 + 1)

=
1

2
0Σ

¡
 −

¢
+
1

2
1Σ

¡
 −

¢
= 0 +

1

2
1

2

= 1

Thus ̂1 is an unbiased estimator for 1

(b)  
³
̂1

´
= 2Σ2

=
2

4
Σ
¡
 −

¢2
=

22

4

=
2

2

Now we do the same for ̂0

̂0 =  − ̂1

=
1


Σ − 

2
Σ

¡
 −

¢
= Σ

∙
1


− 

2

¡
 −

¢¸


= Σ where  =
1


− 

2

¡
 −

¢
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(a) 
³
̂0

´
= Σ

∙
1


− 

2

¡
 −

¢¸
[0 + 1]

= 0Σ

∙
1


− 

2

¡
 −

¢¸
+ 1Σ

∙
1


− 

2

¡
 −

¢¸

= 0

∙
1− 

2
Σ
¡
 −

¢¸
+ 1

∙
 − 

2
Σ

¡
 −

¢¸

= 0 − 0 + 1 − 1


2
2

= 0

∴ ̂0 is an unbiased estimator for 0

(b)  
³
̂0

´
= 2Σ

∙
1


− 

2

¡
 −

¢¸2

= 2Σ

"
1

2
− 2

2

¡
 −

¢
+


2

4

¡
 −

¢2#

= 2

"


2
− 0 + 

2

4
2

#

= 2

"
1


+


2

2

#

If you go back to the introduction of this subsection you will notice that all that remains is to simplify

 (  ) = 
³
̂0; ̂1

´
= 2Σ

= 2Σ
 −

2

∙
1


− 

2

¡
 −

¢¸

=
−2
2

This long derivation was actually the proof of the following theorem:
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Theorem 8.1

̂0 and ̂1 are jointly normally distributed with


³
̂0

´
= 0; 

³
̂1

´
= 1;

 
³
̂0

´
= 2

Ã
1


+


2

2

!
;  

³
̂1

´
=

2

2
;


³
̂0; ̂1

´
=
−2
2

with 2 = Σ
¡
 −

¢2
.

The next theorem is also very important and it is assumed without proof here.

Theorem 8.2

P
=1

³
 − ̂0 − ̂1

´2
2

∼ 2−2

and is independent of ̂0 and ̂1

Example 8.2

An experiment is performed to estimate the relationship between the yield (bags per hectare) of a

certain variety of maize and the amount of fertilizer (metric tons per hectare) applied, using a new

kind of fertilizer. Twelve farms are chosen in a certain district, and divided into four groups of three

farms each in a random fashion. Each group receives a certain amount of fertilizer per hectare, and

the yields are recorded:

Fertilizer Yield
Metric tons/hectare Bags/hectare

0 15; 12; 17
2 24; 20; 21
4 21; 31; 28
6 36; 32; 31

The problem is to estimate the relationship between yield and amount of fertilizer.
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Before proceeding, draw a graph of the data of example 8.2, plotting  (fertilizer) on the horizontal

axis and the response  (yield) on the vertical axis. By inspection of this graph we conclude that a

straight line would probably be adequate. Theoretically we should know the form of the regression

line even before the data are collected. However, in practice this is very often impossible and we

have to be guided by a graph or other means. We shall assume the straight line to be the true model.

Our data and computations may be summarised in tabular form as follows:

   −
¡
 −

¢2

¡
 −

¢
̂  − ̂

³
 − ̂

´2
0 15 −3 9 −45 15 0 0

0 12 −3 9 −36 15 −3 9

0 17 −3 9 −51 15 2 4

2 24 −1 1 −24 21 3 9

2 20 −1 1 −20 21 −1 1

2 21 −1 1 −21 21 0 0

4 21 1 1 21 27 −6 36

4 31 1 1 31 27 4 16

4 28 1 1 28 27 1 1

6 36 3 9 108 33 3 9

6 32 3 9 96 33 −1 1

6 31 3 9 93 33 −2 4

Total 36 288 0 60 180 288 0 90| {z }
This is computed after you
have solved the equation
of the regression line.

 = 3;  = 24; ̂1 =
180

60
= 3;

̂0 =  − ̂1 = 24− 9 = 15;

The estimated regression line is  = 15 + 3

We use this line to compute ̂ = ̂0+̂1 for example if  = 0 ⇒ ̂ = 15

if  = 2 ⇒ ̂ = 15 + 3 (2) = 21 et cetera

∴ 2 =
1

− 2
X
=1

³
 − ̂

´2
=
90

10
= 9

We call ̂ = ̂0 + ̂1 the predictions and  − ̂ =  − ̂0 − ̂1 the residuals,

that is the difference between the observations and predictions.

As a final step one usually draws the estimated regression line on the scatter plot. (We repeat this

example electronically with JMP in activity 8.10 of the workbook.)
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8.4 Inference on the coefficients
We are interested especially in the coefficients 0 and 1 We would like to test hypotheses and

construct confidence intervals.

The following two theorems follow directly from the definition of a -variable:

Theorem 8.2

0 =
̂0 − 0



s
1


+


2

2

is a −2 variate.

Theorem 8.3

1 =
̂1 − 1





is a −2 variate.

These two theorems may be used to test the significance of ̂0 and ̂1 or to construct confidence

intervals for 0 and 1

(a) Inference on β0

Suppose we wish to test whether  ( ) =  if  = 0 in other words whether the regression line

has a particular intercept on the  -axis. The null hypothesis is 0 : 0 = 

We compute

0; =

³
̂0 − 

´


s
1


+


2

2

and reject 0 against 1 : 0 6=  at the  level of significance if |0;|  
2
;−2 similarly for one-

sided tests. (The most common null hypothesis is 0 : 0 = 0 that is the regression line passes

through the origin.)

A 100 (1− )% confidence interval for 0 is

⎛⎝̂0 − 
2
;−2

s
1


+


2

2
; ̂0 + 

2
;−2

s
1


+


2

2

⎞⎠.
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(b) Inference on β1

Suppose we wish to test whether the regression line has a particular slope. The null hypothesis

is 0 : 1 =  which may be rejected in favour of 1 : 1 6=  at the  level if |1;|  
2
;−2 where

1; =
̂1 − 







In a similar fashion we will perform a one-sided test. A 100 (1− )% confidence interval for 1 is

easily seen to be

µ
̂1 − 

2
;−2




; ̂1 + 

2
;−2





¶


Example 8.2(a) (example 8.2 continued)

Test 0 : 0 = 0 against 1 : 0 6= 0 and compute a 95% confidence interval for 1

Solution

For this example we have already computed

 = 3; ̂0 = 15; ̂1 = 3; 2 = 60; 2 =
90

10
= 9 and  = 12

To test 0 : 0 = 0 we compute

0;0 =
̂0 − 0



s
1


+


2

2

=
15− 0

3

r
1

12
+
9

60

≈ 103510

We will reject 0 at the 5% level of significance in favour of 1 : 0 6= 0 if

|0;0|  0025;−2 = 0025;10 = 2228 (table III).

Since 10351  2228 we reject 0 and conclude that the regression line does not pass through the

origin. This could be expected in this example, since we do not expect "no yield" if we do not apply

fertilizer.

A 95% confidence interval for 1 is ̂1 ± 0025;10



=

∙
3− (2228) (3)√

60
; 3 +

(2228) (3)√
60

¸
 that is

(214; 386).

We can use this two-sided interval to test a two-sided alternative, for example:

Test 0 : 1 = 0 against 1 : 1 6= 0
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Since the confidence interval does not include zero, it implies the slope 1 is significantly different

from zero. This means that we could expect an increase of between 2.14 and 3.86 bags/ha for

every additional metric ton/ha fertilizer applied. The farmer may now decide whether the price/ton of

fertilizer is comparable with the price he or she receives for 2.14 and 3.86 bags of maize. Of course

the yield will not increase indefinitely as more and more fertilizer is added. Strictly speaking, we

can only make predictions between 0 and 6 tons/ha.

8.5 Inference on the regression line

(a) Confidence limits for the regression line

Suppose we choose a value  of the independent variable. We predict that the response will be

̂() = ̂0 + ̂1

How accurate is this prediction? We note that ̂() is a normal variate, being a linear combination

of two normal variates ̂0 and ̂1 For the same reason ̂ () is independent of ̂2 Its mean and

variance are


h
̂()

i
= 

³
̂0

´
+

³
̂1

´
= 0 + 1

 
h
̂()

i
=  

³
̂0

´
+2 

³
̂1

´
+ 2

³
̂0; ̂1

´

= 2

"Ã
1


+


2

2
+

2

2
− 2

2

!#

= 2

"
1


+

¡
 −

¢2
2

#

A confidence interval for (0 + 1) is seen to be

³
̂0 + ̂1

´
± 

2
;−2

s
1


+

¡
 −

¢2
2
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Example 8.2(b) (example 8.2 continued)

We tabulate the calculations for the 95% confidence interval for 0 + 1 for the different values of

, using 0025;10 = 2228

 ̂0 + ̂1 

s
1


+

¡
 −

¢2
2

= 3

r
1

12
+
( − 3)2
60

Lower limit Upper limit

0 15 144914 1177 1823

1 18 11619 1541 2059

2 21 094868 1889 2311

3 24 086603 2207 2593

4 27 094868 2489 2911

5 30 11619 2741 3259

6 33 144914 2977 3623

For example we are 95% sure that the mean yield on farms where 5 tons/ha fertilizer is applied is

between 27.41 and 32.59 bags/ha.

Plot these limits on the graph constructed for this example, and connect the points by means of a

smooth curve.

In general, the confidence limits have the following form:

Figure 8.4
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The limits form a "confidence band". The band is at its narrowest where  =  The limits

show how accurately we have estimated the regression line. We can obtain a narrower band by

increasing  and Σ
¡
 −

¢2


(b) Confidence limits for a future observation

Suppose we choose a value of  with the intention of obtaining a further observation 0 ()

independent of 1   Where can we expect this observation to lie? 0 () is a random

variable with mean 0 + 1 and variance 2 according to the assumptions of our model. We

predict 0 () to be

̂0 () = ̂0 + ̂1

Consider the random variable 0 ()− ̂0 (). We see that


h
0 ()− ̂0 ()

i
= 0

 
h
0 ()− ̂0 ()

i
=   (0 ()) +  

³
̂0 ()

´

(if 0 () and ̂0 () are independent)

= 2 + 2

"
1


+

¡
 −

¢2
2

#

= 2

"
1 +

1


+

¡
 −

¢2
2

#

It follows that the 100 (1− )% confidence limits for 0 () are

̂0 + ̂1 ± 
2
;−2

s
1 +

1


+

¡
 −

¢2
2

which appear rather similar to those of the previous paragraph but which are wider because of the

extra term under the square root sign.
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Example 8.2(c) (example 8.2 continued)

Similar to example 8.2(b) we can do the calculations in tabular form. We leave this for an activity in

the workbook. With 0025;10 = 2228 we find

 Lower limit Upper limit
0 758 2242

1 1083 2517

2 1399 2801

3 1704 3096

4 1999 3401

5 2283 3717

6 2558 4042

Suppose a farmer applies 4 tons of fertilizer to 1 ha of land. He or she can be 95% sure that the yield

will be between about 20 and 34 bags (not allowing for meteorological variations). Now plot these

limits on the graph of the data and join these with smooth curves.

The fact that the variance expressions differ is a rather technical point because the latter variance

expression is derived on the assumption that this "future" observation is independent of the

observations used and hence 
³
̂1 

´
= 0 You will learn more about this in some of our

honours courses where we deal with the mathematical detail!

8.6 Relationship between tests for correlation

and regression
Theorem 5.4 deals with a correlation problem and theorem 8.2 deals with a regression problem. The

two -statistics are computationally the same, however, as will now be shown.

For the correlation problem let

11 = Σ
¡
1 −  1

¢2
22 = Σ

¡
2 −  2

¢2
12 = Σ

¡
1 −  1

¢ ¡
2 −  2

¢
then  = 12

√
1122 and the -statistic of theorem 5.4 for testing 0 :  = 0 can be written



223 STA2601/1

 =
√
− 2 12

√
1122p

1− 2121122

=
√
− 2 12√

1122
·

√
1122p

1122 − 212

=
√
− 2 12p

1122 − 212


Likewise, for the regression model, let

11 = Σ
¡
1 −

¢2
22 = Σ

¡
 − 

¢2
12 = Σ

¡
 −

¢ ¡
 − 

¢
= Σ

¡
 −

¢
as can be shown easily.

Then

̂1 =
12

11

2 = 11

2 =
Σ
³
 − ̂0 − ̂1

´2
(− 2)

(− 2)2 = Σ
³
 −  + ̂1 − ̂1

´2
= Σ

h¡
 − 

¢− ̂1
¡
 −

¢i2
= Σ

¡
 − 

¢2 − 2̂1Σ ¡ − 
¢ ¡
 −

¢
+ ̂

2

1Σ
¡
 −

¢2
= 22 − 212

11
12 +

212
211

11

= 22 − 212
11
⇒ 2 =

22 − 212
11

(− 2)

This is a very handy alternative formula if you do not like to compute ̂ for each different 
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The test statistic for testing 0 : 1 = 0 is

1;0 =
̂1


=
1211q¡

22 − 21211
¢
 ((− 2)11)

=

³
12
11

´p
(− 2)11s

2211 − 212
11

=
√
− 2 12p

1122 − 212


The two -statistics are therefore computed in exactly the same way and their distributions under the

two null hypotheses ( = 0 and 1 = 0, respectively) are the same. When we draw inference on 0

or (0 + 1), however, the control variable should not be a random variable, or at least the variance

of  must be much smaller than the variance of 

The last section of this study unit is optional and you will not be examined on it. It does, however, give

a smooth transition from second-year level statistics to third year if you intend to major in Statistics.

You will appreciate the matrix approach when you start working with more complicated models.

8.7 Simple linear regression in matrix notation
In matrix notation we may write the simple linear regression model as⎡⎢⎢⎢⎣

1
2
...


⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 1
1 2
...

...
1 

⎤⎥⎥⎥⎦
∙
0
1

¸
+

⎡⎢⎢⎢⎣
1
2
...


⎤⎥⎥⎥⎦
or  =  +  say.

(Please note that we now use small letters for the independent -variates because we reserve the

capital letter  for the so-called design matrix.)

The least squares criterion states that we should minimise¡
 −

¢0 ¡
 −

¢
which is the same as Σ ( − 0 − 1)

2.

The first derivative with respect to  is set equal to zero to obtain

( 0) =  0
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which is the same as ∙
 Σ
Σ Σ

2


¸ ∙
0
1

¸
=

∙
Σ
Σ

¸


The solution yields the least squares estimators:

ˆ

 = ( 0)−1 0

=
1

Σ2 − (Σ)2
∙
Σ2 −Σ
−Σ 

¸ ∙
Σ
Σ

¸

which yields the same estimators ̂0 and ̂1 as before. To find the covariance matrix of
ˆ

 note that

the covariance matrix of  is


¡
 0

¢
= 2

while
ˆ

 =  where  = ( 0)−1 0

∴ 

Ã
ˆ


ˆ



0!
= 

¡
 0

¢
0

= 2 ( 0)−1 0
h
( 0)−1 0

i0
= 2 ( 0)−1 0 ( 0)−1

= 2 ( 0)−1

=
2

Σ ( − )2

∙
Σ2 −Σ
−Σ 

¸

which is what we obtained before.
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Exercise 8.1

1. The amount of lime in a concrete mixture () and the hardness of the mixture ( ) were measured

and found to be as follows:
 

5 1041; 1047; 1023

10 1060; 1050; 1069

15 1046; 1075; 1054

20 1066; 1075; 1077

25 1080; 1069; 1073

30 1095; 1061; 1069

Find a suitable regression model.

2. A study was done to find the effect of temperature () on the yield ( ) of a chemical process.

The following data were obtained (where  = (temp− 300) 20).
 −5 −4 −3 −2 −1 0 1 2 3 4 5

 12 7 20 13 21 18 22 18 28 32 29

(a) Plot the data to verify that simple linear regression is a suitable model.

(b) Estimate 0 1 and 2

(c) Find a 95% confidence interval for 1

(d) Find a 95% confidence interval for 0 + 21 (ie the mean yield at 340◦C).

(e) Find a 95% confidence interval for the yield if a further experiment is performed at 360◦C.

3. Eleven plots of land were each treated with a certain dosage of fertilizer () and the yield ( )

recorded:
 2 3 4 1 0 2 4 0 1 2 3

 30 36 47 28 12 31 54 5 18 29 42

(a) Plot the points to determine whether a straight line would represent an adequate model.

(b) Compute the regression line and draw it on the graph.

(c) Assume normality and find a 95% confidence interval for the slope; interpret the result.

(d) What is the expected yield at  = 4?

(e) Find a 95% confidence interval for the expected yield at  = 4

(f) Find a 95% confidence interval for the yield which one may expect to obtain if, in a new

experiment, a dosage of  = 4 is applied.
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4. Let  ∼ 
¡
0 + 1; 

2
¢
;  = 1  ; and let ̂0 and ̂1 be the least squares estimators for 0

and 1

(a) Write down  
³
̂0 + ̂1

´
and show that this is a minimum at  = 

(b) Calculate the covariance between ̂0 + ̂11 and ̂0 + ̂12

(c) Find  such that ̂0 + ̂1
¡
 − 

¢
and ̂0 + ̂1

¡
 + 

¢
are uncorrelated.
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8.8 Learning outcomes

After studying study unit 8, you should be able to

¥ define the concepts bivariate data analysis and regression experiment

¥ draw a scatter plot of two numerical variables and describe the nature of the relationship
between the two variables

¥ determine the coefficients of a linear equation using the method of least squares

¥ compute the estimate of the variance around the line and explain its use

¥ perform and interpret the hypothesis test 0 : 0 = 

¥ derive a confidence interval for the population regression intercept, 0

¥ perform and interpret the hypothesis test 0 : 1 = 

¥ derive a confidence interval for the population regression slope

¥ derive confidence limits for the regression line

¥ derive confidence limits for a future observation of a value for a regression experiment

¥ explain the relationship between tests for correlation and tests for the regression slope
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A. Solutions to exercises

Exercise 1.1

1.  ∼ 10

 ( ≥ ) = 001 with  = 10 and  = 001 we therefore find  = 2764

=⇒  ( ≥ 2764) = 001

If  ( ≥ ) = 001 =⇒  ( ≤ ) = 1− 001 = 099

=⇒  ( ≤ 2764) = 099

Since the -distribution is symmetric
 ( ≥ ) = 001 =⇒  ( ≤ −) = 001

=⇒  ( ≤ −2764) = 001

Now  ( ≤ −2764) = 001 and  ( ≥ 2764) = 001

=⇒  (−2764 ≤  ≤ 2764) = 1− (001 + 001)

Thus  (−2764 ≤  ≤ 2764) = 098

 ( ≥ ) = 025 =⇒  = 07

 ( ≥ 07) = 025 by symmetry  ( ≤ −07) = 025

=⇒  (−07 ≤  ≤ 07) = 1− (025 + 025)

=⇒  (−07 ≤  ≤ 07) = 05

2.  ∼ 5;12

 (  ) = 005 with 1 = 5 and 2 = 12

=⇒  = 311 (Note: 005;5;12 = 311)

Thus  (  311) = 005

 (  ) = 0025 0025;5;12 = 389

=⇒  (  389) = 0025

 (  389) = 1−  (  389)

= 1− 0025
= 0975
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Thus  (  389) = 0975

 (  ) = 001 001;5;12 = 506

=⇒  (  506) = 001 =⇒  (  506) = 1−  (  506)

 (  389) = 1− 001
= 099

Thus,  (  506) = 099

* * * * *

Exercise 2.1

1. Let  = 1
−1

X
=1

( −)2

( ) = 

Ã
1

− 1
X
=1

( −)2

!

= 

Ã
1

− 1

Ã
X
=1

2
 − 2

X
=1

 +

X
=1


2

!!

= 

Ã
1

− 1

Ã
X
=1

2
 − 22

+ 
2

!!

= 

Ã
1

− 1

Ã
X
=1

2
 − 

2

!!

=
1

− 1

Ã
X
=1


¡
2


¢− 
³

2
´!

Now

 () = (2
 )− 2

=⇒ (2
 ) =  () + 2

=  + 2

 () = (
2
)− 2

=⇒ (
2
) =  () + 2

=



+ 2
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Thus

( ) =
1

− 1

Ã
X
=1


¡
2


¢− 
³

2
´!

=
1

− 1

Ã
X
=1

¡
 + 2

¢− 

µ



+ 2

¶!

=
1

− 1
µ
 + 2 − 


− 2

¶
=

1

− 1 ( − )

=


− 1 (− 1)
= 

2. 1 =
1



X


( − )2 and 2 =
1

− 1
X


¡
 −

¢2

(1) = 

Ã
1



X


( − )2

!

= 

Ã
1



X


( − ) ( − )

!

= 

Ã
1



Ã
X


¡
2
 − 2 + 2

¢!!

= 

Ã
1



Ã
X


2
 − 2

X


 +

X


2

!!

=
1



Ã
X



¡
2


¢− 2 X


 () +

X



¡
2
¢!

=
1



Ã
X


¡
 + 2

¢− 2 X


+

X


2

!

=
1



¡
 + 2 − 2+ 2

¢
=

1



¡
 + 2 − 22 + 2

¢
=

1


()

= 
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(2) = 

Ã
1

− 1
X
=1

( −)2

!
=  result from 1

Note
X
1

( − )2

2
∼ 2 and

X¡
 −

¢2
2

∼ 2−1

Now

1 =
1



X


( − )2

=
2



X


( − )2

2
multiply numerator and denominator by 2

=
2


 where  =

X


( − )2

2

  (1) =  

µ
2




¶
=

4

2
  ( ) now   ( ) = 2 since  ∼ 2

=
4

2
× 2

=
24



2 =
1

− 1
X
1

( −)2

=
2

− 1
X
1

¡
 −

¢2
2

=
2

− 1
X
1

µ
 −



¶2
=

2

− 1 where  =

X


µ
 −



¶2
. Thus  ∼ 2−1 and   ( ) = 2 (− 1)
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  (2) =  

µ
2

− 1
¶

=
4

(− 1)2  ( )

=
4

(− 1)2 × 2 (− 1)

=
24

− 1

Thus
24




24

− 1 ∴ 1 has a smaller variance than 2

3 () = 1 + 2 2

 () =

X


( −())
2

=

X


¡
 −

¡
1 + 2 2

¢¢2
=

X


¡
 − 1 − 2 2

¢2



1
= 2

X


¡
 − 1 − 2 2

¢×−
= −2

X


¡
 − 2 1 − 3 2

¢

Now 
1

= 0

=⇒ 0 = −2
X


¡
 − 2 1 − 3 2

¢
= −2

Ã
X


 − 1

X


2 − 2

X


3

!
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Making 1 subject of the formula

1

X


2 =

X


 − 2

X


3

1 =

X


 − 2

X


3

X


2

(1)

Making 2 subject of the formula

2

X


3 =

X


 − 1

X


2

2 =

X


 − 1

X


2

X


3

(2)

Now



2
= 2

X


¡
 − 1 − 2 2

¢×−2
= −2

X


¡
2 − 3 1 − 4 2

¢
= −2

Ã
X


2 − 1

X


3 − 2

X


4

!

0 = −2
Ã

X


2 − 1

X


3 − 2

X


4

!

Making 1 subject of the formula

1

X


3 =

X


2 − 2

X


4

1 =

X


2 − 2

X


4

X


3

(3)
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Making 2 subject of the formula

2

X


4 =

X


2 − 1

X


3

2 =

X


2 − 1

X


3

X


4

(4)

Finding 1 by equating equations 2 and 4
X


 − 1

X


2

X


3

=

X


2 − 1

X


3

X


4

X


4

Ã
X


 − 1

X


2

!
=

X


3

Ã
X


2 − 1

X


3

!
Ã

X


4

!Ã
X




!
− 1

Ã
X


2

!Ã
X


4

!
=

Ã
X


2

!Ã
X


3

!
− 1

Ã
X


3

!2
Ã

X


4

!Ã
X




!
−
Ã

X


2

!Ã
X


3

!
= 1

Ã
X


2

!Ã
X


4

!
− 1

Ã
X


3

!2
Ã

X


4

!Ã
X




!
−
Ã

X


2

!Ã
X


3

!
= 1

⎛⎝Ã X


2

!Ã
X


4

!
−
Ã

X


3

!2⎞⎠

b1 =

Ã
X




!Ã
X


4

!
−
Ã

X


2

!Ã
X


3

!
⎛⎝Ã X



2

!Ã
X


4

!
−
Ã

X


3

!2⎞⎠
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Finding 2 by equating equations 1 and 3

X


 − 2

X


3

X


2

=

X


2 − 2

X


4

X


3

X


3

Ã
X


 − 2

X


3

!
=

X


2

Ã
X


2 − 2

X


4

!
Ã

X




!Ã
X


3

!
− 2

Ã
X


3

!2
=

Ã
X


2

!Ã
X


2

!
− 2

Ã
X


4

!Ã
X


2

!
Ã

X




!Ã
X


3

!
−
Ã

X


2

!Ã
X


2

!
= 2

Ã
X


3

!2
− 2

Ã
X


4

!Ã
X


2

!
Ã

X




!Ã
X


3

!
−
Ã

X


2

!Ã
X


2

!
= 2

⎛⎝Ã X


3

!2
−
Ã

X


4

!Ã
X


2

!⎞⎠

b2 =

Ã
X




!Ã
X


3

!
−
Ã

X


2

!Ã
X


2

!
⎛⎝Ã X



3

!2
−
Ã

X


4

!Ã
X


2

!⎞⎠
4.

 () =

X
=1

( −())
2

=

−1X
=1

( −())
2 + ( −())

2

=

−1X
=1

( − 1)
2 + ( − (1 + 2))

2

=

−1X
=1

( − 1)
2 + ( − (1 + 2))

2

=

−1X
=1

( − 1)
2 + ( − 1 − 2)

2



1
= 2

−1X
=1

( − 1)×−1 + 2 ( − 1 − 2)×−1

= −2
Ã
−1X
=1

( − 1) + − 1 − 2

!
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0 = −2
Ã
−1X
=1

( − 1) + − 1 − 2

!

0 =

−1X
=1

( − 1) + − 1 − 2

0 =

−1X
=1

 −
−1X
=1

1 + − 1 − 2

0 =

−1X
=1

 − (− 1) 1 − 1 + − 2

0 =

−1X
=1

 − 1 + 1 − 1 + − 2

0 =

−1X
=1

 − 1 + − 2

0 =

X
=1

 − 1 − 2

=⇒ b1 =
X
=1

 − 2


(1)

b2 =

X
=1

 − 1(2)



2
= 2 ( − 1 − 2)×−1

0 = −2 ( − 1 − 2)

0 =  − 1 − 2

=⇒ 1 =  − 2(3)

=⇒ 2 =  − 1(4)
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Equating 2 and 4

 − 1 =

X
=1

 − 1

1 − 1 =

X
=1

 −

1 (− 1) =

−1X
=1

 + −

1 (− 1) =

−1X
=1



1 =

−1X
=1



− 1
1 = 

Equating 1 and 3
X
=1

 − 2


=  − 2

X
=1

 − 2 =  − 2

X
=1

 −  = 2 − 2

X
=1

 −  = 2 (1− )

 −
X
=1

 = 2 (− 1)

 − −
−1X
=1

 = 2 (− 1)

 (− 1)−
−1X
=1

 = 2 (− 1)

 −

−1X
=1



− 1 = 2

 − = 2

=⇒ b2 =  − b1
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5. ( ) =
1√
2


− 1
2 (−)

2



The maximum likelihood is

 () =
Q
=1

( )

=
Q
=1

1√
2


− 1
2 (−)

2



=
1

(2)2

− 1
2

P
(−)

2



  () =
−
2
log 2 − −

2
log  − 1

2

P
( − )2



  ()


=
−
2
− 1
2
×−1

ÃP
( − )2

2

!

0 =
−
2

+
1

2

ÃP
( − )2

2

!


2
=

1

2

ÃP
( − )2

2

!



=

P
( − )2

2

 =
P
( − )2b =

1



P
( − )2

6. ( ) =  (1− )−1   1

The maximum likelihood is

 () =
Q
=1

( )

=
Q
=1

 (1− )−1

=  (1− )


−

  () =  log  +
³X

 − 
´
log(1− )

  ()


=




+

1

1− 
×
³X

 − 
´
×−1

0 =



− 1

1− 

³X
 − 

´
1

1− 

³X
 − 

´
=






³X

 − 
´

= (1− )


X

 −  = − 


X

 −  +  = 
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X

 = 

 =
P
b =

1



7. ( ) =
1


−


   0

The maximum likelihood is

 () =
Q
=1

( )

=
Q
=1

1



−




=
1


−





  () = − log  −
P




  ()


=
−

+

P


2

0 =
−

+

P


2

0 = − +
X



 =
X



 =

P


b = 

8. () follows a normal distribution

1−  =  (− ≤ () ≤ )

095 =  (−196 ≤ () ≤ 196)

=  (−196 ≤  − 
√


≤ 196)

= 

µ
−196× √


≤  −  ≤ 196× √



¶
= 

µ
− − 196× √


≤  ≤ − + 196× √



¶
= 

µ
 − 196× √


≤  ≤  + 196× √



¶
∴The interval is

³
 − 196× √


; − 196× √



´
* * * * *
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Exercise 4.1

1. We want to test
0 : 1 = 010; 2 = 020; 3 = 020; and 4 = 05

1 : At least one of the proportions is different from the one specified above.

Now 1 = 125; 2 = 185; 3 = 230; 4 = 460

Thus,

 = 1 +2 +3 +4

= 125 + 185 + 230 + 460

= 1 000

The expected values are

1 = 1000× 01 = 100; 2 = 1000× 02 = 200
3 = 1000× 02 = 200; 4 = 1000× 05 = 500

The test statistic

 2 =
4P

=1

( − )
2



=
(125− 100)2

100
+
(185− 200)2

200
+
(230− 200)2

200

(460− 500)2
500

= 625 + 1125 + 45 + 32

= 15075

From table IV, we see that 2;−1 = 2001;3 = 113449 We will reject 0 if  2 ≥ 113449

Since 15075  113449, we reject 0 at the 1% level and conclude that at least one of the

proportions is different from the one specified.

2. We want to test 0 : The probabilities for the four classes will be in the ratio  : 2 : 4 : 1− 7

Let 0 1 2 and 3 denote the plants bearing white flowers, yellow flowers, orange flowers and

those that fail to germinate, respectively, where  = 0+ 1 +2 +3
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Estimate  according to the maximum likelihood method gives

() =
Q
=1

 ( = )

= | {z }
0 times

× 222| {z }
1 times

× 444| {z }
2 times

× (1− 7)  (1− 7)| {z }
3 times

= ()0 (2)1 (4)2 (1− 7)3

 () = 0 log  +1 log 2 +2 log 4 +3 log (1− 7)
 ()


=

0


+
21

2
+
42

4
+
−73
1− 7 

Setting  ()


= 0

0 =
0


+
21

2
+
42

4
− 73

1− 7
0 =

0


+

1


+

2


− 73

1− 7
73

1− 7 =
0


+

1


+

2



73 = (1− 7)
µ
0 +1 +2



¶
73 = (1− 7) (0 +1 +2)

73 = 0 +1 +2 − 70 − 71 − 72
70 + 71 + 72 + 73 = 0 +1 +2

7(0 +1 +2 +3) = 0 +1 +2b =
0 +1 +2

7(0 +1 +2 +3)

In this case b =
16 + 28 + 40

7(100)

=
84

700

= 012

The estimated probabilities are therefore b = 012; 2b = 024; 4b = 048; 1− 7b = 016
The expected frequencies are b

Class Observed frequencies Expected frequencies
White 16 12

Yellow 28 24

Orange 40 48

Fail to germinate 16 16
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Therefore

 2 =
4P

=1

( − b)2
b

=
(16− 12)2

12
+
(28− 24)2

24
+
(40− 48)2

48
+
(16− 16)2

16

= 13333 + 06667 + 13333 + 0

= 33333

We have  −  − 1 = 4 − 1 − 1 = 3 degrees of freedom (one parameter estimated) and

2005;2 = 599147 We reject 0 if  2 ≥ 5991

Since 33333  599147, 0 cannot be rejected at the 5% level, thus the seed man’s claim may be

true, that is, there is no sufficient evidence to refute the seed man’s claim.

3.
0 : The sample comes from a ( 100) distribution.
1 : The sample does not come from a ( 100) distribution.

-interval -interval Expected Observed Expected
probability () frequency frequency

  3255   −067 02514 7 10056

3255 ≤   10 −067 ≤  ≤ 0 02486 6 9944

10 ≤   16745 0 ≤   067 02486 15 9944

 ≥ 16745  ≥ 067 02514 12 10056

 2 =
4P

=1

( − b)2b
=

(7− 10056)2
10056

+
(6− 9944)2
9944

+
(15− 9944)2

9944
+
(12− 10056)2

10056

= 09287 + 15643 + 25707 + 03758

= 54395

(a) 2;−1 = 2010;3 = 625139

2;−−1 = 2010;2 = 460517

Since 460517  54395  625139, the decision is uncertain at the 10% level of significance.
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(b) 2;−1 = 2005;3 = 781473

2;−−1 = 2005;2 = 599147

Since 54395  599147, we do not reject 0 at the 5% and conclude that the sample is from a

normal distribution with 2 = 100 in other words, ( 100)

4. (a)
0 : The sample comes from a Poisson distribution with  = 2

1 : The sample does not come from a Poisson distribution with  = 2

Numbers Observed Expected Expected
frequency probability, () frequency

0 21 01353 14

1 30 02707 27

2 27 02707 27

3 16 01804 18

4 3 00902 9

5 2 00361 4

6 1 00121 1

Because of small expected frequencies, pool the classes " = 5" and " = 6".

 2 =
P
=1

( − )
2



=
(21− 14)2

14
+
(30− 27)2

27
+
(27− 27)2

27
+
(16− 18)2

18
+
(3− 9)2
9

+
(3− 5)2
5

= 35 + 03333 + 0 + 02222 + 4 + 08

= 88555

Reject 0 if  2 ≥ 2005;5 = 110705 Since  2 = 88555  110705 we do not reject 0 at

the 5% level of significance and conclude that the data come from a Poisson distribution with

 = 2

(b)
0 : The data come from a Poisson distribution.
1 : The data do not come from a Poisson distribution.

The maximum likelihood estimator is b = 

=⇒ b = (0× 21) + (1× 30) + (2× 27) + (3× 16) + (4× 3) + (5× 2) + (6× 1)
100

=
160

100

= 16
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Numbers Observed Expected Expected
frequency probability, () frequency

0 21 02019 20

1 30 0323 32

2 27 02584 26

3 16 01378 14

4 3 00551 6

5 2 00176 2

6 1 00047 0

Pool " = 4", " = 5" and " = 6".

 2 =
P
=1

( − b)2
b

=
(21− 20)2

20
+
(30− 32)2

32
+
(27− 26)2

26
+
(16− 14)2

14
+
(6− 8)2
8

= 005 + 0125 + 00385 + 02857 + 05

= 09992

Reject 0 if  2 ≥ 2005;5−1−1 =  2 ≥ 2005;3 = 781473 Since  2 = 09992  781473

we cannot reject 0 at the 5% level of significance and conclude that the data come from a

Poisson distribution. Thus, ̂ = 16

5.
0 : The sample comes from a (32 64) distribution.
1 : The sample does not come from a (32 64) distribution

Lifetime -interval Expected Observed Expected
-interval probability, () frequency frequency
less than 16   −2 00228 6 228

16 to 20 −2    −15 0044 9 44

20 to 24 −15    −1 00919 12 919

24 to 28 −1    −05 01498 16 1498 −→ 15

28 to 32 −05    0 01915 20 1915 −→ 19

32 to 36 0    05 01915 22 1915 −→ 19

36 to 40 05    1 01498 10 1498 −→ 15

above 40   1 01587 5 1587 −→ 16
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Pool first three classes.

Expected frequencies: 16 15 19 19 15 16

 2 =
P
=1

( − b)2
b

=
(27− 16)2

16
+
(16− 15)2

15
+
(20− 19)2

19
+
(22− 19)2

19
+
(10− 15)2

15
+
(5− 16)2
16

= 75625 + 00667 + 00526 + 04737 + 16667 + 75625

= 173847

Reject 0 if  2 ≥ 2005;5 = 110705 Since  2 = 173847  110705 we reject 0 at the 5% level

of significance and conclude that the sample does not come from a (32 64) distribution.

6.
0 : The sample comes from a (25 122) distribution.
1 : The sample does not come from a (25 122) distribution.

The probability of each interval is 1
5
= 02

We know that
 ( ≤ −0842) = 02

 ( ≤ −0253) = 04

 ( ≤ 0253) = 06

 ( ≤ 0842) = 08

-interval Equal probability Expected Tally Observed ( − b)
intervals frequency,  frequency, 

 ≤ −0842 −∞   ≤ 14896 6 8 2

−0842 ≤  ≤ −0253 14896   ≤ 21964 6 5 −1

−0253 ≤  ≤ 0253 21964   ≤ 28036 6   
3 −3

0253 ≤  ≤ 0842 28036   ≤ 35104 6 5 −1

 ≥ 0842 35104   ≤ ∞ 6 9 3

Total 30 30
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 2 =
P
=1

( − )
2



=
4

6
+
1

6
+
9

6
+
1

6
+
9

6

=
24

6

= 4

We reject 0 at the 10% level if  2 ≥ 2;−1 = 2010;4 = 777944 Since  2 = 4  777944 we do

not reject 0 at the 10% level of significance and conclude that the data come from a (25 122)

distribution.

7. We have to test 0 : 2 = 3 against 1 : 2 6= 3

We will reject 0 at the 10% level of significance (two-sided) if   09073 or if   07153

Since  = 11  50 we will use the test statistic  that is,  =

1


X
=1

¯̄
 −

¯̄
vuut 1



X
=1

¡
 −

¢2
where

 = 220
11

= 20

X
=1

¯̄
 −

¯̄
= |−3|+ |2|+ · · ·+ |4| = 40

X
=1

¡
 −

¢2
=

X
2
 − 

2
= 4576− 11(20)2 = 176

 =

1


X
=1

¯̄
 −

¯̄
vuut 1



X
=1

¡
 −

¢2 =
1
11
(40)q
1
11
(176)

=
3636363636

4
≈ 09091

Since 09091  09073 we reject 0 at the 10% level and conclude that the kurtosis of the sample

is significantly different from the kurtosis of the normal distribution.
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8.

 = 25

X
=1

¡
 −

¢2
= 200

X
=1

¡
 −

¢3
= −320

X
=1

¡
 −

¢4
= 4000

We have to test for skewness and kurtosis.

Test for skewness:

We have to test 0 : 1 = 0 against 1 : 1 6= 0

We will reject 0 if |1|  0534 (in other words if 1  −0534 or if 1  0534).

1 =

1


X
=1

¡
 −

¢3
"
1


X
=1

¡
 −

¢2# 3

2

=
1
50
(−320)£

1
50
(200)

¤ 3
2

=
−64
[4]

3

2

=
−64
8

= −08

Since −08  −0534 we reject 0 at the 10% level.

Test for kurtosis:

We have to test 0 : 2 = 3 against 1 : 2 6= 3

We will reject 0 if 2  399 or 2  215.

2 =

1


X
=1

¡
 −

¢4
"
1


X
=1

¡
 −

¢2#2

=
1
50
(4 000)£

1
50
(200)

¤2
=

80

16

= 5

Since 5  399 we reject 0 at the 10% level.
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The sample failed both tests and hence we conclude that the sample is not from a normal

distribution.

9.

 = 50
1



X
=1

¡
 −

¢2
= 16

1



X
=1

¡
 −

¢3
= 64

1



X
=1

¡
 −

¢4
= 8192

We have to test for skewness and kurtosis.

Test for skewness:

We have to test 0 : 1 = 0 against 1 : 1 6= 0

We will reject 0 if 1  −0127 or if 1  0127 in other words if |1|  0127.

1 =

1


X
=1

¡
 −

¢3
"
1


X
=1

¡
 −

¢2# 3

2

=
64

[16)]
3

2

=
64

64

= 01

Since 01  0127 we do not reject 0 at the 10% level.

Test for kurtosis:

We have to test 0 : 2 = 3 against 1 : 2 6= 3

We will reject 0 if 2  326 or 2  276.

2 =

1


X
=1

¡
 −

¢4
"
1


X
=1

¡
 −

¢2#2
=

8192

[16]2

= 32

Since 276  32  326 we do not reject 0 at the 10% level.
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The sample shows that the data are from a normal distribution.

* * * * *

Exercise 5.1

1.
0 : There is no relationship between gender and smoking.
1 : There is a relationship between gender and smoking.

Observed frequencies are:

Gender
Smoked Male Female Total
Yes 26 14 40

No 24 36 60

Total 50 50 100

Expected values are  =
 ×




The expected frequencies are:

Gender
Smoked Male Female Total
Yes 20 20 40

No 30 30 60

Total 50 50 100

 2 =
P
=1

P
=1

( − )
2



=
(26− 20)2

20
+
(14− 20)2

20
+
(24− 30)2

30
+
(36− 30)2

30

= 18 + 18 + 12 + 12

= 6

We reject 0 if  2 ≥ 2
;(−1)(−1) = 20025;1 = 502389 Since  2 = 6  502389 we reject 0 at

the 21
2
% level and conclude that there is a relationship between gender and smoking.

2.
0 : There is no association between appearance and intelligence.
1 : There is an association between appearance and intelligence.
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The expected values are:

     Total
 6 9 9 6 30

 8 12 12 8 40

 6 9 9 6 30

Total 20 30 30 20 100

 2 =
P
=1

P
=1

( − )
2



=
(9− 6)2
6

+
(12− 9)2

9
+ · · ·+ (9− 9)

2

9
+
(11− 6)2

6

= 15 + 1 + 04444 + 26667 + 0 + 00833 + 03333 + 0125 + 15 + 04444 + 0 + 41667

= 122638

We reject 0 if  2 ≥ 2
;(−1)(−1) = 201;6 = 106446 Since  2 = 122638  106446 0 is

rejected at the 10% level and we conclude that there is an association between appearance and

gender. High IQ tends to go with attractiveness.

3.

A scatter plot of  against 

The scatter plot shows that there is a linear relationship between  and 

0 :  = 0

1 :  6= 0
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 = 30
P

 = 90
P

2 = 27488P
 = 23791

P
 = 78

P
2 = 21114

 = 3  = 26P
(− )2 =

P
2 − (

P
)2



P
( − )2 =

P
2 − (

P
)2



= 27488− (90)
2

30
= 21114− (78)

2

30

= 488 = 834

P
(− ) ( − ) =

P
 − (

P
) (

P
)



= 23791− (90)(78)
30

= 391

 =
391√

488
√
834

=
391

6379592463
≈ 06129

Using table IX, the critical value = 04226. Since 0.6129  04226, we reject 0 at the 1% level of

significance and conclude that there is a significant positive correlation.

4. 0 :  = 0 against 1 :  6= 0

 = 39  = −035

 =
1

2
log

1− 035
1 + 035

≈ −03654

 =
1

2
log

1− 

1 + 
=
1

2
log

1− 02
1 + 02

≈ −02027

The test statistic is

 =
√
− 3( − )

=
√
39− 3(−03654 + 02027)

=
√
36×−01627

= −09762

We reject 0 if   −2 = −196 or greater than 196. Since −196  −09762  196, we do

not reject 0 and conclude that  = −02 at the 5% level.

5. 0 : 1 = 2 against 1 : 1 6= 2

1 = −06 1 = 33

2 = −08 2 = 153

1 =
1

2
log

1− 06
1 + 06

≈ −06931
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2 =
1

2
log

1− 08
1 + 08

≈ −10986

 =
1

2
log

1− 
1 + 

  = 1 2

The test statistic is

 =
1 − 2q
1

1−3 +
1

2−3

=
−06931 + 10986q

1
33−3 +

1
153−3

=
04055√
004

= 20275

 = 005 2 = 0025 and 0025 = 196 We reject 0 if   196 or   −196.

Since 20275  196, we reject 0 at the 5% level and conclude that 1 6= 2

6.  = 07  = 10

 =
1

2
log

1 + 07

1− 07 ≈ 08673

The 95% confidence interval is



µ
 − 196√

− 3     +
196√
− 3

¶


µ
08673− 196√

7
   08673 +

196√
7

¶
 (01265    16081) 

Now
01265 − −01265

01265 + −01265
=
11348− 08812
11348 + 08812

≈ 01258

and
16081 − −16081

16081 + −16081
=
49933− 02003
49933 + 02003

≈ 09229

in other words, 95% confidence interval for  is (01258; 09229).

7. The contingency table is

1 2 Total
1 0 5 5

2 6 1 7

Total 6 6 12

Note  = 0 and  ( ≤ 0) = 0008
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8. The contingency table is

Contracted Brown White Total
influenza
Yes 1 5 6

No 5 1 6

Total 6 6 12

0 : The two strains are equally susceptible
1 : The white mice are more susceptible

 = 12  = 6  = 6  = 1

 ( ≤ 1) = 004 ⇒ Since 004  005 we reject 0 and conclude that white mice are more

susceptible than brown mice.

9.
0 : The number of children is independent of father’s level of training.
1 : The number of children is not independent of father’s level of training.

The expected frequencies are:

Number of children
Training 0 1 2 more than 2 Total
Primary school 15 25 30 30 100

Secondary school 9 15 18 18 60

College 45 75 9 9 30

University 15 25 3 3 10

Total 30 50 60 60 200

Since the expected frequency for university is less than five we combine the categories college

and university to produce the following table:

Number of children
Training 0 1 2 more than 2 Total
Primary school 15 25 30 30 100

Secondary school 9 15 18 18 60

College & university 6 10 12 12 40

Total 30 50 60 60 200

The test statistic is

 2 =
P
=1

P
=1

( − )
2



=
(18− 15)2

15
+
(22− 25)2

25
+ · · ·+ (15− 12)

2

12
+
(15− 12)2

12

= 06 + 036 + 0 + 0 + 1 + 54 + 05 + 05 + 0 + 36 + 075 + 075

= 1346



255 STA2601/1

We reject 0 if  2 ≥ 2
;(−1)(−1) = 2005;6 = 125916

Since  2 = 1346  125916 we reject 0 at the 5% level and conclude that the number of children

depends on the father’s level of training.

10. (a) 0 :  = 02 against 1 :   02

 = 19  = 05

 =
1

2
log

1 + 05

1− 05 ≈ 05493

 =
1

2
log

1− 

1 + 
=
1

2
log

1 + 02

1− 02 ≈ 02027

The test statistic is

 =
√
− 3( − )

=
√
19− 3(05493− 02027)

=
√
16× 03466

= 13864

 = 005 and 005 = 1645 Reject 0 if   −1645.

Since 13864  −1645 we do not reject 0 and conclude that  = 02 at the 5% level.

(b)  = 005 2 = 0025 and 0025 = 196

The 95% confidence interval for  is

 − 196√
− 3     +

196√
− 3

05493− 196√
16

   05493 +
196√
16

05493− 196
4

   05493 +
196

4

00593    10393

Now
00593 − −00593

00593 + −00593
=
10611− 09424
10611 + 09424

≈ 00592

and
10393 − −10393

10393 + −10393
=
28272− 03537
28272 + 03537

≈ 07776

Thus, the 95% confidence interval for  is 00592    07776
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11. 0 : 1 = 2 against 1 : 1  2

1 = 06 1 = 53

2 = 09 2 = 53

1 =
1

2
log

1 + 06

1− 06 ≈ 06931

2 =
1

2
log

1 + 09

1− 09 ≈ 14722

The test statistic is

 =
1 − 2q
1

1−3 +
1

2−3

=
06931− 14722q

1
53−3 +

1
53−3

=
−07791√
004

= −38955

 = 005 and 005 = 1645 We reject 0 if   −1645.

Since −38955  −1645, we reject 0 at the 5% level and conclude that 1  2

12.  = 10
P

 = 500
P

2 = 26 600P
 = 10 090

P
 = 200

P
2 = 4400

 = 50  = 20

P
(− )2 =

P
2 −

P




P
( − )2 =

P
2 −

P




= 26 600− (500)
2

10
= 4 400− (200)

2

10

= 1 600 = 400

P
(− ) ( − ) =

P
 −

P

P





= 10 090− (500)(400)
10

= 90

 =
90√

400
√
1 600

=
90

800
≈ 01125

0 :  = 0 against 1 :  6= 0

The critical value is 06319.
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Since 01125  06319, we do not reject 0 and conclude that the correlation is not significant.

OR

 =

√
− 2√
1−2

=
01125

√
8√

1− 011252
=

0318198051√
098734375

≈ 03202

The critical value is 2;(−2) = 0025;8 = 2306

Since 03202  2306 we do not reject 0 at the 5% level of significance and conclude that the

correlation is not significant.

This is also evidenced by the scatter plot since the scatter diagram shows that the relationship

might not be linear. Thus, there is no significant linear relationship between rainfall and yield.

A scatter plot of yield versus rainfall

* * * * *
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Exercise 6.1

1. Let  =
Σ
¡
 −

¢2
2

then  ∼ 2−1 From this we may derive the probability expression

1−  = 
£
2;−1  

¤
= 

"
2;−1 

Σ
¡
 −

¢2
2

#

= 

"
1

2;−1


2

Σ
¡
 −

¢2
#

= 

"
Σ
¡
 −

¢2
2;−1

 2

#


Therefore

"
Σ
¡
 −

¢2
2;−1

; ∞
#

is a 100 (1− )% one-sided confidence interval for 2 which tests

the hypothesis 0 : 
2 =  against 1 : 

2   where  is unknown.

Let  =
Σ
¡
 −

¢2
2

then  ∼ 2−1 From this we may derive the probability expression

1−  = 
£
21−;−1  

¤
= 

"
21−;−1 

Σ
¡
 −

¢2
2

#

= 

"
1

21−;−1


2

Σ
¡
 −

¢2
#

= 

"
Σ
¡
 −

¢2
21−;−1

 2

#

= 

"
2 

Σ
¡
 −

¢2
21−;−1

#


Therefore

"
0;
Σ
¡
 −

¢2
21−;−1

#
is a 100 (1− )% one-sided confidence interval for 2 which tests

the hypothesis 0 : 
2 =  against 1 : 

2   where  is known.

Let  =
Σ ( − )2

2
then  ∼ 2
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1−  = 

µ
2
1−1
2
;

   21
2
;

¶

= 

"
2
1−1
2
;


Σ ( − )2

2
 21

2
;

#

= 

⎡⎣ 1

2
1−1
2
;


2

Σ ( − )2


1

21
2
;

⎤⎦

= 

⎡⎣Σ ( − )2

21
2
;

 2 
Σ ( − )2

2
1−1
2
;

⎤⎦

Therefore

⎡⎣Σ ( − )2

21
2
;

;
Σ ( − )2

2
1−1
2
;

⎤⎦ is a 100 (1− )% two-sided confidence interval for 2

which tests the hypothesis 0 : 
2 =  against 1 : 

2 6=  where  is known.

Let  =
Σ ( − )2

2
then  ∼ 2

1−  = 
£
2;  

¤
= 

"
2; 

Σ ( − )2

2

#

= 

∙
1

2;


2

Σ ( − )2

¸

= 

"
Σ ( − )2

2;
 2

#

Therefore

"
Σ ( − )2

2;
; ∞

#
is a 100 (1− )% one-sided confidence interval for 2 which tests

the hypothesis 0 : 
2 =  against 1 : 

2   where  is known.

2.  = 11
P

 = 110
P

2
 = 1220

Σ
¡
 −

¢2
= Σ2

 −
(Σ)

2



= 1220− (110)
2

11

= 120
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Σ ( − )2 = (6− 9)2 + (10− 9)2 + · · ·+ (13− 9)2

= 131

(a) 0 :  = 5 against 1 :   5

(i)  is unknown, then the test statistic is

 =
Σ
¡
 −

¢2
2

=
120

25

= 48

The critical value is 21−;−1 = 2095;10 = 39403 Reject 0 if   39403.

Since 48  39403 we do not reject 0 at the 5% level and conclude that  = 5

(ii)  = 9, then the test statistic is

 =
Σ ( − )2

2

=
131

25

= 524

The critical value is 21−; = 2095;11 = 457481 Reject 0 if   457481.

Since 524  457481 we do not reject 0 at the 5% level and conclude that  = 5

(b) (i) If  is unknown, a 95% one-sided confidence interval for 2 is"
0;
Σ
¡
 −

¢2
21−;−1

#
"
0;

120

2095;10

#
∙
0;

120

39403

¸
[0; 304545] 

Thus, the 95% one-sided confidence interval for  ish√
0;
√
304545

i
[0; 55186] 
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(ii) If  = 9 a 95% one-sided confidence interval for 2 is

"
0;
Σ ( − )2

21−;

#
"
0;

131

2095;11

#
∙
0;

131

457481

¸
0; 286351

Thus, the 95% one-sided confidence interval for  ish√
0;
√
286351

i
[0; 53512] 

3. (a)  = 10  = 010 2 = 005

21
2
;

= 2005;10 = 18307

2
1−1
2
;

= 2095;10 = 39403

The 90% confidence interval for 2,  is known and  = 10 is⎡⎣Σ ( − )2

21
2
;

 2 
Σ ( − )2

2
1−1

2
;

⎤⎦
"
Σ ( − )2

18307
 2 

Σ ( − )2

39403

#


The length of the interval is

Σ ( − )2 =

µ
1

39403
− 1

18307

¶
Σ ( − )2 = 01992

The expected length of the interval is

= 01992
³
Σ ( − )2

´
= 01992× 2() since 

³
Σ ( − )2

´
= 2

= 01992× 2 × 10
= 19922
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(b) 21
2
;−1

= 2005;9 = 16919

2
1−1
2
;−1

= 2095;9 = 332511

The 90% confidence interval for 2,  is unknown and  = 10 is

⎡⎣Σ ¡ −
¢2

21
2
;−1

 2 
Σ
¡
 −

¢2
2
1−1

2
;−1

⎤⎦
"
Σ
¡
 −

¢2
16919

 2 
Σ
¡
 −

¢2
332511

#


The length of the interval is

Σ
¡
 −

¢2
=

µ
1

3325
− 1

16919

¶
Σ
¡
 −

¢2
= 02416

The expected length of the interval is

= 02416
³
Σ
¡
 −

¢2´
= 02416× 2(− 1) since 

³
Σ
¡
 −

¢2´
= 2(− 1)

= 02416× 2 × 9
= 217442

4. The 95% confidence interval for 2,  is unknown is⎡⎣Σ ¡ −
¢2

21
2
;−1

 2 
Σ
¡
 −

¢2
2
1−1
2
;−1

⎤⎦ 
The expected length of the interval is

= 
³
Σ
¡
 −

¢2´⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦
= 2(− 1)

⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦ 
Thus,

2(− 1)
⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦ ≤ 252

(− 1)
⎡⎣ 1

21
2
;−1

− 1

2
1−1
2
;−1

⎤⎦ ≤ 25
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By trial and error, taking  = 11 :

=⇒ 10

∙
1

324697
− 1

204831

¸
≈ 25916 £ 25

taking  = 12 :

=⇒ 11

∙
1

381575
− 1

2192

¸
≈ 2381  25

taking  = 13 :

=⇒ 12

∙
1

440379
− 1

233367

¸
≈ 22107  25

Thus, the largest value of  satisfying the condition is  = 12

5. Let sample 1 be unmodified and sample 2 be modified.

1 = 6
P

1 = 180
P

2
1 = 5470

Σ
¡
1 −

¢2
= Σ2

1 −
(Σ1)

2



= 5470− (180)
2

6

= 70

2 = 6
P

2 = 192
P

2
2 = 6194

Σ
¡
2 −

¢2
= Σ2

2 −
(Σ2)

2



= 6 194− (192)
2

6

= 50

0 : 
2
1 = 22 against 1 : 

2
1 6= 22

The test statistic is

 =
22
21
·

1P
=1

(1 − 1)
2 1

2P
=1

(2 − 2)
2 2

= 1 · 705
505

=
14

10

= 14
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The critical values are 005;55 = 505 and 095;55 =
1

005;55
=

1

505
≈ 0198

Since 0198    505 we cannot reject 0. The two processes do not differ with respect to

precision.

The 90% confidence interval for
21
22

is



µ

1−

2
;2−1;1−1 

22
21

21
22

 
2
;2−1;1−1

¶
= 1− 

"

1−

2
;2−1;1−1
22

2
1

;

2
;2−1;1−1
22

2
1

#

 = 010 2 = 005


1−

2
;2−1;1−1 = 095;5;5 =

1

005;5;5
=

1

505
≈ 0198


2
;2−1;1−1 = 005;5;5 = 505

21 =
1

1 − 1Σ
¡
1 −

¢2
=
1

5
(70) = 14

22 =
1

2 − 1Σ
¡
2 −

¢2
=
1

5
(50) = 10

∴The 90% confidence interval is ∙
0198

1014
;
505

1014

¸
[02772; 707] 

Note the confidence interval for
1

2
will beh√

02772;
√
707

i
[05265; 26589] 

6. 1 = 10
P

1 = 20
P

2
1 = 148

Σ
¡
1 −

¢2
= Σ2

1 −
(Σ1)

2



= 148− (20)
2

10

= 108
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2 = 12
P

2 = 36
P

2
2 = 152

Σ
¡
1 −

¢2
= Σ2

1 −
(Σ1)

2



= 152− (36)
2

12

= 44

21 =
1

1 − 1Σ
¡
1 −

¢2
=
1

9
(108) = 12

22 =
1

2 − 1Σ
¡
2 −

¢2
=
1

11
(44) = 4

(a) We need to test: 0 :
2

1
=
1

2

0 :
22
21
=
1

4
against 1 :

22
21


1

4
=⇒ 0 : 

2
1 = 4

2
2 against 1 : 

2
1  4

2
2

The test statistic is

 =
22
21
· 

2
1

22

=
1

4
× 12
4

= 075

The critical value is ;1−1;2−1 = 005;911 = 29

Since 075  29 we do not reject 0 and conclude that 21 = 4
2
2

(b) The 95% one-sided confidence interval for
22
21

is∙
0;
;1−1;2−1

21
2
2

¸
∙
0;
005;9;11

124

¸
∙
0;
29

3

¸
[0; 09667] 

Now the 95% one-sided confidence interval for
21
22

is

∙
1

09667
;∞
¸

[10344;∞] 
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Note 1
0000000001

≈ 1 000 000 000, thus values close to 0 goes to∞

Thus the 95% one-sided confidence interval for
1

2
is

h√
10344;∞

i
[10171;∞] 

7.  = 11
P

1 = 330
P

2
1 = 10 802P

12 = 10 230
P

2 = 330
P

2
2 = 10 098

1 = 30 2 = 30

P¡
1 −1

¢2
=

P
2
1 −

(
P

1)
2



P¡
2 −2

¢2
=

P
2
2 −

(
P

2)
2



= 10 802− (330)
2

11
= 10 098− (330)

2

11

= 902 = 198

P¡
1 −1

¢ ¡
2 −2

¢
=

P
12 − (

P
1) (

P
2)



= 10 230− (330)(330)
11

= 330

0 : 
2
1 = 22 against 1 : 

2
1  22

11 = 902 12 = 330 22 = 198

 =

√
− 2 (11 − 22)

2
p
1122 − 212

=

√
11− 2 (902− 198)

2
√
902× 198− 3302

=
3 (704)

2
√
69 696

=
2 112

528

= 4

 = 010; ;(−2) = 01;9 = 1383 Reject 0 if   1383

Since 4  1383, 0 is rejected at the 10% level. We conclude that 21  22
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8. We want to test 0 : 
2
1 = 22 against 1 : 

2
1  22

 = 30
P

 = 300
P

2 = 9090

 = 502
P

 = 502
P

2 = 25 238

 = 10
P

 = 15 088

P
(− )2 =

P
2 − (

P
)2



P
( − )2 =

P
2 − (

P
)2



= 9090− (300)
2

10
= 25 238− (502)

2

10

= 90 = 376

P
(− ) ( − ) =

P
 − (

P
) (

P
)



= 15 088− (300)(502)
10

= 28

11 = 90 12 = 28 22 = 376

 =

√
− 2 (11 − 22)

2
p
1122 − 212

=

√
10− 2 (90− 376)
2
√
90× 376− 282

=

√
8 (524)

2
√
2 600

=
1482095813

1019803903

≈ 14533

 = 010; ;(−2) = 01;8 = 1397 Reject 0 if   1397

Since 14533  1397, we reject 0 at the 10% level and conclude that the students were more

uniform after the remedial training than before that is, 21  22

9.
1 = 201

P
1 = 1206

P
2
1 = 242508

2 = 199
P

2 = 1194
P

2
2 = 237754

3 = 202
P

3 = 1212
P

2
3 = 245334

4 = 20
P

4 = 120
P

2
4 = 240088

 = 6
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21 =
1

− 1

ÃP
2
1 −

(
P

1)
2



!
22 =

1

− 1

ÃP
2
2 −

(
P

2)
2



!

=
1

6− 1

Ã
2 42508− (1206)

2

6

!
=

1

6− 1

Ã
2 37754− (1194)

2

6

!

=
1

5
(102) =

1

5
(148)

= 0204 = 0296

23 =
1

− 1

ÃP
2
3 −

(
P

3)
2



!
24 =

1

− 1

ÃP
2
4 −

(
P

4)
2



!

=
1

6− 1

Ã
2 45334− (1212)

2

6

!
=

1

6− 1

Ã
2 40088− (120)

2

6

!

=
1

5
(51) =

1

5
(088)

= 102 = 0176

0 : 
2
1 = 22 = 23 = 24 against 1 : 

2
 6= 2 for at least one  6= 

The test statistic is

 =
max

2

min

2

=
102

0176

≈ 57955

The critical value is 137 0 is rejected if   137

Since 57955  137, we do not reject 0 at the 5% level and conclude that the variances of the

four populations are equal.

10.
1 = 5

P
1 = 60

P
2
1 = 390

2 = 7
P

2 = 80
P

2
2 = 730

3 = 8
P

3 = 85
P

2
3 = 740



269 STA2601/1

21 =
1

1

P
(1 − 1)

2 22 =
1

2

P
(2 − 2)

2

=
1

1

¡P
2
1 − 21

P
1 + 21

¢
=

1

2

¡P
2
2 − 22

P
2 + 22

¢
=

1

10

¡
390− 2× 5(60) + 10× 52¢ =

1

10

¡
730− 2× 7(80) + 10× 72¢

=
1

10
(390− 600 + 250) =

1

10
(730− 1 120 + 490)

=
1

10
(40) =

1

10
(100)

= 4 = 10

23 =
1

3

P
(3 − 3)

2

=
1

3

¡P
2
3 − 23

P
3 + 23

¢
=

1

10

¡
740− 2× 8(85) + 10× 82¢

=
1

10
(740− 1 360 + 640)

=
1

10
(20)

= 2

Testing 0 : 
2
1 = 22 = 23 against 1 : 

2
 6= 2 for at least one  6= 

Test statistic is

 =
max

2

min

2

=
10

2

= 5

The critical value is 485 0 is rejected if   485

Since 5  485, we reject 0 at the 5% level and conclude that the variances of the three

populations are not the same.

Note that 2 =
1


Σ2

 − 2 + 2 has  degrees of freedom.

* * * * *
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Exercise 7.1

1. (a) 0 :  = 05 against 1 :  6= 05
 = 11

P
 = 583

P
2
 = 31339

Since 2 is unknown, we have

2 =
1

− 1
³
Σ
¡
 −

¢2´
=

1

− 1

Ã
Σ2

 −
(Σ)

2



!

=
1

11− 1
µ
31339− (583)

2

11

¶
=

1

10
(0044)

= 00044

Thus,  =
√
00044 ≈ 00663

 =
1


Σ =

1

11
(583) = 053

The test statistic is

 =

√

¡
 − 

¢


=

√
11 (053− 05)
00663

=

√
11 (003)

00663

≈ 15007

The critical value is 2;(−1) = 005;10 = 1812 Reject 0 if   1812 or if   −1812

Since−1812  15007  1812, we do not reject 0 at the 10% level and conclude that  = 05

(b) The 90% confidence interval for  is

 − 2;(−1) ×
√

≤  ≤  + 2;(−1) ×

√


053− 005;10 × 00663√
11

≤  ≤ 053 + 005;10 × 00663√
11

053− 1812× 00663√
11

≤  ≤ 053 + 1812× 00663√
11

053− 00362 ≤  ≤ 053 + 00362
04938 ≤  ≤ 05662
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2. (a) 0 :  = 16 against 1 :   16

 = 6
P

 = 9
P

2
 = 13548

Since 2 is unknown, we have

2 =
1

− 1
³
Σ
¡
 −

¢2´
=

1

− 1

Ã
Σ2

 −
(Σ)

2



!

=
1

6− 1
µ
13548− (9)

2

6

¶
=

1

5
(0048)

= 00096

Thus,  =
√
00096 ≈ 0098

 =
1


Σ =

1

6
(9) = 15

The test statistic is

 =

√

¡
 − 

¢


=

√
6 (15− 16)
0098

=

√
6 (−01)
0098

≈ −24995

The critical value is ;(−1) = 005;5 = 2015 Reject 0 if   −2015

Since −24995  −2015, we reject 0 at the 5% level and conclude that   16

(b) The 95% upper confidence limit for  isµ
−∞; + ;(−1) ×

√


¶
µ
−∞; + 005;5 × √



¶
µ
−∞; 15 + 2015× 0098√

6

¶
(−∞; 15 + 00806)
(−∞; 15806) 

3. 0 :  = 100 against 1 :  6= 100

 = 16  = 100−
√
0722 0 =

√

¡
 − 0

¢


∼ −1
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Now

 =

√
 (− 0)



=

√

³
100−

√
0722 − 100

´


=

√

¡−√072¢



= −√
√
072

= −
√
16
√
072

≈ −33941

Since test is two-sided  =
||√
2
=
|−33941|√

2
≈ 24

Thus, at  = 005 the power of the test is approximately 89%

Also at  = 001 the power of the test is approximately 67%

4. (a) 0 : 1 = 2 against 1 : 1  2

1 = 10
P

1 = 1070
P

2
1 = 115 990

2 = 12
P

2 = 1344
P

2
2 = 152 328

1 =
1

1

P
1 =

1

10
× 1 070 = 107 2 =

1

2

P
2 =

1

12
× 1 344 = 112

21 =
1

1 − 1

ÃP
2
1 −

(
P

1)
2



!
22 =

1

2 − 1

ÃP
2
2 −

(
P

2)
2



!

=
1

10− 1

Ã
115 990− (1 070)

2

10

!
=

1

12− 1

Ã
152 328− (1 344)

2

12

!

=
1

9
(1 500) =

1

11
(1 800)

≈ 1666667 ≈ 1636364

2 =
(1 − 1)21 + (2 − 1)22

1 + 2 − 2

=
9(1666667) + 11(1636364)

10 + 12− 2
=

3 3000007

20

≈ 165

=⇒  =
√
165 ≈ 128452
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The test statistic is

 =
(1 −2)− (1 − 2)



q
1
1
+ 1

2

=
(107− 112)− 0
128452

q
1
10
+ 1

12

=
−5

5499986051

≈ −09091

Test is one-tailed. The critical value is ;(1+2−2) = 005;20 = 1725 Reject 0 if   −1725

Since −09091  −1725 we do not reject 0 at the 5% level and conclude that the means are

equal, that is, 1 = 2

(b) The 90% two-sided confidence interval for 1 − 2 is

¡
1 −2

¢− 2;(1+2−2) × 

r
1

1
+
1

2
≤ 1 − 2 ≤

¡
1 −2

¢− 2;(1+2−2) × 

r
1

1
+
1

2

(107− 112)− 005;20 × 128452
r
1

10
+
1

12
≤ 1 − 2 ≤ (107− 112) + 005;20 × 128452

r
1

10
+
1

12

−5− 1725× 128452
r
11

60
≤ 1 − 2 ≤ −5 + 1725× 128452

r
11

60

−5− 94875 ≤ 1 − 2 ≤ −5 + 94875
−144875 ≤ 1 − 2 ≤ 44875

5. A large value of  will increase the power =⇒ || should be the largest, in other words, the

maximum.

Now

 =
1 − 2


q

1
1
+ 1

2



This can only be maximised if
q

1
1
+ 1

2
is the smallest. This is achieved if 1 = 2 = 10 for all

1 − 2 and 

 is maximised if 1 = 2 = 10
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6. 1 = 3 2 = 9 1 = 2 + 18
√
2

Now

 =
1 − 2


q

1
1
+ 1

2

=
2 + 18

√
2− 2



q
1
3
+ 1
9

=
18
√
2



q
4
9

=
18
√
2

2
3

≈ 38184

Now  =
||√
2
=
|38184|√

2
≈ 27

 = 1 + 2 − 2 = 3 + 9− 2 = 10

(a) Thus, at  = 005 the power of the test is approximately 93%

(b) Also at  = 001 the power of the test is approximately 73%
¡
69+77
2

¢
.

7. 0 : 1 = 22 against 1 : 1  22

=⇒ 0 : 1 − 22 = 0 against 1 : 1 − 22  0

Now 22 =⇒ 
¡
22

¢
= 2

¡
2

¢
= 22  

¡
22

¢
= 4 

¡
2

¢
1 ∼ 

µ
1

2

1

¶
2 ∼ 

µ
2

2

2

¶
22 ∼ 

µ
22

42

2

¶
1 − 22 ∼ 

µ
1 − 22

2

1
+
42

2

¶
 =

(1 − 22)− (1 − 22)

q

1
1
+ 4

2

Now
(1 − 1)21

2
∼ 21−1 and

(2 − 1)22
2

∼ 22−1

 =

∙
(1 − 1)21

2
+
(2 − 1)22

2

¸
∼ 21+2−2

 =
q


1+1−2
∼ 1+1−2
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where

 =

Ã
(1−22)−(1−22)

1

1
+ 4

2

!
s
(1 − 1)21 + (2 − 1)22

1 + 1 − 2

=
(1 − 22)− (1 − 22)



q
1
1
+ 4

2

where 2 =
(1 − 1)21 + (2 − 1)22

1 + 2 − 2

If 0 : 1 = 22 =⇒ 1 − 22 = 0 Thus,

 =
(1 − 22



q
1
1
+ 4

2



8. (a) Let  = blood sugar (after) – blood sugar (before)

Patient  1 2 3 4 5 6 7 8
 8 6 7 3 12 7 4 9

 = 8
P

 = 56
P

2 = 448

 =
1



P
 =

56

8
= 7

2 =
1

− 1

ÃP
2 −

(
P

)
2



!

=
1

8− 1

Ã
448− (56)

2

8

!
=

1

7
(56)

= 8

 =
√
8 ≈ 28284

0 :  = 5 against 1 :   5

The test statistic is

 =

√

¡
 − 

¢


=

√
8 (7− 5)
28284

=

√
8 (2)

28284

≈ 2
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The critical value is ;(−1) = 005;7 = 1895 Reject 0 if   1895

Since 2  1895 we reject 0 at the 5% level and conclude that the blood sugar content

increases by more than 5 units.

(b) The 95% lower confidence interval isµ
 − ;(−1) ×

√

;∞
¶

µ
 − 005;7 × √


;∞
¶

µ
7− 1895× 28284√

8
;∞
¶

(7− 1895;∞)
(5105;∞) 

9. 1 = 9 1 = 110 21 = 180

2 = 11 2 = 120 22 = 56

0 : 1 = 2 against 1 : 1 6= 2

The test statistic is

 =
(1 −2)− (1 − 2)q

21
1
+

22
2

=
(110− 120)− 0q

180
9
+ 55

11

=
−10√
25

≈ −2

 =

³
21
1
+

22
2

´2
41

21(1−1) +
42

22(2−1)

=

¡
180
9
+ 55

11

¢2
1802

92(8)
+ 552

112(10)

=
(25)2

50 + 250

≈ 1190

Interpolating between  = 11 and  = 12
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 = 010 2 = 005

005;1190 = 1796 + 090(1782− 1796)
= 1796− 00126
≈ 1783

We reject 0 if   −1783 or   1783

Since −2  −1783 we reject 0 at the 10% level and conclude that the means are not the same.

10.  ∼ 
¡
 

2


¢
. Now 1 ∼ 

µ
1

21
1

¶
=⇒ 1 ∼ 

µ
1

222
1

¶
and 2 ∼ 

µ
2

22
2

¶
(1 −2) = 1 − 2

 (1 −2) =  (1) +  (2)

=
222
1

+
22
2

= 22

µ
2

1
+
1

2

¶
The test statistic

 =
(1 −2)− (1 − 2)


q

2
1
+ 1

2

=
(1 −2)− (1 − 2)


q

2
1
+ 1

2

where 2 =
1
2
(1 − 1)21 + (2 − 1)22

1 + 2 − 2

11. 1 = 40 21 = 400 1 = 10

2 = 60 22 = 720 2 = 12

 = 005 2 = 0025

The degrees of freedom are

 =

³
21
1
+

22
2

´2
41

21(1−1) +
42

22(2−1)

=

¡
400
10
+ 720

12

¢2
4002

102(9)
+ 7202

122(11)

=
(100)2

5050505051

≈ 198
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Interpolating between  = 19 and  = 20 =⇒ critical value is

0025;198 = 2093 + 08(2086− 2093)
= 2093− 00056
≈ 2087

The 95% two-sided confidence interval for 1 − 2 is¡
1 −2

¢− 2; ×
s

21
1
+

22
2

≤ 1 − 2 ≤
¡
1 −2

¢− 2; ×
s

21
1
+

22
2

(40− 60)− 2087
r
400

10
+
720

12
≤ 1 − 2 ≤ (40− 60) + 2087

r
400

10
+
720

12

−20− 2087
√
100 ≤ 1 − 2 ≤ −20 + 2087

√
100

−20− 2087 ≤ 1 − 2 ≤ −20 + 2087
−4087 ≤ 1 − 2 ≤ 087

12. Testing 0 : 1 = 2 = 3 against 1 :  6=  for at least one pair  6= 

 = 3  = 7 −  = 18  − 1 = 2
1 = 19

X
1 = 133

X
2
1 = 2607

1 =
X
(1 −1)

2

=
X

2
1 −

³X
1

´2


= 2607− (133)
2

7

= 08

[Note: After entering data in statistics mode this is equal to 2 or (− 1)2]
2 = 18

X
2 = 126

X
2
2 = 2332

2 =
X
(2 −2)

2

=
X

2
2 −

³X
2

´2


= 2332− (126)
2

7

= 064
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3 = 23
X

3 = 161
X

2
3 = 3775

3 =
X
(3 −3)

2

=
X

2
3 −

³X
3

´2


= 3775− (161)
2

7

= 072

 = 2
XX

 = 42
XX

2
 = 8714

 =

X
=1

X
=1

( − )2

=
XX

2
 −

³XX


´2


= 8714− (42)
2

21

= 314

 = 1 + 2 + 3

= 08 + 064 + 072

= 216

 =


− 
=
216

18
= 012

3X
=1

( −)2 = (19− 2)2 + (18− 2)2 + (23− 2)2

= 014

 = 

3X
=1

( −)2

= 7(014)

= 098

 =

X3

=1
( −)2

 − 1 =
098

2
= 049

 =



=
049

012
≈ 40833

The ANOVA table is
Source of Sum of Degrees of Mean 

variation squares freedom square
Treatments 098 2 049 40833

Error 216 18 012

Total 314 20

The critical value is 005;2;18 = 355 Reject 0 if   355.
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Since 40833  355 we reject 0 at the 5% level and conclude that there is sufficient evidence to

indicate a difference in means.

Multiple comparisons:

( − 1);−1;− = 2× 005;2;18

= 2× 355
= 71

 =

√
( −)√

2

=

√
7( −)√
2
√
012

=

r
7

024
( −)

Reject 0 :  =  if : Now || 
√
71 ∴

¯̄
 −

¯̄


√
71q
7
024

≈ 04934

Testing 0 : 1 = 2 against 1 : 1 6= 2¯̄
1 −2

¯̄
= |19− 18| = 01

Since 01  04934, we do not reject 0 and conclude that the mean for food A is the same as the

mean for food B.

Testing 0 : 1 = 3 against 1 : 1 6= 3¯̄
1 −3

¯̄
= |19− 23| = 04

Since 04  04934, we do not reject 0 and conclude that the mean for food A is the same as the

mean for food C.

Testing 0 : 2 = 3 against 1 : 2 6= 3

¯̄
2 −3

¯̄
= |18− 23| = 05

Since 05  04934, we reject 0 and conclude that the mean for food B is not the same as the

mean for food C.

13. (a) Testing 0 : 1 = 2 = 3 = 4 against 1 :  6=  for at least one pair  6= 

 = 4  = 8 −  = 28  − 1 = 3
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1 = 13
X

1 = 104
X

2
1 = 13707

1 =
X
(1 −1)

2

=
X

2
1 −

³X
1

´2


= 13707− (104)
2

8

= 187

2 = 10
X

2 = 80
X

2
2 = 80996

2 =
X
(2 −2)

2

=
X

2
2 −

³X
2

´2


= 80996− (80)
2

8

= 996

3 = 12
X

3 = 96
X

2
3 = 117068

3 =
X
(3 −3)

2

=
X

2
3 −

³X
3

´2


= 117068− (96)
2

8

= 1868

4 = 9
X

4 = 72
X

2
4 = 6527

4 =
X
(4 −4)

2

=
X

2
4 −

³X
4

´2


= 6527− (72)
2

8

= 47

 = 11
XX

 = 352
XX

2
 = 400404

 =

X
=1

X
=1

( − )2

=
XX

2
 −

³XX


´2


= 400404− (352)
2

32

= 13204
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 = 1 + 2 + 3 + 4

= 187 + 996 + 1868 + 47

= 5204

 =


− 
=
5204

28
≈ 18586

4X
=1

( −)2 = (13− 11)2 + (10− 11)2 + (12− 11)2 + (9− 11)2

= 10

 = 

3X
=1

( −)2

= 8(10)

= 80

 =

X4

=1
( −)2

 − 1 =
80

3
≈ 266667

 =



=
266667

18586
≈ 143477

The ANOVA table is

Source of Sum of Degrees of Mean 

variation squares freedom square
Treatments 80 3 266667 143477

Error 5204 28 18586

Total 13204 31

The critical value is 005;3;28 = 295 Reject 0 if   295.

Since 143477  295 0 is rejected at the 5% level and we conclude that there is sufficient

evidence to indicate a significant difference in the means of the four brands of feed.

(b) Multiple comparisons

( − 1);−1;− = 3× 005;3;28

= 3× 295
= 885
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 =

√
( −)√

2

=

√
8( −)√
2
√
18586

=

r
8

37172
( −)

We reject 0 :  =  if

||  885

∴
¯̄
 −

¯̄


√
885q
8

37172¯̄
 −

¯̄
 20278

Testing 0 : 1 = 2 against 1 : 1 6= 2¯̄
1 −2

¯̄
= |13− 10| = 3

Since 3  20278, we reject 0 and conclude that there is a significant difference between the

mean for brand A and the mean for brand B.

Testing 0 : 1 = 3 against 1 : 1 6= 3¯̄
1 −3

¯̄
= |13− 12| = 1

Since 1  20278, we do not reject 0 and conclude that the means for brand A and brand C

are the same.

Testing 0 : 1 = 4 against 1 : 1 6= 4¯̄
1 −4

¯̄
= |13− 9| = 4

Since 4  20278, we reject 0 and conclude that there is a significant difference between the

means for brand A and brand D.

Testing 0 : 2 = 3 against 1 : 2 6= 3¯̄
2 −3

¯̄
= |10− 12| = 2

Since 2  20278, we do not reject 0 and conclude that the means for brand B and brand C

are the same.

Testing 0 : 2 = 4 against 1 : 2 6= 4¯̄
2 −4

¯̄
= |10− 9| = 1



284

Since 1  20278, we do not reject 0 and conclude that there is no significant difference

between the means for brand B and brand D.

Testing 0 : 3 = 4 against 1 : 3 6= 4¯̄
3 −4

¯̄
= |12− 9| = 3

Since 3  20278, we reject 0 and conclude that there is a significant difference between the

means for brand C and brand D.

* * * * *

Exercise 8.1

1.

A scatter plot of Y versus X
The scatter plot reveals that there is no strong linear relationship. A transformation of the data

after taking logs is given below:

10 10

07 0017 0020 0010

1 0025 0021 0029

12 0020 0031 0023

13 0028 0031 0032

14 0033 0029 0031

15 0039 0026 0029

The transformation makes the points to be more clustered together than the previous original

data. Here a suitable transformation is

10 = 0 + 110 + 
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This is also evidenced by the scatter plot of the transformed variables shown below:

A scatter plot of 10 versus 10

2. (a)

The points seem to be clustered along a straight line, thus simple linear regression is a suitable

model.

(b)

   −
¡
 −

¢2

¡
 −

¢ b  − b ³
 − b´2

−5 12 −5 25 −60 10 2 4

−4 7 −4 16 −28 12 −5 25

−3 20 −3 9 −60 14 6 36

−2 13 −2 4 −26 16 −3 9

−1 21 −1 1 −21 18 3 9

0 18 0 0 0 20 −2 4

1 22 1 1 22 22 0 0

2 18 2 4 36 24 −6 36

3 28 3 9 84 26 2 4

4 32 4 16 128 28 4 16

5 29 5 25 145 30 −1 1

Total 220 0 110 220 144
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 = 0 and  = 0 b1 =

P
(−)P
(−)2

= 220
110

= 2b0 =  − b1 = 20− 2(0) = 20

The estimated regression line is b = 20 + 2
b2 = 2

=
1

− 2
P³

 − b´2
=

144

11− 2
=

144

9

= 16

(c) The confidence interval for 1 isµb1 − 2;−2 ×



; b1 + 2;−2 ×





¶
⎛⎝b1 − 2;−2 ×

qP¡
 −

¢2 ; b1 + 2;−2 ×
qP¡
 −

¢2
⎞⎠

 = 005 2 = 0025 2;−2 = 0025;9 = 2262b1 = 2  =
√
16 = 4  =

√
110

Thus, the 95% confidence interval for b1 is⎛⎝b1 − 2;−2 ×
qP¡
 −

¢2 ; b1 + 2;−2 ×
qP¡
 −

¢2
⎞⎠

µ
2− 2262× 4√

110
; 2 + 2262× 4√

110

¶
(2− 08627; 2 + 08627)
(11373; 28627) 

(d) The mean yield at 340 is b = 0 + 21

= 20 + 2(2)

= 24



287 STA2601/1

The confidence interval for 0 + 21 is³b0 + 2b1´± 2;−2 × 

s
1


+

¡
 −

¢2
2³b0 + 2b1´± 2;−2 × 

vuut 1


+

¡
 −

¢2P¡
 −

¢2
24± 2262× 4

s
1

11
+
(2− 0)2
110

24± 9048
√
0127272727

24± 32279
(207721; 272279) 

(e) At 360C

 = (temp− 300)20
= (360− 300)20
= 3

The 95% confidence interval for the yield if a further experiment is performed at 360C is³b0 + 2b1´± 2;−2 × 

vuut1 + 1


+

¡
 −

¢2P¡
 −

¢2
(20 + 2(3))± 2262× 4

s
1 +

1

11
+
(3− 0)2
110

26± 9048
√
1127272727

26± 97983
(162017; 357983) 

3. (a)

The plot shows that the points are clustered along a straight line. Thus, the simple linear

regression would be a suitable model.
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(b)

   −
¡
 −

¢2

¡
 −

¢ b  − b ³
 − b´2

2 30 0 0 0 3018 −018 00324

3 36 1 1 36 4018 −418 174724

4 47 2 4 94 5018 −318 101124

1 28 −1 1 −28 2018 782 611524

0 12 −2 4 −24 1018 182 33124

2 31 0 0 0 3018 082 06724

4 54 2 4 108 5018 382 145924

0 5 −2 4 −10 1018 −518 268324

1 18 −1 1 −18 2018 −218 47524

2 29 0 0 0 3018 −118 13924

3 42 1 1 42 4018 182 33124P
= 22 332 0 20 200 1436364

 = 22
11
= 2 and  = 301818

b1 =

P
(−)P
(−)2

= 200
20

= 10

b0 =  − b1 = 301818− 10(2) = 101818

∴The estimated regression line isb = 101818 + 10

(c) The 95% confidence interval for 1 isµb1 − 2;−2 ×



; b1 + 2;−2 ×





¶

2;−2 = 0025;9 = 2262 b1 = 10 2 = 1436364
9

= 159596

 =
√
159596 ≈ 39949  =

√
20

Thus, the 95% confidence interval for b1 is

µb1 − 2;−2 ×



; b1 + 2;−2 ×





¶
µ
10− 2262× 39949√

20
; 2 + 2262× 39949√

20

¶
(10− 20206; 10 + 20206)
(79794; 120206) 

We are 95% confident that the slope will lie between 798 and 1202 Thus, for every increase

of 1 unit in  we expect an increase in  to range from (798 to 1202)

(d) The expected yield at  = 4 is

 = 101818 + 10(4)

= 501818
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(e) The 95% confidence interval for the expected yield at  = 4 is³b0 + b1´± 2;−2 × 

vuut 1


+

¡
 −

¢2P¡
 −

¢2
501818± 2262× 39949

s
1

11
+
(4− 2)2
20

501818± 90364638
√
029090909

501818± 48739
(501818− 48739; 501818 + 48739)
(453079; 550557) 

(f) The 95% confidence interval for the yield which one may expect to obtain, if in a new

experiment a dosage of  = 4 is applied is³b0 + b1´± 2;−2 × 

vuut1 + 1


+

¡
 −

¢2P¡
 −

¢2
501818± 2262× 39949

s
1 +

1

11
+
(4− 2)2
20

501818± 90364638
√
1290909091

501818± 102671
(501818− 102671; 501818 + 102671)
(399147; 604489) 

4. (a)  
³b0 + b1´ = 2

"
1


+

¡
 −

¢2
2

#
It is a minimum when ¡

 −
¢2

2
= 0

=⇒ ¡
 −

¢2
= 0

=⇒  − = 0

=⇒  = 

(b) The covariance between b0 + b11 and b0 + b12 is

(b0 + b11 b0 + b12) =  (b0) +1(b0 b1) +2(b0 b1) +12 (b1)
= 2

"
1


+


2

2

#
+

1

¡−2¢
2

+
2

¡−2¢
2

+21
2

2

=
2


+

2
2

2
+
−2 (1 +2)

2
+12

2

2
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(c) They are uncorrelated if  = 0

(b0 + b1 ¡ − 
¢
 b0 + b1 ¡ + 

¢
) =  (b0) + ¡ − 

¢
(b0 b1) + ¡ + 

¢
(b0c 1)

+
¡
 − 

¢ ¡
 + 

¢
 (b1)

=  (b0) + ¡ − 
¢
(b0 b1) + ¡ + 

¢
(b0c 1)

+
³

2 − 2

´
 (b1)

= 2

Ã
1


+


2

2

!
+
¡
 − 

¢µ−2
2

¶
+
¡
 + 

¢µ−2
2

¶
+
³

2 − 2

´µ2
2

¶

=
2


+

2
2

2
− 2

2

2
+

2
2

2
− 2

2

2

−
2

2

2
+

2
2

2
− 22

2

=
2


+
22

2

2
− 2

2
2

2
+

2

2
− 2

2
− 22

2

=
2


− 22

2

Now =⇒
2


− 22

2
= 0

2


=

22

2

1


=

2

2

2


= 2r

2


= 

√


= 

Thus,  =
√


If you have worked through all the activities in the workbook and tried

to do all the exercises in the study guide, there is a good chance that you

will pass STA2601 with a distinction!!


