Tutorial letter 103/2/2018

Statistical Inference III STA3702

Semester 2

Department of Statistics

TRIAL EXAMINATION PAPER

1. Trial Examination Papar
2. Trial Examination Paper Solutions

1 Trial Examination Paper

INSTRUCTIONS

1. Answer all questions.
2. Show intermediate steps.

Abbreviations	
$M L E$	Maximum Likelihood Estimator
$M S E$	Mean Square Error
$p d f$	probability density function
$c d f$	cumulative distribution function
$M V U E$	Minimum Variance Unbiased Estimator
$M M E$	Method of Moments Estimator
$C R L B$	Cramer Rao Lower Bound
$p m f$	probability mass function
$m g f$	moment generating function
$r e$	relative efficiency

Question 1

A distribution belongs to the regular 1-parameter exponential family if among other regularity conditions its pdf or pmf has the form:

$$
f(y \mid \theta)=a(\theta) g(y) \exp \{b(\theta) r(y)\}, y \in \chi \subset(-\infty, \infty) \text { and } \theta \in \Theta \subset(-\infty, \infty)
$$

where $g(y)>0, r(y)$ is a function of y which does not depend on θ, and $a(\theta)>0$ and $b(\theta) \neq 0$ are real valued functions of θ. Furthermore, for this distribution (assuming the first and second derivatives of $a(\theta)$ and $b(\theta)$ exist)

$$
E[r(Y)]=-\frac{a^{\prime}(\theta)}{a(\theta) b^{\prime}(\theta)}
$$

Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from this distribution.
(a) Show that $f(y \mid \theta)$ can also be expressed as:

$$
\begin{equation*}
f(y \mid \theta)=g(y) \exp \{b(\theta) r(y)-q(\theta)\}, y \in \chi \subset(-\infty, \infty) \text { and } \theta \in \Theta \subset(-\infty, \infty) \tag{2}
\end{equation*}
$$

(b) Prove that $\sum_{i=1}^{n} r\left(Y_{i}\right)$ is a minimal sufficient statistic for θ.
(c) Justify that $\sum_{i=1}^{n} r\left(Y_{i}\right)$ is also a complete sufficient statistic for θ.
(d) Write down a function of the complete sufficient statistic for θ that is a minimum variance unbiased estimator (MVUE) of $E[r(Y)]$. Justify your answer.
(e) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is random sample from a distribution with $p d f$:

$$
f(x \mid \theta)= \begin{cases}\frac{\theta}{(1+x)^{1+\theta}} & \text { if } x>0 \text { and } \theta>0 \\ 0 & \text { otherwise } .\end{cases}
$$

(i) Show that $f(x \mid \theta)$ belongs to the regular 1-parameter exponential family by showing that the pdf can be expressed as:

$$
\begin{equation*}
f(x \mid \theta)=a(\theta) g(x) \exp \{b(\theta) r(x)\}, x>0 \text { and } \theta>0 \tag{5}
\end{equation*}
$$

(ii) What is the mean of the complete sufficient statistic for θ ? Justify your answer. (6)
(iv) What is the maximum likelihood estimator (MLE) of θ ? Justify your answer.
(v) What is the method of moments estimator $(M M E)$ of θ ? Justify your answer.
(vi) What is the minimum variance unbiased estimator (MVUE) of $\frac{1}{\theta}$? Justify your answer.

Question 2

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with $p d f$:

$$
f(x \mid \theta)= \begin{cases}\frac{1}{\theta} & \text { if } 0<x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$. Let $Y_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. The probability density function of Y_{n} is

$$
g(y \mid \theta)= \begin{cases}n y^{n-1} \theta^{-n} & \text { if } 0<y \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that the ten independent observations,

$$
23,23,24,23,23,23,24,22,24,25
$$

are from a population with probability density function $f(x \mid \theta)$.
(a) What are the method of moments estimator and estimate of θ ?
(b) What are the maximum likelihood estimator and estimate of θ ?
(c) Find the mean and the variance, in terms of θ and n, of the maximum likelihood estimator of θ. Is the estimator consistent?
(d) What is an estimate of the standard error of the maximum likelihood estimate of θ ?
(e) Find an approximate 95% confidence interval for θ.

Question 3

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with $p d f$:

$$
f\left(x \mid \theta_{1}, \theta_{2}\right)= \begin{cases}\frac{\theta_{1}}{\theta_{2}^{\theta_{2}}} x^{\theta_{1}-1} & \text { if } 0<x \leq \theta_{2} \text { and } \theta_{1}>0 \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the likelihood function and the \log-likelihood function of θ_{1} and θ_{2}.
(b) Show that the respective maximum likelihood estimators ($M L E^{\prime} s$) of θ_{1} and θ_{2} are

$$
\begin{equation*}
\hat{\theta}_{1}=\frac{n}{n \ln X_{(n)}-\sum_{i=1}^{n} \ln X_{i}} \text { and } \hat{\theta}_{2}=X_{(n)}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}, \tag{12}
\end{equation*}
$$

respectively. Hint: First find the $M L E$ of θ_{2} and then that of θ_{1}.

Question 4

A random variable X has probability density function

$$
f(x \mid \theta)=\frac{\exp \{x-\theta\}}{(1+\exp \{x-\theta\})^{2}}, \quad-\infty<x<\infty \text { and }-\infty<\theta<\infty
$$

and cumulative distribution function

$$
F(x \mid \theta)=1-\frac{1}{1+\exp \{x-\theta\}},-\infty<x<\infty \text { and }-\infty<\theta<\infty
$$

It is desired to test the null hypothesis $H_{0}: \theta=0$ against the alternative $H_{1}: \theta=1$ using one random observation X.
(a) Calculate the level of significance and the power of the test which rejects H_{0} if $X>1$. (12)
(b) Consider the test which rejects H_{0} if $X_{1} \geq c$. Find c for which the level of significance of the test is 0.1 .

2 Trial Examination Solutions

Question 1

[Total marks=30]
(a)

$$
\begin{aligned}
f(y \mid \theta) & =a(\theta) g(y) \exp \{b(\theta) R(y)\} \\
& =g(y) \exp \{b(\theta) r(y)--\ln [a(\theta)]\} \\
& =g(y) \exp \{b(\theta) r(y)-q(\theta)\}
\end{aligned}
$$

where $q(\theta)=-\ln [a(\theta)]$.
(b) The likelihood function of θ is

$$
\begin{aligned}
L(\theta \mid y) & =\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=\left(\prod_{i=1}^{n} g\left(y_{i}\right)\right) \exp \left\{b(\theta) \sum_{i=1}^{n} r\left(y_{i}\right)-n q(\theta)\right\} \\
& =m_{1}(y) \times m_{2}\left(\theta, \sum_{i=1}^{n} r\left(y_{i}\right)\right)
\end{aligned}
$$

where $m_{1}(\mathbf{y})=\prod_{i=1}^{n} g\left(y_{i}\right)$ and $m_{2}\left(\theta, \sum_{i=1}^{n} r\left(y_{i}\right)\right)=\exp \left\{b(\theta) \sum_{i=1}^{n} r\left(y_{i}\right)-n q(\theta)\right\}$. This means $\sum_{i=1}^{n} r\left(Y_{i}\right)$ is sufficient statistic for θ by the factorisation theorem.
Now let $X_{1}, X_{2}, \ldots, X_{n}$ be another random sample from the same distribution. Then

$$
\frac{L(\theta \mid y)}{L(\theta \mid x)}=\prod_{i=1}^{n} \frac{g\left(y_{i}\right)}{g\left(x_{i}\right)} \exp \left\{b(\theta) \sum_{i=1}^{n}\left(r\left(y_{i}\right)-r\left(x_{i}\right)\right)\right\}
$$

is independent of θ if $\sum_{i=1}^{n}\left(r\left(y_{i}\right)-r\left(x_{i}\right)\right)=0$ equivalently if $\sum_{i=1}^{n} r\left(y_{i}\right)=\sum_{i=1}^{n} r\left(x_{i}\right)$. This means that $\sum_{i=1}^{n} r\left(Y_{i}\right)$ is a minimal sufficient statistic for θ.
(c) It is because $f(y \mid \theta)$ belongs to the 1-parameter exponential family.
(d) $\frac{1}{n} \sum_{i=1}^{n} r\left(Y_{i}\right)$ because it is a function of the complete sufficient statistic for θ and

$$
\begin{equation*}
E\left[\frac{1}{n} \sum_{i=1}^{n} r\left(Y_{i}\right)\right]=E[r(Y)] . \tag{3}
\end{equation*}
$$

(e) (i)

$$
\begin{align*}
f(x \mid \theta) & =\frac{\theta}{(1+x)^{1+\theta}} \\
& =\theta(1+x)^{-1}(1+x)^{-\theta} \\
& =\theta(1+x)^{-1} \exp \{-\theta \ln (1+x)\} \\
& =a(\theta) g(x) \exp \{b(\theta) r(x)\} \tag{5}
\end{align*}
$$

where $a(\theta)=\theta ; g(x)=(1+x)^{-1} ; b(\theta)=\theta$; and $r(x)=-\ln (1+x)$.
(ii) The complete sufficient statistic is $\sum_{i=1}^{n} r\left(X_{i}\right)=-\sum_{i=1}^{n} \ln \left(1+X_{i}\right)$ since $f(x \mid \theta)$ belongs to the 1-parameter exponential family. $E[r(X)]=-\frac{a^{\prime}(\theta)}{a(\theta) b^{\prime}(\theta)}=\frac{1}{\theta \times 1}=\frac{1}{\theta} \Rightarrow$ $E\left[-\sum_{i=1}^{n} \ln \left(1+X_{i}\right)\right]=-\frac{n}{\theta}$.
(iii) The likelihood function is

$$
L(\theta \mid \mathbf{x})=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\theta^{n} \prod_{i=1}^{n}\left(1+x_{i}\right)^{-1} \prod_{i=1}^{n}\left(1+x_{i}\right)^{-\theta}
$$

and the log-likelihood function is

$$
l(\theta)=n \ln \theta+\ln \left[\prod_{i=1}^{n}\left(1+x_{i}\right)^{-1}\right]-\theta \sum_{i=1}^{n} \ln \left(1+x_{i}\right) .
$$

The $M L E$ of θ is $\hat{\theta}$ which solves the equation

$$
0=l^{\prime}(\theta)=\frac{n}{\hat{\theta}}-\sum_{i=1}^{n} \ln \left(1+x_{i}\right)
$$

The solution is $\hat{\theta}=\frac{n}{\sum_{i=1}^{n} \ln \left(1+X_{i}\right)}$.
(iv) $E[\ln (1+X)]=\frac{1}{\theta} \Longrightarrow \theta=\frac{1}{E[\ln (1+X)]} \Longrightarrow$ the $M M E$ of θ is $\widetilde{\theta}=\frac{n}{\sum_{i=1}^{n} \ln \left(1+X_{i}\right)}$.
(v) The minimum variance unbiased estimator $(M V U E)$ of $\frac{1}{\theta}$ is $\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+X_{i}\right)$ because the estimator is a function of a complete sufficient statistic for θ and
$E\left[\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+X_{i}\right)\right]=\frac{1}{\theta}$.

Question 2

(a) $E(X)=\int_{0}^{\theta} x / \theta d x\left[\frac{x^{2}}{2 \theta}\right]_{0}^{\theta}=\frac{\theta}{2} \Rightarrow \theta=2 E[X]$. This means the method of moments estimate $(M M E)$ of θ is $\tilde{\theta}=2 \bar{x}=2 \times 23.2=46.4$.
(b) The likelihood function of θ

$$
L(\theta \mid \mathbf{x})=\left\{\begin{array}{cl}
\theta^{-n} & \text { if } \theta \geq x_{(n)}=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
0 & \text { otherwise }
\end{array}\right.
$$

decreases as θ increase. Thus the function attains its maximum at the smallest value of θ which is $x_{(n)}$. This means the maximum likelihood estimate of θ is $x_{(10)}=25$.
(c) $E\left[Y_{n}\right]=\int_{0}^{\theta} y n y^{n-1} \theta^{-n} d y=\left[\frac{n}{n+1} y^{n+1} \theta^{-n}\right]_{0}^{\theta}=\frac{n}{n+1} \theta$.
$E\left[Y_{n}^{2}\right]=\int_{0}^{\theta} y^{2} n y^{n-1} \theta^{-n} d y=\left[\frac{n}{n+2} y^{n+2} \theta^{-n}\right]_{0}^{\theta}=\frac{n}{n+2} \theta^{2} \Rightarrow$
$\operatorname{Var}\left(Y_{n}\right)=E\left[Y_{n}^{2}\right]-\left(E\left[Y_{n}\right]\right)^{2}=\left(\frac{n}{n+2}-\frac{n^{2}}{(n+1)^{2}}\right) \theta^{2}=\frac{n}{(n+2)(n+1)^{2}} \theta^{2}$.
That the bias of the estimate is $\theta-E\left[Y_{n}\right]=\frac{1}{n+1} \theta \rightarrow 0$ as $n \rightarrow \infty$ and
$\lim _{n \rightarrow \infty} \operatorname{Var}\left(Y_{n}\right)=0$ means Y_{n} is a consistent estimator of θ.
(d) The estimate is $\sqrt{\left.\operatorname{Var}\left(Y_{n}\right)\right|_{n=10,} \theta=x_{(10)}=25}=\sqrt{\frac{10}{12 \times 11^{2}} \times 25^{2} \widetilde{\theta}}=2.0747$.
(e) The 95% confidence interval is $25 \pm 1.960 \times 2.0747=[20.9334 ; 29.0664]$.

Question 3

(a) The likelihood function of θ_{1} and θ_{2} is

$$
L\left(\theta_{1}, \theta_{2} \mid \mathbf{x}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta_{1}, \theta_{2}\right)= \begin{cases}\left(\prod_{i=1}^{n} x_{i}\right)^{-1} \frac{\theta_{1}^{n}}{\theta_{2}^{n \theta_{1}}}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta_{1}} & \text { if } \theta_{1}>0, \theta_{2} \geq \text { all the } x_{i}^{\prime} s \\ 0 & \text { otherwise } .\end{cases}
$$

Equivalently,

$$
L\left(\theta_{1}, \theta_{2} \mid \mathbf{x}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta_{1}, \theta_{2}\right)= \begin{cases}\left(\prod_{i=1}^{n} x_{i}\right)^{-1} \frac{\theta_{1}^{n}}{\theta_{2}^{n \theta_{1}}}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta_{1}} & \text { if } \theta_{1}>0, \theta_{2} \geq x_{(n)} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

where $x_{(n)}=\max \left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$.

The log likelihood function is

$$
\begin{align*}
l\left(\theta_{1}, \theta_{2}\right) & =\ln L\left(\theta_{1}, \theta_{2}\right) \\
& = \begin{cases}\ln \left(\prod_{i=1}^{n} x_{i}\right)^{-1}+n \ln \theta_{1}-n \theta_{1} \ln \theta_{2}+\theta_{1} \ln \left(\prod_{i=1}^{n} x_{i}\right) & \text { if } \theta_{1}>0, \theta_{2} \geq x_{(n)} \\
-\infty & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

(b) For any $\theta_{1}>0, L\left(\theta_{1}, \theta_{2} \mid \mathbf{x}\right)$ decreases as θ_{2} increases. Thus the function attains its maximum at the smallest value of θ_{2} which is $x_{(n)}$. This means the maximum likelihood estimator of θ_{2} is $X_{(n)}$.
Consider the log likelihood

$$
l\left(\theta_{1}, x_{(n)}\right)=\ln \left(\prod_{i=1}^{n}\right)^{-1}+n \ln \theta_{1}-n \theta_{1} \ln x_{(n)}+\theta_{1} \ln \left(\prod_{i=1}^{n} x_{i}\right)
$$

whose derivative with respect to θ_{1} is

$$
l^{\prime}\left(\theta_{1} x_{(n)}\right)=\frac{n}{\theta_{1}}-n \ln x_{(n)}+\ln \left(\prod_{i=1}^{n} x_{i}\right)=\frac{n}{\theta_{1}}-n \ln x_{(n)}+\sum_{i=1}^{n} \ln x_{i}
$$

The $M L E$ of θ_{1} is $\hat{\theta}_{1}$ which solves the equation

$$
0=l^{\prime}\left(\hat{\theta}_{1}, X_{(n)}\right)=\frac{n}{\hat{\theta}_{1}}-n \ln X_{(n)}+\ln \left(\prod_{i=1}^{n} X_{i}\right)=\frac{n}{\hat{\theta}_{1}}-n \ln X_{(n)}+\sum_{i=1}^{n} \ln X_{i}
$$

The solution is

$$
\begin{equation*}
\hat{\theta}_{1}=\frac{n}{n \ln X_{(n)}-\sum_{i=1}^{n} \ln X_{i}}=\frac{n}{n \ln X_{(n)}-\ln \left(\prod_{i=1}^{n} X_{i}\right)} . \tag{6}
\end{equation*}
$$

Question 4

(a) $\alpha=P(X>1 \mid \theta=0)=1-P(X<1 \mid \theta=0)=1-F(1 \mid 0)=\frac{1}{1+\exp (1)}=0.2689$.
$\beta=P(X<1 \mid \theta=1)=F(1 \mid 1)=1-\frac{1}{1+\exp (0)}=\frac{1}{2}$.
Hence the power $=1-\beta=\frac{1}{2}$.
(b) $0.1=P(X \geq c \mid \theta=0)=1-F(c \mid 0)=\frac{1}{1+\exp (c)} \Rightarrow$
$10=1+\exp (c) \Rightarrow 9=\exp (c) \Rightarrow c=\ln 9=2.1972$.

