Question 3 [23]

Suppose that $X_1, X_2, ..., X_n$ is a random sample from a distribution with probability density function:

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} \exp\{-x/\theta\} & \text{if } x > 0, \ \theta > 0, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that $f(x|\theta)$ belongs to the 1-parameter exponential family.

(4)

(b) Write down the complete sufficient statistic for θ .

(3) (8)

(c) Show that \bar{X} is a MVUE of θ (d) Determine the CRLB for an unbiased estimator of θ .

Question 4

(8)

[21]

(a) It is known that the random variable X has probability density function

$$f(x|\theta) = \begin{cases} \theta x^{(\theta-1)} & 0 < x < 1, \ \theta > 0, \\ 0 & \text{otherwise.} \end{cases}$$

It is desired to test the null hypothesis H_0 : $\theta=1$ against the alternative H_1 : $\theta=2$. A random sample X_1 of size n=1 is to be used.

- (i) Calculate the level of significance and the power of the test which rejects H_0 if $X_1 \ge \frac{1}{2}$.
- (ii) Consider the test which rejects H_0 if $X_1 \ge c$. Find c for which the level of significance of the test is 0.1.
- **(b)** Let $X_1, X_2, X_3, ..., X_n$ be a random sample from a population with probability density in part (a). Show that the best test for the hypotheses in part (a) rejects H_0 if

$$\prod_{i=1}^{n} x_i \ge c$$

where c solves the probability equation

$$\alpha = P\left(\prod_{i=1}^{n} x_i \ge c | \theta = 1\right).$$

(8)

TOTAL: [100]

ADDENDUM B: SECOND SEMESTER ASSIGNMENTS

B.1 Assignment 01

ONLY FOR SEMESTER 2 STUDENTS

ASSIGNMENT 01

Unique Nr.: 755093

Fixed closing date: 26 AUGUST 2016

Question 1

[20]

Suppose that $X_1, X_2, X_3, ..., X_n$ is a random sample from Poisson distribution with probability mass function:

$$p(x|\theta) = \begin{cases} \frac{e^{-\theta}\theta^x}{x!} & \text{if } x = 0, 1, 2, ..., \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find the method of moments estimator
$$(MME)$$
 of θ . (29 34)

(b) Find the maximum likelihood estimator
$$(MLE)$$
 of θ . (99 32)

(c) Find the maximum likelihood estimators (MLE) of the following functions of θ . Justify your answers.

(i)
$$e^{\theta}$$
 (3) e^{θ} (ii) $P(X \ge 1)$. (5) $e^{-\theta}$ (7) $e^{-\theta}$ (9) $e^{-\theta}$ (9) $e^{-\theta}$ (9) $e^{-\theta}$ (9) $e^{-\theta}$ (10) $e^{-\theta}$ (11) $e^{-\theta}$ (12) $e^{-\theta}$ (12) $e^{-\theta}$ (13) $e^{-\theta}$ (13) $e^{-\theta}$ (14) $e^{-\theta}$ (15) $e^{-\theta}$ (15) $e^{-\theta}$ (15) $e^{-\theta}$ (15) $e^{-\theta}$ (16) $e^{-\theta}$ (17) $e^{-\theta}$ (17) $e^{-\theta}$ (18) $e^{-\theta}$ (18) $e^{-\theta}$ (19) $e^$

Question 2

Let $X_1, X_2, X_3, ..., X_n$ be a random sample from a population whose probability density function is

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1} & \text{if } 0 < x < 1, \ \theta > 0, \\ 0 & \text{otherwise.} \end{cases}$$

(4) (a) Find the likelihood and log likelihood functions of θ .

(b) Show that
$$\prod_{i=1}^{n} X_i$$
 is a minimal sufficient statistic for θ . Study with θ (7)

(c) Find the maximum likelihood estimator
$$(MLE)$$
 of θ .

(5) (d) Determine the observed information, I(X), of θ

[20]

Suppose that 3, 0, 3, 0, 3, 2, 2, 0, 1, 0 are 10 independent observations from a population whose discrete distribution has a probability mass function given in the table below.

- (a) Find the method of moments estimate (MME) of θ . $\mathcal{E}(\mathbf{x}_i) = \mathcal{E}(\mathbf{x}_i) + \mathcal{E}(\mathbf{x}_i)$ (4)
- **(b)** Find the maximum likelihood estimate (MLE) of θ .
- (c) Find the approximate standard errors for the estimates in parts (a) and (b). (7)
- (d) Which of the MME and MLE is preferred and why? (3)

Question 4 [20]

Suppose that $X_1, X_2, X_3, ..., X_n$ is a random sample from a distribution with probability density function:

$$f(x|\theta_1,\theta_2) = \begin{cases} \frac{1}{\theta_2} \exp\left(-\frac{x-\theta_1}{\theta_2}\right) & \text{if } 0 < \theta_2 < \infty, \ 0 < \theta_1 \le x < \infty, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the likelihood function of θ_1 and θ_2 .) One function for both (3)
- **(b)** What are the joint sufficient statistics for θ_1 and θ_2 ?
- § g_{33} (c) Show that the maximum likelihood estimator (MLE) of θ_1 is $\hat{\theta}_1 = \min\{X_1, X_2, X_3, ..., X_n\}$. (6)
 - (d) Find the maximum likelihood estimator of (MLE) of θ_2 .

TOTAL: [80]

c)
$$Q(\theta_1, \theta_2|x) = -n |n\theta_2| - \frac{8}{8} \left(\frac{x_1 - \theta_1}{\theta_2}\right)$$

$$- \xi(x_i - \theta_i) \quad \text{reads to be as big as possible}$$

$$\vdots \quad \theta_i \quad \text{reads to be as big as possible}$$

$$\vdots \quad \theta_i \quad \text{reads to be as big as possible}$$

$$than \quad x_i \quad \text{as} \quad \theta_i \leq x$$

17

B.2 Assignment 02

ONLY FOR SEMESTER 2 STUDENTS

ASSIGNMENT 02

Unique Nr.: 715755

Fixed closing date: 30 SEPTEMBER 2016

Question 1

[20]

A distribution belongs to the regular exponential family if among other regularity conditions its pdf or pmf has the form:

$$f(x|\theta) = g(x) \exp\{p(\theta)K(x) - q(\theta)\}, \ \theta \in \Theta \in (\infty, \infty).$$

Furthermore, for this distribution $E[K(X)] = \frac{q'(\theta)}{p'(\theta)}$.

 \searrow (a) Show that the other form of the above pdf is:

$$f(x|\theta) = \exp\{p(\theta)K(x) + q^*(\theta) + g^*(x)\}, \ \theta \in \Theta \in (\infty, \infty).$$

(4)

 \mathcal{L} (b) Write down the complete sufficient statistic for θ .

- (4)
- (c) Show that the MLE of θ only depends on the sample through the complete sufficient statistic for θ .

$$\text{\downarrow (d) Find the } MVUE \text{ of } E[K(X)] = \frac{q'(\theta)}{p'(\theta)}.$$

Question 2

[36]

Let $X_1, X_2, X_3, ..., X_n$ be a random sample from a population whose probability mass function is

$$p(x|\theta) = \left\{ \begin{array}{ll} \theta(1-\theta)^{x-1} & \text{if } x=1,2,3,\dots\,0<\theta<1,\\ 0 & \text{otherwise}. \end{array} \right.$$

- ✓ (a) Show that $p(x|\theta)$ belongs to the 1-parameter exponential family.
- (5)

 $\sqrt{(b)}$ Write down the complete sufficient statistic for θ .

- (4)
- \checkmark (c) Find the mean of the complete sufficient statistic for θ .
- (2)

(7)

- (d) Does the MLE of θ depend on the sample through the complete sufficient statistic for θ ? Give reasons for your answer. (6)
- (e) Is the MLE of $\frac{1}{\theta}$ also a MVUE of $\frac{1}{\theta}$? If not find a MVUE of $\frac{1}{\theta}$.
- **(f)** Suppose that n = 200, $\sum_{i=1}^{200} x_i = 400$, $\sum_{i=1}^{200} x_i^2 = 100$, and $\sum_{i=1}^{200} x_i^3 = 250$. Determine:
 - (i) the observed information, $I(\mathbf{x})$, of θ ; and
 - (ii) and the approximate 95% confidence interval for θ . (6)

(4)

Question 3 [23]

Suppose that $X_1, X_2, ..., X_n$ is a random sample from a distribution with probability density function:

 $f(x|\theta) = \begin{cases} \theta(1+x)^{-(1+\theta)} & \text{if } x > 0, \ \theta > 0, \\ 0 & \text{otherwise.} \end{cases}$

- (a) Show that $f(x|\theta)$ belongs to the 1-parameter exponential family.
- **(b)** Write down the complete sufficient statistic for θ .
- (c) Determine the CRLB for an unbiased estimator of $\frac{1}{\theta}$.
- (d) Find the MVUE of $\frac{1}{\theta}$.

√ Question 4 [21]

(a) It is known that the random variable X has probability density function

$$f(x|\theta) = \left\{ \begin{array}{ll} \theta x^{(\theta-1)} & 0 < x < 1, \\ 0 & \text{otherwise.} \end{array} \right.$$

It is desired to test the null hypothesis H_0 : $\theta = 2$ against the alternative H_1 : $\theta = 1$. A random sample X_1 of size n = 1 is to be used.

- (i) Calculate the level of significance and the power of the test which rejects H_0 if $X_1 \leq \frac{1}{2}$.
- (ii) Consider the test which rejects H_0 if $X_1 \le c$. Find c for which the level of significance of the test is 0.1.
- **(b)** Let $X_1, X_2, X_3, ..., X_n$ be a random sample from a population with probability density in part (a). Show that the best test for the hypotheses in part (a) rejects H_0 if

$$\prod_{i=1}^n x_i \le c$$

where c solves the probability equation

$$\alpha = P\left(\prod_{i=1}^{n} x_i \le c | \theta = 2\right).$$

(8)

TOTAL: [100]

d)
$$L(\theta|x) = \theta(1+\xi_{i=1}^{n}x_{i})$$
 $(nL(\theta|x) = 1n\theta + 1n \frac{2^{n}}{(1+\theta)}$