Tutorial letter 103/3/2017

Statistical Inference III STA3702

Semesters 1 & 2

Department of Statistics

TRIAL EXAMINATION PAPER

- 1. Trial Examination Papar
- 2. Trial Examination Paper Solutions

S Mar C

https://www.coursehero.com/file/26120985/STA3702-2017-TL-103-3-Bpdf/

Define tomorrow.

1 Trial Examination Paper

INSTRUCTIONS

- 1. Answer all questions.
- 2. Show intermediate steps.

	Abbreviations	
MLE	Maximum Likelihood Estimator	
MSE	Mean Square Error	
pdf	probability density function	
cdf	cumulative distribution function	
MVUE	Minimum Variance Unbiased Estimator	
MME	Method of Moments Estimator	
CRLB	Cramer Rao Lower Bound	
pmf	probability mass function	
mgf	moment generating function	
re	relative efficiency	

Question 1

[Total marks=30]

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution which belongs to the regular 1-parameter exponential family, and with probability density/mass function:

$$f(x|\theta) = a(\theta)g(x)\exp\{b(\theta)R(x)\}, x \in \chi \subset (-\infty,\infty) \text{ and } \theta \in \Theta \subset (-\infty,\infty)$$

where $a(\theta) > 0$ and g(x) > 0.

(a) Show that another form of $f(x|\theta)$ is:

$$f(x|\theta) = \exp\{b(\theta)R(x) - a^*(\theta) + g^*(x)\}.$$

(**4**)

(3)

(b) Suppose that $X_1, X_2, ..., X_n$ is random sample from a distribution with pmf:

$$p(x|\theta) = \begin{cases} \theta(1-\theta)^x & \text{if } 0 < \theta < 1 \text{ and } x = 0, 1, 2, ..., \\ 0 & \text{elsewhere.} \end{cases}$$

- (i) Show that $p(x|\theta)$ belongs to the regular 1-parameter exponential family. (4)
- (ii) What is the complete sufficient statistic for θ ? **Justify your answer**.

- (iii) **Refer to part (a) above**. $E[R(X)] = \frac{a^{*'}(\theta)}{b'(\theta)}$. Use this information to find the mean of the complete sufficient statistic for θ in part (ii) above. (3)
- (iv) Find the maximum likelihood estimator (*MLE*) of θ .
- (v) Find the method of moments estimator (MME) of θ .
- (vi) Show that \bar{X} is the minimum variance unbiased estimator (*MVUE*) of $\frac{1-\theta}{\alpha}$. (4)

Question 2

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pdf:

$$f(x|\theta) = \begin{cases} \theta \exp\{-\theta x\} & \text{if } x \ge 0 \text{ and } \theta > 0\\ 0 & \text{otherwise.} \end{cases}$$

Given: $E[X] = \frac{1}{\theta}$.

- (a) Prove that $\sum_{i=1}^{n} X_i$ is a minimal sufficient statistic for θ .
- (b) Suppose that n = 200, $\sum_{i=1}^{200} x_i = 20$, $\sum_{i=1}^{200} x_i^2 = 100$, and $\sum_{i=1}^{200} x_i^3 = 250$. Determine:
 - (i) the method of moments estimate (MME) of θ ;
 - (ii) the maximum likelihood estimate (MLE) of θ ;
 - (iii) the observed information, $I(\mathbf{x})$, of θ ; and (4)
 - (iv) and the approximate standard errors of the estimates of θ in (i) and (ii) (6)

Question 3

Suppose that 2, 1, 2, 0, 2, 2, 2, 0, 1, 2 are ten independent observations from a population whose discrete distribution has a probability mass function:

$$p(x|\theta) = \begin{cases} \frac{e^{-\theta}\theta^x}{x!} & \text{if } \theta > 0 \text{ and } x = 0, 1, 2, ..., \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the method of moments estimate (MME) of θ .
- (b) Find the maximum likelihood estimate (*MLE*) of e^{θ} .
- (c) Find the approximate standard error for the estimate in part (a).

Question 4

A random variable X has probability density function

https://www.coursehero.com/file/26120985/STA3702-2017-TL-103-3-Bpdf/

$$f(x|\theta) = \begin{cases} \theta e^{-\theta x} & \text{if } x > 0 \text{ and } \theta > 0, \\ 0 & \text{otherwise.} \end{cases}$$

It is desired to test the null hypothesis H_0 : $\theta = 1$ against the alternative H_1 : $\theta = 2$. A random sample X_1 of size n = 1 is to be used. **Given:** $\int f(x|\theta)dx = -e^{-\theta x}$.

(3) (9)

[Total marks=30]

[Total marks=18]

[Total marks=22]

(8)

(4)

(9)

(5)

(8)

(4)

- (a) Calculate (*i*) the level of significance and (*ii*) the power of the test which rejects H_0 if $X_1 \ge \frac{1}{2}$. (15)
- (b) Consider the test which rejects H_0 if $X_1 \ge c$. Find c for which the level of significance of the test is 0.1. (7)

TOTAL [100]

on of the solution of the solu

2 Trial Examination Solutions

Question 1

[Total marks=30]

(4)

(a)

$$f(x|\theta) = a(\theta)g(x)\exp\{b(\theta)R(x)\}, x \in \chi \subset (-\infty, \infty) \text{ and } \theta \in \Theta \subset (-\infty, \infty)$$
$$= \exp\{b(\theta)R(x) + \ln a(\theta) + \ln g(x)\}$$
$$= \exp\{b(\theta)R(x) - a^*(\theta) + g^*(x)\}$$

where
$$a^* = -\ln a(\theta)$$
 and $g^* = \ln g(x)$

(b) (i)

$$p(x|\theta) = \theta(1-\theta)^x, x \in \{0, 1, 2, ...\} \subset (-\infty, \infty), \theta \in (0, 1) \subset (-\infty, \infty)$$
$$= \exp\{x \ln(1-\theta) + \ln\theta\} = \exp\{b(\theta)R(x) - a^*(\theta) + g^*(x)\}$$

where $a^*(\theta) = -\ln \theta$, $b(\theta) = \ln(1 - \theta)$, R(x) = x and $g^*(x) = 1$. Hence from the definition of a distribution that belongs to the regular exponential family and part (a), $p(x|\theta)$ is a member of the regular exponential family. (4)

(ii)
$$\sum_{i=1}^{n} R(X_i) = \sum_{i=1}^{n} X_i$$
 since $f(x|\theta)$ belongs to the 1-parameter exponential family. (3)

(iii)
$$E\left[\sum_{i=1}^{n} R(X_i)\right] = E\left[\sum_{i=1}^{n} X_i\right] = nE[X] = n\frac{a^{*'}(\theta)}{b'(\theta)} = n\frac{-1/\theta}{-1/(1-\theta)} = n\frac{1-\theta}{\theta}.$$
 (3)

(iv) The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} p(x_i|\theta) = \theta^n (1-\theta)^{\sum_{i=1}^{n} x_i} \Longrightarrow$$

the log-likelihood function of θ is

$$l(\theta) = \ln L(\theta) = n \ln \theta + \ln(1-\theta) \sum_{i=1}^{n} x_i \Longrightarrow$$
$$l'(\theta) = \frac{n}{\theta} - \frac{1}{1-\theta} \sum_{i=1}^{n} x_i.$$

(4)

(4)

The *MLE* of θ is $\hat{\theta}$ which solves the equation

$$0 = l'(\hat{\theta}) = \frac{n}{\hat{\theta}} - \frac{1}{1 - \hat{\theta}} \sum_{i=1}^{n} x_i \text{ and the solution is } \hat{\theta} = \frac{1}{1 + \bar{x}}.$$

(v) From part (*iii*),
$$E[X] = \frac{1-\theta}{\theta} \Longrightarrow \theta = \frac{1}{1+E[X]} \Longrightarrow$$
 the *MME* of θ is $\tilde{\theta} = \frac{1}{1+\bar{x}}$.
(4)

(vi) \bar{X} is a function of a complete sufficient statistic (see part (*ii*)) and $E[X] = \frac{1-\theta}{\theta}$ (see part (*v*)). (4)

Question 2

(a) The joint density function is:

$$L(\mathbf{x}|\theta) = \theta^n \exp\left\{-\sum_{i=1}^n \theta x_i\right\} = m_1(\mathbf{x}) \times m_2\left(\sum_{i=1}^n x_i, \theta\right)$$

where $m_1(\mathbf{x}) = 1$ and $m_2\left(\sum_{i=1}^n x_i, \theta\right) = \theta^n \exp\{-\sum_{i=1}^n \theta x_i\}$. Hence, $\sum_{i=1}^n X_i$ is a sufficient statistic for θ by the factorization theorem. (3)

Let $Y_1, Y_2, ..., Y_n$ be a random sample from the same sampled distribution. Then

$$\frac{L(\mathbf{y}|\theta)}{L(\mathbf{x}|\theta)} = \exp\left\{\theta\left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i\right)\right\}$$

which is independent of θ if $(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i) = 0$ equivalently if $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$. This means $\sum_{i=1}^{n} Y_i$ is a minimal sufficient statistic for θ . (5)

(b)

(i)
$$E[X] = \frac{1}{\theta}$$
 (given) $\Longrightarrow \theta = \frac{1}{E[X]}$ the *MME* of θ is $\tilde{\theta} = \frac{1}{\bar{x}} = \frac{1}{20/200} = 10.$ (3)

(ii) The likelihood function of θ is

$$L(\theta) = \theta^n \exp\left\{-\sum_{i=1}^n x_i\theta\right\}$$

and the log-likelihood function of θ is

$$l(\theta) = n \ln(\theta) - \theta \sum_{i=1}^{n} x_i$$

The *MLE* of θ is $\hat{\theta}$ which solves the equation

$$0 = l'(\hat{\theta}) = \frac{n}{\hat{\theta}} - \sum_{i=1}^{n} x_i.$$

The solution is $\hat{\theta} = \frac{1}{\bar{x}} = 10$

(iii)
$$l''(\theta) = -\frac{n}{\theta^2}$$
 Hence $I(\mathbf{x}) = -l''(\hat{\theta}) = \frac{n}{\hat{\theta}^2} = \frac{200}{100} = 2.$ (4)

(iv) Since $\hat{\theta} = \tilde{\theta}$, the standard errors of both estimates are both equal to

$$se = \sqrt{1/I(\mathbf{x})} = \sqrt{1/2} = 0.70711.$$

(6)

(9)

[Total marks=30]

Question 3

[Total marks=18]

(4)

(9)

[Total marks=22]

(a) The sampled distribution is Poisson hence $E[X] = \theta$. Thus the *MME* of θ is

$$\tilde{\theta} = \bar{x} = 1.4.$$

(b) The likelihood function of θ is:

$$L(\theta) = \prod_{i=1}^{10} p(x_i|\theta)$$

= $\left(\frac{e^{-\theta}\theta^0}{0!}\right)^2 \times \left(\frac{e^{-\theta}\theta^1}{1!}\right)^2 \times \left(\frac{e^{-\theta}\theta^2}{6!}\right)^6 = 2^{-6}\theta^{14}e^{-10\theta}$

The log-likelihood function is:

$$l(\theta) = \ln L(\theta) = constant + 14 \ln \theta - 10\theta \Longrightarrow l'(\theta) = \frac{14}{\theta} - 10.$$

The *MLE* of θ is $\hat{\theta}$ which solves the equation:

$$0 = l'(\hat{\theta}) = \frac{14}{\hat{\theta}} - 10$$

The solution is $\hat{\theta} = \frac{14}{10} = 1.4$.

By the invariance property of *mle's*, the *mle* of e^{θ} is $e^{\hat{\theta}} = 4.0552$.

(c)
$$l''(\theta) = -\frac{14}{\theta^2}$$
. Hence $Var[\tilde{\theta}] \approx \frac{1}{-l''(1.4)} = \frac{1}{7.14286} = 0.14$ and $se(\tilde{\theta}) \approx \sqrt{0.14} = 0.37417$.
(5)

Question 4

(a)

(i) The level of significance of the test is

$$\alpha = P\left(X_1 \ge \frac{1}{2}|\theta = 1\right) = \int_{1/2}^{\infty} e^{-x} dx = \left[-e^{-x}\right]_{1/2}^{\infty} = e^{-.5} = 0.6065.$$
(6)

(ii) The probability of the type II error is

$$\beta = P\left(X_1 \le \frac{1}{2}|\theta = 2\right) = \int_0^{1/2} 2e^{-2x} = \left[-e^{-2x}\right]_0^{1/2} = 1 - e^{-1} = 0.63212.$$
(6)

Hence the power of the test is

Power =
$$1 - \beta = 0.3679$$
.

(3)

(b)
$$0.1 = P(X_1 \ge c | \theta = 1) = \int_c^\infty e^{-x} dx = [-e^{-x}]_c^\infty = e^{-c}$$
. This means $0.1 = e^{-c} \Longrightarrow c = -\ln(0.1) = 2.3025.$

(7)

