Tutorial Letter 103/3/2016

Statistical Inference III STA3702

Semesters 1 & 2

Department of Statistics

Contents

- 1. Trial Examination Paper
- 2. Trial Examination Paper Solutions

BAR CODE

university of south africa

Learn without limits.

1 Trial Examination Paper

INSTRUCTIONS

- 1. Answer all questions.
- 2. Show intermediate steps.

Abbreviations	
MLE	Maximum Likelihood Estimator
MSE	Mean Square Error
pdf	probability density function
cdf	cumulative distribution function
MVUE	Minimum Variance Unbiased Estimator
MME	Method of Moments Estimator
CRLB	Cramer Rao Lower Bound
pmf	probability mass function
mgf	moment generating function
re	relative efficiency

Question 1

[Total marks= 25]

The pdf or pmf of a random variable X belongs to the regular exponential family if it has the form:

 $f(x|\theta) = a(\theta)g(x)\exp\{\theta r(x)\}, x \in \chi \subset (-\infty,\infty) \text{ and } \theta \in \Theta \in (-\infty,\infty)$

where $a(\theta) > 0$ and g(x) > 0.

(a) Show that another form of $f(x|\theta)$ is:

$$f(x|\theta) \exp\{\theta r(x) - a^*(\theta) + g^*(x)\}$$

(**4**)

(4)

(5)

(b) Suppose that $X_1, X_2, ..., X_n$ is random sample from a distribution with pmf:

$$f(x|\theta) = \begin{cases} \theta(1-\theta)^x & \text{if } x = 0, 1, 2, \dots \text{ and } \theta \in (0, 1) \\ 0 & \text{otherwise} \end{cases}$$

- (i) Show that $f(x|\theta)$ belongs to the 1-parameter exponential family. (4)
- (ii) What is the complete sufficient statistic for θ ? Justify your answer. (3)
- (iii) What is the log-likelihood function of θ ?
- (iv) Find the total information for θ in the sample, $I_n(\mathbf{x})$.

[Total marks=25]

[Total marks=25]

(vi) Show that the *MLE* of θ only depends on the sample through complete sufficient statistic.

(5)

Question 2

Let $Y_1, Y_2, ..., Y_n$ be a random sample from a distribution with pdf:

$$f(y|\theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_2} \exp\{-(y - \theta_1)/\theta_2\} & \text{if } y \ge \theta_1 \text{ and } \theta_2 > 0\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the maximum likelihood estimators of θ_1 , θ_2 and θ_2^2 . (16)
- (b) Suppose that $\theta_1 = 0$. Prove that $\sum_{i=1}^n Y_i$ is a minimal sufficient statistic for θ_2 (9)

Question 3

Suppose that 2, 1, 2, 0, 2, 2, 2, 0, 1, 2 are ten independent observations from a binomial experiment with n = 4 independent trials each with a constant probability of success θ and pmf:

$$f(x|\theta) = \begin{cases} \frac{4!}{(4-x)!x!} \theta^x (1-\theta)^{4-x} & \text{if } x = 0, 1, 2, 3, 4\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the method of moments estimate (MME) of θ . (5)
- **(b)** Find the maximum likelihood estimate (MLE) of θ .
- (c) Find the approximate standard errors for the estimates in parts (b) and (c). (8)
- (d) Which of the *MME* and the *MLE* is preffered and why?

Question 4

[Total marks=25]

(7)

(5)

Suppose that $X_1, X_2, ..., X_n$ is a random sample from a normal distribution with pdf:

$$f(x|\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2\sigma^2}\right\}, \ x \in (-\infty, \infty), \ \sigma^2 = E[X^2] > 0.$$

Let

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$$
 and $S^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}$.

(a) What is the distribution of $\frac{nS^2}{\sigma^2}$?

- (b) Show that both S^2 and S^{*2} are consistent estimators of σ^2 (18)
- (c) Which of the two estimators of σ^2 in part (b) is better and why?

TOTAL [100]

(3)

(4)

2 **Trial Examination Paper Solutions**

Question 1

[Total marks= 25]

(a)

$$f(x|\theta) = a(\theta)g(x)\exp\{\theta r(x)\}$$

$$= \exp\{\theta r(x) + \ln[a(\theta)] + \ln[g(x)]\}$$

$$= \exp\{\theta r(x) - -\ln[a(\theta)] + \ln[g(x)]\}$$

$$= \exp\{\theta r(x) - a^{*}(\theta) + g^{*}(x)\}$$
where $a^{*}(\theta) = -\ln[a(\theta)] \in (-\infty, \infty)$ and $g^{*}(x) = \ln[g(x)] \in (-\infty, \infty)$. (4)

(b) (i)

$$f(x|\theta) = \theta(1-\theta)^{x}$$

= exp {x ln(1-\theta) + ln \theta}
= exp {\eta x + ln(1-e^\eta)}
= exp {\eta r(x) - a^*(\eta) + g^*(x)}

where r(x) = x, $\eta = \ln(1 - \theta)$, $a^*(\eta) = \ln(1 - e^{\eta}) \in (-\infty, \infty)$ and $g^*(x) = 1$. (4)

- (ii) $\sum_{i=1}^{n} r(X_i) = \sum_{i=1}^{n} X_i$ since $f(x|\theta)$ belongs to the 1-parameter exponential family. (3)
- (iii) The likelihood function is $L(\theta) = \prod_{i=1}^{n} f(x_i|\theta) = \theta^n (1-\theta)^{\sum_{i=1}^{n} x_i} \Longrightarrow$ the log-likelihood function of θ is $l(\theta) = \ln L(\theta) = n \ln \theta + \sum_{i=1}^{n} x_i \ln(1-\theta)$. (4)
- (iv) $l'(\theta) = \frac{n}{\theta} \frac{\sum_{i=1}^{n} x_i}{1-\theta} \Longrightarrow l''(\theta) = -\frac{n}{\theta^2} \frac{\sum_{i=1}^{n} x_i}{(1-\theta)^2}$. Hence the total information for θ in the sample is

$$I_n(\mathbf{x}) = -l''(\theta) = \frac{n}{\theta^2} + \frac{\sum_{i=1}^n x_i}{(1-\theta)^2} = \frac{n}{\theta^2} + \frac{n\bar{x}}{(1-\theta)^2}$$
(5)

(vi) The *MLE* of θ is $\hat{\theta}$ which solves the equation

$$0 = l'(\hat{\theta}) = \frac{n}{\hat{\theta}} - \frac{\sum_{i=1}^{n} x_i}{1 - \hat{\theta}}.$$

Clearly, the solution will depend on the sample only through the complete sufficient statistic $\sum_{i=1}^{n} X_i$. (The solution is $\hat{\theta} = \frac{1}{1+\bar{x}}$.) (5)

Question 2

[Total marks= 25]

(a) The likelihood function of (θ_1, θ_2) is:

$$L(\theta_1, \theta_2) = \prod_{i=1}^n f(y_i | \theta_1, \theta_2)$$

=
$$\begin{cases} \theta_2^{-n} \exp\{-\sum_{i=1}^n (y_i - \theta_1)/\theta_2\} & \text{if } y_{(1)} = \min(y_i) \ge \theta_1 \text{ and } \theta_2 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

(6)

(3)

The log-likelihood function of (θ_1, θ_2) is:

$$l(\theta_1, \theta_2) = \ln L(\theta_1, \theta_2) = \begin{cases} -n \ln \theta_2 - \sum_{i=1}^n (y_i - \theta_1)/\theta_2 & \text{if } y_{(1)} \ge \theta_1 \text{ and } \theta_2 > 0, \\ -\infty & \text{otherwise.} \end{cases}$$

 $l(\theta_1, \theta_2)$ increases as θ_1 varies from its 0 to $y_{(1)}$. Hence the *MLE* of θ_1 is $y_{(1)}$. (7)

$$l(y_{(1)},\theta_2) = -n\ln\theta_2 - \sum_{i=1}^n (y_i - y_{(1)})/\theta_2 \Longrightarrow l'(y_{(1)},\theta_2) = -\frac{n}{\theta_2} + \sum_{i=1}^n (y_i - y_{(1)})/\theta_2^2.$$

The *MLE* of θ_2 is $\hat{\theta}_2$ which solves the equation:

$$0 = l'(y_{(1)}, \hat{\theta}_2) = -\frac{n}{\hat{\theta}_2} + \sum_{i=1}^n (y_i - y_{(1)})/\hat{\theta}_2^2$$

The solution is $\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (y_i - y_{(1)}).$ By the invariance property of MLE's, the MLE of θ_2^2 is:

$$(\hat{\theta}_2)^2 = \left(\frac{1}{n}\sum_{i=1}^n (y_i - y_{(1)})\right)^2$$

(b) If $\theta_1 = 0$, then the likelihood function of θ_2 is:

$$L(\theta_2 | \mathbf{y}) = \theta_2^{-n} \exp\{-\sum_{i=1}^n y_i / \theta_2\} = m_1(\mathbf{y}) \times m_2(\sum_{i=1}^n y_i, \theta_2)$$

where $m_1(\mathbf{y}) = 1$ and $m_2(\sum_{i=1}^{n}, \theta_2) = \theta_2^{-n} \exp\{-\sum_{i=1}^{n} y_i/\theta_2\}$. Hence, $\sum_{i=1}^{n} Y_i$ is a sufficient of the second cient statistic for θ_2 by the factorization theorem. (4)

Let $X_1, X_2, ..., X_n$ be a random sample from the same sampled distribution. Then

$$\frac{L(\theta_2|\mathbf{y})}{L(\theta_2|\mathbf{x})} = \exp\left\{\frac{1}{\theta_2}\left(\sum_{i=1}^n x_i - \sum_{i=1}^n y_i\right)\right\}$$

which is independent of θ_2 if $(\sum_{i=1}^n x_i - \sum_{i=1}^n y_i) = 0$ equivalently if $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$. This means $\sum_{i=1}^n Y_i$ is a minimal sufficient statistic for θ . (5)

Question 3

[Total marks=25]

(a) $E[X] = 4\theta \Longrightarrow \theta = \frac{1}{4}E[X] \Longrightarrow$ the *MME* of θ is

$$\tilde{\theta} = \frac{1}{4}\bar{x} = \frac{1}{4}(14/10) = 0.35$$

(5)

(b) The likelihood function of θ is:

$$L(\theta) = \prod_{i=1}^{10} \frac{4!}{(4-x_i)!x!} \theta^{x_i} (1-\theta)^{4-x_i}$$

=
$$\prod_{i=1}^{10} \frac{4!}{(4-x_i)!x_i!} \theta^{\sum_{i=1}^{10} x_i} (1-\theta)^{40-\sum_{i=1}^{10} x_i}$$

=
$$\prod_{i=1}^{10} \frac{4!}{(4-x_i)!x_i!} \theta^{14} (1-\theta)^{40-14}$$

=
$$\prod_{i=1}^{10} \frac{4!}{(4-x_i)!x_i!} \theta^{14} (1-\theta)^{26}$$

The log-likelihood function is:

$$l(\theta) = \ln L(\theta) = constant + 14\ln\theta + 26\ln(1-\theta) \Longrightarrow l'(\theta) = \frac{14}{\theta} - \frac{26}{1-\theta}$$

The *MLE* of θ is $\hat{\theta}$ which solves the equation:

$$0 = l'(\hat{\theta}) = \frac{14}{\hat{\theta}} - \frac{26}{1-\hat{\theta}}.$$

The solution is
$$\hat{\theta} = \frac{14}{40} = 0.35.$$
 (7)
(c) $l''(\theta) = -\frac{14}{\theta^2} - \frac{26}{(1-\theta)^2} \Longrightarrow$
 $Var[\tilde{\theta}] = Var[\hat{\theta}] \approx \frac{1}{-l''(0.35)} = \frac{1}{114.2857 + 61.5385} = \frac{1}{175.8242} = 0.0057.$
Hence
 $se(\tilde{\theta}) = se(\hat{\theta}) \approx \sqrt{0.0057} = 0.0754.$

(8)

[Total marks=25]

(d) Both because there are unbiased and have equal standard errors. Equivalently, the MME and the MLE of θ are the same. (5)

Question 4

(a)
$$\frac{nS^2}{\sigma^2} \sim \chi_n^2$$
 (3)

(b) Consistency of S^2 : $E[\frac{nS^2}{\sigma^2}] = n$ and $Var[\frac{nS^2}{\sigma^2} = 2n$ implies the following.

 $E[S^{2}] = n \frac{\sigma^{2}}{n} = \sigma^{2} \implies S^{2} \text{ is an unbiased estimator of } \sigma^{2}. \text{ Furthermore,}$ $Var[S^{2}] = 2n \frac{\sigma^{4}}{n^{2}} = 2\frac{\sigma^{4}}{n} \text{ which turns to zero as } n \text{ turns to infinity. Hence } S^{2} \text{ is a consistent}$ estimator of σ^{2} . Consistency of S^{*2} : $E[\frac{(n-1)S^{*2}}{\sigma^{2}}] = n \text{ and } Var[\frac{(n-1)S^{*2}}{\sigma^{2}} = 2n \text{ implies the following.}$

 $E[S^{*2}] = n \frac{\sigma^2}{n-1} \implies S^{*2}$ is a biased estimator of σ^2 with bias $\frac{\sigma^2}{n-1}$ which turns to zero as n turns to infinity. Furthermore,

 $Var[S^{*2}] = 2n \frac{\sigma^4}{(n-1)^2}$ which turns to zero as *n* turns to infinity. Hence S^{*2} is a consistent estimator of σ^2 .

(18)
(c)
$$MSE(S^2) = Var[S^2] = \frac{2\sigma^4}{n}$$
 and
 $MSE(S^{*2} = Var[S^{*2}] + [Bias(S^{*2})]^2 = \frac{2n+1}{(n-1)^2}\sigma^4 > MSE(S^2)$
since $\frac{2n+1}{(n-1)^2} > \frac{1}{n}$.
(4)

TOTAL [100]