Tutorial letter 202/1/2018

Applied Statistics II STA2601

Semester 1

Department of Statistics

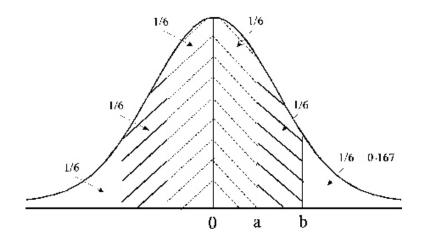
Solutions to Assignment 2

Define tomorrow.

QUESTION 1

(a) Since μ and σ are unknown, we estimate them.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
$$= \frac{2520}{42}$$
$$= 60$$



$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}}$$
$$= \sqrt{\frac{27362}{42}}$$
$$= \sqrt{651.4761905}$$
$$\approx 25.524$$

If we have to use six classes of equal intervals then the probability of each interval is $\pi_i = \frac{1}{6}$ for each interval $\Rightarrow n\pi_i = 7$.

The fifth interval is where $a \leq Z \leq b$.

From the sketch above the value "a" is found from table II as

 $\Phi(0.432) = P(Z \le a) = 0.5 + 0.167 = 0.667.$

Thus a = 0.432.

From the sketch above the value "b" is found from table II as

 $\Phi(0.966) = P(Z \le b) = 0.5 + 0.333 = 0.833.$

Thus a = 0.966.

Since $a \leq Z \leq b$. That is,

 $\begin{array}{rcrcrcrcrc} 0.432 &\leq & Z &\leq & 0.966 \\ \\ 0.432 &\leq & \frac{X-60}{25.524} &\leq & 0.966 \\ 0.432 \times 25.524 &\leq & X-60 &\leq & 0.966 \times 25.524 \\ \\ 11.026368 &\leq & X-60 &\leq & 24.656184 \\ 60+11.026368 &\leq & X &\leq & 60+24.656184 \\ \\ \Rightarrow 71.03 &\leq & X &\leq & 84.66. \end{array}$

(7)

(b)

Equal probability intervals	Expected frequency	Count marks	Observed frequency
$-\infty < X \le 35.34$	7	tttt 11	7
$35.34 < X \le 48.97$	7	tttt I	6
$48.97 < X \le 60$	7	łłłł 1111	9
$60 < X \le 71.03$	7	tttt III	8
$71.03 < X \le 84.66$	7	tttt	5
$84.66 < X \le \infty$	7	łłłł	7
Total	42		

(2)

(c) H_0 : The sample comes from a normal distribution. H_1 : The sample does not come from a normal distribution.

$$Y^{2} = \sum_{k=1}^{k} \frac{(\text{Observed} - \text{Expected})^{2}}{\text{Expected}}$$

= $\frac{(7-7)^{2}}{7} + \frac{(6-7)^{2}}{7} + \frac{(9-7)^{2}}{7} + \frac{(8-7)^{2}}{7} + \frac{(5-7)^{2}}{7} + \frac{(7-7)^{2}}{7}$

$$= 0 + \frac{1}{7} + \frac{4}{7} + \frac{1}{7} + \frac{4}{7}$$
$$= \frac{10}{7}$$
$$\approx 1.4286$$

From table IV (Stoker) $\chi^2_{\alpha;k-1} = \chi^2_{0.05;5} = 11.0705$ and $\chi^2_{\alpha;k-r-1} = \chi^2_{0.05;3} = 7.81473$. Reject H_0 if $Y^2 > 7.81473$.

Since 1.4286 < 7.18473, we cannot reject H_0 at the 5% level of significance. We may conclude that the sample comes from a normal distribution.

FOR YOUR INFORMATION: For the degrees of freedom k - r - 1 where k is the number of classes and r is the number of estimated parameters.

Test	Value of r	Parameter unknown
$n(20, 5^2)$	r = 0	
$n(20,\sigma^2)$	r = 1	σ unknown
$n(\mu, 5^2)$	r = 1	μ unknown
$n\left(\mu,\sigma^2\right)$	r = 2	both μ and σ unknown

(6)

[15]

QUESTION 2

(a) H_0 : The lady has no discerning ability.

 H_1 : The lady has discerning ability.

For this 2×2 table for the exact test is

		Lady	' says			
		Tea first	Milk first	Total		
Poured	Milk	$5^* = x$	1	6	$\leftarrow -$	k
first	Теа	1	5	6		
	Total	6	6	12	\rightarrow	Ν
		\uparrow				
		n				

Now k = 6, n = 6 and x = 5

In this case

$$P(X \ge x) = 1 - P(X < x - 1)$$

$$P(X \ge 5) = 1 - P(X \le 4)$$

$$= 1 - 0.96$$

$$= 0.04$$

and $P(X \le x) = P(X \le 5) = 0.999$.

We can only reject H_0 in favour of the two-sided alternative if x is too large or too small and if it represents a "rare event", in other words only if

$$P(X \le x) \le \frac{\alpha}{2} \text{ or if } P(X \ge x) \le \frac{\alpha}{2}$$

Since the test is two tailed we take the smaller of the two probabilities, i.e., we take 0.04. Since $0.04 > \frac{\alpha}{2} = 0.025$, we do not reject H_0 at the 5% level of significance and conclude that the lady has no discerning ability.

(10)

- (b) (i) H_0 : The number of boys in a family with n = 4 children, has a binomial distribution with $p = \frac{1}{2}$.
 - H_1 : The data do not represent a binomial distribution.

If
$$X \sim b(n; p)$$
 then $P(X = x) = {n \choose x} p^x (1-p)^{n-x}$ $x = 0, 1, ..., n$.

$$P(X = 0) = \binom{4}{0} (0.5)^0 (0.5)^4 = 1 \times 0.0625 = 0.0625 = \pi_1$$

$$P(X = 1) = \binom{4}{1} (0.5)^1 (0.5)^3 = 4 \times 0.0625 = 0.25 = \pi_2$$

$$P(X = 2) = \binom{4}{2} (0.5)^2 (0.5)^2 = 6 \times 0.0625 = 0.375 = \pi_3$$

$$P(X = 3) = \binom{4}{3} (0.5)^3 (0.5)^1 = 4 \times 0.0625 = 0.25 = \pi_4$$

$$P(X = 4) = \binom{4}{4} (0.5)^4 (0.5)^0 = 1 \times 0.0625 = 0.0625 = \pi_5$$

The expected frequencies are $n\pi_i = 80 \times \pi_i$.

	Number of families		
Number of boys	Observed	Expected $(b(n; p))$	
in the family	N_i	e_i	
0	6	5	
1	22	20	
2	33	30	
3	16	20	
4	3	5	
	80	80	

But
$$Y^2 = \sum_{i=1}^{k} (N_i - n\pi_i)^2 / n\pi_i$$

$$= \frac{(6-5)^2}{5} + \frac{(22-20)^2}{20} + \frac{(33-30)^2}{30} + \frac{(16-20)^2}{20} + \frac{(3-5)^2}{5}$$

$$= 0.2 + 0.2 + 0.3 + 0.8 + 0.8$$

$$= 2.3$$

The critical value is $\chi^2_{\alpha;k-1} = \chi^2_{0.05;4} = 9.48773$. Reject H_0 if $Y^2 > 9.48773$

Since 2.3 < 9.48773, we cannot reject H_0 at the 5% level of significance. It seems as if the binomial distribution gives a good fit.

(15)

(ii) If we are not given that $p = \frac{1}{2}$ we have to estimate p, say $\hat{p} = \theta$, from the observed data, by using the method of maximum likelihood.

Secondly we have to repeat the whole process of question (a(i)) with $\theta = \hat{p}$ and $\hat{\pi}_{r+1} = P(X = r) = {4 \choose r} \theta^r (1 - \theta)^{4-r}$ for r = 0, 1, ..., 4.

[If you are worried about the "r + 1" as subscript with $\hat{\pi}$ you have to keep in mind that we usually have k classes which start with the 1-st class. In other words, $\hat{\pi}_1$ is the expected probability for class 1 when there are r = 0 boys. Similarly, $\hat{\pi}_2$ is the expected probability for class 2 when there are r = 1 boys $\hat{\pi}_5$ is the expected probability for class 5 when there are r = 4 boys.]

The expected frequencies are then $n\hat{\Pi}_i = 80 \times \hat{\Pi}_i$ for i = 1, 2, ..., 5.

 $Y^{2} = \sum_{i=1}^{5} (N_{i} - n\hat{\pi}_{i})^{2} / n\hat{\pi}_{i}$ is approximately a $\chi^{2}_{k-1-1} = \chi^{2}_{3}$ variable and the 5% critical value is $\chi^{2}_{0.05; 3} = 7.81473$ (and not 9.48773 as in question (a(i))). Reject $H_{0}: X \sim b$ (4; p) with $\hat{p} = \theta$ if $Y \ge 7.81473$.

(5)

[30]

QUESTION 3

(a) n = 10 $\sum X_i = 191$ $\sum X_i^2 = 4\,956.2$ $\sum X_i Y_i = 5\,072.82$ $\sum Y_i = 194.3$ $\sum Y_i^2 = 5\,397.83$

(i)

$$R = \frac{\Sigma X_i Y_i - \frac{(\Sigma X_i) (\Sigma Y_i)}{n}}{\sqrt{\left(\Sigma X_i^2 - \frac{(\Sigma X_i)^2}{n}\right) \left(\Sigma Y_i^2 - \frac{(\Sigma Y_i)^2}{n}\right)}}$$

$$= \frac{5072.82 - \frac{(191) (194.3)}{10}}{\sqrt{\left(4956.2 - \frac{(191)^2}{10}\right) \left(5397.83 - \frac{(194.3)^2}{10}\right)}}$$

$$= \frac{5072.82 - 3711.13}{\sqrt{(4956.2 - 3648.1) (5397.83 - 3775.249)}}$$

$$= \frac{1361.69}{\sqrt{(1308.1) (1622.581)}}$$

$$= \frac{1361.69}{\sqrt{2122498.206}}$$

$$= \frac{1361.69}{1456.879613}$$

$$\approx 0.9347$$

(5)

(ii) The 95% confidence for η is

$$U - \frac{1.96}{\sqrt{n-3}} < \eta < U + \frac{1.96}{\sqrt{n-3}}$$

where
$$U = \frac{1}{2} \log_e \frac{1+R}{1-R}$$
 and $\eta = \frac{1}{2} \log_e \frac{1+\rho}{1-\rho}$
Now

$$U = \frac{1}{2} \log_e \frac{1+R}{1-R}$$

= $\frac{1}{2} \log_e \frac{1+0.9347}{1-0.9347}$
= $\frac{1}{2} \log_e \frac{1.9347}{0.0653}$
= $\frac{1}{2} \log_e 29.62787136$
= $\frac{1}{2} \times 3.388715518$
 ≈ 1.6944

Now

$$U - \frac{1.96}{\sqrt{n-3}} < \eta < U + \frac{1.96}{\sqrt{n-3}}$$

$$1.6944 - \frac{1.96}{\sqrt{10-3}} < \eta < 1.6944 + \frac{1.96}{\sqrt{10-3}}$$

$$1.6944 - \frac{1.96}{\sqrt{7}} < \eta < 1.6944 + \frac{1.96}{\sqrt{7}}$$

$$1.6944 - 0.7408 < \eta < 1.6944 + 0.7408$$

$$0.9536 < \eta < 2.4352$$

Now
$$\frac{e^{0.9536} - e^{-0.9536}}{e^{0.9536} + e^{-0.9536}} = \frac{2.5950 - 0.3854}{2.5950 + 0.3854} = \frac{2.2096}{2.9804} \approx 0.7414 \approx 0.74$$

and $\frac{e^{2.4352} - e^{-2.4352}}{e^{2.4352} + e^{-2.4352}} = \frac{11.4181 - 0.0876}{11.4181 + 0.0876} = \frac{11.3305}{11.5057} \approx 0.9848 \approx 0.98$
i.e., 95% confidence interval for ρ is (0.74; 0.98).

OR alternatively

Using Table X we have

for $\eta=0.9505:\rho=0.74$ and $\eta=0.9730:\rho=0.75$

Using linear interpolation for $\eta = 0.9536$

$$\rho = 0.74 + \frac{(0.9536 - 0.9505)}{(0.9730 - 0.9505)} (0.75 - 0.74)$$

= 0.74 + $\frac{0.0031}{0.0225} \times 0.01$
= 0.74 + 0.001377777
= 0.741377777
 ≈ 0.74

for $\eta=2.4101:\rho=0.984$ and $\eta=2.4427:\rho=0.985$

Once more using linear interpolation for $\eta = 2.4352$

$$\rho = 0.984 + \frac{(2.4352 - 2.4101)}{(2.4427 - 2.4101)} (0.985 - 0.984)$$

= 0.984 + $\frac{0.0251}{0.0326} \times 0.001$
= 0.984 + 0.000769938
= 0.984769938
 ≈ 0.98

Thus, the 95% confidence interval for ρ is (0.734; 0.98).

(iii) $H_0: \rho = 0.9$ against $H_1: \rho > 0.9$

$$n = 10$$
 $R = 0.9347$

$$U = \frac{1}{2} \log_e \frac{1+R}{1-R} \qquad \eta = \frac{1}{2} \log_e \frac{1+\rho}{1-\rho} \\ = \frac{1}{2} \log_e \frac{1+0.9347}{1-0.9347} \qquad = \frac{1}{2} \log_e \frac{1+0.9}{1-\rho} \\ = \frac{1}{2} \log_e \frac{1.9347}{0.0653} \qquad = \frac{1}{2} \log_e \frac{1.9}{0.1} \\ = \frac{1}{2} \log_e 29.62787136 \qquad = \frac{1}{2} \log_e 19 \\ \approx 1.6944 \qquad \approx 1.4722$$

Note: You can read the value of 0.9 from Table X Stoker.

(6)

The test statistic is

$$Z = \sqrt{n-3}(U-\eta) = \sqrt{10-3}(1.6944 - 1.4722) = \sqrt{7} \times (0.2222) \approx 0.5879$$

 $\alpha = 0.05$, and $Z_{0.05} = 1.645$. Reject H_0 if Z > 1.645.

Since 0.5879 < 1.645, we do not reject H_0 at the 5% level of significance and conclude that $\rho = 0.9$.

(9)

(b) (i) $H_0: \rho_1 = \rho_2$ against $H_1: \rho_1 < \rho_2$ $r_1 = 0.5$ $n_1 = 103$ $r_2 = 0.8$ $n_2 = 52$ $U_1 = \frac{1}{2} \log_e \frac{1+r_1}{1}$ $U_2 = \frac{1}{2} \log_e \frac{1+r_2}{1}$

$$1 = 2^{\log_{e}} 1 - r_{1}$$

$$= \frac{1}{2} \log_{e} \frac{1 + 0.5}{1 - 0.5}$$

$$= \frac{1}{2} \log_{e} \frac{1.5}{0.5}$$

$$= \frac{1}{2} \log_{e} \frac{1.8}{0.2}$$

$$= \frac{1}{2} \log_{e} 3$$

$$\approx 0.5493$$

$$0 = 2^{\log_{e}} 1 - r_{2}$$

$$= \frac{1}{2} \log_{e} \frac{1 - r_{2}}{1 - 0.8}$$

$$= \frac{1}{2} \log_{e} \frac{1 + 0.8}{1 - 0.8}$$

$$= \frac{1}{2} \log_{e} \frac{1.8}{0.2}$$

$$= \frac{1}{2} \log_{e} 9$$

$$\approx 1.0986$$

(or just read the values for U_1 and U_2 from table X) The test statistic is

$$z = \frac{U_1 - U_2}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}}$$
$$= \frac{0.5493 - 1.0986}{\sqrt{\frac{1}{103 - 3} + \frac{1}{53 - 3}}}$$

$$= \frac{-0.5493}{\sqrt{\frac{1}{100} + \frac{1}{50}}}$$
$$= \frac{-0.5493}{\sqrt{0.03}}$$
$$= \frac{-0.5493}{0.17320508}$$
$$\approx -3.1714$$

 $\alpha = 0.05$ and $Z_{0.05} = 1.645$. We reject H_0 if Z < -1.645.

Since -3.1714 < -1.645, we reject H_0 at the 5% level of significance and conclude that $\rho_1 < \rho_2$, i.e., the correlation coefficient for population 1 is significantly smaller than that for population 2.

(ii) So

$$P\left[-1.645 \le \frac{U_1 - U_2 - (\eta_1 - \eta_2)}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}} \le 1.645\right] = 0.90$$

$$-1.645 \le \frac{U_1 - U_2 - (\eta_1 - \eta_2)}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}} \le 1.645$$

$$-1.645\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}} \le U_1 - U_2 - (\eta_1 - \eta_2) \le 1.645\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}$$

$$(U_1 - U_2) - 1.645\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}} \le \eta_1 - \eta_2 \le (U_1 - U_2) + 1.645\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}$$

$$(-0.5493) - 1.645\sqrt{0.03} \le \eta_1 - \eta_2 \le (-0.5493) + 1.645\sqrt{0.03}$$

$$(-0.5493) - 0.284922357 \le \eta_1 - \eta_2 \le (-0.5493) + 0.284922357$$

$$-0.8342 \le \eta_1 - \eta_2 \le -0.2644$$

Therefore the 95% confidence interval for $\eta_1 - \eta_2$ is (-0.8342; -0.2644).

Now
$$\frac{e^{-0.8342} - e^{0.8342}}{e^{-0.8342} + e^{0.8342}} = \frac{0.4342 - 2.3030}{0.4342 + 2.3030} = \frac{-1.8688}{2.7372} \approx -0.6827 \approx -0.68$$

and $\frac{e^{-0.2644} - e^{0.2644}}{e^{-0.2644} + e^{0.2644}} = \frac{0.7677 - 1.3026}{0.7677 + 1.3026} = \frac{-0.5349}{2.0703} \approx -0.2584 \approx -0.26$

(8)

i.e., 95% confidence interval for ρ is (-0.68; -0.26).

OR alternatively

Using Table X we have

for $\eta = 0.8291$: $\rho = 0.68$ and $\eta = 0.8480$: $\rho = 0.69$

Using linear interpolation for $\eta = 0.8342$

$$\rho = 0.68 + \frac{(0.8342 - 0.8291)}{(0.8480 - 0.8291)} (0.69 - 0.68)$$

= 0.68 + $\frac{0.0051}{0.0189} \times 0.01$
= 0.68 + 0.002698412
= 0.682698412
 \approx 0.68

for
$$\eta = 0.2554$$
 : $\rho = 0.25$ and $\eta = 0.2661$: $\rho = 0.26$

Once more using linear interpolation for $\eta = 0.2644$

$$\rho = 0.25 + \frac{(0.2644 - 0.2554)}{(0.2661 - 0.2554)} (0.26 - 0.25)$$

= 0.25 + $\frac{0.009}{0.0107} \times 0.01$
= 0.25 + 0.008411214
= 0.258411214
 ≈ 0.26

Thus, the 95% confidence interval for ρ is (-0.68; -0.26). (10)

(iii) Yes. Since this upper bound (at the 90% level) will be the same as the 95% one-sided interval we may say we are 95% confident that $\rho_1 - \rho_2 \le -0.26$. (This means we reject $H_0: \rho_1 - \rho_2 = 0$ which confirms our conclusion.). (2)

[40]

QUESTION 4

(a) Let
$$U = \frac{\Sigma (X_i - \mu)^2}{\sigma^2}$$
 then $U \sim \chi_n^2$ (known value of μ).

STA2601/202/1/2018

$$-\alpha = P\left(\chi_{1-\frac{1}{2}\alpha;n}^{2} < U < \chi_{\frac{1}{2}\alpha;n}^{2}\right)$$
$$= P\left[\chi_{1-\frac{1}{2}\alpha;n}^{2} < \frac{\Sigma (X_{i}-\mu)^{2}}{\sigma^{2}} < \chi_{\frac{1}{2}\alpha;n}^{2}\right]$$
$$= P\left[\frac{1}{\chi_{1-\frac{1}{2}\alpha;n}^{2}} > \frac{\sigma^{2}}{\Sigma (X_{i}-\mu)^{2}} > \frac{1}{\chi_{\frac{1}{2}\alpha;n}^{2}}\right]$$
$$= P\left[\frac{\Sigma (X_{i}-\mu)^{2}}{\chi_{\frac{1}{2}\alpha;n}^{2}} < \sigma^{2} < \frac{\Sigma (X_{i}-\mu)^{2}}{\chi_{1-\frac{1}{2}\alpha;n}^{2}}\right]$$

(6)

(b) (i)

$$\Sigma (X_i - \mu)^2 = \Sigma x_i^2 - 2\mu \Sigma X_i + n\mu^2$$

= 380 - 2(4)(60) + 20(4)²
= 380 - 480 + 320
= 220

$$\begin{array}{rcl} \chi^2_{\frac{1}{2}\alpha;n} &=& \chi^2_{0.05;20} &=& 31.4104 \\ \chi^2_{1-\frac{1}{2}\alpha;n} &=& \chi^2_{0.95;20} &=& 10.8508 \end{array}$$

1

Thus, the 90% two-sided confidence interval for σ^2 now becomes

$$\begin{split} &\left[\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\chi_{\frac{1}{2}\alpha;n}^{2}} < \sigma^{2} < \frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\chi_{1-\frac{1}{2}\alpha;n}^{2}}\right] \\ &\left[\frac{220}{31.4104} < \sigma^{2} < \frac{220}{10.8508}\right] \\ &\left[7.0040 < \sigma^{2} < 20.2750\right] \\ &\left[7.004; 20.275\right]. \end{split}$$

(7)

(ii) Since this interval includes 9, we cannot reject $H_0 : \sigma^2 = 9$ against $H_1 : \sigma^2 \neq 9$ at the 10% level of significance. (A two-sided confidence interval \implies two-sided hypothesis testing). (2)

[15]

[Total marks: 100]