Tutorial letter 202/1/2018

Applied Statistics II
 STA2601

Semester 1

Department of Statistics

Solutions to Assignment 2

QUESTION 1

(a) Since μ and σ are unknown, we estimate them.

$$
\begin{aligned}
\bar{X} & =\frac{\sum_{i=1}^{n} X_{i}}{n} \\
& =\frac{2520}{42} \\
& =60
\end{aligned}
$$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n}} \\
& =\sqrt{\frac{27362}{42}} \\
& =\sqrt{651.4761905} \\
& \approx 25.524
\end{aligned}
$$

If we have to use six classes of equal intervals then the probability of each interval is $\pi_{i}=\frac{1}{6}$ for each interval $\Rightarrow n \pi_{i}=7$.

The fifth interval is where $a \leq Z \leq b$.
From the sketch above the value " a " is found from table II as
$\Phi(0.432)=P(Z \leq a)=0.5+0.167=0.667$.
Thus $a=0.432$.

From the sketch above the value＂b＂is found from table II as $\Phi(0.966)=P(Z \leq b)=0.5+0.333=0.833$.

Thus $a=0.966$ ．
Since $a \leq Z \leq b$ ．That is，

$$
\begin{aligned}
0.432 & \leq Z \leq 0.966 \\
0.432 & \leq \frac{X-60}{25.524} \leq 0.966 \\
0.432 \times 25.524 & \leq X-60 \leq 0.966 \times 25.524 \\
11.026368 & \leq X-60
\end{aligned}
$$

（b）

Equal probability intervals	Expected frequency	Count marks	Observed frequency
$-\infty<X \leq 35.34$	7	H⿰丬士 II	7
$35.34<X \leq 48.97$	7	状I	6
$48.97<X \leq 60$	7	\tY IIII	9
$60<X \leq 71.03$	7	łYłt III	8
$71.03<X \leq 84.66$	7	状	5
$84.66<X \leq \infty$	7	执 II	7
Total	42		

（2）
（c）$\quad H_{0}$ ：The sample comes from a normal distribution．
H_{1} ：The sample does not come from a normal distribution．

$$
\begin{aligned}
Y^{2} & =\sum_{k=1}^{k} \frac{(\text { Observed - Expected })^{2}}{\text { Expected }} \\
& =\frac{(7-7)^{2}}{7}+\frac{(6-7)^{2}}{7}+\frac{(9-7)^{2}}{7}+\frac{(8-7)^{2}}{7}+\frac{(5-7)^{2}}{7}+\frac{(7-7)^{2}}{7}
\end{aligned}
$$

$$
\begin{aligned}
& =0+\frac{1}{7}+\frac{4}{7}+\frac{1}{7}+\frac{4}{7} \\
& =\frac{10}{7} \\
& \approx 1.4286
\end{aligned}
$$

From table IV (Stoker) $\chi_{\alpha ; k-1}^{2}=\chi_{0.05 ; 5}^{2}=11.0705$ and $\chi_{\alpha ; k-r-1}^{2}=\chi_{0.05 ; 3}^{2}=7.81473$. Reject H_{0} if $Y^{2}>7.81473$.

Since $1.4286<7.18473$, we cannot reject H_{0} at the 5% level of significance. We may conclude that the sample comes from a normal distribution.

FOR YOUR INFORMATION: For the degrees of freedom $k-r-1$ where k is the number of classes and r is the number of estimated parameters.

Test	Value of r	Parameter unknown
$n\left(20,5^{2}\right)$	$r=0$	
$n\left(20, \sigma^{2}\right)$	$r=1$	σ unknown
$n\left(\mu, 5^{2}\right)$	$r=1$	μ unknown
$n\left(\mu, \sigma^{2}\right)$	$r=2$	both μ and σ unknown

QUESTION 2

(a) H_{0} : The lady has no discerning ability.
H_{1} : The lady has discerning ability.
For this 2×2 table for the exact test is

		Lady says					
		Tea first	Milk first	Total			
Poured	Milk	$5^{*}=x$	1	6	\longleftarrow	k	
first	Tea	1	5	6			
	Total	6	6	12	\longrightarrow	N	
		\uparrow					
		n					

Now $k=6, n=6$ and $x=5$
In this case

$$
\begin{aligned}
P(X \geq x) & =1-P(X<x-1) \\
P(X \geq 5) & =1-P(X \leq 4) \\
& =1-0.96 \\
& =0.04
\end{aligned}
$$

and $P(X \leq x)=P(X \leq 5)=0.999$.
We can only reject H_{0} in favour of the two-sided alternative if x is too large or too small and if it represents a "rare event", in other words only if

$$
P(X \leq x) \leq \frac{\alpha}{2} \text { or if } P(X \geq x) \leq \frac{\alpha}{2}
$$

Since the test is two tailed we take the smaller of the two probabilities, i.e., we take 0.04 . Since $0.04>\frac{\alpha}{2}=0.025$, we do not reject H_{0} at the 5% level of significance and conclude that the lady has no discerning ability.
(b) (i) H_{0} : The number of boys in a family with $n=4$ children, has a binomial distribution with $p=\frac{1}{2}$.
H_{1} : The data do not represent a binomial distribution.
If $X \sim b(n ; p)$ then $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n$.

$$
\begin{aligned}
& P(X=0)=\binom{4}{0}(0.5)^{0}(0.5)^{4}=1 \times 0.0625=0.0625=\pi_{1} \\
& P(X=1)=\binom{4}{1}(0.5)^{1}(0.5)^{3}=4 \times 0.0625=0.25=\pi_{2} \\
& P(X=2)=\binom{4}{2}(0.5)^{2}(0.5)^{2}=6 \times 0.0625=0.375=\pi_{3} \\
& P(X=3)=\binom{4}{3}(0.5)^{3}(0.5)^{1}=4 \times 0.0625=0.25=\pi_{4} \\
& P(X=4)=\binom{4}{4}(0.5)^{4}(0.5)^{0}=1 \times 0.0625=0.0625=\pi_{5}
\end{aligned}
$$

The expected frequencies are $n \pi_{i}=80 \times \pi_{i}$.

Number of boys in the family	Number of families			
	Observed	N_{i}		Expected $(b(n ; p))$
:---:				
0		e_{i}		
:---:				
1				

$$
\text { But } \begin{aligned}
Y^{2}= & \sum_{i=1}^{k}\left(N_{i}-n \pi_{i}\right)^{2} / n \pi_{i} \\
= & \frac{(6-5)^{2}}{5}+\frac{(22-20)^{2}}{20}+\frac{(33-30)^{2}}{30}+\frac{(16-20)^{2}}{20} \\
& +\frac{(3-5)^{2}}{5} \\
= & 0.2+0.2+0.3+0.8+0.8 \\
= & 2.3
\end{aligned}
$$

The critical value is $\chi_{\alpha ; k-1}^{2}=\chi_{0.05 ; 4}^{2}=9.48773$. Reject H_{0} if $Y^{2}>9.48773$
Since $2.3<9.48773$, we cannot reject H_{0} at the 5% level of significance. It seems as if the binomial distribution gives a good fit.
(ii) If we are not given that $p=\frac{1}{2}$ we have to estimate p, say $\hat{p}=\theta$, from the observed data, by using the method of maximum likelihood.
Secondly we have to repeat the whole process of question (a(i)) with $\theta=\hat{p}$
and $\hat{\pi}_{r+1}=P(X=r)=\binom{4}{r} \theta^{r}(1-\theta)^{4-r}$ for $r=0,1, \ldots, 4$.
[If you are worried about the " $r+1$ " as subscript with $\hat{\pi}$ you have to keep in mind that we usually have k classes which start with the 1 -st class. In other words, $\hat{\pi}_{1}$ is the expected probability for class 1 when there are $r=0$ boys. Similarly, $\hat{\pi}_{2}$ is the expected probability for class 2 when there are $r=1$ boys $\hat{\pi}_{5}$ is the expected probability for class 5 when there are $r=4$ boys.]
The expected frequencies are then $n \hat{\Pi}_{i}=80 \times \hat{\Pi}_{i}$ for $i=1,2, \ldots, 5$.
$Y^{2}=\sum_{i=1}^{5}\left(N_{i}-n \hat{\pi}_{i}\right)^{2} / n \hat{\pi}_{i}$ is approximately a $\chi_{k-1-1}^{2}=\chi_{3}^{2}$ variable and the 5% critical value is $\chi_{0.05 ; 3}^{2}=7.81473$ (and not 9.48773 as in question (a(i))).
Reject $H_{0}: X \sim b(4 ; p)$ with $\hat{p}=\theta$ if $Y \geq 7.81473$.

QUESTION 3

(a) $n=10 \quad \sum X_{i}=191 \quad \sum X_{i}^{2}=4956.2$
$\sum X_{i} Y_{i}=5072.82 \quad \sum Y_{i}=194.3 \quad \sum Y_{i}^{2}=5397.83$
(i)

$$
\begin{aligned}
R & =\frac{\Sigma X_{i} Y_{i}-\frac{\left(\Sigma X_{i}\right)\left(\Sigma Y_{i}\right)}{n}}{\sqrt{\left(\Sigma X_{i}^{2}-\frac{\left(\Sigma X_{i}\right)^{2}}{n}\right)\left(\Sigma Y_{i}^{2}-\frac{\left(\Sigma Y_{i}\right)^{2}}{n}\right)}} \\
& =\frac{5072.82-\frac{(191)(194.3)}{10}}{\sqrt{\left(4956.2-\frac{(191)^{2}}{10}\right)\left(5397.83-\frac{(194.3)^{2}}{10}\right)}} \\
& =\frac{5072.82-3711.13}{\sqrt{(4956.2-3648.1)(5397.83-3775.249)}} \\
& =\frac{1361.69}{\sqrt{(1308.1)(1622.581)}} \\
& =\frac{1361.69}{\sqrt{2122498.206}} \\
& =\frac{1361.69}{1456.879613} \\
& \approx 0.9347
\end{aligned}
$$

(ii) The 95% confidence for η is

$$
U-\frac{1.96}{\sqrt{n-3}}<\eta<U+\frac{1.96}{\sqrt{n-3}}
$$

where $U=\frac{1}{2} \log _{e} \frac{1+R}{1-R}$ and $\eta=\frac{1}{2} \log _{e} \frac{1+\rho}{1-\rho}$
Now

$$
\begin{aligned}
U & =\frac{1}{2} \log _{e} \frac{1+R}{1-R} \\
& =\frac{1}{2} \log _{e} \frac{1+0.9347}{1-0.9347} \\
& =\frac{1}{2} \log _{e} \frac{1.9347}{0.0653} \\
& =\frac{1}{2} \log _{e} 29.62787136 \\
& =\frac{1}{2} \times 3.388715518 \\
& \approx 1.6944
\end{aligned}
$$

Now

$$
\begin{aligned}
U-\frac{1.96}{\sqrt{n-3}} & <\eta<U+\frac{1.96}{\sqrt{n-3}} \\
1.6944-\frac{1.96}{\sqrt{10-3}} & <\eta<1.6944+\frac{1.96}{\sqrt{10-3}} \\
1.6944-\frac{1.96}{\sqrt{7}} & <\eta<1.6944+\frac{1.96}{\sqrt{7}} \\
1.6944-0.7408 & <\eta<1.6944+0.7408 \\
0.9536 & <\eta<2.4352
\end{aligned}
$$

Now $\frac{e^{0.9536}-e^{-0.9536}}{e^{0.9536}+e^{-0.9536}}=\frac{2.5950-0.3854}{2.5950+0.3854}=\frac{2.2096}{2.9804} \approx 0.7414 \approx 0.74$
and $\frac{e^{2.4352}-e^{-2.4352}}{e^{2.4352}+e^{-2.4352}}=\frac{11.4181-0.0876}{11.4181+0.0876}=\frac{11.3305}{11.5057} \approx 0.9848 \approx 0.98$
i.e., 95% confidence interval for ρ is $(0.74 ; 0.98)$.

OR alternatively
Using Table X we have
for $\eta=0.9505: \rho=0.74$ and $\eta=0.9730: \rho=0.75$
Using linear interpolation for $\eta=0.9536$

$$
\begin{aligned}
\rho & =0.74+\frac{(0.9536-0.9505)}{(0.9730-0.9505)}(0.75-0.74) \\
& =0.74+\frac{0.0031}{0.0225} \times 0.01 \\
& =0.74+0.001377777 \\
& =0.741377777 \\
& \approx 0.74
\end{aligned}
$$

for $\eta=2.4101: \rho=0.984$ and $\eta=2.4427: \rho=0.985$
Once more using linear interpolation for $\eta=2.4352$

$$
\begin{aligned}
\rho & =0.984+\frac{(2.4352-2.4101)}{(2.4427-2.4101)}(0.985-0.984) \\
& =0.984+\frac{0.0251}{0.0326} \times 0.001 \\
& =0.984+0.000769938 \\
& =0.984769938 \\
& \approx 0.98
\end{aligned}
$$

Thus, the 95% confidence interval for ρ is $(0.734 ; 0.98)$.
(iii) $H_{0}: \rho=0.9 \quad$ against $\quad H_{1}: \rho>0.9$

$$
\begin{array}{rlrl}
n=10 \quad R=0.9347 & & \\
& & & \\
& =\frac{1}{2} \log _{e} \frac{1+R}{1-R} & \eta & =\frac{1}{2} \log _{e} \frac{1+\rho}{1-\rho} \\
& =\frac{1}{2} \log _{e} \frac{1+0.9347}{1-0.9347} & & =\frac{1}{2} \log _{e} \frac{1+0.9}{1-9.9} \\
& =\frac{1}{2} \log _{e} \frac{1.9347}{0.0653} & & =\frac{1}{2} \log _{e} \frac{1.9}{0.1} \\
& =\frac{1}{2} \log _{e} 29.62787136 & & =\frac{1}{2} \log _{e} 19 \\
& \approx 1.6944 & & \approx 1.4722
\end{array}
$$

The test statistic is

$$
\begin{aligned}
Z & =\sqrt{n-3}(U-\eta) \\
& =\sqrt{10-3}(1.6944-1.4722) \\
& =\sqrt{7} \times(0.2222) \\
& \approx 0.5879
\end{aligned}
$$

$\alpha=0.05$, and $Z_{0.05}=1.645$. Reject H_{0} if $Z>1.645$.
Since $0.5879<1.645$, we do not reject H_{0} at the 5% level of significance and conclude that $\rho=0.9$.
(b) (i) $H_{0}: \rho_{1}=\rho_{2} \quad$ against $H_{1}: \rho_{1}<\rho_{2}$

$$
\begin{array}{ll}
r_{1}=0.5 & n_{1}=103 \\
r_{2}=0.8 & n_{2}=52
\end{array}
$$

$$
\begin{array}{rlrl}
U_{1} & =\frac{1}{2} \log _{e} \frac{1+r_{1}}{1-r_{1}} & U_{2} & =\frac{1}{2} \log _{e} \frac{1+r_{2}}{1-r_{2}} \\
& =\frac{1}{2} \log _{e} \frac{1+0.5}{1-0.5} & & =\frac{1}{2} \log _{e} \frac{1+0.8}{1-0.8} \\
& =\frac{1}{2} \log _{e} \frac{1.5}{0.5} & & \frac{1}{2} \log _{e} \frac{1.8}{0.2} \\
& =\frac{1}{2} \log _{e} 3 & & \frac{1}{2} \log _{e} 9 \\
& \approx 0.5493 & \approx 1.0986
\end{array}
$$

(or just read the values for U_{1} and U_{2} from table X)
The test statistic is

$$
\begin{aligned}
z & =\frac{U_{1}-U_{2}}{\sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}}} \\
& =\frac{0.5493-1.0986}{\sqrt{\frac{1}{103-3}+\frac{1}{53-3}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-0.5493}{\sqrt{\frac{1}{100}+\frac{1}{50}}} \\
& =\frac{-0.5493}{\sqrt{0.03}} \\
& =\frac{-0.5493}{0.17320508} \\
& \approx-3.1714
\end{aligned}
$$

$\alpha=0.05$ and $Z_{0.05}=1.645$. We reject H_{0} if $Z<-1.645$.
Since $-3.1714<-1.645$, we reject H_{0} at the 5% level of significance and conclude that $\rho_{1}<\rho_{2}$, i.e., the correlation coefficient for population 1 is significantly smaller than that for population 2.
(ii) So

$$
\begin{aligned}
& P\left[-1.645 \leq \frac{U_{1}-U_{2}-\left(\eta_{1}-\eta_{2}\right)}{\sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}}} \leq 1.645\right]=0.90 \\
&-1.645 \leq \frac{U_{1}-U_{2}-\left(\eta_{1}-\eta_{2}\right)}{\sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}}} \leq 1.645 \\
&-1.645 \sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}} \leq U_{1}-U_{2}-\left(\eta_{1}-\eta_{2}\right) \leq 1.645 \sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}} \\
&\left(U_{1}-U_{2}\right)-1.645 \sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}} \leq \eta_{1}-\eta_{2} \leq\left(U_{1}-U_{2}\right)+1.645 \sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}} \\
&(-0.5493)-1.645 \sqrt{0.03} \leq \eta_{1}-\eta_{2} \leq(-0.5493)+1.645 \sqrt{0.03} \\
&(-0.5493)-0.284922357 \leq \eta_{1}-\eta_{2} \leq(-0.5493)+0.284922357 \\
&-0.8342 \leq \eta_{1}-\eta_{2} \leq-0.2644
\end{aligned}
$$

Therefore the 95% confidence interval for $\eta_{1}-\eta_{2}$ is $(-0.8342 ;-0.2644)$.
Now $\frac{e^{-0.8342}-e^{0.8342}}{e^{-0.8342}+e^{0.8342}}=\frac{0.4342-2.3030}{0.4342+2.3030}=\frac{-1.8688}{2.7372} \approx-0.6827 \approx-0.68$
and $\frac{e^{-0.2644}-e^{0.2644}}{e^{-0.2644}+e^{0.2644}}=\frac{0.7677-1.3026}{0.7677+1.3026}=\frac{-0.5349}{2.0703} \approx-0.2584 \approx-0.26$
i.e., 95% confidence interval for ρ is $(-0.68 ;-0.26)$.

OR alternatively
Using Table X we have
for $\eta=0.8291: \rho=0.68$ and $\eta=0.8480: \rho=0.69$
Using linear interpolation for $\eta=0.8342$

$$
\begin{aligned}
\rho & =0.68+\frac{(0.8342-0.8291)}{(0.8480-0.8291)}(0.69-0.68) \\
& =0.68+\frac{0.0051}{0.0189} \times 0.01 \\
& =0.68+0.002698412 \\
& =0.682698412 \\
& \approx 0.68
\end{aligned}
$$

for $\eta=0.2554: \rho=0.25$ and $\eta=0.2661: \rho=0.26$
Once more using linear interpolation for $\eta=0.2644$

$$
\begin{aligned}
\rho & =0.25+\frac{(0.2644-0.2554)}{(0.2661-0.2554)}(0.26-0.25) \\
& =0.25+\frac{0.009}{0.0107} \times 0.01 \\
& =0.25+0.008411214 \\
& =0.258411214 \\
& \approx 0.26
\end{aligned}
$$

Thus, the 95% confidence interval for ρ is $(-0.68 ;-0.26)$.
(iii) Yes. Since this upper bound (at the 90% level) will be the same as the 95% one-sided interval we may say we are 95% confident that $\rho_{1}-\rho_{2} \leq-0.26$. (This means we reject $H_{0}: \rho_{1}-\rho_{2}=0$ which confirms our conclusion.).

QUESTION 4

(a) Let $U=\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}$ then $U \sim \chi_{n}^{2}$ (known value of μ).

$$
\begin{aligned}
1-\alpha & =P\left(\chi_{1-\frac{1}{2} \alpha ; n}^{2}<U<\chi_{\frac{1}{2} \alpha ; n}^{2}\right) \\
& =P\left[\chi_{1-\frac{1}{2} \alpha ; n}^{2}<\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}<\chi_{\frac{1}{2} \alpha ; n}^{2}\right] \\
& =P\left[\frac{1}{\chi_{1-\frac{1}{2} \alpha ; n}^{2}}>\frac{\sigma^{2}}{\Sigma\left(X_{i}-\mu\right)^{2}}>\frac{1}{\chi_{\frac{1}{2} \alpha ; n}^{2}}\right] \\
& =P\left[\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\chi_{\frac{1}{2} \alpha ; n}^{2}}<\sigma^{2}<\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\chi_{1-\frac{1}{2} \alpha ; n}^{2}}\right]
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\Sigma\left(X_{i}-\mu\right)^{2} & =\Sigma x_{i}^{2}-2 \mu \Sigma X_{i}+n \mu^{2} \\
& =380-2(4)(60)+20(4)^{2} \\
& =380-480+320 \\
& =220 \\
\chi_{\frac{1}{2} \alpha ; n}^{2}=\chi_{0.05 ; 20}^{2}=31.4104 & \\
\chi_{1-\frac{1}{2} \alpha ; n}^{2}=\chi_{0.95 ; 20}^{2}=10.8508 &
\end{aligned}
$$

Thus, the 90% two-sided confidence interval for σ^{2} now becomes

$$
\begin{aligned}
& {\left[\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\chi_{\frac{1}{2} \alpha ; n}^{2}}<\sigma^{2}<\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{\chi_{1-\frac{1}{2} \alpha ; n}^{2}}\right]} \\
& {\left[\frac{220}{31.4104}<\sigma^{2}<\frac{220}{10.8508}\right]} \\
& {\left[7.0040<\sigma^{2}<20.2750\right]} \\
& {[7.004 ; 20.275] .}
\end{aligned}
$$

(ii) Since this interval includes 9, we cannot reject $H_{0}: \sigma^{2}=9$ against H_{1} : $\sigma^{2} \neq 9$ at the 10% level of significance. (A two-sided confidence interval \Longrightarrow two-sided hypothesis testing).

