Tutorial letter 203/2/2017

Applied Statistics II
 STA2601

Semester 2

Department of Statistics

Solutions to Assignment 03

QUESTION 1

(a) (i)

Note: $\mathrm{Ho}=$ The data is from the Normal distribution. Small p-values reject Ho .

The normal quantile plot shows that the points at both ends are not following a diagonal. They seem to slightly deviate from the line. Secondly the histogram and box plot shows that data is positively skewed (Its subjective).

We need a proper test. The Shapiro-Wilk test for normality shows that the null hypothesis (H_{0} : Data comes from a normal distribution) would not be rejected (p-value $=0.3688$), indicating that we may assume that the data does come from a normal distribution.
(ii)

Distributions

Palm width

—Normal($8.006,0.91505$)

Fitted Normal

Test Mean

We have to test $H_{0}: \mu=8.5$ against $H_{1}: \mu \neq 8.5$.
From the output $\bar{X}=8.006$ and $s=0.91505$.

Method 1: Using the critical value approach

$$
T=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{s}=\frac{\sqrt{50}(8.006-8.5)}{0.91505} \approx-3.8174
$$

The critical value is

$$
\begin{aligned}
t_{\alpha / 2 ; n-1} & =t_{0.025 ; 49} \\
& =2.021+\frac{9}{20}(2.000-2.021) \\
& =2.021+\frac{9}{20}(-0.021) \\
& =2.021-0.00945 \\
& \approx 2.012
\end{aligned}
$$

We will reject H_{0} if $T \leq-2.012$, or if $T>2.012$ or if $|T|>2.012$.
Since $-3.8174<-2.012$ we reject H_{0} at the 5% level of significance and conclude that $\mu \neq 8.5$, i.e., the mean palm width of the right hand is significantly different from 8.5.

Method II: Using the p-value approach

p-value $=0.0004$. Since $0.0004<0.05$, we reject H_{0} at the 5% level of significance and conclude that $\mu \neq 8.5$, i.e., the mean palm width of the right hand is significantly different from 8.5.
(iii)

—Normal($8.006,0.91505$)

Summary Statistics

Mean	8.006
Std Dev	0.9150466
Std Err Mean	0.1294071
Upper 95\% Mean	8.2660534
Lower 95\% Mean	7.7459466
N	50
Fitted Normal	

From the output, the 95% confidence interval for μ is 8.2661 to 7.7459 . The interval supports the conclusion in part (ii). Since the 95% confidence interval is the same as testing a two sided test at the 5% level. Now we are 95% confident that $8.2661 \leq \mu \leq$ 7.7459. The two tailed 5% test can be compared to a 95% confidence interval. In this case the value 8.5 does not lie in the interval and thus we reject H_{0} at the 5% level of significance and conclude that $\mu \neq 8.5$, i.e., the mean palm width of the right hand is significantly different from 8.5.
(iv) We have to test $H_{0}: \sigma=1$
against $H_{1}: \sigma \neq 1$

Method 1: Using the critical value approach
Assuming μ is unknown, i.e., $\widehat{\mu}=\bar{X}$, then the test statistic is

$$
U=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{49(0.9150466)^{2}}{1} \approx 41.0282
$$

The critical values are

$$
\begin{aligned}
\chi_{1-\alpha / 2 ; n-1}^{2} & =\chi_{0.975 ; 49}^{2} \\
& =24.4331+\frac{9}{10}(32.3574-24.4331) \\
& =24.4331+\frac{9}{10}(7.9243) \\
& =24.4331+7.13187 \\
& \approx 31.565 \\
& \\
\chi_{\alpha / 2 ; n-1}^{2} & =\chi_{0.025 ; 29}^{2} \\
& =59.3417+\frac{9}{10}(71.4202-59.3417) \\
& =59.3417+\frac{9}{10}(12.0785) \\
& =59.3417+10.87065 \\
& \approx 70.2124
\end{aligned}
$$

Reject H_{0} if $U<31.565$ or $U>70.2124$
Since $31.565<41.0282<70.2124$, we do not reject H_{0} at the 5% level of significance and conclude that $\sigma=1$.

Method II: Using the p-value approach

p-value $=0.4323$. Since $0.4323>0.05$, we do not reject H_{0} at the 5% level of significance and conclude that $\sigma=1$.

The assumption made was that the mean μ is unknown and hence the test statistic $U=\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}$ was used at χ_{n-1}^{2}.
(b) (i) In order to perform the tests we assumed that:

- the observations in each sample are independent and also the two samples are mutually independent.
- the observations are normally distributed.
- the two population variances are equal.

The samples are independent (stated). We need to test for equal variances.
$\begin{array}{llll}\text { Men: } & n_{1}=20 & \bar{X}_{1}=57.4 & S_{1}=8.124 \\ \text { Women: } & n_{2}=25 & \bar{X}_{2}=63.4 & S_{2}=7.874\end{array}$
We have to test $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$
against $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$

The test statistic is

$$
\begin{aligned}
F & =\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \times \frac{S_{1}^{2}}{S_{2}^{2}} \\
& =1 \times \frac{8.124^{2}}{7.874^{2}} \\
& \approx 1.0645
\end{aligned}
$$

The critical values are:
$F_{\alpha / 2 ; n_{1}-1 ; n_{2}-1}=F_{0.025 ; 19 ; 24}=2.44+\frac{4}{5}(2.33-2.44)=2.44+0.8(-0.11)=2.352 \approx 2.35$ and $F_{1-\alpha / 2 ; n_{1}-1 ; n_{2}-1}=\frac{1}{F_{\alpha / 2 ; n_{2}-1 ; n_{1}-1}}=\frac{1}{F_{0.025 ; 24 ; 19}}=\frac{1}{2.45} \approx 0.41$.
Reject H_{0} if $F>2.35$ or $F<0.41$.
[Note: if you approximate from your tables without interpolation $F_{0.025 ; 19 ; 24} \approx 2.33$ and $\frac{1}{F_{0.025 ; 24 ; 19}}=\frac{1}{2.45} \approx 0.41$.]

Since $0.41<1.0645<2.35$, we do not reject H_{0} at the 5% level of significance and conclude that the variances are equal i.e. $\sigma_{1}^{2}=\sigma_{2}^{2}$.
(ii) $H_{0}: \mu_{1}=\mu_{2} \quad$ against $\quad H_{1}: \mu_{1}<\mu_{2}$

$$
\begin{array}{lll}
n_{1}=20 & \bar{X}_{1}=57.4 & S_{1}=8.124 \\
n_{2}=25 & \bar{X}_{2}=63.4 & S_{2}=7.874
\end{array}
$$

The test statistic is

$$
T=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

Now

$$
\begin{aligned}
S_{p}^{2} & =\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2} \\
& =\frac{(20-1) 8.124^{2}+(25-1) 7.874^{2}}{20+25-2} \\
& =\frac{19(65.999376)+24(61.999876)}{43} \\
& =\frac{1253.988144+1487.997024}{43} \\
& =\frac{2741.985168}{43} \\
& =\approx 63.7671 \\
& \Longrightarrow S_{\text {pooled }}=\sqrt{63.7671} \approx 7.9854
\end{aligned}
$$

The test statistic is

$$
\begin{aligned}
T & =\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& =\frac{(57.4-63.4)-(0)}{7.9854 \sqrt{\frac{1}{20}+\frac{1}{25}}} \\
& =\frac{-6}{7.9854 \sqrt{0.09}} \\
& =\frac{-6}{2.39562} \\
& \approx-2.5046
\end{aligned}
$$

Test is one tailed. The critical value is $t_{\alpha ;\left(n_{1}+n_{2}-2\right)}=t_{0.05 ; 43}$ Interpolating $t_{0.05 ; 40}=1.684$ and $t_{0.05 ; 60}=1.671$.

$$
\begin{aligned}
t_{0.05 ; 43 .} & =1.684+\frac{3}{20}(1.671-1.684) \\
& =1.684+\frac{3}{20}(-0.013) \\
& =1.684-0.00195 \\
& \approx 1.682
\end{aligned}
$$

Reject H_{0} if $T<-1.682$.
Since $-2.5046<-1.682$, we reject H_{0} at the 5% level and conclude that $\mu_{1}<\mu_{2}$, that is, women are on average socially more skillful than men.

QUESTION 2

(a) We want to test:

$$
\begin{aligned}
& H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\sigma_{4}^{2} \quad \text { against } \quad H_{1}: \sigma_{p}^{2} \neq \sigma_{q}^{2} \text { for at least one } p \neq q \\
& \bar{Y}_{1}=15 \quad \sum Y_{1 j}=75 \quad \sum Y_{1 j}^{2}=1129 \\
& \bar{Y}_{2}=17 \quad \sum Y_{2 j}=85 \quad \sum Y_{2 j}^{2}=1459 \\
& \bar{Y}_{3}=19 \quad \sum Y_{3 j}=95 \quad \sum Y_{3 j}^{2}=1809 \\
& \bar{Y}_{4}=21 \quad \sum Y_{3 j}=105 \quad \sum Y_{3 j}^{2}=2211 \\
& \begin{aligned}
S_{1}^{2} & =\frac{1}{n-1}\left(\sum X_{1 j}^{2}-\frac{\left(\sum X_{1 j}\right)^{2}}{n}\right) & S_{2}^{2} & =\frac{1}{n-1}\left(\sum X_{2 j}^{2}-\frac{\left(\sum X_{2 j}\right)^{2}}{n}\right) \\
& =\frac{1}{5-1}\left(1129-\frac{(75)^{2}}{5}\right) & & =\frac{1}{5-1}\left(1459-\frac{(85)^{2}}{5}\right) \\
& =\frac{1}{4}(1129-1125) & & =\frac{1}{4}(1459-1445) \\
& =\frac{1}{4}(4) & & =\frac{1}{4}(14) \\
& =1 & & =3.5
\end{aligned} \\
& S_{3}^{2}=\frac{1}{n-1}\left(\sum X_{3 j}^{2}-\frac{\left(\sum X_{3 j}\right)^{2}}{n}\right) \quad S_{4}^{2}=\frac{1}{n-1}\left(\sum X_{4 j}^{2}-\frac{\left(\sum X_{4 j}\right)^{2}}{n}\right) \\
& =\frac{1}{5-1}\left(1809-\frac{(95)^{2}}{5}\right) \quad=\frac{1}{5-1}\left(2211-\frac{(105)^{2}}{5}\right) \\
& =\frac{1}{4}(1809-1805) \\
& =\frac{1}{4}(2211-2205) \\
& =\frac{1}{4}(4) \\
& =\frac{1}{4}(6) \\
& =1 \\
& =1.5
\end{aligned}
$$

From the computations above it, follows that $S_{1}^{2}=1 ; S_{2}^{2}=3.5 ; S_{3}^{2}=1$ and $S_{4}^{2}=1.5$.

The test statistic is

$$
\begin{aligned}
U & =\frac{\max _{i} S_{i}^{2}}{\min _{i} S_{i}^{2}} \\
& =\frac{3.5}{1} \\
& =3.5
\end{aligned}
$$

The critical value is 20.6. H_{0} is rejected if $U>20.6$.
Since $3.5<20.6$, we do not reject H_{0} at the 5% level of significance and conclude that the variances of the four populations are equal.
(b) $k=4$

$$
n=5
$$

$k n-k=16$
$k-1=3$

$$
\begin{array}{ll}
\bar{X}_{1}=15 & S S_{1}=\sum_{j=1}^{5}\left(X_{1 j}-\bar{X}_{1}\right)^{2}=4 \\
\bar{X}_{2}=17 & S S_{2}=\sum_{j=1}^{5}\left(X_{2 j}-\bar{X}_{2}\right)^{2}=14 \\
\bar{X}_{3}=19 & S S_{3}=\sum_{j=1}^{5}\left(X_{3 j}-\bar{X}_{3}\right)^{2}=4 \\
\bar{X}_{3}=21 & S S_{4}=\sum_{j=1}^{5}\left(X_{3 j}-\bar{X}_{3}\right)^{2}=6
\end{array}
$$

$$
\begin{aligned}
S S E & =S S_{1}+S S_{2}+S S_{3}+S S_{4} \\
& =4+14+4+6 \\
& =28
\end{aligned}
$$

$$
M S E=S^{2}=\frac{S S E}{k n-k}=\frac{28}{16}=1.75
$$

$$
\begin{aligned}
\bar{X}=\frac{(75+85+95+105)}{20} & =\frac{360}{20}=18 \\
\sum_{i=1}^{4}\left(\bar{X}_{i}-\bar{X}\right)^{2} & =(15-18)^{2}+(17-18)^{2}+(19-18)^{2}+(21-18)^{2} \\
& =(-3)^{2}+(-1)^{2}+(1)^{2}+(3)^{2} \\
& =9+1+1+9 \\
& =20
\end{aligned}
$$

$$
\operatorname{SSTr}=n \Sigma\left(\bar{X}_{i}-\bar{X}\right)^{2}=5(20)=100
$$

$$
M S T r=\frac{n \Sigma\left(\bar{X}_{i}-\bar{X}\right)^{2}}{(k-1)}=\frac{100}{3} \approx 33.3333
$$

$$
F=\frac{M S T r}{M S E}=\frac{33.3333}{1.75} \approx 19.0476
$$

The ANOVA table is

Source of variation	Sum of squares	Degrees of freedom	Mean square	F
Treatments	100	3	33.3333	19.0476
Error	28	16	1.75	
Total	128	19		

Testing $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ against $H_{1}: \mu_{p} \neq \mu_{p}$ for at least one pair $p \neq q$

The critical value is $F_{0.05 ; 3 ; 16}=3.24$. Reject H_{0} if $F>3.24$

Since $F>F_{0.05 ; 3 ; 16}$, i.e., $19.0476>3.24$, we reject H_{0} at the 5% level of significance and conclude that at least one pair is significantly different from each other.
(c) For each pair of means we compute a test statistic:

$$
T_{p q}=\frac{\bar{X}_{p}-\bar{X}_{q}}{S \sqrt{\frac{1}{n}+\frac{1}{n}}}=\frac{\sqrt{n}\left(\bar{X}_{p}-\bar{X}_{q}\right)}{\sqrt{2} S}=\frac{\sqrt{5}\left(\bar{X}_{p}-\bar{X}_{q}\right)}{\sqrt{2} \sqrt{M S E}}
$$

We reject $H_{0}(p, q)$ if

$$
\left|T_{p q}\right|>\sqrt{(k-1) F_{\alpha ; k-1 ; k n-k}}=\sqrt{3(3.24)}=\sqrt{9.72} \approx 3.1177
$$

This implies that we reject H_{0} if

$$
\frac{\sqrt{5}\left|\bar{X}_{p}-\bar{X}_{q}\right|}{\sqrt{2} \sqrt{1.75}} \geq 3.1177
$$

i.e., if

$$
\begin{aligned}
\left|\bar{X}_{p}-\bar{X}_{q}\right| \geq & \frac{3.1177 \sqrt{2} \sqrt{1.75}}{\sqrt{5}}=\frac{5.832682617}{2.236067977} \approx 2.6085 \\
\left|\bar{X}_{1}-\bar{X}_{2}\right| & =|15-17|=2<2.6085 \Longrightarrow \mu_{1}=\mu_{2} \\
\left|\bar{X}_{1}-\bar{X}_{4}\right| & =|15-21|=6>2.6085 \Longrightarrow \mu_{1} \neq \mu_{4} \\
\left|\bar{X}_{2}-\bar{X}_{4}\right| & =|17-21|=4>2.6085 \Longrightarrow \mu_{1} \neq \mu_{4}
\end{aligned}
$$

The pairs of means \bar{X}_{1} and \bar{X}_{2} do not differ significantly. However \bar{X}_{1} and \bar{X}_{2} differ significantly from \bar{X}_{4}. It can be concluded that $\mu_{1}=\mu_{2} \neq \mu_{4}$.

QUESTION 3

(a)

Day	Sales during campaign	Sales after campaign	$Y_{i}=$ During- After
Sunday	18.1	16.6	1.5
Monday	10.0	8.8	1.2
Tuesday	9.1	8.6	0.5
Wednesday	8.4	8.3	0.1
Thursday	10.8	10.1	0.7
Friday	13.1	12.3	0.8
Saturday	20.8	18.9	1.9

$$
n=7 \quad \sum Y_{i}=6.7 \quad \sum\left(Y_{i}-\bar{Y}\right)^{2}=2.2771
$$

We have to test:
$H_{0}: \mu_{d}=0$ against
$H_{1}: \mu_{d}>0$

$$
\begin{array}{rlrl}
\bar{Y} & =\frac{1}{n} \sum Y_{i} \quad S_{y}^{2} & =\frac{1}{n-1} \sum\left(Y_{i}-\bar{Y}\right)^{2} \\
& =\frac{1}{7}(6.7) & & =\frac{1}{6}(2.2771) \\
& \approx 0.9571 & & =0.379516666 \\
\Longrightarrow S_{y} & =\sqrt{0.379516666} \\
& & \approx 0.6160
\end{array}
$$

The test statistic is

$$
\begin{aligned}
T & =\frac{\sqrt{n}(\bar{Y}-\mu)}{S_{y}} \\
& =\frac{\sqrt{7}(0.9571-0)}{0.6160} \\
& =\frac{2.53224858}{0.6160} \\
& \approx 4.1108
\end{aligned}
$$

$t_{\alpha ;(n-1)}=t_{0.05 ; 6}=1.943$. We will reject H_{0} if $T \geq 1.943$.
Since $4.1108>1.943$, we reject H_{0} at the 5% level of significance and conclude that sales increased during campaign.
(b) $n=7 \quad \alpha=0.05 \quad \alpha / 2=0.025$
$t_{\alpha / 2 ;(n-1)}=t_{0.025 ; 6}=2.447$
The 95% confidence interval is

\bar{Y}	$\pm t_{\alpha / 2 ;(n-1)} \times \frac{S_{y}}{\sqrt{n}}$	
0.9571	$\pm 2.447 \times \frac{0.616}{\sqrt{7}}$	
0.9571	± 0.5697	
$(0.9571-0.5697)$	$;$	$0.9571+0.5697)$
(0.3874)	$;$	$1.5268)$

We are 95% confident that the true mean differences, μ_{d} lies between 0.3874 and 1.5268 .
(c) The output is

QUESTION 4

(a) Start the JMP program
$>\quad$ Enter Amount of drug in the first column and label it Amount of drug.
(make sure to change the scale to nominal)
$>\quad$ Enter Stress level in the second column and label it Stress level.
This is a one-way ANOVA. To fit the model
$>\quad$ Choose Analyze $>$ Fit Y by X with Amount of drug as X factor and Stress level as Y response.
$>\quad$ Click Ok.
$\Longrightarrow \quad$ Then on the Oneway Analysis of Stress level By Amount of drug click on the Red triangle
> Choose Unequal Variances
Oneway Analysis of Stress level By Amount of drug

Tests that the Variances are Equal

Level	Count	Std Dev	MeanAbsDif to Mean		MeanAbsDif to Median
	10	4.483302	3.700000		3.700000
10	10	3.583915	2.840000		2.800000
20	10	3.190263	2.640000		2.600000
30	10	3.034981	2.320000		2.300000
40	10	2.330951	1.900000		1.900000
Test		F Ratio	DFNum	DFDen	Prob $>$ F
O'Brien		1.5943	4	45	0.1923
Brown-	Forsythe	1.2498	4	45	0.3037
Levene		1.4232	4	45	0.2417
Bartlett		0.9653	4		0.4251

Welch's Test
Welch Anova testing Means Equal, allowing Std Devs Not Equal
FRatio DFNum DFDen Prob >F
$\begin{array}{llll}6.1967 & 4 & 22.239 & 0.0017^{*}\end{array}$

For your own information:

The standard deviation column shows the estimates you are testing. The p-values are listed under the column called Prob $>F$ and are testing the assumption that the variances are equal. Small p-values suggest that the variance are not equal.

Interpretation:

We have to test:
$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\sigma_{4}^{2}$, against $H_{1}: \sigma_{p}^{2} \neq \sigma_{q}^{2}$ for at least one $p \neq q$
Using the Bartlett's test, p-value $=0.4251$. Since $0.4251>0.05 \Longrightarrow$ we can not reject H_{0} at the 5% level of significance. The assumption of equal variances is not violated.
(b) $\Longrightarrow \quad$ Click on the triangle "Tests that the variances are equal" to hide the output.
$\Longrightarrow \quad$ Then click on the Red triangle on Oneway Analysis of Stress level by Amount of drug.

> Choose Means/ANOVA

$\Longrightarrow \quad$ Click again on the Red triangle and choose Means and Std dev.

Analysis of Variance

		Sum of Squares	Mean Square	F Ratio	Prob > F
Source	DF	Squan			
Amount of drug	4	231.32000	57.8300	5.0055	0.0020^{*}
Error	45	519.90000	11.5533		
C. Total	49	751.22000			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95\%	Upper 95\%
0	10	20.1000	1.0749	17.935	22.265
10	10	19.2000	1.0749	17.035	21.365
20	10	20.8000	1.0749	18.635	22.965
30	10	23.1000	1.0749	20.935	25.265
40	10	25.1000	1.0749	22.935	27.265

Std Error uses a pooled estimate of error variance

Means and Std Deviations

			Std Err Level				Number	Mean	Std Dev	Mean	Lower 95\%	Upper 95\%
0	10	20.1000	4.48330	1.4177	16.893							

For your information:

On the plot, the dots shows the response for each Amount of drug. The line across the middle is the grand mean. The diamonds give a 95\% confidence interval for each Amount of drug with the middle line of each diamond showing the group mean. If the groups are significantly different, then the diamonds do not overlap.

Interpretation:

(i) $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ against
$H_{1}: \mu_{p} \neq \mu_{q}$ for at least one $p \neq q$.
(ii) The test statistic is $F=\frac{M S T r}{M S E} \sim F_{k-1 ; n-k}$
(iii) From the output: Computations for ANOVA we see that $F=5.0055$ which is significant with a p-value of 0.0020 . Since $0.0020<0.05$ we reject H_{0} in favour of H_{1} at the 5% level of significance and conclude that $u_{p} \neq \mu_{q}$ for at least one pair $p \neq q$, that is, the mean stress level of the companies are not the same.
(c) $\Longrightarrow \quad$ Hide the output "Oneway ANOVA" and "Means and Std deviations" by clicking the triangles.
$\Longrightarrow \quad$ Click on the Red triangle on Oneway Analysis of Stress level by Amount of drug.
$\Longrightarrow \quad$ Choose Compare Means $>$ Each Pair, Student's t.

Means Comparisons				
Comparisons for each pair using Student's t				
Confidence Quantile				
Alpha				
2.01410	. 05			
LSD Threshold Matrix				
Abs(Dif)-LSD				
40	30	20	0	10
$40 \quad-3.0616$	-1.0616	1.2384	1.9384	2.8384
$30-1.0616$	-3.0616	-0.7616	-0.0616	0.8384
$20 \quad 1.2384$	-0.7616	-3.0616	-2.3616	-1.4616
01.9384	-0.0616	-2.3616	-3.0616	-2.1616
$10 \quad 2.8384$	0.8384	-1.4616	-2.1616	-3.0616

Positive values show pairs of means that are significantly different.
Connecting Letters Report

| Level | | | Mean |
| :--- | :--- | :--- | :--- | ---: |
| 40 | A | | 25.100000 |
| 30 | A B | 23.100000 | |
| 20 | | B C | 20.800000 |
| 0 | | B C | 20.100000 |
| 10 | | C | 19.200000 |

Levels not connected by same letter are significantly different.
Ordered Differences Report

Amounts of drug injected (CC) that share the same letter are not significantly different from each other. CC30 and CC40 share the same letter A, CCO, CC20 and CC30 share the same letter B and CCO, CC10 and CC20 share the same letter C.

The amounts of drugs which are significantly different from each other have Abs(Dif)-LSDs that are positive. The pairs are CC40-CC20, CC40-CC0, CC40-CC10 and CC30-CC10 which
are $1.2384,1.9384,2.8384$ and 0.8384 respectively. Since they are positive, the means are significantly different. (Recall a negative value of Abs(Dif)-LSD means the groups are not significantly different from each other.)

Confidence intervals that do not include zero imply that the pairs of means differ significantly. All pairs include zero except the pair CC40-CC10, CC40-CC0, CC40-CC20 and CC30-CC10. The confidence interval for the pairs are (2.8384:8.9616), (1.9384:8.0616), (1.2384:7.3616) and ($0.8384: 6.9616$). These are the only intervals that do not include zero and it means we reject the null hypothesis of equal means and conclude that $\mu_{40} \neq \mu_{10}, \mu_{40} \neq \mu_{0}, \mu_{40} \neq$ μ_{20}, and $\mu_{30} \neq \mu_{10}$. The p-values are $0.0003,0.0020,0.0070$ and 0.0137 respectively which are less than 0.05 and thus leading to the rejection of the null hypothesis of equal means.
(d) Student's t does pairwise comparisons of means. Comparisons of many pairs of means increase the possibility of a Type I error. One must remember that using pairwise t-tests doesn't control the overall error for all comparisons made (also called the experimental error rate). A Tukey-Kramer tests can be used to control for an overall error rate since it compares all means simultaneously.
(e) The plot is:

Yes. There is an upward trend.

QUESTION 5

(a)

	$\begin{aligned} & \text { Height (cm) } \\ & X_{i} \end{aligned}$	$\begin{aligned} & \text { Mass (kg) } \\ & Y_{i} \end{aligned}$	$\left(X_{i}-\bar{X}\right)$	$Y_{i}\left(X_{i}-\bar{X}\right)$	$\left(X_{i}-\bar{X}\right)^{2}$	\widehat{Y}_{i}	$e_{i}^{2}=\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$
	160	62	-10	-620	100	66	16
	160	68	-10	-680	100	66	4
	160	68	-10	-680	100	66	4
	165	70	-5	-350	25	71	1
	165	68	-5	-340	25	71	9
	165	74	-5	-370	25	71	9
	170	70	0	0	0	76	36
	170	82	0	0	0	76	36
	170	78	0	0	0	76	4
	175	77	5	385	25	81	16
	175	83	5	415	25	81	4
	175	82	5	410	25	81	1
	180	84	10	840	100	86	4
	180	86	10	860	100	86	0
	180	88	10	880	100	86	4
Total	2550	1140	0	750	750		148

Consider the simple linear regression $\widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X$
Then

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\sum y_{i}\left(x_{i}-\bar{x}\right)}{d^{2}} \\
& =\frac{750}{750} \\
& =1 \\
\hat{\beta}_{0} & =\bar{y}-\hat{\beta}_{1} \bar{x} \\
& =\frac{1140}{15}-1\left(\frac{2550}{15}\right) \\
& =76-1(170) \\
& =76-170 \\
& =-94
\end{aligned}
$$

$$
\begin{aligned}
s^{2} & =\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2} \\
& =\frac{148}{13} \\
& \approx 11.3846
\end{aligned}
$$

(b) The confidence interval is

$$
\widehat{\beta}_{1} \pm t_{\alpha / 2 ; n-2} \times \frac{s}{d}
$$

$$
\begin{array}{ll}
\widehat{\beta}_{1}=1 & t_{\alpha / 2 ; n-2}=t_{0.05 ; 13}=1.771 \\
d=\sqrt{750} & s=\sqrt{11.3846} \approx 3.3741
\end{array}
$$

The 95% confidence interval for $\widehat{\beta}_{1}$ is

$$
\begin{array}{lll}
\widehat{\beta}_{1} & \pm & t_{\alpha / 2 ; n-2} \times \frac{s}{d} \\
1 & \pm & 1.771 \times \frac{11.3846}{\sqrt{750}} \\
1 & \pm & 0.7362 \\
(1-0.7362 & ; & 1+0.7362 \\
(0.2638 & ; & 1.7362)
\end{array}
$$

(c) $x_{i}=178$

The expected mass is

$$
\begin{aligned}
\widehat{\text { Mass }} & =-94+\text { height } \\
& =-94+1(178) \\
& =-94+178 \\
& =84 \mathrm{~kg}
\end{aligned}
$$

(d) The confidence interval is $\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} X\right) \pm t_{\alpha / 2 ; n-2} \times S \sqrt{1+\frac{1}{n}+\frac{(X-\bar{X})^{2}}{d^{2}}}$.

Now

$$
\begin{aligned}
S E & =S \sqrt{1+\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{d^{2}}} \\
& =3.3741 \sqrt{1+\frac{1}{15}+\frac{(178-170)^{2}}{750}} \\
& =3.3741 \sqrt{1+\frac{1}{15}+\frac{32}{375}} \\
& =3.3741 \sqrt{1.152} \\
& \approx 3.6215
\end{aligned}
$$

The 95% confidence interval for the expected mass of a man who height is 178 cm tall is

$$
\left.\left.\begin{array}{ll}
\widehat{\beta}_{0}+\widehat{\beta}_{1} X & \pm t_{\alpha / 2 ; n-2} \times S \sqrt{1+\frac{1}{n}+\frac{(X-\bar{X})^{2}}{d^{2}}} \\
84 & \pm 1.771 \times 3.6215 \\
84 & \pm 6.4137 \\
(84-6.4137) & ; 84+6.4137) \\
(77.5863 & ;
\end{array}\right) 90.4137\right) .
$$

(e) The X-values used in the construction of the regression line are 160 to 180 . In this case, estimates will be outside the range of X-values used in the construction of the regression line. The limits might become unreliable as the relationship between X and Y outside this range is not known and may be different from the one found in the specified range.
(f) Model fitted is $\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$

Commands for the Output:
Start the JMP program
$>\quad$ Enter height in the first column and label it Height (x).
$>\quad$ Enter mass in the second column and label it Mass (y)
To plot:
$>\quad$ Choose Analyze $>$ Fit Y by X with Height (x) as X factor and Mass (y) as Y response.
> Click Ok.
Click on the Red triangle on Bivariate Fit of Height (y) by Mass (x).

$>\quad$ Choose Fit Line

Click on the Red triangle on Bivariate Fit of Height (y) by Mass (x).
$>\quad$ Choose Density Ellipse then 0.95
$>\quad$ Click the triangle on Bivariate Normal Ellipse $P=0.95$ to display the output.
The JMP output obtained is

Linear Fit				
$Y=-94+1^{*} X$				
Summary of Fit				
RSquare RSquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wgts)			$\begin{array}{r} 0.835189 \\ 0.82512 \\ 3.37411 \\ 76 \\ 15 \end{array}$	
Analysis of Variance				
		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	1	750.00000	750.000	65.8784
Error	13	148.00000	11.385	Prob $>\mathrm{F}$
C. Total	14	898.00000		<.0001*

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob> $\|\mathbf{t}\|$ |
| :--- | ---: | :--- | ---: | ---: | ---: |
| Intercept | -94 | 20.96297 | -4.48 | 0.0006^{*} |
| X | 1 | 0.123205 | 8.12 | $<.0001^{*}$ |

Bivariate Normal Ellipse P=0.950

| Variable | Mean | Std Dev | Correlation | Signif. Prob |
| :--- | ---: | ---: | ---: | ---: | Number

