Tutorial letter 203/1/2017

Applied Statistics II
 STA2601

Semester 1

Department of Statistics

QUESTION 1

(a)

Note: $\mathrm{Ho}=$ The data is from the Normal distribution. Small p-values reject Ho .
(i) The assumptions are:

- observations are independent
- the data follows a normal distribution

Now based on the assumption of independent observations and the assumption that the percent of organic matter have a normal distribution (i.e., the sample comes from a normal population) we may assume that

$$
T=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S} \sim t_{n-1}
$$

Are they met? The soil specimens were drawn randomly, thus the assumption of independent observations is met.

The normality assumption is violated because from the JMP graphical output we see that the normal curve does not fit the histogram very well and there also seems to be a systematic deviation around the line in the Normal Quantile Plot. The histogram show that data is positively skewed and this is also supported by the boxplot with a longer tail to the right (Its subjective).

We need a proper test. The Shapiro-Wilk test for normality shows that the null hypothesis (H_{0} : Data comes from a normal distribution) would be rejected (p-value $=0.0277$), indicating that we may assume the data does not come from a normal distribution. Luckily the test is not too sensitive and we may proceed.
(ii) We have to test $H_{0}: \mu=3$ against $H_{1}: \mu \neq 3$.

Method 1: Using the critical value approach

$$
T=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{s}=\frac{\sqrt{30}(2.48-3)}{1.61418} \approx-1.7645
$$

The critical value is $t_{\alpha / 2 ; n-1}=t_{0.05 ; 29}=1.699$
We will reject H_{0} if $T \geq 1.699$ or $T \leq-1.699$ or if $|T| \geq 1.699$.
Since $-1.7645<-1.699$, we reject H_{0} at the 10% level of significance and conclude that the average percentage of organic matter is something other than 3%.

Method II: Using the p-value approach

p-value $=0.0882$. Since $0.0882<0.10$, we reject H_{0} at the 10% level of significance and conclude that the average percentage of organic matter is something other than 3%.
(iii) Yes. p-value $=0.0882$. Since $0.0882>0.05$, we do not reject H_{0} at the 5% level of significance and conclude that the average percentage of organic matter is 3%.
(iv) We have to test $H_{0}: \sigma=1.5$
against $H_{1}: \sigma \neq 1.5$

—_Normal(2.48,1.61418)
Test Standard Deviation

Hypothesized Value	1.5
Actual Estimate	1.61418
DF	29
Test	ChiSquare
Test Statistic	33.5832
Min PValue	0.5097
Prob < Chisq	0.7452
Prob > Chisq	0.2548

Method 1: Using the critical value approach

Assuming μ is unknown, i.e., $\widehat{\mu}=\bar{X}$, then the test statistic is

$$
\begin{aligned}
U & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \\
& =\frac{\left(\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}\right)}{1.5^{2}} \\
& =\frac{\left(260.0742-\frac{(74.4)^{2}}{30}\right)}{2.25} \\
& =\frac{260.0742-184.512}{2.25} \\
& =\frac{75.5622}{2.25} \\
& =33.5832
\end{aligned}
$$

The critical values are

$$
\begin{aligned}
\chi_{1-\alpha / 2 ; n-1}^{2} & =\chi_{0.95 ; 29}^{2} & \chi_{\alpha / 2 ; n-1}^{2} & =\chi_{0.05 ; 29}^{2} \\
& =17.7083 & & 42.5569
\end{aligned}
$$

Reject H_{0} if $U<17.7083$ or $U>42.5569$
Since $17.7083<33.5832<42.5569$, we do not reject H_{0} at the 10% level of significance and conclude that $\sigma=1.5$.

Method II: Using the p-value approach

p-value $=0.5097$. Since $0.5097>0.05$, we do not reject H_{0} at the 10% level of significance and conclude that $\sigma=1.5$.
(b) We have to test: $H_{0}: \mu_{X}=\mu_{Y} \quad$ against $\quad H_{1}: \mu_{X}>\mu_{Y}$

$$
\begin{array}{lll}
n_{X}=30 & \bar{X}=2.48 & S_{X}^{2}=2.6056 \\
n_{Y}=20 & \bar{Y}=2.43 & S_{Y}^{2}=2.4749
\end{array}
$$

The test statistic is

$$
T=\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n_{X}}+\frac{1}{n_{Y}}}}
$$

Now

$$
\begin{aligned}
S_{p}^{2} & =\frac{\left(n_{X}-1\right) S_{X}^{2}+\left(n_{Y}-1\right) S_{Y}^{2}}{n_{X}+n_{Y}-2} \\
& =\frac{(30-1) 2.6056+(20-1) 2.4749}{30+20-2} \\
& =\frac{75.5624+47.0231}{48} \\
& =\frac{122.5855}{48} \\
& =2.553864583 \\
& \Longrightarrow S_{\text {pooled }}=\sqrt{2.553864583} \approx 1.5981
\end{aligned}
$$

Then

$$
\begin{aligned}
T & =\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n_{X}}+\frac{1}{n_{Y}}}} \\
& =\frac{(2.48-2.43)-(0)}{1.5981 \sqrt{\frac{1}{30}+\frac{1}{20}}} \\
& =\frac{0.05}{1.5981 \sqrt{0.083333333}} \\
& =\frac{0.05}{0.461331732} \\
& \approx 0.1084
\end{aligned}
$$

The critical value is

$$
\begin{aligned}
t_{\alpha ; n_{1}-n_{2}-2} & =t_{0.05 ; 48} \\
& =1.684+\frac{8}{20}(1.671-1.684) \\
& =1.684+\frac{2}{5}(-0.013) \\
& =1.684-0.0052 \\
& \approx 1.6788
\end{aligned}
$$

\therefore Reject H_{0} if $T \geq 1.6788$.
Since $0.1084<1.6788$, we do not reject H_{0} at the 5% level and conclude that the means are not significantly different from each other, i.e., $\mu_{X}=\mu_{Y}$.

QUESTION 2

Group	Medication 1	Medication 2	Medication 3
n	5	5	5
$\sum X_{i j}$	35	18	34
\bar{X}_{i}	7	3.6	6.8
$\sum\left(X_{i j}-\bar{X}_{i}\right)^{2}$	16	23.2	2.8

(a)

$$
\begin{array}{rlrl}
S_{1}^{2} & =\frac{1}{n_{1}-1} \sum\left(X_{1 j}-\bar{X}_{2}\right)^{2} & S_{2}^{2} & =\frac{1}{n_{2}-1} \sum\left(X_{2 j}-\bar{X}_{2}\right)^{2} \\
& =\frac{1}{5-1}(16) & & =\frac{1}{5-1}(23.2) \\
& =\frac{1}{4}(16) & & \\
& =4 & & \\
& & \\
S_{3}^{2} & =\frac{1}{n_{3}-1} \sum(23.2) \\
& =\frac{1}{5-1}(2.8) & & \\
& =\frac{1}{4}(2.8) & & \\
& =0.7 & &
\end{array}
$$

From the computations above it, follows that $S_{1}^{2}=4 ; S_{2}^{2}=5.8$ and $S_{3}^{2}=0.7$.
(b) (i) Ordinary average $=\frac{4+5.8+0.7}{3}=\frac{10.5}{3}=3.5$
(ii) $M S E=\frac{S S E}{k n-k}$.

For this $A N O V A$ problem, we have $k=3$ (there are four groups) and $n=5$ (the number of observations in each sample).

$$
\begin{aligned}
& S S E=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} \\
& =16+23.2+2.8 \\
& =42 \\
& \therefore M S E=\frac{42}{3(5)-3} \\
& =\frac{42}{12} \\
& =3.5 . \quad \text { The result in }(\mathrm{i})=\text { result in (ii). }
\end{aligned}
$$

This makes perfect sense! MSE is like a pooled variance or an average variance, because the assumption of $A N O V A$ is that $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}$ and if these variances are unknown, we estimate it by pooling.
(c) It is reasonable to assume that the three samples are independent. The people are different and were randomly selected and thus do not have influence on each other.
(d) We have to test:
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ against
$H_{1}: \mu_{p} \neq \mu_{q}$ for at least one $p \neq q$.
The test statistic is $F=\frac{M S T_{r}}{M S E} \sim F_{k-1 ; k n-k}$

$$
M S T_{r}=\frac{n \sum_{i=1}^{k}\left(\bar{X}_{i}-\bar{X}\right)^{2}}{k-1}
$$

where $\bar{X}=\frac{\sum \sum X_{i j}}{N}=\frac{87}{15}=5.8 \quad$ (overall mean);

$$
\text { and } \begin{aligned}
\sum\left(\bar{X}_{i}-\bar{X}\right)^{2} & =(7-5.8)^{2}+(3.6-5.8)^{2}+(6.8-5.8)^{2} \\
& =(1.2)^{2}+(-2.2)^{2}+(1)^{2} \\
& =1.44+4.84+1 \\
& =7.28 \\
\therefore M S T_{r} & =\frac{5(7.28)}{3-1}=\frac{36.4}{2}=18.2
\end{aligned}
$$

We already know that $M S E=3.5$ (see question (b)(ii)).

$$
\begin{aligned}
\therefore F & =\frac{M S T_{r}}{M S E} \\
& =\frac{18.2}{3.5} \\
& =5.2
\end{aligned}
$$

(Note that these computations are the same with the JMP output under the heading: "Analysis of Variance".)

The critical value is $F_{0,05 ; 2 ; 12}=3.89$. Reject H_{0} if $F>3.89$.
Since $5.2>3.89$, we reject H_{0} at the 5% level of significance and conclude that the three medications produce different relief times that is, $\mu_{p} \neq \mu_{q}$ for at least one pair $p \neq q$.
(Note that we reach the same conclusion with the JMP output under the heading: "Analysis of Variance" if we consider "Prob > F" < 0.0236)
(e) For each pair of means, we compute a test statistic

$$
T_{p q}=\frac{\bar{X}_{p}-\bar{X}_{q}}{S_{\text {pooled }} \sqrt{1 / n+1 / n}}=\frac{\sqrt{n}\left(\bar{X}_{p}-\bar{X}_{q}\right)}{\sqrt{2} S}=\frac{\sqrt{5}\left(\bar{X}_{p}-\bar{X}_{q}\right)}{\sqrt{2} \sqrt{M S E}} .
$$

We reject $H_{0}(p ; q)$ if

$$
\left|T_{p q}\right|>\sqrt{(k-1) F_{\alpha ; k-1 ; k n-k}}=\sqrt{2(3.89)} \approx 2.7893
$$

This implies that we reject H_{0} if

$$
\begin{aligned}
& \frac{\sqrt{5}\left|\bar{X}_{p}-\bar{X}_{q}\right|}{\sqrt{2} \sqrt{3.5}} \geq 2.7893 \\
& \text { i.e. if }\left|\bar{X}_{p}-\bar{X}_{q}\right| \geq \frac{(2.7893) \sqrt{2} \sqrt{3.5}}{\sqrt{5}}=\frac{7.379794132}{2.236067977}=3.3003 \\
& \left|\bar{X}_{1}-\bar{X}_{2}\right|=|7.0-3.6|=3.4>3.3003 \Longrightarrow \mu_{1} \neq \mu_{2} \\
& \left|\bar{X}_{1}-\bar{X}_{3}\right|=|7.0-6.8| \quad 0.2<3.3003 \Longrightarrow \mu_{1}=\mu_{3} \\
& \left|\bar{X}_{2}-\bar{X}_{3}\right|=|3.6-6.8| \quad 3.2<3.3003 \Longrightarrow \mu_{2}=\mu_{3}
\end{aligned}
$$

All pairs of means are not significantly different from each other except the pairs \bar{X}_{1} and \bar{X}_{2};, that is, $\mu_{1} \neq \mu_{2}$.

QUESTION 3

(a)

Twin set	First born	Second born	$Y_{i}=$ First - Second
1	32	44	12
2	36	43	7
3	21	28	7
4	30	39	9
5	49	51	2
6	27	25	-2
7	39	32	-7
8	38	42	4
9	56	64	8
10	44	44	0

$$
n=10 \quad \sum Y_{i}=40 \quad \sum\left(Y_{i}-\bar{Y}\right)^{2}=300
$$

We have to test:
$H_{0}: \mu_{d}=0$ against
$H_{1}: \mu_{d} \neq 0$

$$
\begin{array}{rlrl}
\bar{Y} & =\frac{1}{n} \sum Y_{i} & S_{y}^{2} & \\
& =\frac{1}{n-1} \sum\left(Y_{i}-\bar{Y}\right)^{2} \\
& =\frac{1}{10}(40) & & \\
& =4 & & \frac{1}{9}(300) \\
\Longrightarrow S_{y} & =\sqrt{33.33333333} \\
& & \approx 5.7735
\end{array}
$$

The test statistic is

$$
\begin{aligned}
T & =\frac{\sqrt{n}(\bar{Y}-\mu)}{S_{y}} \\
& =\frac{\sqrt{10}(4-0)}{5.7735} \\
& =\frac{12.64911064}{5.7735} \\
& \approx 2.1909
\end{aligned}
$$

$t_{\alpha / 2 ;(n-1)}=t_{0.025 ; 9}=2.262$. We will reject H_{0} if $T \geq 2.262$ or $T \leq-2.262$ or if $|T| \geq 2.262$.
Since $-2.262<2.1909<2.262$, we do not reject H_{0} at the 5% level of significance and conclude that there is no difference in income between the twins.
(b) The output is

(c) Paired data since the pair of observations are twins.

QUESTION 4

(a) Start the JMP program
$>\quad$ Enter Company in the first column and label it Company.
(make sure to change the scale to nominal)
$>\quad$ Enter Drying times in the second column and label it Drying times.
This is a one-way ANOVA. To fit the model
$>\quad$ Choose Analyze $>$ Fit Y by X with Company as X factor and Drying times as Y response.
$>\quad$ Click Ok.
$\Longrightarrow \quad$ Then on the Oneway Analysis of Drying times By Company click on the Red triangle > Choose Unequal Variances
Oneway Analysis of Drying times By Company

Tests that the Variances are Equal

| Test | FRatio | DFNum | DFDen | Prob $>$ F |
| :--- | ---: | ---: | ---: | :---: | :---: |
| O'Brien[.5] | 0.9233 | 4 | 25 | 0.4661 |
| Brown-Forsythe | 0.8459 | 4 | 25 | 0.5095 |
| Levene | 0.9435 | 4 | 25 | 0.4553 |
| Bartlett | 0.6053 | 4 | . | 0.6588 |

Welch's Test
Welch Anova testing Means Equal, allowing Std Devs Not Equal
FRatio DFNum DFDen Prob $>$ F $\begin{array}{llll}3.4937 & 4 & 12.332 & 0.0400^{\circ}\end{array}$

For your own information:

The standard deviation column shows the estimates you are testing. The p-values are listed under the column called Prob $>F$ and are testing the assumption that the variances are equal. Small p-values suggest that the variance are not equal.

Interpretation:

We have to test:
$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}$, against $H_{1}: \sigma_{p}^{2} \neq \sigma_{q}^{2}$ for at least one $p \neq q$
Using the Levene's test, p-value $=0.4553$. Since $0.4553>0.05 \Longrightarrow$ we can not reject H_{0} at the 5% level of significance. The assumption of equal variances is not violated.
(b) $\Longrightarrow \quad$ Click on the triangle "Tests that the variances are equal" to hide the output.
$\Longrightarrow \quad$ Then click on the Red triangle on Oneway Analysis of Drying times by Company. > Choose Means/ANOVA
$\Longrightarrow \quad$ Click again on the Red triangle and choose Means and Std dev.

Oneway Anova

Summary of Fit	
Rsquare	0.34946
Adj Rsquare	0.245374
Root Mean Square Error	3
Mean of Response	32.93333
Observations (or Sum Wgts)	30

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	FRatio	Prob > F	
Company	4	120.86667	30.2167	3.3574	0.0249	
Error	25	225.00000	9.0000			
C. Total	29	345.86667				
Means for Oneway Anova						
Level	Number	Mean	Std Error	Lower 95\%	Upper 95\%	
I	6	34.0000	1.2247	31.478	36.522	
II	6	30.8333	1.2247	28.311	33.356	
III	6	30.6667	1.2247	28.144	33.189	
IV	6	33.1667	1.2247	30.644	3.689	
V	6	36.0000	1.2247	33.478	38.522	
V						

Std Error uses a pooled estimate of error variance

For your information:

On the plot, the dots shows the response for each Company. The line across the middle is the grand mean. The diamonds give a 95% confidence interval for each Company with the middle line of each diamond showing the group mean. If the groups are significantly different, then the diamonds do not overlap.

Interpretation:

(i) $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ against
$H_{1}: \mu_{p} \neq \mu_{q}$ for at least one $p \neq q$.
(ii) The test statistic is $F=\frac{M S T r}{M S E} \sim F_{k-1 ; n-k}$
(iii) From the output: Computations for ANOVA we see that $F=3.3574$ which is significant with a p-value of 0.0249 . Since $0.0249<0.05$ we reject H_{0} in favour of H_{1} at the 5% level of significance and conclude that $u_{p} \neq \mu_{q}$ for at least one pair $p \neq q$, that is, the mean drying times of the companies are not the same.
(c) $\Longrightarrow \quad$ Hide the output "Oneway ANOVA" and "Means and Std deviations" by clicking the triangles.
$\Longrightarrow \quad$ Click on the Red triangle on Oneway Analysis of Drying times by Company.
$\Longrightarrow \quad$ Choose Compare Means $>$ All Pairs, Tukey HSD.

Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD Confidence Quantile

$\mathbf{q}^{\boldsymbol{*}}$ Alpha 2.93687 0.05									
HSD Threshold Matrix						Connecting Letters Report			
Abs(Dif)-HSD						Level		Mean	
		I	IV	II	III	V	A	36.000000	
V	-5.0868	-3.0868	-2.2535	0.0799	0.2465	I	A B	34.000000	
I	-3.0868	-5.0868	-4.2535	-1.9201	-1.7535			33.166667	
IV	-2.2535	-4.2535	-5.0868	-2.7535	-2.5868	III	B	30.666667	
III	0.0799	-1.9201	-2.7535	-5.0868	-4.9201	Levels not connected by same letter are significantly different.			
III	0.2465	-1.7535	-2.5868	-4.9201	-5.0868				

Positive values show pairs of means that are siqnificantly different.

Ordered Differences Report

Manually, we should have computed for each pair of means, a test statistic

$$
T_{p q}=\frac{\bar{X}_{p}-\bar{X}_{q}}{\mathrm{~S}_{\text {pooled }} \sqrt{\frac{1}{n}+\frac{1}{n}}}
$$

where we have samples of equal sizes if we want to incorporate the principle of the Bonferroni equality.

The Turkey-Kramer HSD that are shown in the JMP out perform individual comparisons that make adjustments for multiple test.

Confirming this is the $\mathbf{A b s}(\mathrm{Dif})$-LSDs which are 0.0799 and 0.2465 respectively. Since they are positive, the means are significantly different. (Recall a negative value of Abs(Dif)-LSD means the groups are not significantly different from each other.)

Companies that share the same letter are not significantly different from each other. Companies I, IV and V share the same letter A whilst companies I, II, III and IV share the same letter B.

Confidence intervals that do not include zero imply that the pairs of means differ significantly. All pairs include zero except the pair $I I I-V$ and $I I-V$. The confidence interval for the pairs are ($0.2465: 10.4202$) and ($0.0799: 10.2535$). These are the only intervals that do not include zero and it means we reject the null hypothesis of equal means and conclude that $\mu_{3} \neq \mu_{5}$ and $\mu_{2} \neq \mu_{5}$. The p-values are 0.0366 and 0.0452 respectively which are less than 0.05 and thus leading to the rejection of the null hypothesis of equal means.
(d) No. There are two paints from company II and III with almost equal times. We need further tests to test paints from company II and III to determine which has the shortest drying time.

QUESTION 5

(a) The independent variable is the number of transactions and the dependent variable is account balance.
(b) The scatter diagram is:

There is a strong positive relationship between account balance and number of transactions.
(c) $n=12$

$$
\Sigma X_{i}=78 \quad \Sigma X_{i}^{2}=718
$$

$\Sigma X_{i} Y_{i}=9986$

$$
\Sigma Y_{i}=1128 \quad \Sigma Y_{i}^{2}=141720
$$

$$
b=\frac{n \Sigma X_{i} Y_{i}-\left(\Sigma X_{i}\right)\left(\Sigma Y_{i}\right)}{n \Sigma X_{i}^{2}-\left(\Sigma X_{i}\right)^{2}}
$$

$$
=\frac{12(9986)-(78)(1128)}{12(718)-(78)^{2}}
$$

$$
=\frac{119832-87984}{8616-6084}
$$

$$
=\frac{31848}{2532}
$$

$$
\approx 12.5782
$$

$$
a=\frac{\Sigma Y_{i}-b\left(\Sigma X_{i}\right)}{n}
$$

$$
=\frac{1128-12.5782(78)}{12}
$$

$$
=\frac{1128-981.0996}{12}
$$

$$
=\frac{146.9004}{12}
$$

$$
=12.2417
$$

The estimated regression equation is Account balance $=12.2417+12.5782 \mathrm{No}$. of transactions.
(d) For each additional transaction, the account balance increase on the average by 12.5782 million, that is, R12578200.
(e)

$\begin{array}{ll}X_{i} & Y_{i}\end{array}$	$\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X$	$e_{i}=Y_{i}-\widehat{Y}_{i}$	$e_{i}^{2}=\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$
36	37.3981	-1.3981	1.954684
63	49.9763	13.0237	169.616762
175	138.0237	36.9763	1367.246762
69	62.5545	6.4455	41.544470
15	24.8199	-9.8199	96.430436
198	200.9147	-2.9147	8.495476
40	49.9763	-9.9763	99.526562
120	138.0237	-18.0237	324.853762
84	87.7109	-3.7109	13.770779
150	163.1801	-13.1801	173.715036
78	75.1327	2.8673	8.221409
100	100.2891	-0.2891	0.083579
			2305.459716

Thus $\sum_{i=1}^{12}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=2305.459716$

Now

$$
\begin{aligned}
M S E & =s^{2} \\
& =\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2} \\
& =\frac{1}{n-2} \sum\left(Y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} X\right)^{2} \\
& =\frac{2305.459716}{10} \\
& \approx 230.546 \\
& \Longrightarrow s=\sqrt{230.546} \approx 15.1837
\end{aligned}
$$

$$
\begin{aligned}
d^{2} & =\sum(X-\bar{X})^{2} \\
& =\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n} \\
& =718-\frac{(78)^{2}}{12} \\
& =718-507 \\
& =211
\end{aligned}
$$

$H_{0}: \beta_{1}=0$

$$
H_{1}: \beta_{1} \neq 0
$$

$\alpha=0.05 \quad \alpha / 2=0.025 \quad t_{\alpha / 2 ; n-2}=t_{0.025 ; 10}=2.228$. We will reject H_{0} if $T \geq$ 2.228 or $T \leq-2.228$ or if $|T| \geq 2.228$.

Now

$$
\begin{aligned}
T & =\frac{\hat{\beta}_{1}-B_{1}}{s / d} \\
& =\frac{12.5782-0}{15.1837 / \sqrt{211}} \\
& =\frac{12.5782}{1.045289016} \\
& \approx 12.0332
\end{aligned}
$$

Since $12.0332>2.228$ we reject H_{0} at the 5% level significance and conclude that $\beta_{1} \neq 0$. This means that the regression line is significant to explain the variability in y. (Only when $\beta_{1}=0$, does it imply that regression is meaningless.)
(f) $X_{i}=5$

Then

$$
\begin{aligned}
\text { Account balance } & =12.2417+12.5782 \text { No.oftransactions } \\
& =12.2417+12.5782(5) \\
& =12.2417+62.891 \\
& =75.1327
\end{aligned}
$$

\therefore The predicted account balance is $R 75132700$.
(2)
(g) The standard error of the estimate is given by $S E=S \sqrt{\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{d^{2}}}$. Then

$$
\begin{aligned}
S E & =S \sqrt{\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{d^{2}}} \\
& =15.1837 \sqrt{\frac{1}{12}+\frac{(5-6.5)^{2}}{211}} \\
& =15.1837 \sqrt{0.083333333+\frac{2.25}{211}} \\
& =15.1837 \sqrt{0.083333333+0.010663507} \\
& =15.1837 \sqrt{0.09399684} \\
& \approx 4.6552
\end{aligned}
$$

(h) The 95% confidence interval for the slope β_{1} is

$$
\widehat{\beta}_{1} \pm t_{\alpha / 2 ; n-2} \times \frac{s}{d}
$$

$$
\begin{array}{ll}
\widehat{\beta}_{1}=12.5782 & t_{\alpha / 2 ; n-2}=t_{0.025 ; 10}=2.228 \\
d=\sqrt{211} \approx 14.5258 & s=15.1837
\end{array}
$$

Thus, the 95% confidence interval for the slope $\widehat{\beta}_{1}$ is 0.0261

$\widehat{\beta}_{1}$	\pm	$t_{\alpha / 2 ; n-2} \times \frac{s}{d}$
12.5782	\pm	$2.228 \times \frac{15.1837}{14.5258}$
12.5782	\pm	2.228×1.045291826
12.5782	\pm	2.3289
$(12.5782-2.3289$	$;$	$12.5782+2.3289)$
$(10.2493$	$;$	$14.9071)$

(i) The corrrelation coefficient r is

$$
\begin{aligned}
r & =\frac{\Sigma X_{i} Y_{i}-\frac{\left(\Sigma X_{i}\right)\left(\Sigma Y_{i}\right)}{n}}{\sqrt{\left(\Sigma X_{i}^{2}-\frac{\left(\Sigma X_{i}\right)^{2}}{n}\right)\left(\Sigma Y_{i}^{2}-\frac{\left(\Sigma Y_{i}\right)^{2}}{n}\right)}} \\
& =\frac{9986-\frac{(78)(1128)}{12}}{\sqrt{\left(718-\frac{(78)^{2}}{12}\right)\left(141720-\frac{(1128)^{2}}{12}\right)}} \\
& =\frac{9986-7332}{\sqrt{(718-507)(141720-106032)}} \\
& =\frac{2654}{\sqrt{(211)(35688)}} \\
& =\frac{2654}{\sqrt{7530168}} \\
& =\frac{2654}{2744.115158} \\
& \approx 0.9672
\end{aligned}
$$

$$
\text { (j) } \begin{array}{rlrl}
H_{0}: \rho=0.8 & \text { against } \\
\qquad & r=0.97 & \\
n=12 & & \\
& =\frac{1}{2} \log _{e} \frac{1+r}{1-r} & & =\frac{1}{2} \log _{e} \frac{1+\rho}{1-\rho} \\
& =\frac{1}{2} \log _{e} \frac{1+0.97}{1-0.97} & & =\frac{1}{2} \log _{e} \frac{1+0.8}{1-0.8} \\
& =\frac{1}{2} \log _{e} \frac{1.97}{0.03} & & =\frac{1}{2} \log _{e} \frac{1.8}{0.2} \\
& =\frac{1}{2} \log _{e} 65.66666667 & & =\frac{1}{2} \log _{e} 9 \\
& \approx 2.0923 & & \approx 1.0986
\end{array}
$$

Note: You can read the values from Table X Stoker.

The test statistic is

$$
\begin{aligned}
z & =\sqrt{n-3}(U-\eta) \\
& =\sqrt{12-3}(2.0923-1.0986) \\
& =\sqrt{9} \times 0.9937 \\
& \approx 2.9811
\end{aligned}
$$

$\alpha=0.05, \alpha / 2=0.025$ and $Z_{0.025}=1.96$. Reject H_{0} if $Z>1.96$ or $Z<-1.96$ or $|Z|>1.96$
Since $2.9811>1.96$, we reject H_{0} at the 5% level of significance and conclude that $\rho \neq 0.8$, that is, the correlation is significantly different from $\rho=0.8$.
(k) $R^{2}=(0.9672)^{2}=0.9354 \Longrightarrow 93.54 \%$ of the variability in account balance is being explained / or accounted for by the least squares line.
(I) Model fitted is $\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$

Commands for the Output:
Start the JMP program
$>\quad$ Enter number of transactions in the first column and label it Number of transactions (x).
$>\quad$ Enter account balance in the second column and label it account balance (y)
To plot:
$>\quad$ Choose Analyze $>$ Fit Y by X with Number of transactions (x) as X factor and account balance (y) as Y response.
$>\quad$ Click Ok.
Click on the Red triangle on Bivariate Fit of account balance (y) by
Number of transactions (x).

$>\quad$ Choose Fit Line

The JMP output is

Bivariate Fit of Account balance By Number of transactions

- Linear Fit \quad Bivariate Normal Ellipse $\mathrm{P}=0.950$	
Linear Fit	
Account balance $=12.241706+12.578199$	
Summary of Fit	
RSquare RSquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wqts)	$\begin{array}{r} 0.9354 \\ 0.92894 \\ 15.18374 \\ 94 \\ 12 \end{array}$

Lack Of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	8	528.4597	66.057	0.0743
Pure Error	2	1777.0000	888.500	Prob $>$ F
Total Error	10	2305.4597		0.9972
				Max RSq
				0.9502

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	33382.540	33382.5	144.7978
Error	10	2305.460	230.5	Prob $>$ F
C. Total	11	35688.000		$<.0001^{*}$

Parameter Estimates

Term Intercept Number of transactions	Estimate	Std Error		t Ratio	Prob> $\|t\|$			
	$\begin{aligned} & 12.241706 \\ & 12.578199 \end{aligned}$	$\begin{aligned} & 8.085542 \\ & 1.045292 \end{aligned}$		1.51	0.1610			
				12.03	<.0001*			
Bivariate Normal Ellipse P=0.950								
Variable Number of transactions Account balance	Mean Std Dev		Correlation		Signif. Prob<.0001*	Number 12		
	6.5 4.379705 94 56.95932		0.967161					

