Tutorial Letter 202/1/2016

Applied Statistics II STA2601

Semester 1

Department of Statistics

Solutions to Assignment 02

QUESTION 1

(a) We have to test
H_{0} : The observations come from a normal distribution.
H_{1} : The observations do not come from a normal distribution.
(b) $n=30 \quad \sum_{i=1}^{n} X_{i}=41396$,

$$
\begin{gathered}
\widehat{\mu}=\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}==\frac{41396}{30} \approx 1379.8667 \\
\widehat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n} \\
=\frac{4622377.467}{30} \\
\end{gathered}
$$

(c) If we divide the observations into 6 classes with equal expected frequencies, it means that $\pi_{i}=\frac{1}{6}$ for each interval $\Rightarrow n \pi_{i}=5$.
The biggest problem is to determine the interval limits in terms of the X-scale such that each interval has a probability of $\frac{1}{6}=0.167$.

We start with the standardised $n(0 ; 1)$ scale (as always) and transform back to the X-scale by making use of

$$
Z=\frac{X-\widehat{\mu}}{\widehat{\sigma}}=\frac{X-1379.8667}{\sqrt{154079.2489}}
$$

The 4th interval is where $0 \leq Z \leq a$
For the sketch above the value " a " is found from table II (Stoker) as

$$
\Phi(0.432)=P(Z \leq a)=0.5+0.167=0.667
$$

$$
\text { Thus } a=0.432
$$

i.e. $0 \leq \quad Z \quad \leq 0.432$

$$
\begin{aligned}
& 0 \leq \frac{X-1379.8667}{392.5293} \leq 0.432 \\
& 0 \leq X-1379.8667 \quad 169.5726576
\end{aligned}
$$

1379.8667	\leq	≤ 1549.439358.
$\Rightarrow 1379.87$	\leq	X

(d) The normality assumption is not violated because from the JMP graphical output we see that the normal curve does fit the histogram very well. The box plot depicts an almost symmetric distribution. From the normal quantile plot we see no systematic deviation around the line. So we conclude from the graphical output that the sample comes from a normal distribution. and the points seem not to be deviating from the diagonal on the Normal Quantile Plot. The skewness is almost close to zero.
(e) (i) Test for skewness:
H_{0} : The distribution is normal $\left(\Rightarrow \beta_{1}=0\right)$.
$H_{1}: \quad \beta_{1} \neq 0$.
(Please note: The alternative must be two-sided. There is no indication of a one-sided test.)

The critical value is 0.662 . Reject H_{0} if $\beta_{1}<-0.662$ or $\beta_{1}>0.662$ or $\left|\beta_{1}\right|>0.662$.

$$
\text { Now } \begin{aligned}
\beta_{1}=\frac{\frac{1}{n} \sum_{i=1}^{30}\left(X_{i}-\bar{X}\right)^{3}}{\left[\frac{1}{n} \sum_{i=1}^{30}\left(X_{i}-\bar{X}\right)^{2}\right]^{\frac{3}{2}}} & =\frac{\frac{1}{30}(146534638.8)}{\left[\frac{1}{30}(4622377.467)\right]^{\frac{3}{2}}} \\
& =\frac{4884487.96}{(154079.2489)^{\frac{3}{2}}} \\
& =\frac{4884487.96}{60480619,23} \\
& \approx 0.0808
\end{aligned}
$$

Since $-0.662<0.0808<0.662$ we do not reject H_{0} at the 10% level of significance level and conclude that the distribution is symmetric.

(ii) Test for kurtosis:

We have to test:
H_{0} : The distribution is normal $\left(\Rightarrow \beta_{2}=3\right)$.
$H_{1}: \quad \beta_{2} \neq 3$.
Since we have a small sample, the test is based on A (page 113 in the study guide).
The size of the sample, $n=30$, thus $n-1=29$. Since 29 is between 25 and 30 , we need to interpolate the critical values.

From table C (page 114 in the study guide):
The upper 5\% percentage point for A is
$0.8686+\frac{(29-25)}{30-25}(0.8625-0.8686)=0.8686+\frac{4}{5}(-0.0061)=0.8637$.
The lower 5\% percentage point for A is
$0.7360+\frac{(29-25)}{30-25}(0.7404-0.7360)=0.7360+\frac{4}{5}(0.0044)=0.7395$.

We reject H_{0} at the 10% significance level if $A<$ lower 5% point or $A>$ upper 5\% point in table C.

The critical values are 0.7395 and 0.8637 . Reject H_{0} if $A<0.7395$ or $A>0.8637$.
Now the value of the test statistic is

$$
\begin{aligned}
A & =\frac{\frac{1}{n} \Sigma\left|X_{i}-\bar{X}\right|}{\sqrt{\frac{1}{n} \Sigma\left(X_{i}-\bar{X}\right)^{2}}}=\frac{\text { mean deviation }}{\text { standard deviation }} \\
& =\frac{\frac{1}{30}(9771.3334)}{\sqrt{\frac{1}{30}(4622377.467)}} \\
& =\frac{325.7111133}{392.5292969} \\
& \approx 0.8298
\end{aligned}
$$

Since $0.7395<0.8298<0.8637$, we do not reject H_{0} at the 10% level of significance and conclude that the distribution does have the kurtosis of a normal distribution.
(f) Yes, the distribution does originate from a normal distribution since it passed both tests.

QUESTION 2

(a) H_{0} : There is no relationship between treatment and improvement of arthritis.
H_{1} : Arthritis improves when treated.
For this 2×2 table for the exact test is

	Knows about the product		
	Treated	Untreated	Row total
Improved	6	2	8
Not improved	$0(=x)$	4	4
Column total	6	6	12

Now $k=4$ (smallest marginal total)
$n=6$ (treated patients)
$\therefore x=0$ (cell corresponding to column 1, row 2)
The alternative hypothesis implies a small value of x. (There should be fewer "not improved" patients who were treated.)

Since the alternative hypothesis implies a small value of x, we reject H_{0} if $P(X \leq 0) \leq \alpha$.
Now $x=0$ and

$$
\begin{aligned}
P(X \leq x) & =P(X \leq 0) \\
& =0.030 \text { (from table } \mathrm{D} \text { study guide } \mathrm{p} 131)
\end{aligned}
$$

Since $0.030<0.05$, we reject H_{0} at the 5% level of significance and conclude that there is a significant positive relationship between treatment and improvement of arthritis.
(b) $\quad n_{X}=12 \quad \Sigma X_{i}=288 \quad \Sigma\left(X_{i}-\bar{X}\right)^{2}=1114.62$

$$
n_{Y}=10 \quad \Sigma Y_{i}=260 \quad \Sigma\left(Y_{i}-\bar{Y}\right)^{2}=198.68
$$

(i) $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad$ against $H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}$

$$
n_{X}=12 \quad n_{Y}=10
$$

$$
S_{X}^{2}=\frac{1}{n_{X}-1} \Sigma\left(X_{i}-\bar{X}\right)^{2} \quad S_{Y}^{2}=\frac{1}{n_{Y}-1} \Sigma\left(Y_{i}-\bar{Y}\right)^{2}
$$

$$
=\frac{1}{12-1}(1114.62) \quad=\frac{1}{10-1}(198.68)
$$

$$
=\frac{1}{11}(1114.62) \quad=\frac{1}{9}(198.68)
$$

$$
\approx 101.3291 \quad \approx 22.0756
$$

The test statistic is

$$
\begin{aligned}
F & =\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}} \times \frac{S_{X}^{2}}{S_{Y}^{2}} \\
& =1 \times \frac{101.3291}{22.0756} \\
& \approx 4.5901
\end{aligned}
$$

The critical value is $F_{\alpha ; n_{x}-1 ; n_{y}-1}=F_{0.05 ; 11 ; 9}=\frac{1}{2}(3.14+3.07)=3.105$. Reject H_{0} if $F>3.105$.

Since $4.5901>3.105$, we reject H_{0} at the 5% level of significance and conclude that the concentrations are more variable in the Kuruman area than in the Thabazimbi area.(10)
(ii) The test is based on the assumptions that:

- The samples are independent.
- Both samples are from normal populations.
(iii) The 95% confidence interval for $\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}$ is

$$
\begin{gathered}
P\left(F_{1-\frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}<\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}} \frac{S_{X}^{2}}{S_{Y}^{2}}<F_{\frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}\right)=1-\alpha \\
{\left[\frac{F_{1-\frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}}{S_{X}^{2} / S_{Y}^{2}} ; \frac{F_{\frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}}{S_{X}^{2} / S_{Y}^{2}}\right]}
\end{gathered}
$$

$\alpha=0.05, \alpha / 2=0.025$

$$
\begin{aligned}
& F_{1-\frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}=F_{0.975 ; 11 ; 9}=\frac{1}{F_{0.025 ; 9 ; 11}}=\frac{1}{3.59} \approx 0.2786 \\
& F_{\frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}=F_{0.025 ; 11 ; 9}=\frac{1}{2}(3.96+3.87)=3.915
\end{aligned}
$$

\therefore The 95% confidence interval is

$$
\begin{aligned}
& {\left[\frac{F_{1-\frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}}{S_{X}^{2} / S_{Y}^{2}} ; \frac{F \frac{\alpha}{2} ; n_{1}-1 ; n_{2}-1}{S_{X}^{2} / S_{Y}^{2}}\right]} \\
& {\left[\frac{0.2786}{101.3291 / 22.0756} ; \frac{3.915}{101.3291 / 22.0756}\right]} \\
& {\left[\frac{0.2554}{4.590094946} ; \frac{3.915}{4.590094946}\right]} \\
& {[0.0607 ; 0.8529] .}
\end{aligned}
$$

QUESTION 3

(a) If $U=\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}$ then $U \sim \chi_{n-1}^{2}$ (result 1.3).

Then

$$
\begin{aligned}
1-\alpha & =P\left(\chi_{1-\frac{1}{2} \alpha ; n-1}^{2}<U<\chi_{\frac{1}{2} \alpha ; n-1}^{2}\right) \\
& =P\left[\chi_{1-\frac{1}{2} \alpha ; n-1}^{2}<\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}<\chi_{\frac{1}{2} \alpha ; n-1}^{2}\right] \\
& =P\left[\frac{1}{\chi_{\frac{1}{2} \alpha ; n-1}^{2}}<\frac{\sigma^{2}}{\Sigma\left(X_{i}-\bar{X}\right)^{2}}<\frac{1}{\chi_{1-\frac{1}{2} \alpha ; n-1}^{2}}\right] \\
& =P\left[\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\chi_{\frac{1}{2} \alpha ; n-1}^{2}}<\sigma^{2}<\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\chi_{1-\frac{1}{2} \alpha ; n-1}^{2}}\right]
\end{aligned}
$$

Thus the $100(1-\alpha) \%$ two-sided confidence interval for σ^{2} is given by

$$
\left[\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\chi_{\frac{1}{2} \alpha ; n-1}^{2}} ; \quad \frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\chi_{1-\frac{1}{2} \alpha ; n-1}^{2}}\right] .
$$

(b) $n=20 \quad \Sigma X_{i}=300 \quad \Sigma\left(X_{i}-\bar{X}\right)^{2}=778 \quad \alpha=0.10, \alpha / 2=0.05$

$$
\chi_{\frac{1}{2} \alpha ; n-1}^{2}=\chi_{0.05 ; 19}^{2}=30.1435 \quad \chi_{1-\frac{1}{2} \alpha ; n-1}^{2}=\chi_{0.95 ; 19}^{2}=10.117
$$

\therefore The 90% confidence interval is

$$
\begin{aligned}
& {\left[\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\chi_{\frac{1}{2} \alpha ; n-1}^{2}} ; \frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{\chi_{1-\frac{1}{2} \alpha ; n-1}^{2}}\right]} \\
& {\left[\frac{778}{30.1435} ; \frac{778}{10.117}\right]}
\end{aligned}
$$

[25.8099; 76.9003].
(c) We have to test
$H_{0}: \quad \sigma^{2}=38$
$H_{1}: \sigma^{2}>38$
The test statistic is

$$
\begin{aligned}
U & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{c} \\
& =\frac{778}{38} \\
& \approx 20.4737
\end{aligned}
$$

The critical value is $\chi_{\alpha ; n-1}^{2}=\chi_{0.1 ; 19}^{2}=27.2036$. Reject H_{0} if $U>27.2036$
Since $U=20.4737<27.2036$, we can not reject H_{0} at the 10% level of significance and conclude that $\sigma^{2}=38 \Longrightarrow$ the variability is not greater than 38.

QUESTION 4

(a) $n=10$

$$
\sum X_{i}=37.1 \quad \sum X_{i}^{2}=151.91
$$

$$
\sum X_{i} Y_{i}=172.56 \quad \sum Y_{i}=45.1 \quad \sum Y_{i}^{2}=215.49
$$

$$
\begin{aligned}
R & =\frac{\Sigma X_{i} Y_{i}-\frac{\left(\Sigma X_{i}\right)\left(\Sigma Y_{i}\right)}{n}}{\sqrt{\left(\Sigma X_{i}^{2}-\frac{\left(\Sigma X_{i}\right)^{2}}{n}\right)\left(\Sigma Y_{i}^{2}-\frac{\left(\Sigma Y_{i}\right)^{2}}{n}\right)}} \\
& =\frac{172.56-\frac{(37.1)(45.1)}{10}}{\sqrt{\left(151.91-\frac{(37.1)^{2}}{10}\right)\left(215.49-\frac{(45.1)^{2}}{10}\right)}} \\
& =\frac{172.56-167.321}{\sqrt{(151.91-137.641)(215.49-203.401)}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5.239}{\sqrt{(14.269)(12.089)}} \\
& =\frac{5.239}{\sqrt{172.497941}} \\
& =\frac{5.239}{13.13384715} \\
& \approx 0.3989
\end{aligned}
$$

(b) $H_{0}: \rho=0.65 \quad$ against $\quad H_{1}: \rho>0.65$

$$
n=10 \quad R=0.3989
$$

$$
\begin{aligned}
U & =\frac{1}{2} \log _{e} \frac{1+R}{1-R} & \eta & =\frac{1}{2} \log _{e} \frac{1+\rho}{1-\rho} \\
& =\frac{1}{2} \log _{e} \frac{1+0.3989}{1-0.3989} & & \frac{1}{2} \log _{e} \frac{1+0.65}{1-0.65} \\
& =\frac{1}{2} \log _{e} \frac{1.3989}{0.6011} & & \frac{1}{2} \log _{e} \frac{1.65}{0.35} \\
& =\frac{1}{2} \log _{e} 2.327233405 & & =\frac{1}{2} \log _{e} 4.714285714 \\
& \approx 0.4223 & & \approx 0.7753
\end{aligned}
$$

Note: You can read the value of 0.9 from Table X Stoker.
The test statistic is

$$
\begin{aligned}
Z & =\sqrt{n-3}(U-\eta) \\
& =\sqrt{10-3}(0.4223-0.7753) \\
& =\sqrt{7} \times(-0.353) \\
& \approx-0.9340
\end{aligned}
$$

$\alpha=0.05$, and $Z_{0.05}=1.645$. Reject H_{0} if $Z>1.645$.
Since $-0.9340<1.645$, we do not reject H_{0} at the 5% level of significance and conclude that $\rho=0.65$.

