Tutorial Letter 104/1/2014

Applied Statistics II STA2601

Semester 1
Department of Statistics

TRIAL EXAMINATION PAPER

Dear Student

Congratulations if you obtained examination admission by submitting assignment 1. I would like to take the opportunity of wishing you well in the coming examinations. I hope you found the module stimulating.

The examination

Please note the following with regard to the examination:

* The duration of the examination paper is two-hours. You will be able to complete the set paper in 2 hours, but there will be no time for dreaming or sitting on questions you are unsure about. Make sure that you take along a functional scientific calculator that you can operate with ease as it can save you some time. My advice to you would be to do those questions you find easy first; then go back to the ones that need more thinking. I do not mind to mark questions in whatever order you do them, just make sure that you number them clearly!
* A copy of the list of formulae is attached to the trial examination paper. Please ensure that you know how to test the various hypotheses.
* All the necessary statistical tables will be supplied (see the trial paper).
* Pocket calculators are necessary for doing the calculations.
* Working through (and understanding!) ALL the examples and exercises in the study guide, workbook and in the assignments as well as the trial paper will provide beneficial supplementary preparation.
* Make sure that you know all the theory as well as the practical applications.
* All the chapters in the study guide are equally important and don't try to spot!
* Start preparing early and don't hesitate to call or email me if something is unclear.

Trial paper

Reserve two hours for yourself and do the trial paper under exam conditions on your own!

Duration: $\mathbf{2}$ hours
100 Marks

INSTRUCTIONS

1. Answer ALL questions.
2. Marks will not be given for answers only. Show clearly how you solve each problem.
3. For all hypothesis-testing problems always give
(i) the null and alternative hypothesis to be tested;
(ii) the test statistic to be used; and
(iii) the critical region for rejecting the null hypothesis.
4. Justify your answer completely if you make use of JMP output to answer a question.

QUESTION 1

Complete the following statements in your answer book (i.e. give the missing words and do not waste time to rewrite everything).
(a) We commit a. \qquad error if we do not reject H_{0} when H_{0} is false.

$$
\begin{equation*}
\beta=P\left(\text { not rejecting } H_{0} \mid H_{1} \text { is true }\right) \tag{1}
\end{equation*}
$$

(b) $\beta_{2}=\frac{\mu_{4}}{\sigma_{4}}$ is the fourth standardized moment and it measures the of a distribution. A distribution with $\beta_{2}>3$ is called.
(c) Repeated measurements on the same individual, for example "paired observations" (X_{i}, Y_{i}) for $i=1,2,3, \ldots, n$ cannot be considered as \qquad observations.

QUESTION 2

(a) Let X_{1} and X_{2} be independent random variables such that

$$
\begin{aligned}
& E\left(X_{1}\right)=4 \theta_{1} ; \quad E\left(X_{2}\right)=6 \theta_{2} ; \\
& \operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=\sigma^{2} .
\end{aligned}
$$

Determine the least squares estimators of θ_{1} and θ_{2}.
(b) Let X_{1}, X_{2} and X_{3} be a random sample of size 3 drawn from a normal population with mean μ and variance σ^{2}. Consider the following two estimators for μ.

$$
\begin{align*}
T_{1}=\frac{X_{1}+X_{2}+X_{3}}{3} & \text { (The sample mean) } \tag{Thesamplemean}\\
T_{2}=\frac{X_{1}+2 X_{2}+2 X_{3}}{5} & \text { (A weighted mean) }
\end{align*}
$$

(i) Show that both T_{1} and T_{2} are unbiased estimators of μ.
(ii) Which estimator would you prefer and why?

QUESTION 3

The velocity of the wind (measured in km per hour) at a specific point on the Cape South Coast (and specifically on Christmas day) was measured for 36 consecutive years. Consider the observations $X_{1}, X_{2} \ldots, X_{36}$ to constitute a random sample from the population of Christmas day wind velocities. The measurements are as follows:
(Note that the sample values are ordered in order of magnitude to ease classification into intervals.)

5	8	11	15	18	21	22	27	28	29	30	33
34	35	36	37	39	40	41	42	45	48	50	52
53	54	55	57	60	65	75	78	80	83	88	90

You may make use of any of the following calculations:

$$
\sum_{i=1}^{36} X_{i}=1584 ; \quad \sum_{i=1}^{36} X_{i}^{2}=87838 ; \quad \sum_{i=1}^{36}\left(X_{i}-\bar{X}\right)^{2}=18142
$$

Consider the following six equiprobable class intervals.
(a) The following 6 equal-probability intervals that are symmetrical with respect to μ are derived assuming $\mu=45$ and $\sigma=25$.

Equal probability intervals	Observed frequency $\left(O_{i}\right)$	Expected frequency $\left(E_{i}\right)$
$-\infty<X \leq 20.85$		
$20.85<X \leq 34.20$		
$34.20<X \leq 45.00$		
$45.00<X \leq 55.80$		
$55.80<X \leq 69.15$		
$69.15<X<\infty$	36	36
Total		

At the $\alpha=0.05$ level of significance, use a chi-square goodness-of-fit test to test whether the data shown above comes from a normal distribution with mean 45 and variance 625. Show the following three steps:
(i) Show how the last interval is derived.
(ii) Fill in the columns for O_{i} and E_{i}
(iii) At the 0.05 level, use the chi-square goodness-of-fit test to test if the 36 observations in the sample come from the normal distribution with mean 45 and variance 625.
(b) Suppose that another area had velocity of the wind taken for 40 consecutive years and the following statistics were obtained.

$$
\sum_{i=1}^{40} Y_{i}=1700 \quad \text { and } \quad \sum_{i=1}^{40}\left(Y_{i}-\bar{Y}\right)^{2}=25966.4
$$

[Y_{i} represents the statistics mark of the $\mathrm{i}^{\text {th }}$ student of the second sample.].
(i) Test $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ against $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ at the 5% level of significance.
(ii) Test the hypothesis $H_{0}: \mu_{X}=\mu_{Y}$ against $H_{1}: \mu_{X} \neq \mu_{Y}$ at the 5% level of significance, that is, can you conclude that the mean velocities of the two groups are different?

QUESTION 4

(a) A large electronics firm that hires many workers with disabilities wants to determine whether their disabilities affect such workers's performance. The following table was obtained.

Disability	Performance			Total
	Above average	Average	Below average	
Blind	21	64	17	102
Deaf	16	49	14	79
No disability	29	93	28	150
Total	66	206	59	331

The following JMP output was obtained.

Contingency Analysis of Disability By Performance

Freq: Count
Mosaic Plot

Figure 1: Mosaic Plot

Contingency Analysis of Disability By Performance						
Freq: Count						
Contingency Table						
Disability						
	Count Total \% Col \% Row \%	Blind	Deaf	No disability		
	Above average	- 21	16	29	$\begin{array}{r} 66 \\ 21.78 \end{array}$	
		6.93	5.28	9.57		
		20.59	19.75	24.17		
		31.82	24.24	43.94		
	Average	64	49	63	$\begin{array}{r} 176 \\ 58.09 \end{array}$	
		21.12	16.17	20.79		
		62.75	60.49	52.50		
		36.36	27.84	35.80		
	Below average	- 17	16	28	$\begin{array}{r} 61 \\ 20.13 \end{array}$	
		5.61	5.28	9.24		
		16.67	19.75	23.33		
		27.87	26.23	45.90		
		102	81	120	303	
		33.66	26.73	39.60		
Tests						
	$\mathrm{N} \quad$ DF	$\begin{aligned} & \text {-LogLike RS } \\ & 1.4396628 \end{aligned}$		Square (U) 0.0044		
	303 -					
Te	est	ChiSquar	e Prob>C		ChiSq	
	kelihood Ratio	2.87		. 5782		
	earson	2.86		. 5807		

Figure 2: Contigency Table

Use the level of significance $\alpha=0.05$ to decide on the basis of the sample data whether it is reasonable to maintain that the disabilities have no effect on the workers' performance.

Justify your answer by giving attention to the following detail:
(i) State the appropriate null and alternative hypothesis for this test.
(ii) What test statistic is used to test these hypotheses and what is the value of the test statistic?
(iii) Looking at the row percentages in Figure 2, can you draw any conclusions?
(iv) What is your final conclusion?
(v) Looking at the Mosaic Plot, does the findings confirm what can be interpreted from the diagram. Substantiate.
(b) If the data on ages and prices of 25 pieces of equipment yielded $r=-0.58$, test the null hypothesis that $\rho=-0.40$ against the alternative hypothesis $\rho<-0.40$ at the 0.05 level of significance. Assume that the sample comes from a bivariate normal distribution with population correlation coefficient ρ.

QUESTION 5

An industrial engineer tests 4 different shop-f loor layouts by having each of 6 work crews construct a subassembly and measuring the construction times (minutes) as follows:

Crew	Layout			
A	1	2	3	4
B	48.2	53.1	51.2	58.6
C	49.5	52.9	50.0	60.1
D	50.7	56.8	49.9	62.4
E	48.6	50.6	47.5	57.5
F	47.1	51.8	49.1	55.3
G	52.4	57.2	53.5	61.7

Study the following JMP output and answer the questions given below:

Oneway Analysis of Assembly times By Layout

Oneway Anova

Summary of Fit	
Rsquare	0.766488
Adj Rsquare	0.731461
RootMean Square Error	2.349415
Mean of Response	53.15417
Observations (or Sum Wgts)	24

Analysis of Variance

Std Error uses a pooled estimate of error variance

Means and Std Deviations

Figure 3: JMP Ouput for ANOVA

Oneway Analysis of Assembly times By Layout

Tests that the Variances are Equal

| Level | Count |
| :--- | ---: | ---: | ---: | ---: | ---: | | Std Dev |
| ---: | | MeanAbsDif |
| ---: |
| to Mean | | MeanAbsDif |
| ---: |
| to Median |

Welch's Test

Welch Anova testing Means Equal, allowing Std Devs Not Equal $\begin{array}{rrrr}\text { FRatio } & \text { DFNum } & \text { DFDen } & \text { Prob }>\text { F } \\ 18.6003 & 3 & 10.995 & 0.0001^{*}\end{array}$

Figure 4: JMP Output for Equality of Variances

Dneway Analysis of Assembly times By Layout

Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confldence Quantle			
$\begin{array}{r} Q^{0} \\ 2 . / 985 \end{array}$	$\begin{aligned} & \text { Hoha } \\ & 0.05 \end{aligned}$		
LSD Threshold Matrix			
Aseivi $H=U$			
-3.7965	${ }^{1.7358}$	5.27 C 1	6053.1
$2 \quad 1.7363$	-3.7956	-0.2632	0.5201
5.2701	-0.2632	-3.7966	-30132
5. 3531	C.525\%	-3.0132	-37966

Posithe va ues s ow palrs of mears that are sicn flcanily d fferent.
Connecting Letters Report

Level		Mean	
1	A.	59.2566 E 7	
2		B	53.733333
3		BC	50.2500 C 0
1		C	19.1166 E 7

Levels not cornected by same iefter aresicen tiann:ly attcrent.
Ordered Differences Report

Figure 5: JMP Output for Means Comparison
(a) Use Bartlett's test to determine if the four groups have equal population variances? Use $\alpha=0.05$.
(b) Do these results indicate that the layouts gave the same result at the 5% level of significance?
Justify your answer by giving attention to the following detail:
(i) State the appropriate null and alternative hypothesis for this test.
(ii) What test statistic is used to test these hypotheses?
(iii) What is the value of the test statistic?
(c) Discuss the results of the multiple comparisons in Figure 5 on all pairs.

QUESTION 6

Raw material used in the production of a synthetic fibre is stored in a place which has no humidity control. Measurements of the relative humidity in the storage place and the moisture content of a sample of the raw material (both in percentages) on 12 days yielded the following results:

Humidity, x	Moisture content, y
42	12
35	8
50	14
43	9
48	11
62	16
31	7
36	9
44	12
39	10
55	13
48	11

The following output was obtained:
Bivariate Fit of Moisture content, y By Humidity, x

——Linear Fit

Linear Fit				
Moisture content, $\mathrm{y}=-0.949508+0.2690321^{*}$ Humidity, x				
Summary of Fit				
	0.836181			
	RSquare Adj	0.819799		
RootMean Square Error 1.101028				
Mean of Response 11				
Observations (or Sum Wgts) 12				
Lack Of Fit				
		Sum of		
Source	DF		Mean Square	F Ratio
Lack Of Fit	9	12.122624	1.34696	
Pure Error	1	0.000000	0.00000	Prob $>$ F
Total Error	10	12.122624		

Analysis of Variance

	Sum of Squares			
Source	DF	Mean Square	F Ratio	
Model	1	61.877376	61.8774	51.0429
Error	10	12.122624	1.2123	Prob $>$ F
C. Total	11	74.00000		$<.0001^{*}$

| Parameter Estimates | | | | |
| :--- | ---: | :--- | ---: | ---: | :---: |
| Term | Estimate | Std Error | t Ratio | Prob> $>\|t\|$ |
| Intercept | -0.949508 | 1.702495 | -0.56 | 0.5893 |
| Humidity, x | 0.2690321 | 0.037656 | 7.14 | $<.0001^{\star}$ |

Figure 6: JMP Output for Simple Linear Regression
(a) Brief ly discuss the applicability of simple linear regression for this data set.
(b) What are the estimates of β_{0} and β_{1} ? Hence, give the least squares regression line.
(c) Interpret the slope of the regression line.
(d) Test for the significance of the slope, β_{1} at the 5% level of significance.

Justify your answer by giving attention to the following detail

(i) State the appropriate null and alternative hypothesis for this test.
(ii) What test statistic is used to test these hypotheses?
(iii) What is the value of the test statistic?
(e) Predict the amount of moisture content of the raw material when the humidity of the storage place is 40%.
(f) Interpret R^{2}.
(g) Calculate the standard error of estimate for the expected amount of moisture content of the raw material when the humidity of the storage place is 40%. Hint: $d^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=$ 854.9167

$$
\begin{aligned}
& B_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{3}}{\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]^{\frac{3}{2}}} \\
& B_{2}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{4}}{\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]^{2}} \\
& \rho=\frac{e^{\eta}-e^{-\eta}}{e^{\eta}+e^{-\eta}} \\
& T=\sqrt{n-2} \frac{U_{11}-U_{22}}{2 \sqrt{U_{11} U_{22}-U_{12}^{2}}} \\
& T=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& v=\frac{\left[\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right]^{2}}{\frac{S_{1}^{4}}{n_{1}^{2}\left(n_{1}-1\right)}+\frac{S_{2}^{4}}{n_{2}^{2}\left(n_{2}-1\right)}} \\
& F=\frac{n \sum_{i=1}^{k}\left(\bar{X}_{i}-\bar{X}\right)^{2} /(k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} /(k n-k)} \\
& \widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} Y_{i}\left(X_{i}-\bar{X}\right)}{d^{2}}
\end{aligned}
$$

TABEL I
Opperviaktes onder die Normaalkromme
$\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-1 / 2 x^{2}} d x$
$\Phi(-z)=1-\Phi(z)$
Die oppervlakte $\Phi(z)$ is teen z vir $z \geqslant 0$ getabelleer.

TABLE I
Areas under the Normal Curve

$$
\begin{aligned}
& \Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty} z^{-1 / 2 x^{2}} d x \\
& \Phi(-z)=1-\Phi(z)
\end{aligned}
$$

Entries in the table are values of $\Phi(z)$ for $z \geqslant 0$.

2	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0.5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0.5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0.6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0.6	0,7257	0.7291	0,7324	0.7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0.7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0.8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1.0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0.8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0.8962	0,8980	0,8997	0.9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0.9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0.9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0.9545
1.7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0.9633
1,8	0,9641	0,9649	0.9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1.9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2.1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0.9868	0.9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,6	0,99534	0,99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2.7	0,99653	0,99664	0.99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,0	0,99865	0,99869	0,99874	0,99878	0,99822	0,99886	0,99889	0,99893	0,99896	0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
	0,99977									
3,6	0,99984									
3,7	0,99989									
3,8	0,99993									
3,9	0,99995									
4,0	0,99997									

TABEL II
Waardes van die Inverse Normaalverdeling
Die inverse funksie $z=\Phi^{-1}(u)$ is teen u vir $u \geqslant 0,5$ getabelleer, waar $\mathrm{u}=\Phi(\mathrm{z})$ die standaard normaalverdelingsfunksie aandui. Let op dat vir $\mathrm{u}=\Phi(\mathrm{z})<0,5$ is
$\Phi(-z)=1-\Phi(z)>0,5$

TABLE II
Values of the Inverse
Normal Distribution
保
Entries in the table are values of the inverse function $z=\Phi^{-1}(u)$ for $u \geqslant$ 0,5 , where $u=\Phi(z)$ denotes the standard normal distribution function. Note that $\Phi(-z)=1-\Phi(z)$ $>0,5$ when $u=\Phi(z)<0,5$.

$\Phi(\mathrm{z})$	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,50	0,000	0,003	0,005	0,008	0,010	0,013	0,015	0,018	0,020	0,023
0,51	0,025	0,028	0,030	0,033	0,035	0,038	0,040	0,043	0,045	0,048
0,52	0,050	0,053	0,055	0,058	0,060	0,063	0,065	0,068	0,070	0,073
0,5 3	0,075	0,078	0,080	0,083	0,085	0,088	0,090	0,093	0,095	0,098
0,54	0,100	0,103	0,105	0,108	0,111	0,113	0,116	0,118	0,121	0,123
0,55	0,126	0,128	0,131	0,133	0,136	0,138	0,141	0,143	0,146	0,148
0,56	0,151	0,154	0,156	0,159	0,161	0,164	0,166	0,169	0,171	0,174
0,57	0,176	0,179	0,181	0,184	0,187	0,189	0,192	0,194	0,197	0,199
0,58	0,202	0,204	0,207	0,210	0,2 12	0,2 15	0,217	0,220	0,222	0,225
0,59	0,228	0,230	0,233	0,235	0,238	0,240	0,243	0,246	0,248	0,251
0,60	0,253	0,256	0,259	0,261	0,264	0,266	0,269	0,272	0,274	0,277
0,61	0,279	0,282	0,285	0,287	0,290	0,292	0,295	0,298	0,300	0,303
0,62	0,305	0,308	0,311	0,313	0,316	0,319	0,321	0,324	0,327	0,329
0,63	0,332	0,335	0,337	0,340	0,342	0,345	0,348	0,350	0,35 3	0,356
0,64	0,358	0,361	0,364	0,366	0,369	0,372	0,375	0,377	0,380	0,383
0,65	0,385	0,388	0,391	0,393	0,396	0,399	0,402	0,404	0,407	0,410
0,66	0,412	0,415	0,418	0,421	0,423	0,426	0,429	0,432	0,434	0,437
0,67 0,68	0,440	0,443	0,445	0,448	0,451	0,454	0,457	0,459	0,462	0,465
0,68	0,468	0,471	0,473	0,476	0,479	0,482	0,485	0,487	0,490	0,493
0,69	0,496	0,499	0,502	0,504	0,507	0,510	0,5 13	0,516	0,519	0,522
0,70	0,524	0,527	0,530	0,533	0,536	0,539	0,542	0,545	0,548	0,550
0,71	0,553	0,556	0,559	0,562	0,565	0,568	0,5 71	0,5 74	0,577	0,580
0,72	0,583	0,586	0,589	0,592	0,595	0,598	0,601	0,604	0,607	0,610
0,73 0,74	0,613 0,643	0,616	0,619	0,622	0,625	0,628	0,631	0,634	0,637	0,640
0,74	0,643	0,646	0,650	0,653	0,656	0,659	0,662	0,665	0,668	0,671
0,75	0,674	0,678	0,681	0,684	0,687	0,690	0,693	0,697	0,700	0,703
0,76	0,706	0,710	0,713	0,716	0,719	0,722	0,726	0,729	0,732	0,736
0,77 0,78	0,739	0,742	0,745	0,749	0,752	0,755	0,759	0,762	0,765	0,769
0,78 0,79	0,772 0,806	0,776	0,779	0,782	0,786	0,789	0,793	0,796	0,800	0,803
0,79	0,806	0,810	0,813	0,817	0,820	0,824	0,827	0,831	0,835	0,838
0,80	0,842	0,845	0,849	0,852	0,856	0,860	0,863	0,867	0,871	0,874
0,81	0,878	0,882	0,885	0,889	0,893	0,896	0,900	0,904	0,908	0,912
0,82	0,915	0,919	0,923	0,927	0,931	0,935	0,938	0,942	0,946	0,950
0,83	0,954	0,958	0,962	0,966	0,970	0,974	0,978	0,982	0,986	0,990
0,84	0,994	0,999	1,003	1,007	1,011	1,015	1,019	1,024	1,028	1,032
0,85	1,036	1,041	1,045	1,049	1,054	1,058	1,063	1,067	1,071	1,076
0,86	1,080	1,085	1,089	1,094	1,098	1,103	1,108	1,112	1,117	1,122
0,87 0,88	1,126	1,131	1,136	1,141	1,146	1,150	1,155	1,160	1,165	1,170
0,88	1,175	1,180	1,185	1,190	1,195	1,200	1,206	1,211	1,216	1,221
0,89	1,227	1,232	1,237	1,243	1,248	1,254	1,259	1,265	1,270	1,276
0,90	1282	1,287	1,293	1,299	1,305	1,311	1,317	1,323	1,329	1,335
0,91	1,341	1,347	1,353	1,359	1,366	1,372	1,379	1,385	1,392	1,398
0,92	1,405	1,412	1,419	1,426	1,433	1,440	1,447	1,454	1,461	1,468
0,93	1,476	1,483	1,491	1,499	1,506	1,514	1,522	1,530	1,538	1,546
0,94	1,555	1,563	1,572	1,580	1,589	1,598	1,607	1,616	1,626	1,635
0,95	1,645	1,655	1,665	1,675	1,685	1,695	1,706	1,717	1,728	1,739
0,96	1,751.	1,762	1,774	1,787	1,799	1,812	1,825	1,838	1,852	1,739
0,97 0,98	1,881 2,054	1,896 2,075	1,911	1,927	1,943	1,960	1,977	1,995	2,014	2,034
0,98 0,99	2,054 2,326	2,075 2,366	2,097 2,409	2,120 2,457	2,144	2,170	2,197	2,226	2,257	2,290

TABEL III

Die t-verdeling:
Boonste Waarskynlikheidspunte
$\mathrm{P}=\mathrm{P}(\mathrm{t} \geqslant \mathrm{t}, \mathrm{P})=\mathrm{P}\left(\mathrm{t} \leqslant-\mathrm{t}, \mathrm{P}_{\mathrm{P}}\right)$ met $\mathrm{t}_{\nu, \mathrm{P}}=-\mathrm{t}_{\nu, 1-\mathrm{P}}$ sodat

$$
\mathrm{P}\left(|\mathrm{t}| \geqslant \mathrm{t}_{\nu, \mathrm{P}}\right)=2 \mathrm{P}, \quad \mathrm{t}_{\nu, \mathrm{P}}>0
$$

Die waardes t_{ν}, P van die t-verdeling is teen die aantal vryheidsgrade ν en die eenkantige oorskrydingswarskynlikheid P getabelleer.

TABLE III
The t-Distribution: Upper Probability Points

$$
\mathrm{P}=\mathrm{P}\left(\mathrm{t} \geqslant \mathrm{t}_{\nu, \mathrm{P}}\right)=\mathrm{P}(\mathrm{t} \leqslant-\mathrm{t}, v, \mathrm{P})
$$

$$
\text { with } \mathrm{t}_{\nu, \mathrm{P}}=-\mathrm{t}_{\nu, 1-\mathrm{P}} \text { so that }
$$

$$
\mathrm{P}\left(|t| \geqslant \mathrm{t}_{v, \mathrm{P}}\right)=2 \mathrm{P}, \quad \mathrm{t}_{\nu, \mathrm{P}}>0
$$

Entries in the table are the values t_{ν}, P of the t-distribution for various degrees of freedom ν and one-tailed probabilities P.

	0,25	0,10	0,05	0,025	0,01	0,005
1	1,000	3,078	6,314	12,706	31,821	63,657
2	0,816	1,886	2,920	4,303	6,965	9,925
3	0,765	1,638	2,353	3,182	4,541	5,841
4	0,741	1,533	2,132	2,776	3,747	4,604
5	0,727	1,476	2,015	2,571	3,365	4,032
6	0,718	1,440	1,943	2,447	3,143	3,707
7	0,711	1,415	1,895	2,365	2,998	3,499
8	0,706	1,397	1,860	2,306	2,896	3,355
9	0,703	1,383	1,833	2,262	2,821	3,250
10	0,700	1,372	1,812	2,228	2,764	3,169
11	0,697 0,695	1,363 1,356	1,796 1,782	2,201 2,179	2,718 2,681	3,106 3,055
13	0,694	1,350	1,771	2,160	2,681	3,012
14	0,692	1,345	1,761	2,145	2,624	2,977
15	0,691	1,341	1,753	2,131	2,602	2,947
16	0,690	1,337	1,746	2,120	2,583	2,921
17	0,689	1,333	1,740	2,110	2,567	2,898
18	0,688	1,330	1,734	2,101	2,552	2,878
19	0,688	1,328	1,729	2,093	2,539	2,861
20	0,687	1,325	1,725	2,086	2,528	2,845
21	0,686	1,323	1,721	2,080	2,518	2,831
22	0,686	1,321	1,717	2,074	2,508	2,819
23	0,685	1,319	1,714	2,069	2,500	2,807
24	0,685	1,318	1,711	2,064	2,492	2,797
25	0,684	1,316	1,708	2,060	2,485	2,787
26	0,684	1,315	1,706	2,056	2,479	2,779
27	0,684	1,314	1,703	2,052	2,473	2,771
28	0,683	1,313	1,701	2,048	2,467	2,763
29	0,683	1,311	1,699	2,045	2,462	2,756
30	0,683	1,310	1,697	2,042	2,457	2,750
35	0,682	1,306	1,690	2,030	2,438	2,724
40	0,681	1,303	1,684	2,021	2,423	2,704
60	0,679	1,296	1,671	2,000	2,390	2,660
100	0,677	1,290	1,660	1,984	2,364	2,626
∞	0,675	1,282	1,645	1,960	2,326	2,576

TABEL IV

$$
\begin{gathered}
\text { Die } \chi^{2} \text {-verdeling: } \\
\text { Boonste Waarskynlikheidspunte } \\
P=P\left(\chi^{2} \geqslant \chi_{\nu, P}^{2}\right) \\
\text { Die waardes } \chi_{\nu, P}^{2} \text { van die } \chi^{2} .
\end{gathered}
$$ verdeling is teen die aantal vryheidsgrade ν en die eenkantige oorskrydingswaarskynlikheid P getabelleer.

TABLE IV
The x^{2}-Distribution: Upper Probability Points $\mathrm{P}=\mathrm{P}\left(\chi^{2} \geqslant \chi_{\nu, \mathrm{P}}^{2}\right)$
Entries in the table are the values
$\chi_{\nu, P}^{2}$ of the χ^{2}-distribution for various degrees of freedom ν and onetailed probabilities P.

P	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010	0.005
1	157088.10-9	982069.10^{-9}	393214.10^{-8}	0.0157908	0.454937	$2 \cdot 70554$	$3 \cdot 84146$	$5 \cdot 02389$	6.63490	7.87944
2	$0 \cdot 0201007$	0.0506356	0.102587	0.210720	1-38629	$4 \cdot 60517$	$5 \cdot 99147$	$7 \cdot 37776$	$9 \cdot 21034$	10.5966
3	$0 \cdot 114832$	0.215795	$0 \cdot 351846$	0.584375	$2 \cdot 36597$	6.25139	$7 \cdot 81473$	$9 \cdot 34840$	$11 \cdot 3449$	12.8381
4	0.297110	0.484419	0.710721	1.063623	3-35670	7.77944	8.48773	11.1433	$13 \cdot 2767$	14.8602
5	0.554300	0.831211	1-145476	1.61031	$4 \cdot 35146$	9.23635	11.0705	12.8325	15.0863	16.7496
6	0.872085	1.237347	1.63539	$2 \cdot 20413$	$5 \cdot 34812$	$10 \cdot 6446$	12.5916	14.4494	16.8119	18.5476
7	$1 \cdot 239043$	$1 \cdot 68987$	$2 \cdot 16735$	$2 \cdot 83311$	$6 \cdot 34581$	12.0170	14.0671	16.0128	18.4753	20.2777
8	1.646482	$2 \cdot 17973$	$2 \cdot 73264$	$3 \cdot 48954$	$7 \cdot 34412$	$13 \cdot 3616$	$15 \cdot 5073$	17.5346	20.0902	21.9550
9	2.087912	$2 \cdot 70039$	$3 \cdot 32511$	$4 \cdot 16816$	8.34283	$14 \cdot 6837$	16.9190	19.0228	$21 \cdot 6660$	23.5893
10	$2 \cdot 55821$	$3 \cdot 24697$	$3 \cdot 94030$	$4 \cdot 86518$	9.34182	15.9871	18.3070	20.4831	23.2093	$25 \cdot 1882$
11	3.05347	$3 \cdot 81575$	4.57481	$5 \cdot 57779$	10.3410	$17 \cdot 2750$	$19 \cdot 6751$	21.9200	$24 \cdot 7250$	26.7569
12	$3 \cdot 57056$	4.40379	$5 \cdot 22603$	6.30380	$11 \cdot 3403$	18.5494	21.0261	$23 \cdot 3367$	26.2170	28.2995
13	4-10691	5.00874	$5 \cdot 89186$	7.04150	$12 \cdot 3398$	19.8119	$22 \cdot 3621$	24.7356	$27 \cdot 6883$	$29 \cdot 8194$
14	$4 \cdot 66043$	5•62872	6.57063	7.78953	$13 \cdot 3393$	$21 \cdot 0642$	$23 \cdot 6848$	$26 \cdot 1190$	$29 \cdot 1413$	31.3193
15	$5 \cdot 22935$	6.26214	$7 \cdot 26094$	$8 \cdot 54675$	14.3389	22.3072	24.9958	$27 \cdot 4884$	30.5779	32.8013
16	$5 \cdot 81221$	6.90766	$7 \cdot 96164$	9.31223	$15 \cdot 3385$	$23 \cdot 5418$	26.2962	28.8454	31.9999	$34 \cdot 2672$
17	6.40776	$7 \cdot 56418$	8.67176	10.0852	16.3381	24.7690	27.5871	$30 \cdot 1910$	$33 \cdot 4087$	35.7185
18	7.01491	$8 \cdot 23075$	$9 \cdot 39046$	10.8649	$17 \cdot 3379$	25.9894	28.8693	$31 \cdot 5264$	$34 \cdot 8053$	37-1564
19	$7 \cdot 63273$	$8 \cdot 90655$	$10 \cdot 1170$	11.6509	18.3376	$27 \cdot 2036$	$30 \cdot 1435$	$32 \cdot 8523$	36.1908	$38 \cdot 5822$
20	$8 \cdot 26040$	$9 \cdot 59083$	10.8508	$12 \cdot 4426$	$19 \cdot 3374$	28.4120	31.4104	34-1696	$37 \cdot 5662$	39.9968
21	8.89720	$10 \cdot 28293$	11.5913	$13 \cdot 2396$	$20 \cdot 3372$	29.6151	$32 \cdot 6705$	35.4789	38.9321	$41 \cdot 4010$
22	9.54249	10.9823	$12 \cdot 3380$	14.0415	$21 \cdot 3370$	$30 \cdot 8133$	33.9244	36.7807	$40 \cdot 2894$	42.7956
23	$10 \cdot 19567$	11.6885	$13 \cdot 0905$	14.8479	$22 \cdot 3369$	32.0069	$35 \cdot 1725$	38.0757	$41 \cdot 6384$	$44 \cdot 1813$
24	10.8564	12.4011	$13 \cdot 8484$	$15 \cdot 6587$	$23 \cdot 3367$	$33 \cdot 1963$	36.4151	$39 \cdot 3641$	42.9798	45.5585
25	11.5240	$13 \cdot 1197$	14.6114	16.4734	24-3366	34-3816	$37 \cdot 6525$	$40 \cdot 6465$	$44 \cdot 3141$	46.9278
26	$12 \cdot 1981$	13.8439	15.3791	$17 \cdot 2919$	25-3364	$35 \cdot 5631$	38.8852	41.9232	$45 \cdot 6417$	$48 \cdot 2899$
27	12.8786	14.5733	16.1513	$18 \cdot 1138$	$26 \cdot 3363$	$36 \cdot 7412$	$40 \cdot 1133$	$43 \cdot 1944$	46.9630	$49 \cdot 6449$
28	$13 \cdot 5648$	$15 \cdot 3079$	16.9279	18.9392	$27 \cdot 3363$	37.9159	41.3372	$44 \cdot 4607$	$48 \cdot 2782$	$50 \cdot 9933$
29	14.2565	16.0471	17-7083	19.7677	28.3362	39.0875	$42 \cdot 5569$	$45 \cdot 7222$	$49 \cdot 5879$	$52 \cdot 3356$
30	14.9535	16.7908	18.4926	20.5992	$29 \cdot 3360$	$40 \cdot 2560$	43.7729	46.9792	50.8922	53.6720
40	$22 \cdot 1643$	24.4331	$26 \cdot 5093$	29.0505	39-3354	51.8050	55.7585	59.3417	$63 \cdot 6907$	66.7659
50	$29 \cdot 7067$	32.3574	34.7642	$37 \cdot 6886$	$49 \cdot 3349$	$63 \cdot 1671$	67.5048	71.4202	$76 \cdot 1539$	79.4900
60	$37 \cdot 4848$	$40 \cdot 4817$	$43 \cdot 1879$	46.4589	$59 \cdot 3347$	$74 \cdot 3970$	79.0819	$83 \cdot 2976$	88.3794	91.9517
70	45.4418	48.7576	51-7393	55.3290	$69 \cdot 3344$	85.5271	90.5312	95.0231	$100 \cdot 425$	104-215
80	53.5400	$57 \cdot 1532$	$60 \cdot 3915$	64.2778	$79 \cdot 3343$	96.5782	101.879	106.629	112.329	116.321
90	61.7541	$65 \cdot 6466$	$69 \cdot 1260$	$73 \cdot 2912$	$89 \cdot 3342$	107.565	$113 \cdot 145$	118.136	$124 \cdot 116$	128.299
100	70.0648	$74 \cdot 2219$	77.9295	$82 \cdot 3581$	$99 \cdot 3341$	118.498	$124 \cdot 342$	129.561	$135 \cdot 807$	$140 \cdot 169$

TABEL V
Die F-verdeling: Boonste 5\% Punte
(ν_{1} vryheidsgrade in die teller en ν_{2} in die noemer)

TABLE V
The F-Distribution: Upper 5\% Points
(ν_{1} degrees of freedom in numerator and ν_{2} in denominator)

v_{2}	$\psi_{1}=1$	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18,5	19,0	19,2	19,2	19,3	19,3	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,5	19,5	19,5	19,5	19,5	19,5
3	10,1	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40	4,36
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2,40
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11	2,07
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97 1,93	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1;84	1,78
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81	1,76
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79	1,73
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,71
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,65
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74 1	1,68	1,62
34	4,13	3,28	2,88	2,65	2,49	2,38	2,29	2,23	2,17	2,12	2,05	1,97	1,89	1,84	1,80	1,75	1,69	1,63	1,57
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64 1	1,58	1,51
48	4,04	3,19	2,80	2,57	2,41	2,29	2,21	2,14	2,08	2,03	1,96	1,88	1,79	1,75	1,70	1,64	1,59	1,52	1,45
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,39
80	3,96	3,11	2,72	2,49	2,33	2,21	2,13	2,06	2,00	1,95	1,88	1,79	1,70	1,65	1,60	1,54	1,48	1,41	1,32
120	3,92	3,07	2,68	2,45	2,29	2,18	2,09	2,02	1,96	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,25
∞	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,00

TABEL VI
Die F-verdeling: Boonste 2,5\% Punte

The F-Distribution: Upper 2,5\% Points
(ν_{1} degrees of freedom in numerator and ν_{2} in denominator)

ν_{2}	$\nu_{1}=1$	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	648	800	864	900	922	937	948	957	963	969	977	985	993	997	1001	1006	1010	1014	1018
2	38,5	39,0	39,2	39,2	39,3	39,3	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,5	39,5	39,5	39,5	39,5	39,5
3	17,4	16,0	15,4	15,1	14,9	14,7	14,6	14,5	14,5	14,4	14,3	14,3	14,2	14,1	14,1	14,0	14,0	13,9	13,9
4	12,2	10,6	9,98	9,60	9,36	9,20	9,07	8,98	8,90	8,84	8,75	8,66	8,56	8,51	8,46	8,41	8,36	8,31	8,26
5	10,0	8,43	7,76	7,39	7,15	6,98	6,85	6,76	6,68	6,62	6,52	6,43	6,33	6,28	6,23	6,18	6,12	6,07	6,02
6	8,81	7,26	6,60	6,23	5,99	5,82	5,70	5,60	5,52	5,46	5,37	5,27	5,17	5,12	5,07	5,01	4,96	4,90	4,85
7	8,07	6,54	5,89	5,52	5,29	5,12	4,99	4,90	4,82	4,76	4,67	4,57	4,47	4,42	4,36	4,31	4,25	4,20	4,14
8	7,57	6,06	5,42	5,05	4,82	4,65	4,53	4,43	4,36	4,30	4,20	4,10	4,00	3,95	3,89	3,84	3,78	3,73	3,67
9	7,21	5,71	5,08	4,72	4,48	4,32	4,20	4,10	4,03	3,96	3,87	3,77	3,67	3,61	3,56	3,51	3,45	3,39	3,33
10	6,94	5,46	4,83	4,47	4,24	4,07	3,95	3,85	3,78	3,72	3,62	3,52	3,42	3,37	3,31	3,26	3,20	3,14	3,08
11	6,72	5,26	4,63	4,28	4,04	3,88	3,76	3,66	3,59	3,53	3,43	3,33	3,23	3,17	3,12	3,06	3,00	2,94	2,88
12	6,55	5,10	4,47	4,12	3,89	3,73	3,61	3,51	3,44	3,37	3,28	3,18	3,07	3,02	2,96	2,91	2,85	2,79	2,72
13	6,41	4,97	4,35	4,00	3,77	3,60	3,48	3,39	3,31	3,25	3,15	3,05	2,95	2,89	2,84	2,78	2,72	2,66	2,60
14	6,30	4,86	4,24	3,89	3,66	3,50	3,38	3,29	3,21	3,15	3,05	2,95	2,84	2,79	2,73	2,67	2,61	2,55	2,49
15	6,20	4,77	4,15	3,80	3,58	3,41	3,29	3,20	3,12	3,06	2,96	2,86	2,76	2,70	2,64	2,58	2,52	2,46	2,40
16	6,12	4,69	4,08	3,73	3,50	3,34	3,22	3,12	3,05	2,99	2,89	2,79	2,68	2,63	2,57	2,51	2,45	2,38	2,32
17	6,04	4,62	4,01	3,66	3,44	3,28	3,16	3,06	2,98	2,92	2,82	2,72	2,62	2,56	2,50	2,44	2,38	2,32	2,25
18	5,98	4,56	3,95	3,61	3,38	3,22	3,10	3,01	2,93	2,87	2,77	2,67	2,56	2,50	2,44	2,38	2,32	2,26	2,19
19	5,92	4,51	3,90	3,56	3,33	3,17	3,05	2,96	2,88	2,82	2,72	2,62	2,51	2,45	2,39	2,33	2,27	2,20	2,13
20	5,87	4,46	3,86	3,51	3,29	3,13	3,01	2,91	2,84	2,77	2,68	2,57	2,46	2,41	2,35	2,29	2,22	2,16	2,09
21	5,83	4,42	3,82	3,48	3,25	3,09	2,97	2,87	2,80	2,73	2,64	2,53	2,42	2,37	2,31	2,25	2,18	2,11	2,04
22	5,79	4,38	3,78	3,44	3,22	3,05	2,93	2,84	2,76	2,70	2,60	2,50	2,39	2,33	2,27	2,21	2,14	2,08	2,00
23	5,75	4,35	3,75	3,41	3,18	3,02	2,90	2,81	2,73	2,67	2,57	2,47	2,36	2,30	2,24	2,18	2,11	2,04	1,97
24	5,72	4,32	3,72	3,38	3,15	2,99	2,87	2,78	2,70	2,64	2,54	2,44	2,33	2,27	2,21	2,15	2,08	2,01	1,94
25	5,69	4,29	3,69	3,35	3,13	2,97	2,85	2,75	2,68	2,61	2,51	2,41	2,30	2,24	2,18	2,12	2,05	1,98	1,91
28	5,61	4,22	3,63	3,29	3,06	2,90	2,78	2,69	2,61	2,55	2,45	2,34	2,23	2,17	2,11	2,05	1,98	1,91	1,83
30	5,57	4,18	3,59	3,25	3,03	2,87	2,75	2,65	2,57	2,51	2,41	2,31	2,20	2,14	2,07	2,01	1,94	1,87	1,79
34	5,50	4,12	3,53	3,19	2,97	2,81	2,69	2,59	2,52	2,45	2,35	2,25	2,13	2,07	2,01	1,95	1,88	1,80	1,72
40	5,42	4,05	3,46	3,13	2,90	2,74	2,62	2,53	2,45	2,39	2,29	2,18	2,07	2,01	1,94	1,88	1,80	1,72	1,64
48	5,35	3,99	3,40	3,07	2,84	2,69	2,56	2,47	2,39	2,33	2,23	2,12	2,01	1,94	1,88	1,81	1,73	1,65	1,56
60	5,29	3,93	3,34	3,01	2,79	2,63	2,51	2,41	2,33	2,27	2,17	2,06	1,94	1,88	1,82	1,74	1,67	1,58	1,48
80	5,22	3,86	3,28	2,95	2,73	2,57	2,45	2,35	2,28	2,21	2,11	2,00	1,88	1,82	1,75	1,68	1,60	1,51	1,40
120	5,15	3,80	3,23	2,89	2,67	2,52	2,39	2,30	2,22	2,16	2,05	1,94	1,82	1,76	1,69	1,61	1,53	1,43	1,31
∞	5,02	3,69	3,12	2,79	2,57	2,41	2,29	2,19	2,11	2,05	1,94	1,83	1,71	1,64	1,57	1,48	1,39	1,27	1,00

TABEL IX
Die Produkmoment-korrelasie koëffisiënt: Boonste Kritieke Wardes (vir $\rho=0$)

TABLE IX
The Product Moment Correlation Coefficient: Upper Critical Values (for $\rho=0$)
$n=$ number of pairs of observations

n	Betekenispeil vir eenkantige toets			Significance level for one-tailed test		
	0,25	0,10	0,05	0,025	0,01	0,005
3	0,7071	0,9511	0,9877	0,9969	0,9995	0,9999
4	0,5000	0,8000	0,9000	0,9500	0,9800	0,9900
5	0,4040	0,6870	0,8054	0,8783	0,9343	0,9587
6	0,3473	0,6084	0,7293	0,8114	0,8822	0,9172
7	0,3091	0,5509	0,6694	0,7545	0,8329	0,8745
8	0,2811	0,5067	0,6215	0,7067	0,7887	0,8343
9	0,2596	0,4716	0,5822	0,6664	0,7498	0,7977
10	0,2423	0,4428	0,5494	0,6319	0,7155	0,7646
11	0,2281	0,4187	0,5214	0,6021	0,6851	0,7348
12	0,2161	0,3981	0,4973	0,5760	0,6581	0,7079
13	0,2058	0,3802	0,4762	0,5529	0,6339	0,6835
14	0,1968	0,3646	0,4575	0,5324	0,6120	0,6614
15	0,1890	0,3507	0,4409	0,5140	0,5923	0,64 11
16	0,1820	0,3383	0,4259	0,4973	0,5742	0,6226
17	0,1757	0,3271	0,4124	0,4821	0,5577	0,6055
18	0,1700	0,3170	0,4000	0,4683	0,5425	0,5897
19	0,1649	0,3077	0,3887	0,4555	0,5285	0,5751
20	0,1602	0,2992	0,3783	0,4438	0,5155	0,5614
21	0,1558	0,2914	0,3687	0,4329	0,5034	0,5487
22	0,1518	0,2841	0,3598	0,4227	0,4921	0,5368
23	0,1481	0,2774	0,3515	0,4132	0,4815	0,5256
24	0,1447	0,2711	0,3438	0,4044	0,4716	0,5151
25	0,1415	0,2653	0,3365	0,3961	0,4622	0,5052
26	0,1384	0,2598	0,3297	0,3882	0,4534	0,4958
27	0,1356	0,2546	0,3233	0,3809	0,4451	0,4896
28	0,1330	0,2497	0,3172	0,3739	0,4372	0,4785
29	0,1305	0,2451	0,3115	0,3673	0,4297	0,4705
30	0,1281	0,2407	0,3061	0,3610	0,4226	0,4629
31	0,1258	0,2366	0,3009	0,3550	0,4158	0,4556
32	0,1237	0,2327	0,2960	0,3494	0,4093	0,4487
35	0,1179	0,2220	0,2826	0,3338	0,3916	0,4296
40	0,1098	0,2070	0,2638	0,3120	0,3665	0,4026
45	0,1032	0,1947	0,2483	0,2940	0,345 7	0,3801
50	0,0976	0,1843	0,2353	0,2787	0,3281	0,3610
60	0,0888	0,1678	0,2144	0,2542	0,2997	0,3301
70	0,0820	0,1550	0,1982	0,2352	0,2776	0,3060
80	0,0765	0,1448	0,1852	0,2199	0,2597	0,2864
90	0,0720	0,1364	0,1745	0,2072	0,2449	0,2702
100	0,0682	0,1292	0,1654	0,1966	0,2324	0,2565

TABEL X
Die z-transformasie vir die Korrelasiekoëffisiënt

Die getransformeerde waardes

$$
z=\tanh ^{-1} r=1 / 2 \log _{e} \frac{1+r}{1-r}
$$

is teen die korrelasiekoëffisiënt r getabelleer.

TABLE X
The z-Transformation for the Correlation Coefficient

Entries in the table are the transformed values

$$
z=\tanh ^{-1} r=1 / 2 \log _{e} \frac{1+r}{1-r}
$$

for various values of the correlation coefficient r.

r	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0100	0,0200	0,0300	0,0400	0,0500	0,0601	0,0701	0,0802	0,0902
0,1	0,1003	0,1104	0,1206	0,1307	0,1409	0,1511	0,1614	0,1717	0,1820	0,1923
0,2	0,2027	0,2132	0,2237	0,2342	0,2448	0,2554	0,2661	0,2769	0,2877	0,2986
0,3	0,3095	0,3205	0,3316	0,3428	0,3541	0,3654	0,3769	0,3884	0,4001	0,4118
0,4	0,4236	0,4356	0,4477	0,4599	0,4722	0,4847	0,4973	0,5101	0,5230	0,5361
0,5	0,5493	0,5627	0,5763	0,5901	0,6042	0,6184	0,6328	0,6475	0,6625	0,6777
0,6	0,6931	0,7089	0,7250	0,7414	0,7582	0,7753	0,7928	0,8107	0,8291	0,8480
0,7	0,8673	0,8872	0,9076	0,9287	0,9505	0,9730	0,9962	1,0203	1,0454	1,0714
0,8	1,0986	1,1270	1,1568	1,1881	1,2212	1,2562	1,2933	1,3331	1,3758	1,4219
0,9	1,4722	1,5275	1,5890	1,6584	1,7380	1,8318	1,9459	2,0923	2,2976	2,6466

r	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,90	1,4722	1,4775	1,4828	1,4882	1,4937	1,4992	1,5047	1,5103	1,5160	1,5217
0,91	1,5275	1,5334	1,5393	1,5453	1,5513	1,5574	1,5636	1,5698	1,5762	1,5826
0,92	1,5890	1,5956	1,6022	1,6089	1,6157	1,6226	1,6296	1,6366	1,6438	1,6510
0,93	1,6584	1,6658	1,6734	1,6811	1,6888	1,6967	1,7047	1,7129	1,7211	1,7295
0,94	1,7380	1,7467	1,7555	1,7645	1,7736	1,7828	1,7923	1,8019	1,8117	1,8216
0,95	1,8318	1,8421	1,8527	1,8635	1,8745	1,8857	1,8972	1,9090	1,9210	1,9333
0,96	1,9459	1,9588	1,9721	1,9857	1,9996	2,0139	2,0287	- 2,0439	2,0595	2,0756
0,97	2,0923	2,1095	2,1273	2,1457	2,1649	2,1847	2,2054	2,2269	2,2494	2,2729
0,98	2,2976	2,3235	2,3507	2,3796	2,4101	2,4427	2,4774	2,5147	2,5550	2,5987
0,99	2,6466	2,6996	2,7587	2,8257	2,9031	2,9945	3,1063	3,2504	3,4534	3,8002

Table A. Percentage points for the distribution of B_{1} Lower percentage point $=-$ (tabulated upper percentage point)

Size of sample	Percentage points	Size of sample	Percentage points
n	5%	n	5%
25	0,711	200	0,280
30	0,662	250	0,251
35	0,621	300	0,230
40	0,587	350	0,213
45	0,558	400	0,200
50	0,534	450	0,188
		500	0,179
60	0,492	550	0,171
70	0,459	600	0,163
80	0,432	650	0,157
90	0,409	700	0,151
100	0,389	750	0,146
		800	0,142
125	0,350	850	0,138
150	0,321	900	0,134
175	0,298	950	0,130
200	0,280	1000	0,127

Table B. Percentage points of the distribution of B_{2}

Size of sample n	Percentage points	
	Upper 5\%	Lower 5\%
50	3,99	2,15
75	3,87	2,27
100	3,77	2,35
125	3,71	2,40
150	3,65	2,45
200	3,57	2,51
250	3,52	2,55
300	3,47	2,59
350	3,44	2,62
400	3,41	2,64
450	3,39	2,66
500	3,37	2,67
550	3,35	2,69
600	3,34	2,70
650	3,33	2,71
700	3,31	2,72
800	3,29	2,74
900	3,28	2,75
1000	3,26	2,76

Table C. Percentage points for the distribution of $A=\frac{\text { mean deviation }}{\text { standard deviation }}$

Size of sample n	$n-1$	Percentage points			
	Upper 5\%	Upper 10\%	Lower 10\%	Lower 5\%	
11	10	0,9073	0,8899	0,7409	0,7153
16	15	0,8884	0,8733	0,7452	0,7236
21	20	0,8768	0,8631	0,7495	0,7304
26	25	0,8686	0,8570	0,7530	0,7360
31	30	0,8625	0,8511	0,7559	0,7404
36	35	0,8578	0,8468	0,7583	0,7440
41	40	0,8540	0,8436	0,7604	0,7470
46	45	0,8508	0,8409	0,7621	0,7496
51	50	0,8481	0,8385	0,7636	0,7518
61	60	0,8434	0,8349	0,7662	0,7554
71	70	0,8403	0,8321	0,7683	0,7583
81	80	0,8376	0,8298	0,7700	0,7607
91	90	0,8353	0,8279	0,7714	0,7626
101	100	0,8344	0,8264	0,7726	0,7644

Table D
Tabel D
The hypergeometric probability distribution: $P(X \leq x)$ for $N=12$
Die hipergeometriese verdeling: $P(X \leq x)$ vir $N=12$

n	k	x	P	n	k	x	P	n	k	x	P
1	1	0	0,917	4	4	0	0,141	6	2	0	0,227
1	1	1	1,000	4	4	1	0,594	6		1	0,773
				4	4	2	0,933	6	2	2	1,000
2	1	0	0,833	4	4	3	0,998				
2	1	1	1,000	4	4	4	1,000	6	3	0	0,091
								6	3	1	0,500
2	2	0	0,682	5	1	0	0,583	6	3	2	0,909
2	2	1	0,985	5	1	1	1,000	6	3	3	1,000
2	2	2	1,000								
				5	2	0	0,318	6	4	0	0,030
3	1	0	0,750	5	2	1	0,848	6	4	1	0,273
3	1	1	1,000	5	2	2	1,000	6	4	2	0,727
								6	4	3	0,970
3	2	0	0,545	5	3	0	0,159	6	4	4	1,000
3	2	1	0,955	5	3	1	0,636				
3	2	2	1,000	5	3	2	0,955	6	5	0	0,008
				5	3	3	1,000	6	5	1	0,121
3	3	0	0,382					6	5	2	0,500
3	3	1	0,873	5	4	0	0,071	6	5	3	0,879
3	3	2	0,995	5	4	1	0,424	6	5	4	0,992
3	3	3	1,000	5	4	2	0,848	6	5	5	1,000
				5	4	3	0,990				
$\begin{aligned} & 4 \\ & 4 \end{aligned}$	1	0	0,667	5	4	4	1,000	6	6		0,001
	1	1	1,000					6	6	1	0,040
				5	5	0	0,027	\bigcirc	6	2	0,284
$\begin{aligned} & \hline 4 \\ & 4 \\ & 4 \end{aligned}$	2	0	0,424	5	5	1	0,247	6	6		0,716
	2	1	0,909	5	5	2	0,689	6	6	4	0,960
	2	2	1,000	5	5	3	0,955	6	6	5	0,999
				5	5	4	0,999	6	6	6	1,000
4 4 4 4	3	0	0,255	5	5	5	1,000				
	3	1	0,764								
	3	2	0,982	6	1	0	0,500				
	3	3	1,000	6	1	1	1,000				

Table E
Upper 5\% percentage points of the ratio, $S_{\max }^{2} / S_{\text {min }}^{2}$

v	$k=2$	3	4	5	6
2	39,0	87,5	142	202	266
3	15,4	27,8	39,2	50,7	62,0
4	9,60	15,5	20,6	25,2	29,5
5	7,15	10,8	13,7	16,3	18,7
6	5,82	8,38	10,4	12,1	13,7
7	4,99	6,94	8,44	9,70	10,8
8	4,43	6,00	7,18	8,12	9,03
9	4,03	5,34	6,31	7,11	7,80
10	3,72	4,85	5,67	6,34	6,92
12	3,28	4,16	4,79	5,30	5,72
15	2,86	3,54	4,01	4,37	4,68
20	2,46	2,95	3,29	3,54	3,76
30	2,07	2,40	2,61	2,78	2,91
60	1,67	1,85	1,96	2,04	2,11
∞	1,00	1,00	1,00	1,00	1,00
$k=$ number of samples					

$v=$ degrees of freedom for each sample variance

UNISA 2014

