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QUESTION 1

Let (X, d) be a metric space, p € X and r € R such that r > 0.

{a) Define each of the following concepts.

(i} The ball with centre p and radius r. (1)
(ii) An interior point of a set A C X. (1)
(iii) An open subset of X. (1)
(iv) A closed subset of X. (V)
{v) A neighbourhood of p. (1)

(b) Consider R with its usual metric and let S C R be defined by

S={2—l:neN}.
n

Give full reasons for your answers to the following questions.

(i) Is S open in R? (5)

(ii) Is S closed in R? (5)

(c) Let A be a subset of a metric space X. Show that A is dense in X if and only if A intersects
every non-empty open set. (10)
(23]
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QUESTION 2

Let (X, d) be a metric space and {x,} be a sequence in X.

(a) Define each of the following concepts.

(i) {xx} converges in X. (1)
(if) {xn} is a Cauchy sequence. (2)
(b) Prove the following theorem: (4)

Theorem: Every convergent sequence is a Cauchy sequence.

(c} Give an example that illustrates why the converse of the Theorem in (b) is not true. (3)

f10]
QUESTION 3
Let (X,d) be a metric space.
(a) Define each of the following concepts.
(i) A connected metric space. (Hint: Define disconnected first.} (3)
(ii) A separation of X. (2)

(b) Prove that if A and B are a separation of a metric space (X, d), and if H is any connected
subset of X, then H C A or H C B. (5)

(c) Consider the set X = [1,00) which has the usual metric d, that is, d(z,y) = |z — y|. Let
A be a real number with 1 < A < 2. Let f: X -+ X be defined by

o) = T
(i) Explain why the metric space (X, d) is complete. {4)
(i) Show that f is a contraction on X. (7)
(iii} From (i) and (ii), how do we know that f has a unigue fixed point? (1)
(iv) Find the fixed point of f. (3)

[25]

[TURN OVER]



MAT3711
OCTOBER/NOVEMBER 2012

QUESTION 4

(a) Let T:V — W be a bounded linear operator.

(i) How is the operator norm ||T|| defined? (2)
(i) For which vectors v € V' does the inequality ||Tv|| < ||T| ||v|| hold? (2)
{iii) Show that T is continuous. : (8)

(b) Consider R? with its usual norm [|(z,%)[| = V72 + ¢2, and R with norm equal to the
absolute value. Let T : R?* — R be the linear operator defined by

T(z,9) = = +2y

for all {z,y) € R?

(i) Show that T'is a bounded linear operator. {Show only boundedness.) {4)
(it) Evaluate ||T7||. (4)
[20]
QUESTION 5
(a) Define the Riemann-Stieltjes integral. (12)

(Hint: Be sure to define all notations used, for example: partition, sub-interval, length of
sub-interval, upper Stieltjes integral, lower Stieltjes integral, etc.)

(b) Let f and a be functions defined on [0, 1] by;

0 fo<z<i 0 ifo<z<l
f@) = Cand az) =
2 fj<z<1 1 ifi<z<l
1
Compute / [ da if it exists. (8)
0
[20]
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