
MEMO STA3702 (OCT/NOV 2015 EXAMINATION)

Question 1 [Total marks= 25]

(a)

f(x|θ) = a(θ)g(x) exp{θr(x)}
= exp {θr(x) + ln[a(θ)] + ln[g(x)]}
= exp {θr(x)−− ln[a(θ)] + ln[g(x)]}
= exp {θr(x)− a∗(θ) + g∗(x)}

where a∗(θ) = − ln[a(θ)] ∈ (−∞,∞) and g∗(x) = ln[g(x)] ∈ (−∞,∞). (4)

(b) (i)

f(x|θ) = θ(1− θ)x

= exp {x ln(1− θ) + ln θ}
= exp {ηx+ ln(1− eη)}
= exp {ηr(x)− a∗(η) + g∗(x)}

where r(x) = x, η = ln(1− θ), a∗(η) = ln(1− eη) ∈ (−∞,∞) and g∗(x) = 1. (4)

(ii)
∑n

i=1 r(Xi) =
∑n

i=1 Xi since f(x|θ) belongs to the 1-parameter exponential family. (3)

(iii) The likelihood function is L(θ) =
∏n

i=1 f(xi|θ) = θn(1− θ)
∑n

i=1
xi =⇒

the log-likelihood function of θ is l(θ) = lnL(θ) = n ln θ +
∑n

i=1 xi ln(1− θ). (4)

(iv) l′(θ) = n
θ −

∑n

i=1
xi

1−θ =⇒ l′′(θ) = − n
θ2 −

∑n

i=1
xi

(1−θ)2 . Hence the total information for θ in the

sample is

In(x) = −l′′(θ) =
n

θ2
+

∑n
i=1 xi

(1− θ)2
=

n

θ2
+

nx̄

(1− θ)2

(5)

(vi) The MLE of θ is θ̂ which solves the equation

0 = l′(θ̂) =
n

θ̂
−
∑n

i=1 xi

1− θ̂
.

Clearly, the solution will depend on the sample only through the complete sufficient statistic∑n
i=1 Xi. (The solution is θ̂ = 1

1+x̄ .) (5)

Question 2 [Total marks= 25]

(a) The likelihood function of (θ1, θ2) is:

L(θ1, θ2) =
n∏

i=1

f(yi|θ1, θ2) =
{

θ−n
2 exp{−

∑n
i=1(yi − θ1)/θ2} if y(1) = min(yi) ≥ θ1 and θ2 > 0,

0 otherwise.

The log-likelihood function of (θ1, θ2) is:

l(θ1, θ2) = lnL(θ1, θ2) =

{
−n ln θ2 −

∑n
i=1(yi − θ1)/θ2 if y(1) ≥ θ1 and θ2 > 0,

−∞ otherwise.

l(θ1, θ2) increases as θ1 varies from its 0 to y(1). Hence the MLE of θ1 is y(1). (7)

l(y(1), θ2) = −n ln θ2 −
n∑

i=1

(yi − y(1))/θ2 =⇒ l′(y(1), θ2) = − n

θ2
+

n∑
i=1

(yi − y(1))/θ
2
2.

The MLE of θ2 is θ̂2 which solves the equation:
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0 = l′(y(1), θ̂2) = − n

θ̂2
+

n∑
i=1

(yi − y(1))/θ̂
2
2.

The solution is θ̂2 = 1
n

∑n
i=1(yi − y(1)). (6)

By the invariance property of MLE′s, the MLE of θ22 is:

(θ̂2)
2 =

(
1

n

n∑
i=1

(yi − y(1))

)2

.

(3)

(b) If θ1 = 0, then the likelihood function of θ2 is:

L(θ2|y) = θ−n
2 exp{−

n∑
i=1

yi/θ2} = m1(y)×m2(

n∑
i=1

yi, θ2)

where m1(y) = 1 and m2(
∑n

i=1, θ2) = θ−n
2 exp{−

∑n
i=1 yi/θ2}. Hence,

∑n
i=1 Yi is a sufficient

statistic for θ2 by the factorization theorem. (4)

Let X1, X2, ..., Xn be a random sample from the same sampled distribution. Then

L(θ2|y)
L(θ2|x)

= exp

{
1

θ2

(
n∑

i=1

xi −
n∑

i=1

yi

)}

which is independent of θ2 if (
∑n

i=1 xi −
∑n

i=1 yi) = 0 equivalently if
∑n

i=1 xi =
∑n

i=1 yi. This
means

∑n
i=1 Yi is a minimal sufficient statistic for θ. (5)

Question 3 [Total marks=25]

(a) E[X] = 4θ =⇒ θ = 1
4E[X] =⇒ the MME of θ is

θ̃ =
1

4
x̄ =

1

4
(14/10) = 0.35

(5)

(b) The likelihood function of θ is:

L(θ) =
10∏
i=1

4!

(4− xi)!x!
θxi(1− θ)4−xi

=
10∏
i=1

4!

(4− xi)!xi!
θ
∑10

i=1
xi(1− θ)40−

∑10

i=1
xi

=
10∏
i=1

4!

(4− xi)!xi!
θ14(1− θ)40−14

=
10∏
i=1

4!

(4− xi)!xi!
θ14(1− θ)26

The log-likelihood function is:

l(θ) = lnL(θ) = constant+ 14 ln θ + 26 ln(1− θ) =⇒ l′(θ) =
14

θ
− 26

1− θ
.

The MLE of θ is θ̂ which solves the equation:

0 = l′(θ̂) =
14

θ̂
− 26

1− θ̂
.

The solution is θ̂ = 14
40 = 0.35. (7)
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(c) l′′(θ) = − 14
θ2 − 26

(1−θ)2 =⇒

V ar[θ̃] = V ar[θ̂] ≈ 1

−l′′(0.35)
=

1

114.2857 + 61.5385
=

1

175.8242
= 0.0057.

Hence
se(θ̃) = se(θ̂) ≈

√
0.0057 = 0.0754.

(8)

(d) Both because there are unbiased and have equal standard errors. Equivalently, the MME and
the MLE of θ are the same. (5)

Question 4 [Total marks=25]

(a) nS2

σ2 ∼ χ2
n (3)

(b) Consistency of S2: E[nS
2

σ2 ] = n and V ar[nS
2

σ2 = 2n implies the following.

E[S2] = nσ2

n = σ2 =⇒ S2 is an unbiased estimator of σ2. Furthermore,

V ar[S2] = 2nσ4

n2 = 2σ4

n which turns to zero as n turns to infinity. Hence S2 is a consistent
estimator of σ2.

Consistency of S∗2: E[ (n−1)S∗2

σ2 ] = n and V ar[ (n−1)S∗2

σ2 = 2n implies the following.

E[S∗2] = n σ2

n−1 =⇒ S∗2 is a biased estimator of σ2 with bias σ2

n−1 which turns to zero as n turns
to infinity. Furthermore,

V ar[S∗2] = 2n σ4

(n−1)2 which turns to zero as n turns to infinity. Hence S∗2 is a consistent estimator

of σ2.

(18)

(c) MSE(S2) = V ar[S2] = 2σ4

n and

MSE(S∗2 = V ar[S∗2] + [Bias(S∗2)]2 =
2n+ 1

(n− 1)2
σ4 > MSE(S2)

since 2n+1
(n−1)2 > 1

n . (4)
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