Question 1

[Total marks= 25]
(a)

$$
\begin{align*}
f(x \mid \theta) & =a(\theta) g(x) \exp \{\theta r(x)\} \\
& =\exp \{\theta r(x)+\ln [a(\theta)]+\ln [g(x)]\} \\
& =\exp \{\theta r(x)--\ln [a(\theta)]+\ln [g(x)]\} \\
& =\exp \left\{\theta r(x)-a^{*}(\theta)+g^{*}(x)\right\} \tag{4}
\end{align*}
$$

where $a^{*}(\theta)=-\ln [a(\theta)] \in(-\infty, \infty)$ and $g^{*}(x)=\ln [g(x)] \in(-\infty, \infty)$.
(b) (i)

$$
\begin{align*}
f(x \mid \theta) & =\theta(1-\theta)^{x} \\
& =\exp \{x \ln (1-\theta)+\ln \theta\} \\
& =\exp \left\{\eta x+\ln \left(1-e^{\eta}\right)\right\} \\
& =\exp \left\{\eta r(x)-a^{*}(\eta)+g^{*}(x)\right\} \tag{4}
\end{align*}
$$

where $r(x)=x, \eta=\ln (1-\theta), a^{*}(\eta)=\ln \left(1-e^{\eta}\right) \in(-\infty, \infty)$ and $g^{*}(x)=1$.
(ii) $\sum_{i=1}^{n} r\left(X_{i}\right)=\sum_{i=1}^{n} X_{i}$ since $f(x \mid \theta)$ belongs to the 1-parameter exponential family.
(iii) The likelihood function is $L(\theta)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\theta^{n}(1-\theta)^{\sum_{i=1}^{n} x_{i}} \Longrightarrow$ the log-likelihood function of θ is $l(\theta)=\ln L(\theta)=n \ln \theta+\sum_{i=1}^{n} x_{i} \ln (1-\theta)$.
(iv) $l^{\prime}(\theta)=\frac{n}{\theta}-\frac{\sum_{i=1}^{n} x_{i}}{1-\theta} \Longrightarrow l^{\prime \prime}(\theta)=-\frac{n}{\theta^{2}}-\frac{\sum_{i=1}^{n} x_{i}}{(1-\theta)^{2}}$. Hence the total information for θ in the sample is

$$
\begin{equation*}
I_{n}(\mathbf{x})=-l^{\prime \prime}(\theta)=\frac{n}{\theta^{2}}+\frac{\sum_{i=1}^{n} x_{i}}{(1-\theta)^{2}}=\frac{n}{\theta^{2}}+\frac{n \bar{x}}{(1-\theta)^{2}} \tag{5}
\end{equation*}
$$

(vi) The $M L E$ of θ is $\hat{\theta}$ which solves the equation

$$
0=l^{\prime}(\hat{\theta})=\frac{n}{\hat{\theta}}-\frac{\sum_{i=1}^{n} x_{i}}{1-\hat{\theta}}
$$

Clearly, the solution will depend on the sample only through the complete sufficient statistic $\sum_{i=1}^{n} X_{i}$. (The solution is $\hat{\theta}=\frac{1}{1+\bar{x}}$.)

Question 2

(a) The likelihood function of $\left(\theta_{1}, \theta_{2}\right)$ is: $L\left(\theta_{1}, \theta_{2}\right)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta_{1}, \theta_{2}\right)= \begin{cases}\theta_{2}^{-n} \exp \left\{-\sum_{i=1}^{n}\left(y_{i}-\theta_{1}\right) / \theta_{2}\right\} & \text { if } y_{(1)}=\min \left(y_{i}\right) \geq \theta_{1} \text { and } \theta_{2}>0, \\ 0 & \text { otherwise } .\end{cases}$

The log-likelihood function of $\left(\theta_{1}, \theta_{2}\right)$ is:

$$
l\left(\theta_{1}, \theta_{2}\right)=\ln L\left(\theta_{1}, \theta_{2}\right)= \begin{cases}-n \ln \theta_{2}-\sum_{i=1}^{n}\left(y_{i}-\theta_{1}\right) / \theta_{2} & \text { if } y_{(1)} \geq \theta_{1} \text { and } \theta_{2}>0 \tag{7}\\ -\infty & \text { otherwise }\end{cases}
$$

$l\left(\theta_{1}, \theta_{2}\right)$ increases as θ_{1} varies from its 0 to $y_{(1)}$. Hence the $M L E$ of θ_{1} is $y_{(1)}$.

$$
l\left(y_{(1)}, \theta_{2}\right)=-n \ln \theta_{2}-\sum_{i=1}^{n}\left(y_{i}-y_{(1)}\right) / \theta_{2} \Longrightarrow l^{\prime}\left(y_{(1)}, \theta_{2}\right)=-\frac{n}{\theta_{2}}+\sum_{i=1}^{n}\left(y_{i}-y_{(1)}\right) / \theta_{2}^{2}
$$

The $M L E$ of θ_{2} is $\hat{\theta}_{2}$ which solves the equation:

$$
\begin{equation*}
0=l^{\prime}\left(y_{(1)}, \hat{\theta}_{2}\right)=-\frac{n}{\hat{\theta}_{2}}+\sum_{i=1}^{n}\left(y_{i}-y_{(1)}\right) / \hat{\theta}_{2}^{2} \tag{6}
\end{equation*}
$$

The solution is $\hat{\theta}_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-y_{(1)}\right)$.
By the invariance property of $M L E^{\prime} s$, the $M L E$ of θ_{2}^{2} is:

$$
\begin{equation*}
\left(\hat{\theta}_{2}\right)^{2}=\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-y_{(1)}\right)\right)^{2} \tag{3}
\end{equation*}
$$

(b) If $\theta_{1}=0$, then the likelihood function of θ_{2} is:

$$
L\left(\theta_{2} \mid \mathbf{y}\right)=\theta_{2}^{-n} \exp \left\{-\sum_{i=1}^{n} y_{i} / \theta_{2}\right\}=m_{1}(\mathbf{y}) \times m_{2}\left(\sum_{i=1}^{n} y_{i}, \theta_{2}\right)
$$

where $m_{1}(\mathbf{y})=1$ and $m_{2}\left(\sum_{i=1}^{n}, \theta_{2}\right)=\theta_{2}^{-n} \exp \left\{-\sum_{i=1}^{n} y_{i} / \theta_{2}\right\}$. Hence, $\sum_{i=1}^{n} Y_{i}$ is a sufficient statistic for θ_{2} by the factorization theorem.
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the same sampled distribution. Then

$$
\frac{L\left(\theta_{2} \mid \mathbf{y}\right)}{L\left(\theta_{2} \mid \mathbf{x}\right)}=\exp \left\{\frac{1}{\theta_{2}}\left(\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}\right)\right\}
$$

which is independent of θ_{2} if $\left(\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}\right)=0$ equivalently if $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$. This means $\sum_{i=1}^{n} Y_{i}$ is a minimal sufficient statistic for θ.

Question 3

(a) $E[X]=4 \theta \Longrightarrow \theta=\frac{1}{4} E[X] \Longrightarrow$ the $M M E$ of θ is

$$
\begin{equation*}
\tilde{\theta}=\frac{1}{4} \bar{x}=\frac{1}{4}(14 / 10)=0.35 \tag{5}
\end{equation*}
$$

(b) The likelihood function of θ is:

$$
\begin{aligned}
L(\theta) & =\prod_{i=1}^{10} \frac{4!}{\left(4-x_{i}\right)!x!} \theta^{x_{i}}(1-\theta)^{4-x_{i}} \\
& =\prod_{i=1}^{10} \frac{4!}{\left(4-x_{i}\right)!x_{i}!} \theta^{\sum_{i=1}^{10} x_{i}}(1-\theta)^{40-\sum_{i=1}^{10} x_{i}} \\
& =\prod_{i=1}^{10} \frac{4!}{\left(4-x_{i}\right)!x_{i}!} \theta^{14}(1-\theta)^{40-14} \\
& =\prod_{i=1}^{10} \frac{4!}{\left(4-x_{i}\right)!x_{i}!} \theta^{14}(1-\theta)^{26}
\end{aligned}
$$

The log-likelihood function is:

$$
l(\theta)=\ln L(\theta)=\text { constant }+14 \ln \theta+26 \ln (1-\theta) \Longrightarrow l^{\prime}(\theta)=\frac{14}{\theta}-\frac{26}{1-\theta}
$$

The $M L E$ of θ is $\hat{\theta}$ which solves the equation:

$$
\begin{equation*}
0=l^{\prime}(\hat{\theta})=\frac{14}{\hat{\theta}}-\frac{26}{1-\hat{\theta}} \tag{7}
\end{equation*}
$$

The solution is $\hat{\theta}=\frac{14}{40}=0.35$.
(c) $l^{\prime \prime}(\theta)=-\frac{14}{\theta^{2}}-\frac{26}{(1-\theta)^{2}} \Longrightarrow$

$$
\operatorname{Var}[\tilde{\theta}]=\operatorname{Var}[\hat{\theta}] \approx \frac{1}{-l^{\prime \prime}(0.35)}=\frac{1}{114.2857+61.5385}=\frac{1}{175.8242}=0.0057
$$

Hence

$$
\begin{equation*}
\operatorname{se}(\tilde{\theta})=\operatorname{se}(\hat{\theta}) \approx \sqrt{0.0057}=0.0754 \tag{8}
\end{equation*}
$$

(d) Both because there are unbiased and have equal standard errors. Equivalently, the $M M E$ and the $M L E$ of θ are the same.

Question 4

(a) $\frac{n S^{2}}{\sigma^{2}} \sim \chi_{n}^{2}$
(b) Consistency of $S^{2}: E\left[\frac{n S^{2}}{\sigma^{2}}\right]=n$ and $\operatorname{Var}\left[\frac{n S^{2}}{\sigma^{2}}=2 n\right.$ implies the following. $E\left[S^{2}\right]=n \frac{\sigma^{2}}{n}=\sigma^{2} \Longrightarrow S^{2}$ is an unbiased estimator of σ^{2}. Furthermore, $\operatorname{Var}\left[S^{2}\right]=2 n \frac{\sigma^{4}}{n^{2}}=2 \frac{\sigma^{4}}{n}$ which turns to zero as n turns to infinity. Hence S^{2} is a consistent estimator of σ^{2}.
Consistency of $S^{* 2}: E\left[\frac{(n-1) S^{* 2}}{\sigma^{2}}\right]=n$ and $\operatorname{Var}\left[\frac{(n-1) S^{* 2}}{\sigma^{2}}=2 n\right.$ implies the following.
$E\left[S^{* 2}\right]=n \frac{\sigma^{2}}{n-1} \Longrightarrow S^{* 2}$ is a biased estimator of σ^{2} with bias $\frac{\sigma^{2}}{n-1}$ which turns to zero as n turns to infinity. Furthermore,
$\operatorname{Var}\left[S^{* 2}\right]=2 n \frac{\sigma^{4}}{(n-1)^{2}}$ which turns to zero as n turns to infinity. Hence $S^{* 2}$ is a consistent estimator of σ^{2}.
(c) $\operatorname{MSE}\left(S^{2}\right)=\operatorname{Var}\left[S^{2}\right]=\frac{2 \sigma^{4}}{n}$ and

$$
\begin{equation*}
\operatorname{MSE}\left(S^{* 2}=\operatorname{Var}\left[S^{* 2}\right]+\left[\operatorname{Bias}\left(S^{* 2}\right)\right]^{2}=\frac{2 n+1}{(n-1)^{2}} \sigma^{4}>\operatorname{MSE}\left(S^{2}\right)\right. \tag{4}
\end{equation*}
$$

since $\frac{2 n+1}{(n-1)^{2}}>\frac{1}{n}$.

