MEMO STA3702 (MAY/JUNE 2015 EXAMINATION)

Question 1

(a)

$$
\begin{align*}
f(x \mid \theta) & =\frac{1}{3!\theta^{4}} x^{3} \exp \left(-\frac{x}{\theta}\right) \\
& =\exp \left(-\frac{x}{\theta}-4 \ln (\theta)-\ln (3!)+3 \ln (x)\right) \\
& =\exp \left(-\eta x-4 \ln \left(\eta^{-1}\right)-\ln (3!)+3 \ln (x)\right) \\
& =\exp \{\eta t(x)-\psi(\eta)+g(x)\} \tag{4}
\end{align*}
$$

where $\eta=\frac{1}{\theta}, t(x)=-x, \psi(\eta)=-4 \ln (\eta)$ and $g(x)=3 \ln (x)-\ln (3!)$.
(b) $\sum_{i=1}^{n} t\left(X_{i}\right)=-\sum_{i=1}^{n} X_{i}$ since $f(x \mid \theta)$ belongs to regular exponential family.
(c) $l(\theta)=-\frac{1}{\theta} \sum_{i=1}^{n} x_{i}-4 n \ln (\theta)-n \ln (3!)+3 \sum_{i=1}^{n} \ln \left(x_{i}\right)$
(d) $E[X]=-\psi^{\prime}(\eta)=4 \eta^{-1}=4 \theta$ and $l^{\prime \prime}(\theta)=-\frac{2}{\theta^{3}} \sum_{i=1}^{n} x_{i}+\frac{4 n}{\theta^{2}} \Longrightarrow$

$$
\begin{equation*}
I_{n}(\theta)=-E\left[l^{\prime \prime}(\theta)\right]=\frac{2}{\theta^{3}} \sum_{i=1}^{n} E\left[X_{i}\right]-\frac{4 n}{\theta^{2}}=\frac{8 n \theta}{\theta^{3}}-\frac{4 n}{\theta^{2}}=\frac{4 n}{\theta^{2}} \tag{4}
\end{equation*}
$$

(e) The $M L E$ of θ is $\hat{\theta}$ which solves the equation

$$
0=l^{\prime}(\hat{\theta})=\frac{1}{\hat{\theta}^{2}} \sum_{i=1}^{n} x_{i}-\frac{4 n}{\hat{\theta}}
$$

The solution is $\hat{\theta}=\frac{1}{4 n} \sum_{i=1}^{n} x_{i}$ which depends on the sample through complete sufficient statistic
(f) $C R L B=\frac{\left[\theta^{\prime}\right]^{2}}{I_{n}(\theta)}=\frac{\theta^{2}}{4 n}$.
(g) That $\hat{\theta}$ is a function of a complete sufficient statistic and $E[\hat{\theta}]=\frac{4 n \theta}{4 n}=\theta$ implies that $\hat{\theta}$ is a MVUE of θ.

Question 2

[Total marks $=25$]
(a) Note

$$
\begin{aligned}
f(y \mid \theta) & =\frac{2}{\theta} y \exp \left(-\frac{y^{2}}{\theta}\right) \text { if } y>0 \text { and } \theta>0 \\
& =\exp \left\{-\frac{y^{2}}{\theta}+\ln \left(\frac{2}{\theta} y\right)\right\} \\
& =\exp \left\{-\frac{y^{2}}{\theta}-\ln (\theta)+\ln (2 y)\right\} \\
& =\exp \left\{-\eta y^{2}-\ln \left(\eta^{-1}\right)+\ln (2 y)\right\}=f(y \mid \eta)
\end{aligned}
$$

which is in the form of the $p d f$ in Question 1 with $t(y)=-y^{2}, \theta=1 / \eta$ and $\psi(\eta)=-\ln (\eta)$. Hence complete sufficient statistic for θ is $\sum_{i=1}^{n} t\left(Y_{i}\right)=-\sum_{i=1}^{n} Y_{i}^{2}$.
(b) $\sum_{i=1}^{n} Y_{i}^{2}$ is a minimal sufficient statistic for θ because it is a complete sufficient statistic for θ. (2)
(c) From Question 1,

$$
E\left[-\sum_{i=1}^{n} Y_{i}^{2}\right]=-n E\left[Y^{2}\right]=\frac{\partial-\ln \eta}{\partial \eta}=-n / \eta=-n \theta \equiv E\left[\sum_{i=1}^{n} Y_{i}^{2}\right]=n \theta
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[-\sum_{i=1}^{n} Y_{i}^{2}\right]=\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}^{2}\right]=n \operatorname{Var}\left[Y^{2}\right]=\frac{\partial^{2}-\ln \eta}{\partial \eta^{2}}=n / \eta^{2}=n \theta^{2} . \tag{2+2=4}
\end{equation*}
$$

(d) $l(\eta)=\ln L(\eta \mid \mathbf{y})=-\eta \sum_{i=1}^{n} y_{i}^{2}+n \ln (\eta)+\sum_{i=1}^{n} \ln \left(2 y_{i}\right) \Longrightarrow l^{\prime}(\eta)=-\sum_{i=1}^{n} y_{i}^{2}+\frac{n}{\eta} \Longrightarrow$ the MLE of η is $\hat{\eta}$ which solves the equation

$$
l^{\prime}(\hat{\eta})=-\sum_{i=1}^{n} y_{i}^{2}+\frac{n}{\hat{\eta}}=0 .
$$

The solution is $\hat{\eta}=\frac{n}{\sum_{i=1}^{n} y_{i}^{2}} \Longrightarrow$ the $M L E$ of θ is

$$
\hat{\theta}=1 / \hat{\eta}=\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}
$$

by the invariance property of $M L E s$.
From above and part (a), $\hat{\theta}$ is a function of a complete sufficient statistic, and from part(c) $E[\hat{\theta}]=\theta(\hat{\theta}$ is an unbiased estimator of $\theta)$. Therefore, $\hat{\theta}$ also the $M V U E$ of θ.
$(4+3=7)$
(e) By the invariance property of $M L E^{\prime} s$, the $M L E$ of the variance of the complete sufficient statistic found in part(a) is $n \hat{\theta}^{2}$.
(f) From part (d), the MLE of θ is $\hat{\theta}=\frac{100}{200}=0.5$.
$\operatorname{se}(\hat{\theta})=-\frac{1}{\sqrt{l^{\prime \prime}(\hat{\theta})}}=\sqrt{\frac{\hat{\theta}^{2}}{n}}=0.5 / \sqrt{200}=0.035355$.

Question 3

[Total marks $=25$]
(a) MME: $E[X]=n \theta \Longrightarrow E[X / n]=\theta \Longrightarrow M M E$ of θ is x / n.
$M L E: L(\theta)=\frac{n!}{(n-x)!x!} \theta^{x}(1-\theta)^{n-x}$ and
$l(\theta)=\ln L(\theta)=\ln \left(\frac{n!}{(n-x)!x!}\right)+x \ln (\theta)+(n-x) \ln [(1-\theta)] \Longrightarrow l^{\prime}(\theta)=\frac{x}{\theta}-\frac{n-x}{1-\theta)} \Longrightarrow$ the MLE of θ is $\hat{\theta}$ which solves $\frac{x}{\hat{\theta}}-\frac{n-x}{1-\hat{\theta})}=0 \equiv x-n \hat{\theta}=0$ and the solution is $\hat{\theta}=x / x$ which is also the $M M E$ of θ.
(b) $l^{\prime \prime}(\theta)=-\frac{x}{\theta^{2}}+\frac{n-x}{(1-\theta)^{2}} \Longrightarrow I_{1}(\theta)=-E\left[l^{\prime \prime}(\theta)\right]=\frac{E[X]}{\theta^{2}}+\frac{n-E[x]}{(1-\theta)^{2}}=\frac{n}{\theta}+\frac{n}{1-\theta}=\frac{n}{\theta(1-\theta)}$.
(c) $\operatorname{Var}(\hat{\theta})=\frac{1}{n^{2}} \operatorname{Var}(X)=\frac{n \theta(1-\text { theta })}{n^{2}}=\frac{\theta(1-\theta)}{n}$.
(d) $g(\theta)=E(\hat{\theta})=E(X / n)=\theta \Longrightarrow g^{\prime}(\theta)=1 \Longrightarrow C R L B=\frac{\left[g^{\prime}(\theta)\right]^{2}}{I_{1}(\theta)}=\frac{\theta(1-\theta)}{n}=\operatorname{Var}(\hat{\theta})$.
(e) Since $E(\hat{\theta})=\theta$ and $\operatorname{Var}(\hat{\theta})=C R L B$, this means $\hat{\theta}$ is a $M V U E$ of θ.

Question 4

[Total marks $=25$]
(a)

$$
\begin{align*}
\operatorname{MSE}(T) & =E\left[(T-\theta)^{2}\right]=E\left[(T-E[T]+E[T]-\theta)^{2}\right] \\
& =E\left[(T-E[T])^{2}+2(T-E[T])(E[T]-\theta)+(E[T]-\theta)^{2}\right] \\
& =E\left[(T-E[T])^{2}\right]+2(E[T]-\theta) E[(T-E[T])]+E\left[(E[T]-\theta)^{2}\right] \\
& =\operatorname{Var}[T]+0+(E[T]-\theta)^{2} \tag{5}
\end{align*}
$$

(b) If T is any unbiased estimator of θ then $E[T]-\theta=0 \Longrightarrow \operatorname{MSE}(T)=\operatorname{Var}(T)$.
(c) $E\left[c T_{1}+(1-c) T_{2}\right]=c E\left[T_{1}\right]+(1-c) E\left[T_{2}\right]=c \theta+(1-c) \theta=\theta$.
(d)

$$
\begin{align*}
\operatorname{Var}[T]= & c^{2} \operatorname{Var}\left[T_{1}\right]+(1-c)^{2} \operatorname{Var}\left[T_{2}\right]=2 c^{2} \operatorname{Var}\left[T_{2}\right]+(1-c)^{2} \operatorname{Var}\left[T_{2}\right] \\
= & \left.3 c^{2}-2 c+1\right) \operatorname{Var}\left[T_{2}\right] \\
& 0=\frac{\partial V[T]}{\partial c}=(6 c-2) \operatorname{Var}\left[T_{2}\right] \Longrightarrow c=\frac{2}{6}=\frac{1}{3} \tag{3}
\end{align*}
$$

(e) $\operatorname{re}\left(T_{2}, T_{1}\right)=2$ and $\operatorname{re}\left(T_{2}, T\right)=\frac{2}{3} . T$ is the best estimator because it has the smallest variance.

$$
(1+3+2=6)
$$

(f) $0.95=P\left(0.1 \leq \frac{T}{\theta} \leq 10\right)=P\left(0.1 \leq \frac{\theta}{T} \leq 10\right)=P(0.1 T \leq \theta \leq 10 T)$ which means the 95% confidence interval for θ is $[0.1 T ; 10 T]$.

