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QUESTION 1

Let (X,d} be & metnc space, a € X and r € R such that r > (

(a) Define each of the following concepts

{1) The closed ball wath centre ¢ and radus r {1}

(u) A neighbourhood of & (1)

(1) An imtenor pomt of a set S C X (1)

{1v) An open subset of X (1)

(v) A closed subset of X 1

(w1} Adherent points 2)

(vi) A bounded set A C X (2)

{viu) A diameter of aset AC X (2)

{x) A Cauchy sequence (2)

(b) Prove that X and @ are closed sets (3)

{c) Let {Ay | a € '} be any collection of open subsets of X Prove that [J A, 18 openin X (5)
a€l

(d) Prove that if zo 18 an element of X, then {2y} 18 closed (5)

{e) Let A and B be subsets of R each bounded above Define the subset C of R by
C={z+y|z€Aandyc B}
Prove that supC = sup A + sup B (9)
35)
QUESTION 2

Let (X, d) be a metric space

{a} Define each of the following concepts

(1) A complete metric space (2)
(n} A compact subset ¥ C X (3)

(b} Let {zn} be a sequence in (X,d) Prove that z, — p if and only 1f for every neighbourhood
IJ of p, {z,,} 18 eventually in IF (5)
(c) Prove that every Cauchy sequence 1s bounded (5)

{d) Let K C X be compact and C C X be closed Use the defimtion of compactness to show

that K N C 12 compact (10)
[25)
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QUESTION 3

{a) Consider the set X = [1,00) endowed with nsual metric d. that 18 d(r,y) =|c~y| Let Abea
real number with 0 < A <2 Let f X — A be defined by

Ata

/@) =7 +r
(1) The metiie space (X, d) 1s complete Give full reasons why this 13 s0 {4)
{n) Show that f s a contraction on X (8)
(m) Fiom (1) and (n) how do we know that f has a umque fixed point? (1)
(1v) Find the hxed pomt of f (2)

(b) Let ' V' = W be a bounded hnear operator
(1} How 1s the opeiator norm ||{ || defined” (2)
(1) For wlich vectors v € V does the inequality
e < el

hold? (2)

(¢} Consider R® with its usual norm ||(z y)|| = +/2? + 32, and R with norm equal to the
absolute value Let ' R? — R be the hinear operator defined by

Tiz.y) =+ 3y
for all (z, y) € R?

(1) Show that the hnear operator 1" 1s bonnded Do not show lineanty {4)
(1) Evaluate |17 4
(25)
QUESTION 4
{a) Define the Riemann-Stieltjes integral (10}
(b} Let f and a be functions defined on [U,1] by
0 f0<z<y 0 fOo<r<y
fm—{l fi<a< “(I)_{z fl<z<i
i
Compute f f dafaf exists (5}
0

25]
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