

MAT3711

May/June 2016

REAL ANALYSIS

Duration 2 Hours

100 Marks

EXAMINATION PANEL AS APPOINTED BY THE DEPARTMENT

Closed book examination

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages Answer ALL questions

QUESTION 1

Let (X, d) be a metric space, $a \in X$ and $r \in \mathbb{R}$ such that r > 0

(a) Define each of the following concepts	
(i) The closed ball with centre a and radius r	(1)
(u) A neighbourhood of a	(1)
(iii) An interior point of a set $S \subseteq X$	(1)
(iv) An open subset of X	(1)
(v) A closed subset of X	(1)
(vi) Adherent points	(2)
(vii) A bounded set $A \subseteq X$	(2)
(viii) A diameter of a set $A \subseteq X$	(2)
(1x) A Cauchy sequence	(2)
(b) Prove that X and \emptyset are closed sets	(3)
(c) Let $\{A_{\alpha} \mid \alpha \in \Gamma\}$ be any collection of open subsets of X. Prove that $\bigcup_{\alpha \in \Gamma} A_{\alpha}$ is open in X.	(5)
(d) Prove that if x_0 is an element of X, then $\{x_0\}$ is closed	(5)
(e) Let A and B be subsets of $\mathbb R$ each bounded above. Define the subset C of $\mathbb R$ by	
$C = \{x + y \mid x \in A \text{ and } y \in B \}$	
Prove that $\sup C = \sup A + \sup B$	(9)
	[35]
QUESTION 2	
Let (X,d) be a metric space	
(a) Define each of the following concepts	
· · ·	(0)
(1) A complete metric space	(2)
(u) A compact subset $Y \subseteq X$	(3)
(b) Let $\{x_n\}$ be a sequence in (X,d) Prove that $x_n \to p$ if and only if for every neighbourhood U of p , $\{x_n\}$ is eventually in U	(5)
(c) Prove that every Cauchy sequence is bounded	(5)
(d) Let $K \subseteq X$ be compact and $C \subseteq X$ be closed. Use the definition of compactness to show	
that $K \cap C$ is compact	(10)
	[25]

QUESTION 3

(a) Consider the set $X = [1, \infty)$ endowed with usual metric d, that is d(x, y) = |x - y| Let λ be a real number with $0 < \lambda < 2$ Let $f \mid \lambda \to X$ be defined by

$$f(x) = \frac{\lambda + x}{1 + x}$$

- (i) The metric space (X, d) is complete. Give full reasons why this is so
- (a) Show that f is a contraction on X (6)
- (III) From (1) and (II) how do we know that f has a unique fixed point? (1)
- (iv) Find the fixed point of f (2)
- (b) Let $\Gamma V \to W$ be a bounded linear operator
 - (1) How is the operator norm || I || defined? (2)
 - (a) For which vectors $v \in V$ does the inequality

$$\|T\| \leq \|T\| \|v\|$$

hold?

(c) Consider \mathbb{R}^2 with its usual norm $\|(x \ y)\| = \sqrt{x^2 + y^2}$, and \mathbb{R} with norm equal to the absolute value Let $T \mathbb{R}^2 \to \mathbb{R}$ be the linear operator defined by

$$T(x,y) = x + 3y$$

for all $(x,y) \in \mathbb{R}^2$

- (i) Show that the linear operator T is bounded. Do not show linearity (4)
- (1) Evaluate ||T|| (4)

[25]

QUESTION 4

- (a) Define the Riemann-Stieltjes integral (10)
- (b) Let f and α be functions defined on [0,1] by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} \le x \le 1 \end{cases} \qquad \alpha(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ 2 & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

Compute
$$\int_0^1 f \, d\alpha$$
 if it exists (5)

[15]

TOTAL: 100 Marks

Fust examiner

Dr O Ighedo

External examinei Prof O O Otafudu (North-West University)

@

UNISA 2016