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QUESTION 1
(a) Let (X,d) be a metric space, p € X and r be a real number with r > 0 Define each of
the following
(1) The ball with centre p and radius 7. (3)
(1) An interior point of aset S C X (3)
(1) An open subset of X (3)
(1v) The closure of a set S C X (3)
{(b) Let A be a subset of a metric space, and suppose the boundary of A 1s empty Show that
A 15 both open and closed (10)
(c) Give an example (with reasons) of a metric space which 1s not complete (3
(25]

QUESTION 2

(a) Let X be a metric space and § € X

(i) What 1s meant by an open cover of 57

(1i) What does 1t mean to say S 1s compact?

(3)
(2)

(b) Prove the theorem which states, “Every sequentially compact metric space 15 totally

bounded and complete.”

(10}
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(c) Let {f.} be a sequence of functions mapping {0, 00) nto R defined by

falz)== (1 + -::)

for each n € N and z € {0, 00}

(1) Show that there 1s no function to which {f.} converges umformly on {0, o) (5)

(ii) Let A be a bounded subset of [0,00) Now show that {f,} converges umformly on A
to some function f [0,00) 2> R (5)

[25]

QUESTION 3

(a) Let X,Y be metnc spaces and f X — Y be a function Prove that f 18 continuous if
and only if f~![G] 15 open 1n X for each open subset G of Y (10}

(b) Let {an} be a sequence of real numbers which 15 bounded above and let uy, be defined by
tn = sup{anlk > n}
for each n € N Then {u,} 15 an increasing sequence. (Do not prove this )

(1) Show that msup ay = hm u, (10}
n—oo n—+oa

(n) Find ug, and hence imsup an, if

n—oc
% for n odd
an = 1
1-= for n even

(5)

(25]

[TURN OVER]



MAT3711
OCTOBER/NOVEMBER 2014

QUESTION 4

(a) Equip R with the norm equal to absolute value, and R? with the norm ||(z, y)|| = /2 + 2
Let T : R? - R be the linear operator defined by

T(z,y)=z+2y

for all (z,y) € R?

(1) Show that T s a bounded hnear operator. (Do not show linearity, show only bound-
edness.) {5)

(1) Compute {|T|. (3)

(b) Let f*[1,2] = (1,2] be the function defined by

f@) =3 (z+2)

(1) Show that f is a contraction on [1,2] (5)

(u) Without finding the fixed pomnt, explain fully (g1ving reasons) why we know that f
has a umque fixed pomt 1 [1,2) (5)

{c) Let f and o be functions defined on [0, 1] by

0 f z1s rational 0 f0<z<i
flz) = and alx) =
1 if z 1s wrrational 2 fiy<z<l
1 T
{1} Calculate f [ da and [ f de {(5)
) 0
i
(i1) Does / f doa exist? Give reasons (2)
- 0

[25]
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