

MAT3711

October/November 2014

REAL ANALYSIS

Duration · 2 Hours

100 Marks

EXAMINATION PANEL AS APPROVED BY THE DEPARTMENT

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages Answer ALL questions

QUESTION 1

(a) Let (X, d) be a metric space, p ∈ X and r be a real number with r > 0 Define each of the following
(i) The ball with centre p and radius r.
(ii) An interior point of a set S ⊆ X
(iii) An open subset of X
(iv) The closure of a set S ⊆ X
(3)
(b) Let A be a subset of a metric space, and suppose the boundary of A is empty Show that A is both open and closed
(c) Give an example (with reasons) of a metric space which is not complete
(3)

QUESTION 2

(a) Let X be a metric space and $S \subseteq X$

(i) What is meant by an open cover of S?

(ii) What does it mean to say S is compact? (2)

(b) Prove the theorem which states, "Every sequentially compact metric space is totally bounded and complete." (10)

[TURN OVER]

[25]

(c) Let $\{f_n\}$ be a sequence of functions mapping $[0,\infty)$ into $\mathbb R$ defined by

$$f_n(x) = x\left(1 + \frac{1}{n}\right)$$

for each $n \in \mathbb{N}$ and $x \in [0, \infty)$

- (1) Show that there is no function to which $\{f_n\}$ converges uniformly on $[0,\infty)$ (5)
- (ii) Let A be a bounded subset of $[0, \infty)$ Now show that $\{f_n\}$ converges uniformly on A to some function $f [0, \infty) \to \mathbb{R}$ (5)

[25]

QUESTION 3

- (a) Let X, Y be metric spaces and $f : X \to Y$ be a function. Prove that f is continuous if and only if $f^{-1}[G]$ is open in X for each open subset G of Y (10)
- (b) Let $\{a_n\}$ be a sequence of real numbers which is bounded above and let u_n be defined by

$$u_n = \sup\{a_n | k \ge n\}$$

for each $n \in \mathbb{N}$ Then $\{u_n\}$ is an increasing sequence. (Do not prove this)

(i) Show that
$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} u_n$$
 (10)

(ii) Find u_k , and hence $\limsup_{n\to\infty} a_n$, if

$$a_n = \begin{cases} \frac{1}{n} & \text{for } n \text{ odd} \\ 1 - \frac{1}{n} & \text{for } n \text{ even} \end{cases}$$

(5)

[25]

[TURN OVER]

QUESTION 4

(a) Equip \mathbb{R} with the norm equal to absolute value, and \mathbb{R}^2 with the norm $||(x,y)|| = \sqrt{x^2 + y^2}$ Let $T: \mathbb{R}^2 \to \mathbb{R}$ be the linear operator defined by

$$T(x,y) = x + 2y$$

for all $(x,y) \in \mathbb{R}^2$

- (1) Show that T is a bounded linear operator. (Do <u>not</u> show linearity, show only boundedness.)
- (ii) Compute ||T||. (3)
- (b) Let $f: [1,2] \to [1,2]$ be the function defined by

$$f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$$

- (1) Show that f is a contraction on [1,2] (5)
- (11) Without finding the fixed point, explain fully (giving reasons) why we know that f has a unique fixed point in [1,2] (5)
- (c) Let f and α be functions defined on [0,1] by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases} \quad \text{and} \quad \alpha(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ 2 & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

- (1) Calculate $\int_0^1 f \, d\alpha$ and $\int_0^{\overline{1}} f \, d\alpha$ (5)
- (ii) Does $\int_0^1 f \, d\alpha \, \text{exist?}$ Give reasons (2)

[25]

TOTAL: 100 Marks

First examiner Prof SJ Johnston

External examiner Prof S Currie (University of the Witwatersrand)

©

UNISA 2014