

# **MAT3711**

May/June 2013

#### **REAL ANALYSIS**

Duration 2 Hours 100 Marks

**EXAMINATION PANEL AS APPROVED BY THE DEPARTMENT** 

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages Answer ALL questions

#### **QUESTION 1**

Let (X, d) be a metric space,  $p \in X$  and  $r \in \mathbb{R}$  such that r > 0

(a) Define each of the following concepts

| (1) The ball with centre $p$ and radius $r$     | (1) |
|-------------------------------------------------|-----|
| (11) An interior point of a set $A \subseteq X$ | (1) |
| (111) An open subset of X                       | (1) |
| (iv) A closed subset of X                       | (1) |
| (v) A neighbourhood of p                        | (1) |
| (v1) A bounded set $A \subseteq X$              | (1) |
| (vii) The diameter of a set $A \subseteq X$     | (2) |

(b) Let X be the set of real numbers and let d be the metric on X given by

$$d(x,y) = \min\{|x-y|, 2\}$$

where  $x, y \in X$  Let  $A \subseteq X$  be the set of integers

- (i) Is A bounded in  $(X, d)^{\gamma}$  Give reasons for your answer (3)
- (11) Calculate the diameter of A (5)
- (c) Let (X, d) be a metric space and  $S \subseteq X$  be equipped with the subspace metric, i.e.  $(S, d_S)$  is the metric space where  $d_S$  is the restriction of d to  $S \times S$ . Prove that a set  $A \subseteq S$  is open in S if and only if  $A = S \cap U$  for some set  $U \subseteq X$  which is open in X. (11)

[27]

[TURN OVER]

## **QUESTION 2**

(a) Let  $\langle , \rangle$  be an inner product Show that if  $\langle x, y \rangle = \langle x, z \rangle$  for all x, then y = z (5)

(b) Prove the Cauchy-Bunyakowski-Schwarz inequality

If V is an inner product space, then for all  $x, y \in V$ 

$$|\langle x,y\rangle| \le \sqrt{\langle x,x\rangle} \ \sqrt{\langle y,y\rangle}$$

(8)

(c) Let [a,b] be a compact interval in  $\mathbb{R}$  A function f  $[a,b] \to \mathbb{C}$  is continuous if and only if its real and imaginary parts are continuous real-valued functions, i.e. if for f(t) = u(t) + iv(t) where u  $[a,b] \to \mathbb{R}$  and v  $[a,b] \to \mathbb{R}$ , u and v are continuous. For such a function, the integral  $\int_a^b f$  is defined by

$$\int_a^b f = \int_a^b u + i \int_a^b v$$

Let V be the set of all continuous complex-valued functions on [a,b] Define  $\langle \ , \ \rangle$  on V by

$$\langle f, g \rangle = \int_a^b f(t) \overline{g(t)} \ dt$$

Show that  $(V, \langle , \rangle)$  is an inner product space

[23]

(10)

# **QUESTION 3**

(a) Let (X, d) be a metric space and  $S \subseteq M \subseteq X$ 

- (1) What is meant by an open cover of  $S^7$  (2)
- (1) What does it mean to say that S is compact? (1)
- (iii) Show that S is compact in (X, d) if and only if it is compact in  $(M, d_M)$  (12)
- (b) Prove the theorem which states, "Every sequentially compact metric space is totally bounded and complete" (12)
- (c) Explain why  $\mathbb{R}$  is not compact (3)

[30]

[TURN OVER]

## **QUESTION 4**

- (a) Define the Riemann-Stieltjes integral
  (Hint Be sure to define all notations used, for example partition, sub-interval, length of sub-interval, upper Stieltjes integral, lower Stieltjes integral, etc.)
- (b) Let f and  $\alpha$  be functions defined on [0,1] by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$
$$\alpha(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ 2 & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

(1) Compute 
$$\int_{\underline{0}}^{1} f \, d\alpha$$
 and  $\int_{0}^{\overline{1}} f \, d\alpha$  (6)

(ii) Does 
$$\int_0^1 f \, d\alpha \, \text{exist}^{\, \gamma} \, \text{Give reasons}$$
 (2)

[20]

TOTAL: 100 Marks

First examiner Prof SJ Johnston Second examiner Dr JRA Gray

External examiner Dr S Currie (University of the Witwatersrand)

© UNISA 2013