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QUESTION 1
Let (X, d) be a metric space, p € X and r € R such that r > 0
(a) Define each of the following concepts
(1) The ball with centre p and radius » (1)
(1) An mterior pomnt of aset A C X 1
(1) An open subset of X (1}
(rv) A closed subset of X (1)
(v) A neighbourhood of p (1)
(v1) A bounded set AC X (1)
(vn) The diameter of a set AC X (2)
(b) Let X be the set of real numbers and let d be the metric on X given by
d(z,y) = min{|z — y|,2}
where z,y7 € X Let A C X be the set of integers
(1) Is A bounded m (X,d)? Give reasons for your answer (3)
(n) Calculate the diameter of A (5)

(c) Let (X, d) be a metric space and § € X be equipped with the subspace metric, 1e (S5, ds)
15 the metric space where dg 18 the restriction of d to § x S Prove that a set A C S1s
open m S if and only if A = SN U for some set U € X which 15 open in X (11)

(27]
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QUESTION 2

(a) Let {, ) be an mner product Show that if (x,%) = (z,2) for all z, theny = 2 (5)

{(b) Prove the Cauchy-Bunyakowski-Schwarz mnequality

If V 1s an mnner product space, then for all z,y € V

Kz, 1) < Viz.z) Vv,

(8)

(c) Let [a,b] be a compact mterval n R A function f [a,b] — € 1s continuous if and only 1f 1ts
real and 1magmary parts are continuous real-valued functions, 1e if for f(t) = u(t) +ww(t)
where « [a,b] » Rand v [a,b] = R, u and v are continuous For such a function, the

b
integral / f 15 defined by
¢ b b b
/ f= / (T f v
a a a
Let V be the set of all continuous complex-valued functions on fa,b] Define (, ) on V by
b
0 = [ 109w a
a
Show that (V, {, }) 15 an mnner product space (10)
[23]

QUESTION 3

(a) Let (X,d) be a metric space and SC M C X

(1) What 1s meant by an open cover of 57 (2)
(1) What does 1t mean to say that § 1s compact? (1)
() Show that § 1s compact n (X, d) if and only 1if 1t 15 compact 1n (M, dp) (12)

{b) Prove the theorem which states, “Every sequentially compact metric space 1s totally

bounded and complete ” (12)
(c) Explamn why R s not compact (3)
[30]
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QUESTION 4

{a) Define the Riemann-Stieltjes integral (12)

(Hint Be sure to define all notations used, for example partition, sub-interval, length of
sub-mterval, upper Stieltjes ntegral, lower Stieltjes integral, etc )

(b) Let f and « be functions defined on [0, 1] by

f(m):{o f0<z<jy

1 fi<z<1

0 fo<z<l
afz) = SEe
2 fz<z<l

1 T
(1) Compute /g f da and ]0 f da (6)
(n) Does / 1 f do exist? Give reasons (2)
0
[20]
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