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QUESTION 1
Let (X, d) be a metric space, p € X and r € R such that r > 0
(a) Define each of the followng concepts
(i) The ball with centre p and radius r. (1)
(if} An interor point of a set A C X. (1)
(riz) An open subset of X. (1)
(iv) A closed subset of X. (1)
(v) A neighbourhood of p. (1)
(vi) A Cauchy sequence. (2)
(vii) A complete metric space. (2)

(b) Let (X, d) be a metric space and let p. X x X — R be the metric on X given by

p(z, y)=min{d(a:, y)$ 1}

(1) Show that every Cauchy sequence in (X, g) is a Cauchy sequence in (X, d). (8)
(ii) Show that if (X, d) is complete, then (X, p) 15 complete. (6)
[23]
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QUESTION 2

(a) Let {, ) be an inner product. Show that if {z,y) = (z,z} for all z, then y = 2. (5)
(b) Prove the Cauchy-Bunyakowski-Schwarz mequality-

If V is an inner product space, then for all z,y € V

|0 < Viz,z) vy

(®)

(c) Let [a, 5] be a compact interval in R. A function f : [2,b] — C is continuous if and only if its
real and imaginary parts are continuous real-valued functions, i.e. if for f(t) = u(t) +1v(t)
where % . [a,b] = R and v : [a,b] — R, v and v are continuous. For such a function, the

b
integral f f is defined by
. . b b b
f f= f U+t / v,
a a a
Let V be the set of all continuous complex-valued functions on [a,b]. Define {, ) on V by

b
(hho) = j £ ()9 b

Show that (V,(, )) is an inner product space (10)
(23]
QUESTION 3
(a) Define each of the following concepts

(1) A contraction mapping. (3)
(ii) A compact set. (3)

(b) Let (X, d) be a complete metric space, and suppose T': X — X i8 a function such that
T2 is a contraction where T2 is the function T2 : X — X given by T? (z) = T (T (z)).
Show that T' has a unique fixed point in X. (12)

(c) Let Y = [0,1) with its usual metric Prove that Y is not compact. {10)
(d) Prove the following theorem:

Let (X,d} be a metric space, K C X be compact and p € X\K. Then there
exist digjoint open sets U and V suchthat K C U andpe V.

(6)

(34]
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QUESTION 4

(a) Define the Riemann-Stieltjes mtegral (12)

(Hint- Be sure to define all notations used, for example partition, sub-interval, length of
sub-interval, upper Stieltjes integral, lower Stieltjes integral, etc.)

(b) Let f and o be functions defined on [0, 1] by

0 f0<z<i
fay={ T
1 ifz<x<1
f0<z<i
olz) = 0 <z<3
2 fi<z<l.
1 T
(i) Compute f f do and f § dee. (6)
1] 0
1
(ii) Does f f da exist? Give reasons. (2)
0
[20]
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