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QUESTION 1

Let (X, d) be a metric space, p € X and r € R such that r > 0
(a) Define each of the following concepts

(1) The ball with centre p and radius r
(n) An nterior pomnt of aset A C X
(in) An open subset of X
(1v) A closed subset of X
(v) The boundary of A

{(b) Prove that every ball in (X, d) 1s open

(1)
(1)
(1)
(1)
(2)

(")

(¢) Let § = {1 -3 neN} be viewed as a subset of R with the usual metric Find the

boundary of S
{Gave full just:fication for your answer )

(8)

[21]
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QUESTION 2

Let (X, d) be a metric space and {a,} be a sequence in X

(a) Define each of the following concepts

{1) {an} converges in X (1)

(1) {an} 18 a Cauchy sequence (2)

(m) A complete metric space (2)

(b) Prove that every convergent sequence 1s a Cauchy sequence (4)

(¢} True or false
Every Cauchy sequence 18 a convergent sequence

Prove or give a counter example (4)

(d) Consider R? with 1ts wsual norm ||(z,y)|| = /22 + 32, and R with norm equal to the
absolute value Let T R? — R be the hinear operator defined by

T(z,y) =z —3y
for all (z,y) € R?
(1) Show that the linear operator T 18 bounded (4)
(1) Evaluate ||T}| (4)
[21]
QUESTION 3

(a) Define each of the following concepts
(1) A compact set (3)
(1) A1s dense m X 1if A 1s a subset of a metric space X (2)
(b) Show that the union of a fimite number of compact sets is a compact set (5)

(c) Let A be asubset of a metric space X Show that 4 1s dense in X 1f and only 1f int(X —A) =
0 (10)

(d) Let f R — R be a continuous function and define ¢ R — R? by

9(z) = (f(2), z)
Use the defimtion of continuity to show that g 1s continuous if R and R? have the usual

metrics. ( 10)

[30]
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QUESTION 4

(a) Define the Riemann-Sticltjes integral (12)
(Hint. Be sure to define all notations used, for example partition, sub-interval, length of
sub-interval, upper Stieltjes integral, lower Stieltjes integral, etc )

(b) Let f and & be functions defined on [0,1] by

0 f0<z<li
fl@)= ; ;
0 fo<z<i
al(z) = =t=
1 ofi<z<]
1
Compute fo [ da if 1t exists (8)

{(¢) The Fundamental Theorem of Calculus states

If f s Riemann-integrable on [a,b] and there 1s a differentiable functron F on [a,b] such
that F' = f, then

b
[ 1@z = P®) - Fo

Prove this theorem (8)

[28]
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