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QUESTION 1
Solve the following differential equations:
1.1 2x(y +1)dx—ydy =0, given that if x = 0 theny = -2. (6)
1.2 xd—y—y = xtan(lj [Hint: Put y =vx] (5)
dx X
1.3 d—y—2ytanx:y2tan2x (6)
dx

[17]
QUESTION 2
Find the general solutions of the following differential equations using D-operator methods:
2.1 (D2—9)y =3e* + X —sin4x (7)
22 (D*-4D+4)y = (x*+1] (7)

[14]
QUESTION 3
The conditions in a certain electrical circuit are represented by the following differential

2. . .
equation: 10ﬂ + 60ﬂ + ! 240cosb5t . Determine the general and the steady state
dt? dt 0,004
solutions for the current, i in terms of t, by using D-operator methods. (8)
(8]

QUESTION 4

Solve for only x in the following set of simultaneous differential equations by using D-

operator methods:

(D2—1)y+ 5Dx =t

(8)
2Dy —(D2 —4)x =2
8]

QUESTION 5
Determine the following:
51 L{2t*+H(t-3)+4cos5t| 3)
52 L2 - 3)

(s+2)

[6]

[TURN OVER]
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QUESTION 6

Determine the unique solution of the following differential equation by using

Laplace transforms: y"(t)+6y'(t)+13y(t) =0, if y(0)=3 and y'(0)=7. (7)
[7]

QUESTION 7

The motion of a mass-spring system, with no friction, is given by the equation

d’y
F-’_y = 25(1: —27Z')—25(t—47l')
with an impulsive force at t = 27 and an equal and opposite force at t = 4.
If y(0)=0 and y’(0)=0, use Laplace transform methods to solve for y. (8)
[8]
QUESTION 8
2 2 _ . :
If A ={ 1 5} , determine the eigenvalues of A and an eigenvector for A. (6)
[6]
QUESTION 9

Given the function defined by f (x) =X,0<x <2, find the half-range Fourier sine

series for f(x). Sketch the function within and outside of this range. (20)
[10]
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