
1

Solution Specification: Motor Racing Club System

Bespoke Software Consultants (BSC)

Outline

This is the specification for the development of a motor racing club system. This serves
as the specification for the assignments (both 01 & 02) for ICT3611. Read the specification
carefully, and use the assignment marking rubrics (both rubric 01 and 02) when developing the
solution.

Your solution must address all the functionality and requirements as discussed in this
specification. It must also address the requirements as provided in the rubric.

Please pay careful attention: assignment 01 should store all data in files on disk. As-
signment 02 should store data in a relational database.

3

1. Introduction

This document provides a base-line specification for the development of a motor racing
club management system for client Gauteng West Motoring Association. A base-line
specification is used to put on paper the features, functions, and operational guidelines
for the system to be developed. As such, it is imperative that all stakeholders scrutinise
the document to ensure that all requirements are understood properly.

2. Scope

The scope of the document covers the functional requirements of the software. System con-
figuration, and hardware requirements are excluded.

3. Glossary

Business object An entity represented by the system, such as a racing driver, or a motor
racing event.

Check digit A special digit which can be used to see if an error has been made in
the event that a membership number has been typed in manually.

Data file A file used to store data on a business object, or a race result.
Event A motor racing event such as a local race, or a national race.
Manage The word management refers to the capability to add, modify, and delete

data.
Race result The position after completing the race.

4. Functionality

The software shall provide features which allow a small motor racing club the ability
to:

1. Manage motor racing events that its members may participate in.

2. Manage racing drivers (members) of the club.

3. Recording performance of club members in c lub ’s events.

The performance for racing drivers should only include the finishing position in the races.

4.1 Managing motor racing events

Managing a motor racing event includes registering the event in the system (and recording
details about the event), modifying an existing even, or deleting an event.

It should not be possible to delete an event that has records of racing drivers’
performance. That is, once a user enters performance details (results) for a racing driver in an
event, it must not be possible to delete that event from the system.

Events should have unique names – it should not be possible to add two events with the
same name. This allows the user of the system to uniquely identify each event in the system.

The following data about a motor racing event should be collected:

4

1. Title of the event (must be unique).

2. Date of the event.

3. Registration Fee.

4. Location of the event.

5. Num b e r o f l aps.

4.2 Managing racing drivers

Since racing drivers are the primary members of the club, the system must provide proper
management of racing drivers.

The following details on racing drivers must be recorded:

1. Membership number (see 4.2.1),

2. Name and surname,

3. Birth date,

4. Gender,

5. Date on which the club was joined,

6. Membership fee amount outstanding.

7. Races competed in, and positions for each race.

It must be possible to add, edit, and delete racing drivers. However, once race results
for a racing driver have been recorded, it should no longer be possible to delete them.

4.2.1 Club membership number

A club membership number is a 14 digit number constructed from information from the
member. For example the membership number 15198901050047 is constructed from the
numbers:

15
Year of registration

19890105
Birthday

004
Random Number between
000 - 999

7
Check digit

5

The following table provides more information on each sub-field:
Year of registration The last two digits of the year in which this member was

added to the system
Birthday The birthday of the member in the format yyyymmdd, where

yyyy represents the full year of birth, mm represents the
numerical month of birth, and dd represents the numerical
day of the month.

Random number A number between 0 and 999 chosen randomly.
Check digit See below.

Definition 1 Calculation of the check digit:

1. Sum the first 13 individual digits in the member number,

2. divide the result by 10 and take the remainder,

3. if the remainder is 0, then the check digit is 0, otherwise subtract the remainder from
10 and use the result as the check digit.

The proper algorithm for generating the check digit is presented in algorithm 1.

Example 1 The complete number for ’1519890105004’ will be calculated as follows:

1. 1 + 5 + 1 + 9 + 8 + 9 + 0 + 1 + 0 + 5 + 0 + 0 + 4 = 43

2. 43 divided by 10 is 4, with a remainder of 3.

3. Subtract this number from 10 (10 − 3 = 7). The check digit is thus 7.

4. The full membership number is ’15198901050047’

Example 2 The complete number for ’1519890105001’ will be calculated as follows:

1. 1 + 5 + 1 + 9 + 8 + 9 + 0 + 1 + 0 + 5 + 0 + 0 + 1 = 40

2. 40 divided by 10 is 4, with a remainder of 0.

3. The remainder is 0, thus the check digit is 0

4. The full membership number is thus ’15198901050010’

Whenever a vehicle owner number is entered by a user (when doing a search, for example),

the system must validate the number.

Definition 2 Validating the check digit:

1. Sum all the digits in the number (including the check digit)

2. Divide the result by 10. If the remainder is 0, then the number is valid, if not, then it
is invalid.

6

Example 3 Validate number ’15198901050047’:

1. Sum the individual digits: 1 + 5 + 1 + 9 + 8 + 9 + 0 + 1 + 0 + 5 + 0 + 0 + 4 + 7 = 50

2. 50 modulo1 10 = 0

3. Result: this is a valid number.

Example 4 Validate number ’15198901050010’:

1. Sum the individual digits: 1 + 5 + 1 + 9 + 8 + 9 + 0 + 1 + 0 + 5 + 0 + 0 + 1 = 40

2. 40 modulo 10 = 0

1 a modulo b = the remainder after dividing a by b

7

3. Result: this is a valid number.

Suppose the user is asked to do a look-up on a member using their membership number and

they make a typing mistake. Instead of entering ’15198901050010’ they enter 15198001050010.

Example 5 Validate number ’15198001050010’:

1. Sum the individual digits: 1 + 5 + 1 + 9 + 8 + 0 + 0 + 1 + 0 + 5 + 0 + 0 + 1 = 31

2. 31 modulo 10 = 1

3. Result: this is not a valid number.

Whenever the user enters a membership number, the system should perform the validation

check to ensure that the number is valid, and display appropriate errors when an invalid
number is entered.

4.3 Recording race results

The end user must be able to choose a racing driver (either through the use of a
textbox in which the racing drivers membership number is entered, or by selecting an
racing drivers name from a drop-down list).

Once the user has selected a racing driver, they must be able to record race results
for a particular race for that racing driver. These results form part of the permanent
history of the racing driver at the club.

5. Summary of development

1. Racing driver (member) management GUI used to add, edit, and delete racing drivers.

2. Race result recording GUI for recording racing drivers race results.

3. Motor racing event (race) management GUI used to add, edit, and delete, race details.

4. Classes/Structures to represent the business objects.

5. Classes/Modules for data storage.

6. Data storage

Phase 1 of this project must store all data in text files on disc using a simple comma separated
file format. This requires the use of three files:

1. Racing driver data file

2. Race results data file

3. Event data file

8

The user must be able to specify the location of the data files.
Racing driver data Store all collected data on the racing driver (see section 4.2)

except race results.
Race results data Store the racing driver’s membership number, the race

name, and the result.
Event data Store all collected data on the event (see section 4.1)

Phase 2 of the project will move the data storage to a relational database. The client
insists on phase 1 being delivered with file storage, and penalties will be incurred should this
not happen.

7. Classes/Structures and business objects

To ensure a modular design, ensure that no data storage functions are located in GUI elements
(VB forms). Additionally, the system may be expanded in the future, thus all business objects
(racing drivers and events) must be represented using classes or structures.

It is perfectly acceptable to store a list of race results in the racing driver object (event
name and result).

8. Acceptance

Document accepted as presented in current form by all parties involved. Development to
commence as soon as resources are allocated.

9

A. Algorithms

Data: b the member birthdate
Result: m A membership number with a check-digit

1 r ← random number between 0 and 999
2 c ← two rightmost digits of current year
3 m ← c & b & r
4 s ← 0
5 for i ← 1 to length of m do
6 s ← s + integer value of m(i)
7 end
8 d ← s mod 10
9 if d = 0 then q ← 0 else q ← (10 − d)

10 m ← m & q
11 return m

Algorithm 1: Check digit calculation

Data: m the membership number
Result: boolean True if the number is valid, false otherwise

1 s ← 0
2 r ← false
3 for i ← 1 to length of m do
4 s ← s + integer value of m(i)
5 end
6 d ← s mod 10
7 if d = 0 then
8 r ← true
9 end

10 return r
Algorithm 2: Membership number verification

