Systems Analysis and Design in a Changing World, sixth edition 11-1

Chapter 11 — Object-Oriented Design: Use Case Realizations

Solutions to End-of-Chapter Problems

Review Questions

1. What is meant by the term use case realization?
The term realization means to create or bring into reality. Hence use case realization means to
bring the use case to life or into reality by defining the detail steps and processes required to
implement it.

2. What are the benefits of knowing and using design patterns?
Design patterns are a widely held approach to implementing standard programming constructs.
It is important to know about and to understand both the idea of design patterns and to have a
repertoire of understood patterns. Just as the vocabulary for any discipline is important in order
to be educated in that discipline, system developers should be aware and have a working
knowledge of design patterns.

3. What is the contribution to systems development by the Gang of Four?

The Gang of Four were the first developers to specifically define the idea of design patterns and
to identify several fundamental common design patterns.

4. What are the five components of a standard design pattern definition?

The name, the description of the problem or need, the description of the solution, an example or
diagram of the solution, and specific benefits or consequences of this solution.

5. List five elements included in a sequence diagram.
An actor, objects, lifelines, activation lifelines, messages, and loop control boxes.

6. How does a sequence diagram differ from an SSD?
A systems sequence diagram only has one object, the :system. A sequence diagram explodes
the system object into all of the internal objects of the system. The idea is similar to a black

box test and a white box test — one looks only at the outside while the other observes the details
of what is going on inside.

Systems Analysis and Design in a Changing World, sixth edition 11-2

7. What is the difference between designing with CRC cards and designing with sequence
diagrams?

CRD cards is a more elementary process. It does not try to identify the messages at the same
level of detail as is done with a sequence diagram. CRC cards gives an overview of the process,
but leaves many details to the programmer. Sequence diagram goes more in depth.

8. Explain the syntax of a message on a sequence diagram.

' — means multiply occurring or looping

[true/false] — means test condition which is tested before the message is sent
return-value — is the return value which is returned to the originator of the message
:= -- IS used to denote that a return value exists

message-name — this is the message name or service requested

(parameter-list) — this is the list of data parameters being sent with the message

9. What is the purpose of the first-cut sequence diagram? What kinds of classes are included?

The purpose of the first-cut sequence diagram is to design and describe the logic within the
problem domain objects, or the set of messages and connections between the various problem
domain classes, e.g. business layer logic. Only problem domain classes are included.

10. What is the purpose of the use case controller?

A use case controller class is a completely artificial class that is used to provide a link between
the view layer and the domain layer. A controller helps reduce the coupling between the view
and domain layers in that the view layer does not need to know about all the classes in the
domain layer. It only needs to know about the controller.

11. What is meant by an activation lifeline? How is it used on a sequence diagram?

An activation lifeline indicates the active execution or 'life' of the destination object. It is used
as part of the lifeline of an object, but denoting that period of time when the object is actively
executing some logic.

12. Describe the three major steps in developing the set of messages for the first-cut sequence
diagram.

1. Start with each input message and identify all information and services that it will need in
order to complete the requested service, e.g. identify all internal messages.

2. ldentify all of the classes that will be involved to process.

3. Make sure each internal message is complete with parameters, true/false condition, and
looping.

Systems Analysis and Design in a Changing World, sixth edition 11-3

13. What assumptions do developers usually make while doing the initial use case realization?

Perfect technology assumption
Perfect memory assumption
Perfect solution assumption

14. When doing multilayer design, what is the order in which layers should be designed? Why?

The business logic layer is done first to yield the first-sequence diagram.
Often the data access layer is done next.
Finally the view layer is added.

15. What is the “separation of responsibilities” principle?

Separation of responsibilities is the concept that each unique task within a use case should be
done by a separate method/object. Don't try to jam all of the processing logic into one giant
method in one class. Make the methods and the objects cohesive by having them complete the
task that applies to their primary purpose or reason for being.

16. Explain the two methods of accessing the database to create new objects in memory.

One method is to create an empty shell of an object, say by the controller or a factory. Then in
the constructor of that newly instantiated object, it will call the data access object to read the
database and fill in all of the fields.

The other method is to issue a call to the data access object and have it read the database and
instantiate a new object, or multiple objects, based on what is returned from the database.

17. What symbols are used in a communication diagram, and what do they mean?

Stick figure is an actor

Boxes mean classes

Lines between the boxes are links to pass messages — much like navigation visibility.
Arrows with labels are the messages

18. Explain the components of message syntax in a communication diagram. How does this
syntax differ from that of a sequence diagram message?

[true/false] — is the true/false condition to determine if the message is sent
number — is the sequence number or order of the message on the diagram
return-value — is the value returned to the originating object
message-name — is the name of the requested service

(parameter-list) -- is the data fields that are sent with the message

Systems Analysis and Design in a Changing World, sixth edition 11-4

19. Explain the method syntax on design classes.

'+/-' -- is the visibility. + is visible externally, - is hidden
name — is the name of the method

parameter — is the parameter list required by the method
type — is the type of any returned values by the method

20. What is meant by a dependency relationship? How is it indicated on a drawing?

A dependency relationship is shown by a dashed arrow. It indicates that the item that the arrow
points from (tail) is dependent on the item that the arrow points to (head). If something changes
in the independent item, then the dependent item probably will also have to change.

21. List the major implementation responsibilities of each layer in a three-layer design.

View layer — display forms and screens, capture external events, capture entered data, edit
entered data, forward data to domain layer, start and stop the system.

Domain layer — create and manage problem domain/persistent objects, process business logic.
Data access layer — connect to database, access the database with SQL or equivalent, process
data returned from data base and write to database, disconnect from database.

22. What is the purpose of the adapter pattern?

The adapter pattern is used when a new component needs to be “plugged into” an existing
system, but the API is not exactly the same. The adapter adapts the API of the new component
so that it can fit into the existing system.

23. What common element is found in the singleton pattern and the factory pattern? What is the
basic difference between the two patterns?

Both have code to test if the object exists and if not to create the object. If it does exist just
return it. The difference is that the singleton has responsibility for itself, where the factory takes
responsibility for other objects.

Systems Analysis and Design in a Changing World, sixth edition 11-5

Problems and Exercises

EXPLANATORY NOTE: Chapter 11 refers to two sets problems from Chapter 5 that review the
student’s skills to develop a problem domain class diagram and a use case diagram.
Unfortunately those two sets of problems were not included in the final iteration of Chapter 5.

To do the problem sets in Chapter 11, you will need to either supply the students with a
class diagram and a use case diagram, or alternatively, you may provide the problem descriptions
to allow them to create a class diagram and use case diagram. The second option provides a good
review alternative. Both the diagrams and the descriptions are provided below.

Problems 1 through 7 are based on the solutions you developed in Chapter 5 for problems 1 and
2, which involved a university library system. Alternatively, your instructor may provide you
with a use case diagram and a class diagram.

University Library System

This case is a simplified version of a new system for the University Library. Of course, the
library system must keep track of books. Information is maintained both about book titles and the
individual book copies. Book titles maintain information about title, author, publisher, and catalog
number. Individual copies maintain copy number, edition, publication year, ISBN, book status (whether
it is on the shelf or loaned out), and date due back in.

The library also keeps track of its patrons. Because it is a university library, there are several
types of patrons, each with different privileges. There are faculty patrons, graduate student patrons,
and undergraduate student patrons. Basic information about all patrons is name, address, and
telephone number. For faculty patrons, additional information is office address and telephone number.
For graduate students, information such as graduate program and advisor information is maintained.
For undergraduate students, program and total credit hours are maintained.

The library also keeps information about library loans. A library loan is a somewhat abstract
object. A loan occurs when a patron approaches the circulation desk with a stack of books to check out.
Over time a patron can have many loans. A loan can have many physical books associated with it. (And
a physical book can be on many loans over a period of time. Information about past loans is kept in the
database.) So, in this case, an association class should probably be created for loaned books.

If a patron wants a book that is already checked out, the patron can put that title on reserve.
This is another class that does not represent a concrete object. Each reservation is for only one title
and one patron. Information such as date reserved, priority, and date fulfilled is maintained. When a
book is fulfilled, the system associates it with the loan on which it was checked out.

Patrons have access to the library information to search for book titles and to see whether a
book is available. A patron can also reserve a title if all copies are checked out. When patrons bring
books to the circulation desk, a clerk checks out the books on a loan. Clerks also check books in. When
books are dropped in the return slot, clerks check in the books. Stocking clerks keep track of the arrival
of new books.

The managers in the library have their own activities. They will print reports of book titles by
category. They also like to see (online) all overdue books. When books get damaged or destroyed,
managers delete information about book copies. Managers also like to see what books are on reserve.

Systems Analysis and Design in a Changing World, sixth edition

11-6

Class Diagram and Use Case Diagram for the University Library System

FacultyPatran

pfficeAddress
rampusPhone

eturnedDate

BookTitle Reservation
kitle .
puthor 4 dateReserved
pdition _.—-———-—'__—'_-__—-_-_-‘prioril\(
pubYear dateFulfilled
SBN 0.*
publisher
catalogMumber .
1
0.1
« 1
BookCopy Loan LibraryPatron
- s - 1

copyMumber ; oanlD ame
status | dateOfLoan pddress
dueBack : Etatus kelephone

|

|

|

1

Loanltem
HueDate

Clerk

Search for book
title

<<includes>>

Print book title
report

Reserve a book

e
Delete book copy
information

Check out books

View overdue
books

Check in book

View book
reservations

Enter new book

Stocking Clerk

information

GradStudent

program
pdvisor

UndergradStudent

program
kotalCredits

\

Manager

Systems Analysis and Design in a Changing World, sixth edition 11-7

1. Figure 11-25 is an SSD for the use case Check out books in the university library system. Do the
following:
a. Develop a first-cut sequence diagram that only includes the actor and problem domain classes.

closploan |)

Check Out Books
<<\Views>
CheckOutFarm
_ i
LibraryEMnployee :ChiackoutHandler aP:Patron
| | oo
| I
I uerifyF'ahInn FarLoan {10} 1 | !
| I
| I T:BookTi
I info := getPatroninfiol | | |
I
I | createloan (aP) | alLoan I I
! nama, annr,Jt_aIe, type, status | ! !
e————-Lo—o— - | | |
| | N | |
'checJ-;Oquk (bookiD) | |
I = checkOutBoak {hookiD) | |
|
| | T =glet&o-ok1|tle {bookiD) | |
| createloanitem [aBT,bookiD)
| allLoanitem
I | I I
| | | | |
| | getinfo (1
I I getBCinfa | | I
| | | I
| | I | updateStatus (checkedout)
I
| | | | |
| S e ———
| | title, author, copyf, dueDate | | |
| | title, author, copy#, dueDate | |
4T - ——— = — — o
I:" litke, author, [copy#, dueDate L |
| | I | aRRasarvation [
I
| | | | | |
| | ' | |
[emlust.tl updatefes | |
l
| | | |
| I I
| |

|
= coseloan{)
|

Systems Analysis and Design in a Changing World, sixth edition 11-8

b. Develop a design class diagram based on your solution. Be sure to include your controller class.

CheckoutHandler
BookTitle
rrverifyPatronForLoan (ID)
Hitle: string rcheckoutBook (booklD)
rauthor; string rrcloseloan ()
redition:string
FpubYear:string -
LISBN:string Reservation
Fpublisher:string LdateR
FcatalogNumber:string _z:;“; served
\ Loan L dateFuifilled
etBookTitle (... oanlD

9 () dateOfLoan

status

BookCopy -

rrcreateLoan (info) LibraryPatron

rcheckoutBook (bookID) hame

-
rcopyNumber:int closel.oan () address
Fstatus:string telephone
rdueBack:date

Loanltem rrgetPatroninfo (Id)
=

FupdateStatus (“onLoan”) tdueDate

rrereateBookCopy (...) treturnedDate

Systems Analysis and Design in a Changing World, sixth edition 11-9

2. Using your solution to problem 1, do the following:
a. Add the view layer classes and the data access classes to your diagram. You may do this with
two separate diagrams to make them easier to work with and read.

[

ll. Create an empty object, which goes to DA to fill in the attributes.

IM'wo ways to use the DA classes

Check Out Books . Go directly to DA, which creates the object.
This shows the first method
==\lew=>
CheckOutForm
i
O [aP:Patron T.BookTi aBC:BookCopy
| |
_ | |
LibraryEhnployes :CheckoutHandler BatronDA
| | | BookCopyDA
| | | |

|
velifyPatEEForLuan (o
=

| |
= ak = getPatron (D) createFatran (info)

>

createloan (aP) |

=

rame, addr, lple_ Iype, stalus

|€-—==

title, author.joo}f#- dueDete B

-
—_——————— =

*checkOutock (bookiD)

cIuseLuan ()

=

checkOutBook |hr|>oltl[)}

Titl

al:Loan

|
closeloan []

title, authar, copyl, dueDate
|

7 287:=getsk ookiny

|createBT {infa}

createloanitem (al, hoole}I

|
|
|
|
|
|
A
|
|
|
|
|
|
|
|

aLlLoanltam

aBC = gcletﬁﬂhoolclm

IcreateBC {info)

updateStatus [copyl, checkedout)

=
|

il save (al)
|
|
|
|

saviﬂc [aBC) [
save [all)

|

|

|

|

|
LoanDA

LaonltemDA

Systems Analysis and Design in a Changing World, sixth edition

11-10

b. Develop a package diagram showing a three layer solution with view layer, domain layer, and
data access layer packages.

View

CheckoutForm ke

3. Figure 11-26 is an activity diagram for the use case Return books in the university library

system. Do the following:
a. Develop a first-cut sequence diagram that only includes the actor and problem domain classes.
Note: As with all design solutions, there are several ways to implement the solution. This one assumes
that information that can be scanned from the book includes a bookID and a copy#.

Library — Return Books use case

LibrarJ,'CIerk

beginBookReturn ()

Domain

CheckoutHandler
Patron

BookTitle
BookCopy

Loan

Loanltem

R

Data Access

PatronDA

BookTitleDA

BookCopyDA

LoanDA

LoanltemDA

aBT:BookTitle

CheckoutHandler

*returnBook (booklD, copy#)

succesMsg, title, status

endBookReturn ()

I
|
|
|
|
|
|
|
H

eturnBook (bookID, copy#)

updateStatus ()

|
updateLoan (bookID)

BookCopy

Loanltem

< R T
title, status status status

Have to assume visibility
between BookCopy and Loan

status := updateLoanltem()

Systems Analysis and Design in a Changing World, sixth edition 11-11

b. Develop a design class diagram based on the domain class diagram.

CheckoutHandler

BookTitle
Hitle: string
rauthor: string
redition:string
[PubYear:string kbeginBookReturn ()
[ISBN:string [<———_ returnBook (bookID)
rpublisher:string endBookReturn ()
rcatalogNumber:string

ForeateBT (info)
treturnBook (copy#)

BookCopy Loan Loanltem
lcopyMNumber:int rloanlD: string rdueDate: date
Istatus:string -dateO_fLoz?n: date treturnedDate: date
rdueBack:date -status: string
kcreateBC (info) Fereateloan (info) +createLSoa nitem (info)

kupdateStatus FupdateStatus (“returned”)
tupdateStatus ("returned") up us ()

Systems Analysis and Design in a Changing World, sixth edition

11-12

4. Using your solution to problem 3, do the following:
a. Add the view layer classes and the data access classes to your diagram.

Return Books use case Two ways to use the DA classes &
[L. Create an empty object, which goes to DA to fill in the attributes.
B. Go directly to DA, which creates the object.
ey - —_— This shows the second method
BReturmBook Fonm

. I

' |

| | BookCopyDA LoanitemDA

I CheckoutHandler

| I I I I

Librar|Clerk | | |
| Llegin&mljﬂeturn [} | [[[
|] ! I I |
*returnBogk {booki D]
| e RO BN e |
I 3BT :=getBT (booklD) | create | info) [
- T kTitle
| | I | |
| Yok I |

returnBook [copyl	
I -1	
l	aBC := getBC (bookiD) createBClinfo) BookCopy [

I |
| I l | undale&tatus() | [
	I I -1						
				all:=getll (bookiD) createll {infolaklLoanltemn			
= I	I I						
					=	status := updateloan itemy	

I | 7 |
| I | I |

I | |
| | | | | | | | getloan {LoaniD)
| I | I |)

I | I I
			l		createl (info)
I					

=T
			I	updateStatus (
		save {al)			

| | — —L 1 |
| I [| save (aBC) save (all) |

e e —— i B | ' T
| suue&Msg—.Ltle, status ritle, status | | | | | |
eIndBooI:Renum { 'I [[I | [[[
=T =1 | | |
| |

Loan

LoanDA

Systems Analysis and Design in a Changing World, sixth edition 11-13

b. Develop a package diagram showing a three layer solution with view layer, domain layer, and
data access layer packages.

View Domain Data Aceess
ReturnBookForm

T
I
[}
|

T CheckoutHandler

BookTitleDA

BookTitle BookCopyDA

BookCopy LoanDA

Loan
LoanltemDA

T
\
1
]
\
1
1
]
1
|
\J 4|

Loanltem

Systems Analysis and Design in a Changing World, sixth edition 11-14

5. Figure 11-27 is a fully developed use case description for the use case Receive new book in the
university library system. Do the following:

a. Develop a first-cut communication diagram that only includes the actor and problem domain
classes.

Receive new books

1.1:resutll:=checkForExisting (title)

1:resutll:=checkForExisting (title)
—

—

2:[resultl]result2:=checkForEdition (title, edition) 2.1:result2:=checkForEdition (title, edition)
—_— —
NewBoaokController BookTitle

3:[resultl & result2l]createNewCopy (bookinfo) 3.1:createNewCapy [bookinfo)
—

Actor 4:[result2=null]createMewBook {bookinfo) 4.1:createNewBook (bookinfo)
— —

Mote: result2 must have initial value of null
3.2:createNewBookCopy (copylnfo) i/

4.2:createNewBookCopy (copylnfa) ¢/

aBC:BookCopy

b. Develop a design class diagram based on the domain class diagram.

NewBookController

reheckForExisting (title): boolean
rcheckFarEdition (title, edition): boolean

rereateNewCopy (...)
rereateMewBook (...)

BookTitle BookCopy
Hitle: string
rauthor: string
redition:string ;
FpubYear:string -:;Fx:l;ll'lrl_:zr.lm
FISBMN:strin F stri
S ohere rdueBack:date

Fpublisher:string
rcatalogNumber:string

t-checkFarExisting (title): boolean

reheckForEdition (title, edition). boolean
rereateNewCopy (...) rereateNewBookCopy (info)

FereateNewBook { ...)

Systems Analysis and Design in a Changing World, sixth edition

11-15

6. Using your solution to problem 5, do the following:
a. Add the view layer classes and the data access classes to your diagram.

Receive new books

checkBookTitle { ...)
—=

1:resutll;=checkForExisting (title)
—>

=<\igw>>

2:[result1]result2:=checkForEdition (title, edition)
—_—

enterBookinfo (...)

—_—
Actor

1.2:resultl:=readTitle {title) l/

2.2:result2:=readTitle {title,edition) l/

4.2:saveBookTitle (titlelnfo) l/

AddBookForm

NewBookConiroller

3:[resultl & result2l]createNewCopy (bookinfo)
—=

4:[result2=nulllcreateNewBook {bookinfo)

)

1.1:resutll:=checkForExisting (title)
-

2.1:result2:=checkForEdition (title, edition)
_

3 1:createNewCopy (bookinfo)

4.1:createNewBook [bookinfo)

3.2&4.2:createNewBookCopy {copylnfo)

BookTitle aBC:BookCopy

3.384.3:saveBookCopy {copyinfo) \L

BookCopyDA

b. Develop a package diagram showing a three layer solution with view layer, domain layer, and

data access layer packages.

Wiew

ReturnBookForm

CheckOQutForm

\

\
\
Y

EnterNewBookForm

Damain

Data Accass

CheckoutHandler PatronDA

NewBookController BookTitleDA

Patron BookCopyDA

BookTitle L - LoanDA

BookC
ook-opy LoanltemDA

Loan

Loanltem

Systems Analysis and Design in a Changing World, sixth edition

11-16

7. Integrate the design class diagram solutions you developed for problems 1, 3, and 5 into a

single design class diagram.

NewBookController

reheckForExisting (title): boalean
(reheckForEdition (title, edition): boolean
+ereateMewCopy (...)
rereateNewBook (..)

/

CheckoutHandler

BookTitle

Mitle: string

Fauthor: string
redition:string
FpubYear:string
HSBN:string
Fpublisher:string
FeatalogNumber:string

rverifyPatronForLoan (1D}
reheckoutBook (booklD)
< |rcloseLoan ()
rheginBookReturn ()
rreturnBook (booklD)
rendBookReturn ()

raetBookTitle { ...)
trreturnBook (copyd#)

(reheckForEdition
trereateNewCopy (...)
FereateMNewBook (...)

——

[FcheckForExisting (title): boalean

title, edition): boolean \OanlD
HateOfLoan

Loan

ptatus

J

BookCopy

tcopyNumber:int
tstatus:string
tdueBack:date

rupdateStatus ("onLoan")
trereateBookCopy (...)
rereateBC (info)
rupdateStatus ("returned")

trcreateLoan (info)
trcheckoutBook (booklD)
tcloseloan ()
tFupdateStatus ()

Reservation

rdateReserved
Fpriority
FdateFulfilled

LibraryPatron

ame
pddress
lelephone

FgetPatraninfo { 1d)

Loanitem

é_—"_—/"—"? ldueDate
treturnedDate

rereateloanitem (infa)
rupdateStatus ("returned")

Systems Analysis and Design in a Changing World, sixth edition 11-17

Problems 8 through 14 are based on the solutions you developed for problems 3 and 4 in Chapter
5, which involved a dental clinic system. Alternatively, your instructor may provide you with a
use case diagram and a class diagram.

Dental Clinic System

A clinic with three dentists and several dental hygienists needs a system to help administer
patient records. This system does not keep any medical records. It only processes patient
administration. Each patient has a record with his or her name, date of birth, gender, date of first visit,
and date of last visit. Patient records are grouped together under a household. A household has
attributes such as name of head of household, address, and telephone number. Each household is also
associated with an insurance carrier record. The insurance carrier record contains name of insurance
company, address, billing contact person, and telephone number.

In the clinic, each dental staff person also has a record that tracks who works with a patient
(dentist, dental hygienist, x-ray technician). Because the system focuses on patient administration
records, only minimal information is kept about each dental staff person, such as name, address, and
telephone number. Information is maintained about each office visit, such as date, insurance copay
amount (amount paid by the patient), paid code, and amount actually paid. Each visit is for a single
patient, but, of course, a patient will have many office visits in the system. During each visit, more than
one dental staff person may be involved by doing a procedure. For example, the x-ray technician,
dentist, and dental hygienist may all be involved on a single visit. In fact, some dentists are specialists
in such things as crown work, and even multiple dentists may be involved with a patient. For each staff
person does procedure in a visit combination (many-to-many), detailed information is kept about the
procedure. This information includes the type of procedure, a description, the tooth involved, the copay
amount, the total charge, the amount paid, and the amount the insurance company denied.

Finally, the system also keeps track of invoices. There are two types of invoices: invoices to
insurance companies and invoices to heads of household. Both types of invoices are fairly similar,
listing each visit, the procedures involved, the patient copay amount, and the total due. Obviously, the
totals for the insurance company are different from the patient amounts owed. Even though an invoice
is a report (when printed), it also maintains some information such as date sent, total amount, amount
already paid, amount due and the total received, date received, and total denied. (Insurance companies
do not always pay all they are billed.)

The receptionist keeps track of patient and head-of-household information, and will enter this
information in the system. The receptionist will also keep track of office visits by the patients. Patient
information is also entered and maintained by the office business manager. In addition, the business
manager maintains the information about the dental staff.

The business manager also prints the invoices. Patient invoices are printed monthly and sent to
the head of household. Insurance invoices are printed weekly. When the invoices are printed, the
business manager double-checks a few invoices against information in the system to make sure it is
being aggregated correctly. She also enters the payment information when it is received.

Dental staff are responsible for entering information about the dental procedures they perform.
The business manager also prints an overdue invoice report that shows heads of household who are
behind on their payments. Sometimes dentists like to see a list of the procedures they performed during
a week or month, and they can request that report.

11-18

Systems Analysis and Design in a Changing World, sixth edition

Class Diagram and Use Case Diagram for Dental Clinic System

Invoice
HHInvoice
copayAmtpue invoicelD
copayPaid D, dateSent
Insurancelnvoice . total Pai
Payment 0.1 1 ami-reviousiyrai
0.+ datePaid
inf.suredAmtE_)ue PaymentiD amtRefused
insuredPaid date
amount
0. .2 1.2
1.
g
! 0. '
Household
! Procedurs
HHID InsuranceCo
headName -
address procedureDescription
telephone {key} |- ——_| COMpanyName totalamt
visitCopay ' 1 address ~ copayAmt
lastPaymentDate contactName insurancePaid
balance contactTelephane g insuranceDenied
descriptionOfTeeth
"
1.7
1.t 1.2
Patient OfficeVisit MedicalStaft
1
patientlD {key} .
name 1 1.4 U;IJSI?D staffiD
birthdate a imt name
gender c’gp:ypai o address
firstVisitDate :0 pa YCCI de telephone
lastVisitDate pay fitle-position

Systems Analysis and Design in a Changing World, sixth edition 11-19

Record office visit
information

Maintain patient
information

Receptionist
Maintain dental staff

Print invoices

Enter payment ceManager

View procedure
information

V4

Print overdue
accounts

Record dental
procedure

Dental Staff

Print procedure report

JWawm

Systems Analysis and Design in a Changing World, sixth edition 11-20

8. Figure 11-28 is an SSD for the use case Record dental procedure in the dental clinic system. Do
the following:
a. Develop a first-cut sequence diagram that only includes the actor and problem domain classes.

DentProcControl aP:Patient avMisit

Dentdifide T

findPatient (name, telel) l

I

I I
I I
I ~1 findPatient (name, teled#) l
| | = avi=findCurrent\Visit () |
I I
I

I

I

medical Staff

*enterﬂlescnplinn {dentistD, hygienistlD, description) |

—

I
enterDescription (dentistiD, hygienis|D, description)

al |
I *status = verifyMS (staffiD)

| [1

I
I
I
|
[[[status OK] createProcaedure [dentistlD, higienistiD E!EEIC.lipil{)n]
| o
I

aP-Procedure
L J 7
successhsg
updata'erificationMessage |

I

- ——————] B | I |
I
I

b. Develop a design class diagram based on the domain class diagram.

Patient DentalProcController

FpatientlD {key}: string
rhame: string IHindPatient (...)
+birthdate: date
Fgender: string
HirstVisitDate: date
HastVisitDate: date

[renterDescription (...)

rshowProcedure (name, tel#, month) Procedure

rgetPatientinfo (mnth) —
trcreatePatient (patinfo) rprocedureDescription: string

lrendNewPatient () :g:g’;:;ﬂﬁ“g;{;?w
HinsurancePaid: currency
HinsuranceDenied: currency
FdescriptionOfTest: string

HindProcs (visitiD)
OfficeVisit [rcreateProcedure (stafflD, desc)

Fvisitl D {key}: string
date: date
FcopayAmt: currency
FcopayPaid: currency

lcopayCode: string 2?;:5 élai:;}; string
showProcbyVisit (month) | address: string

rrenterDesicription (dentistlD, hygienistlD, desc) Helephone: string
Hitle-position: string

MedicalStaff

verifyMS (staffiD)

Systems Analysis and Design in a Changing World, sixth edition

11-21

9. Using your solution to problem 8, do the following:
a. Add the view layer classes and the data access classes to your diagram.

DentdlAide

=

EnterProcedureFom

o

DentProcControl

findPatisht (name, telef)

=

I
|
|
=

ak = findPatient [name, teled]
|

a\"::ﬂndICurrent\tisit [patientiD)

PatientDA isiDA
| |
| |
|| R —
createPat-eInt]	
1 |
medicalStafiDA

| [
*enterDescription iderllkstID. hygienistiD, description)

>

=

=
I
|
|

enterDescription [delntistID. hyngisilo. das;l'iption]

L I R
LE updateVﬂlﬁcatlonMassage | successhisg [|
| | T | | |
| cIuse*'atientFile }] | | |
-—“| -“| writePatient {aP} | |
_—
|
writelisit {av) |

—_—
crear—ePfotedure {dentistiD, hyglenstiD, description)
‘———E'T—:‘ aP-Procedure

r—"l
|
|
|
|

|
|
|
|
|
| createlisit {) |
|
|
|
|
|

|
status = verifyMS (staffiD)

Fither selution warks and is correct,

There are two ways to use the DA objects and business objects together.
L. As shown here, the first message goes to the DA object, which reads the db and creates a new abject.

2. As shown in the next use case (Enter new patient), the first message goes to the ohject, which creates an empty
phject. The object then sends a message to the DA object to fill in all Ithe attributes.

ProcedureDA

T
writeProc (a PJ|

Systems Analysis and Design in a Changing World, sixth edition 11-22

b. Develop a package diagram showing a three layer solution with view layer, domain layer, and
data access layer packages.

. -
Vie—lw Layer Business Layer Data Access Laye

Patient PatientDA

‘ EnterProcedureForm ‘

OfficeVisit OfficeVisitDA

Medical Staff Medical StaffDA

Procedure ProcedureDA

T
|
|
|
|
|
]
i
\II,

Systems Analysis and Design in a Changing World, sixth edition

11-23

10. Figure 11-29 is an activity diagram for the use case Enter new patient information in the

dental clinic system. Do the fol

lowing:

a. Develop a first-cut sequence diagram that only includes the actor and problem domain classes.

endMewPatient [)

NewPatControl aH:Household al:InsuranceCo aP:Patient
I | | |
Adlor | | | |
findHH (telet)			
= findHH (tele#)			
r< HHInfo]			
[HHInfo Null] create HH (HHInfo)			
=] createHH (HHInfo)			
	findinsuranceCo [companyName)		
1)			
I 1			
r< HHInfo]			
createPatientInfo (patientinfo)			
= reatePatient {patientnfo)			
createPatient {patientinfo)			
		~1	
[(patientinfo —l			

b. Develop a design class diagram based on the domain class diagram.

NewPatientCantroller

HindHH (tele#)
tcreateHH (Hhinfo)

Household

FHHID: string
theadMame: string
raddress: string
Helephone: string {key}

/#isitﬂopay: currency

kfindHH({tele#)

wcreatePatientinfo (patientinfo) createHH (Hhinfo)
rendNewPatient () lcreatePatient (patientinfo)
Patient InsuranceCo

tpatientlD: string {key}
Fname: string
tbirthdate: date
Fgender: string
HirstVisitDate: date
HastVisitDate: date

rcompanyName: string
raddress: string
rcontactName: string
rcontactTelephone: string

[rcreatePatient(patientinfo)

[HindInsuranceCo(companyName)

Systems Analysis and Design in a Changing World, sixth edition

11-24

11. Using your solution to problem 10, do the following:
a. Add the view layer classes and the data access classes to your diagram.

HouseholdDA
I
|
P MewPatControl aH:Household |
MNewPatWindow
| I [|
Ackor | | | |
findITIH [telet)			
“;—l findHH (telet)			
_ =slreadHH (aH) Insuran DA			
r: I-rHInfo 1 i			
[HHInfo Mull] freate HH {HHInfa)			
‘:-] createHH (HHInfo) :;.J			
	findinsuranceCo (comganyMame)	PatentDA	
'—E- al:InsuranceCo			

T
| | readinsurance (al

|

r{ aH, al | |
! [

|

| ‘:-]createPatl'ent {patientnfa) | |
| == creatl:Patienl (patientinfo) L
| | | I ' aP:Patient
_______ L __ | |
r< paﬁientlnfa —l | | | | |
| endNer.'.'Patient () | | | | | |
— endMewPatient {)
I il - I |
- |

| endMewPatient { |
!

e
| | | | | fLuritePat (aP)

There are two ways to use the DA objects and business objects together.
. As shown in here, the first message goes to the object, which creates an empty object. The object then sends
b message to the DA object to fill in all Ithe attributes.

2. As shown in the previous use case {Record dental procedure), the first message goes to the DA object, which
eads the db and creates a new object.

Either solution works and is correct.

Er’lteHH (aH) | | ’ﬁ
| |

Systems Analysis and Design in a Changing World, sixth edition

11-25

b. Develop a package diagram showing a three layer solution with view layer, domain layer, and

data access layer packages.

View Layer

| EnterPatWindow |

T

Business Layer

T

Household

Patient

InsuranceCo

Data Access Layer

| HouseholdDA ‘

InsuranceCoDA

Systems Analysis and Design in a Changing World, sixth edition 11-26

12. Figure 11-30 is a fully developed use case description for the use case Print patient invoices in
the dental clinic system. Do the following:

a. Develop a first-cut communication diagram that only includes the actor and problem domain
classes.

1: patient, visit, prodedure :=

.1: showPatientPri n
showPatientProcedure (name, tele, month} 1.1: shawPatientProcedure (name, tele, month)

—
2.1: showPayments {tele, dates)
2: payments := showPayments (tele, dates)

PaymentController aHH:Household

E——
3.1:p ice {manth)

3: printedinvaice := printinvoice (tele, month)

Actor 1.2: showProcedure (name, tele, month)

2.2: showPayments (dales}/
3.5: findAllPayments [daty

3.2: findAllProcs (name, tele, month)

Payment aPatPatient
1.3: showProcByVisit { month)

e

3.3: findAllProcByVisit { month)

e

1.4: findProcedure {visitiD)

aVv:Visit aPro:Procedure
3.4: findAllProc (visitiD)
e

For a given household there may be multiple patients with multiple visits with multiple procedures.

Systems Analysis and Design in a Changing World, sixth edition 11-27

b. Develop a design class diagram based on the domain class diagram.

+ ller i
P:aymentControlle Invoice

tinvoicelD: string

FshowPatientProcedure (name, tele, month) rdateSent: date
kshowPayments (tele, dates) ttotal: currency
tprintinvoice (tele, month) ramtPreviouslyPaid: currency
rdatePaid: date
\ tamtRefused: currency
Household
FHHID: string

FheadMName: string Payment

raddress: string
Helephone: string {key}
rvisitCopay: currency

payment|D: string
date: date
amount: currency

rshowPataientProcedure (name, tel#, month) rshowPayments (dates)

[rshowPayments (tel#, dates) [HindAllPayments (dates)
trprintinvoice(tele, month)

Patient OfficeVisit Procedue (StaffAndVisit)

tpatientlD: string {key} . .

Iname: string :;Istlupc-l stl:ng {key} lprocedureDescription: string

Fbirthdate: date ate: : ¢ FtotalAmt: currency

tgender: string -capayprr_nc{‘currency rcopayAmt: currency

HirstVisitDate: date reopay ald .-cu[rljency r-insurancePaid: currency

HastVisitDate: date roopayCode: string rinsuranceDenied: string
FdescriptionOfTest: string

rshowProcedure (name, tele, month) trshowProchyVisit (month)

riindAllProc (name, tele, month) wHindAlProcsByVisit (month) HindProcedure (visitiD)

[Hind AllProcs (visitiD)

Systems Analysis and Design in a Changing World, sixth edition

11-28

13. Using your solution to problem 12, do the following:
a. Add the view layer classes and the data access classes to your diagram.

Print Patient Invoices

1: patient, visit, prodedure :=
showPatientProcedure (name, tele, month)

—_— 1.1: showPatientProcedure (name, tele, month)

—
2: payments := showPayments (tele, dates) 2.1: showPayments {tele, dates)
: ' 1.2.1: createPatient (name, aHH)

E—
Print\(:‘.}:;isc‘;;;reen —— PaymeniController HouseholdDA aHH: Household
— E——
3.1: printinvaice {month)
Actor
—_— 2.2: showPayments (dates)
3: printedinveice = printlnvoice {tele, month)

///1.2: showProcedure (name, tele, month)
3.5 findAllPayments (dates) /
3.2: findAllProcs (name, tele, menth)

1.2.1: createPatient (name, aHH)

2.2.1: createPayment {Info)

Payment PayreniDA PatientDA aPat Patient

1.3: showProcByVisit | njy

3.3: findAllProcByVisit { month)

1.4: findProcedure {visitiD) 1.4.1: createProcedure {aV)

E—
VisitDA aV:Visit ProcedureDA aPro:Procedure
—_— 3.4: findAllProc (visitiD)
1.3.1; createVisit (aPat, date) _—

b. Develop a package diagram showing a three layer solution with view layer, domain layer, and

data access layer packages.

View Layer Business Layer Data Access Layer

HouseholdDA

! - InvoiceController
‘ PrintinvoiceScreen ‘ I~ —

Hausehald PatientDA

Patient
ien OfficeVisitDA

OfficeVisit
PracedureDA
Procedure

Invaice DA

Invoice

Systems Analysis and Design in a Changing World, sixth edition 11-29

14. Integrate the design class diagram solutions that you developed for problems 8, 10, and 12
into a single design class diagram.

MewPatientController

P:aymentController

lrshowPatientProcedure (name, tele, month) HfindHH (tele#)

rshowPayments [tele, dates)
rprintinvoice (tele, month)

InsuranceCo

FcompanyName: string
raddress: string
FeontactName: string
FeontactTelephone: string

kfindinsuranceCo{companyMam|
3

frereateHH {Hhinfa)
createPatientinfo (patientinfo)
FendNewPatient {)

Household

Invoice

knvoicelD: string
rdateSent: date
Hotal: currency

FHHID: string
theadMame: string
taddress; string
Helephane: string {key}
FvisitCopay: currency

tamtPreviouslyPaid: currency
/ﬁateF’aid: date
ramtRefused: currency

HindHH(tele#)
kcreateHH {Hhinfa)
[rcreatePatient (patientinfo)

FshowPayments (tel#, dates)
Fprintinvoice(tela, month)

rshowPataientProcedure (name, tel#, month)

Payment

tpaymentlD: string
rdate: date

Famount: currency

rshowPayments (dates)
HindAllPayments (dates)

OfficeVisit

FvisitlD: string {key}

Patient

Fdate: date

rpatientlD: string {key}
Fname: string
rbirthdate: date
rgender: string
HirstvisitDate: date
HastVisitDate: date

FcopayAmt: currency
reopayPaid: currency
FcopayCode: string

Procedue (StaffAndVisit)

rprocedureDescription: string

rshowProchyVisit (month)
riindAllProcsByVisit (month)

[rcreatePatient(patientinfo)

rfindAllProc (name, tele, month)
roetPatientinfo (mnth)
rendMewPatient)

FshowProcedure (name, tele, month)

renterDesicription (dentistlD, stafflD, desc)

HotalAmt: currency
\-mpayA mt: currency
r-insurancePaid: currency

rinsuranceDenied: string

rdescriptionOfTest: string

HindProcedure (visitiD)
HindAllProes (visitiD)

MedicalStaff

/

DentalProcCantroller

HindPatient { ...)
FenterDescription {...)

rereateProcedure (stafflD, desc)

FstafflD {key}): string
Fname: stirng
Faddress; string
Helephona: string
Hitle-position: string

[rverifyMS (staffiD)

Systems Analysis and Design in a Changing World, sixth edition 11-30

15. In Figure 11-31, the package on the left contains the classes in a payroll system. The package
on the right is a payroll tax subsystem. What technique would you use to integrate the payroll tax
subsystem into the payroll system? Show how you would solve the problem by modifying the
existing classes (in either figure). What new classes would you add? Use UML notation.

Payroll System | Payroll Tax Subsystem—l

Employee PRollTaxCalculator

PRTHourly (pp, amt, dep)

calcHourlyPayrollTax (payperiod, payAmt, depend) PRTSal(pp, amt, dep)
calcSalaryPayrollTax { month, salary, depend) f
TaxCalcAdapter

<<zinterfaces=>
TaxCalculator

getHourly Tax(payperiod, payAmt, depend)
<}' ______ [... PRTHourly (payperiod, payAmt, depend)

getHourlyTax(payperiod, payAmt, depend)
getSalaryTax(month, salary, depend)

getSalaryTax(month, salary, depend)
{... PRTSal (month, salary, depend)

)

Systems Analysis and Design in a Changing World, sixth edition

11-31

Solutions to End-of-Chapter Cases

Case Study: MoveYourBooksNow.com Book Exchange
For this case, develop the following diagrams:

1. A domain model class diagram

PhysicalBook
SellerAccount isbn
title
author
serviceRating 1 .)
publisher
openBalance .
publishDate
0.1 lastPaymentDate .
~ lastPaymentAmt condition
Parson / astray price
keywaords
persanlD saleStatus
name
address
telephone 1 1
e-mailAddress N BuyerAccount
creditCardinfo
lastPurchaseDate
lastPurchaseAmt
1 0.1
'1”0;
BookOnOrder
Order
dateEmailTaoSeller
dateShipped
orderiD 1 1.* e
amtDueSeller
orderDate :
totalAmount sellerPaidStatus
status sellerPaidDate
buyerSatisfactCode

buyersatisfactComments

Systems Analysis and Design in a Changing World, sixth edition

11-32

2. A use case diagram

Seller

Buyer

Notify shipment
made

Send check to seller
Search for a book
<zincludess»

<zincludess»

Order a book

Enter prablem with
purchase

Enter Satizfaction Code

Notify seller about
purchase 7

MoveYourBooks.com
Employee

Systems Analysis and Design in a Changing World, sixth edition 11-33

3. SSDs for two use cases, such as Add a seller and Record a book order

Add a seller
Systerm
I
seller |
| enterSellerinfo (info...) |
I |

confirmation email

email server |

Record book order
i System

Li J Find Book Use Caseﬁ

listOfMatches (title, author, ..}

addToCart [ISBN)

) confirmation |
for kach book desired

| checkout () l
| ~1

.é _______________________

| [no account] displayAccountietup () | Open new account use case
[no account] enterAccountinfo {name, billingAddress, CC, ..)

L

rﬁ newAccountConfirmation —l

| confirmPurchase [) |

N - ___ 1

| mailToSeller {purchaselnfo, purchaserinfo) |

email server

Systems Analysis and Design in a Changing World, sixth edition

11-34

4. Afirst-cut sequence diagram for each of the above use cases

Add a seller

SellerController

aP:Person

f
selier enterSellerinfo (info...) l

1 createPerson (info...) |

a%A:5ellerdccout

createSellerAccount (personiD)

Systems Analysis and Design in a Changing World, sixth edition

11-35

Record book order

IndexOfBonks

PurchaseCantroller

aBP: Person (Buyer)

2B00:BookOnOrder | | ap:PhysicalBock

=) findBook {title| authr.aer |iskr) |

=
| [Lo____ | |
N resultset [| [[
| listOfMatches (title, author, -] | | | | |
| addTaCart [ISEN) | | | | |
[first Book] createQrder {) L
| | I a0:0Order | |
[| addBookToOrder (ISBN) | I [[
1
| | | | EreateBOO (1SBN) |
| getBookinfo (ISBN)

| | | | |
| | | | | r'ﬁtl &, author, price, —l
| | | | L___J |

firmatian

| = = = = = = — —— = — gonfirmaton |

______________ confirmation | I
rE_ confirmation —l | | | |
far chh book desirad | | | | |

i
| checkout (useriD OR null) | | | | |
| findUser [usralD, al) | | |
______________ -

[account exists] displayAccountinfo (name, CC, ...) | | | |
|1E | | | | |
| [no account] displayfccountSetup () | | | | |
I I

no account] enterAccauntinfa {name, billin ress, CC, ..
[] fa(billingAdd ce, . | | | |
= 1
CreatePerson (name, billingAddress, CC, ..)		
		createBuyerAccount (CC,..) L
1 Buyerfccount

rrE newAccountConfirmation —l

| confirmPurchase {) |

| emgiToSe

email Server

confirmPurchase |)
%J campleteQrder (|

| | SellerAceaunt |

=
emallTaSeller (purchaselnfo, purchaserlnfo)
= -

ller {purchaselnfo, purchaserinfo)

— [*foreachbook]updateSAcent [amt) |
1

Systems Analysis and Design in a Changing World, sixth edition 11-36

5. An integrated design class diagram that includes classes, methods, and navigation attributes

PhysicalBook

Hishn: string

title: string
rauthor: string
rpublisher: string
rpublishDate: date
rcondition: string
rprice: currency

tkeywords: string SellerAccount
tsaleStatus: string

rserviceRating: string
petBookinfo (ISEN) topenBalance: currency
HastPaymentDate: date
HastPaymentAmt: currency

Person
LpersoniD: string /createSellerAcoount {personiD)
rname: string
taddress: string
rtelephane: string BuyerAccount

re-mailAddress: string

rcreditCardinfo: string
findUser (USE”F‘= a0) HastPurchaseDate: date
Crea_tepersm (info...) HastPurchaseAmt: currency
confirmPurchase ()

createBuyerAccount (CC,...)
completeOrder (amt)

BookOnOrder
Order tdateEmailToSeller: date
rdateShipped: date
tamtDueSeller: currency
tsellerPaidStatus: string
tsellerPaidDate: date
tbuyerSatisfactCode: string
[first Book] createOrder () tbuyerSatisfactComments: string
pddBookToOrder (ISBN)
rompleteOrder () createBOO (ISBN)

torderlD: string
torderDate: date
ttotalAmount: currency
kstatus: string

Systems Analysis and Design in a Changing World, sixth edition 11-37

Running Cases: Community Board of Realtors

In Chapter 3, you identified use cases for the business events for the Community Board of
Realtors. In Chapter 5, you elaborated on those use cases. In Chapter 4, you identified the classes
associated with the business events. Using your solutions from those chapters, develop:

1. Afirst-cut DCD by using the problem domain classes that you identified in Chapter 4.

ListingController RealEstateOffice

rofficeNumber: int {ky}
rname: string
LofficeManagerName: string

raddress: string
rphone: string

Listing

HistingNumber: string
Faddress: string
FyearBuilt: string
tsquareFeet: number
rnumberBedrooms: integer i
rnumberBathroom: number \—name: string .
LownerName: string tofficePhone: s.trlng
rcellPhone: string
remailAddress: string

RealEstateAgent

tagentNumber: string

rownerPhone: string
raskingPrice: currency
tstatusCode: string

2. Afirst-cut communication diagram for the Create new listing use case (domain classes and
controller class only).

Systems Analysis and Design in a Changing World, sixth edition 11-38

1: findAgent (agentName)
—_—

2: addPropertylnfo (listingInfo...)
_

:NewlListingController

Actor

1.1: agentStatus := getAgentStatus () /
/2,1: addPropertyInfo (listingInfo...)

RealEsateAgent Listing

2.2: AddListing {listinglnfo...)
—_—=

3. Afirst-cut sequence diagram for the Update agent information use case (domain classes and
controller class only).

Update agent information

:AgentController :RealEstateOffice aREA:RealEstateAgent

[[
MLS kelerk | |
\ | |

|
|
|
aREA := findAgent (office, name) [[
: ' aREA = findAgent (office, name)
| | aREA = findAgent [office, name) |
|
|
|
|

updateAgent (info..)

updateAgent (info...)

updateAgent (info...)

4. A multilayer sequence diagram for the Update agent information use case that includes domain
classes and data access classes.

5. A separate multilayer sequence diagram for the Update agent information use case that includes
the domain classes and the view layer classes.

Systems Analysis and Design in a Changing World, sixth edition 11-39

Update agent information

:REOfficeDA :REAgentDA

“<views>

:AgentForm
I

I I
MLS lclerk | [|
| | | |
| |

| |

|

:AgentController :RealEstateOffice aREA:RealCstateAgent

aREA := findAgent (office, npme})
_

aHEnL := findAgent (office, name)

aREA :=findAgent (office, name)

aREQ := {readOffice (name)

\
aREA := findAgent (aRED, name)
L

\
\
| I
| I I

| | | f

‘ | | | | aREA := readAgent {name)
| |

lupdateAgent (info...) |

| |
‘ updateAgent {info...} [| [|
| updateAgent (info...) | | |
I—)J updateAgent (info...) [

| | | ' |

\
| | writefgent (aREA)
| | | | —

6. A final design class diagram that includes the classes from both use cases. Include elaborated
attributes, navigation arrows, and all the method signatures from both use cases.

Systems Analysis and Design in a Changing World, sixth edition

11-40

Controller

RealEstateOffice

kfindAgent (agentName)
raddPropertylnfo (listinglnfo...)
kfindAgent (office, name)
lFupdateAgent (info...)

Fname: string
lofficeManagerName: string
laddress: string

Fphone: string

findAgent (office, name)
[rupdateAgent (info...)

Listing

HistingNumber: string
laddress: string

lyearBuilt: string
lsquareFeet: number
FnumberBedrooms: integer
FnumberBathroom: number
FownerMName: string
lownerPhone: string
FaskingPrice: currency
tstatusCode: string

leAddListing (listingInfo...)

RealEstateAgent

FagentNumber: string
Fname: string
lofficePhone: string

lcellPhone: string
{\\-emaimddress: string

lFagentStatus := getAgentStatus ()
raddPropertylnfo {listinginfo...)
HfindAgent (office, name)
kupdateAgent (info...)

Systems Analysis and Design in a Changing World, sixth edition 11-41

Running Cases: The Spring Breaks 'R* Us Travel Service

In Chapter 3, you identified use cases for the business events for the Spring Breaks ‘R’ Us Travel
Service. In Chapter 5, you elaborated on those use cases. In Chapter 4, you identified the classes
associated with the business events. Using your solutions from those chapters, develop:

1. Afirst-cut DCD by using the problem domain classes you identified in Chapter 4.

Note: This DCD is an expanded one, which also includes the classes that were added in Chapter 5 to
support the use cases. Student answers will not have as many classes.

Resort Accommodation

‘ rname: string
taddress: string

Ftelephone: string

remail: string

roomNumber: string
rtelephone: string
tnumberOfBeds: integer

ResortController

Facility

ReservationController Reservation Fname: string

rdescription: string
tlocation: string
Fcapacity: integer

rarrivalDate: date
tdepartureDate: date
rnumberOfBeds: integer

Comment

Traveler Interest Activity

ldateTime: time

Frating: string

Fname: string

Fnarrative: string

Group

FresponsiblePerson: string
tnumberinGroup: integer

2. A first-cut communication diagram for the Add a resort use case (domain classes and controller

class only).

1: name := searchForResort {(name)
=

2: createResort (name, description, ...)
[

taddress: string
ttelephone: string
temail: string

Fdescription: string
FHintensity: string

tdescription: string
fstartDateTime: time
rendDateTime: time

v

PersonAccount

PaymentTxn

TravelerinRoom

tbalanceAmt: currency
tCcinformation: string
tdateLastPayment: date
famtLastPayment: currency

tamountPaid: currency

ldatePaid: date
tHypeOfPayment: string
HpaymentDetails: string

kcheckinDateTime: time
checkOutDateTime: time

1.1: name := searchForResort (name)

* 3: createFacility (name, description...)
%

Clerk

- =

2.1: createResort (name, description, ...}

e

:Resort

:ResortController

* 4: createAccommodation (number, description, beds...)

* 3.2: createFacility (name, description.u)/

:Facility

* 3,1: createFacility (name, description...)

* 4.1: createAccommodation
(number, description, beds...)

* 4.2: createAccommodation
(number, description, beds...)

v

:Accommodation

Systems Analysis and Design in a Changing World, sixth edition

11-42

3. Afirst-cut sequence diagram for the Book a reservation use case.
Note: Students can use the SSD given in Chapter 5 or the CRC cards from Chapter 10 as guidelines.

Q

ResenvationController

aRes:Resort

Stutl!ent

| findResorts] findResorts (]
e ———

aTrav:Traveler aRsv:Reservation Personfccnt
:Facility aGrp-Group :Payment Txn

_______ ﬁ list of Resorts —l

ré list of Resarts |

|
showResartDetalls [name]
==howResortDetails [name

checkAvailability (aRes, roomRequest, date)

| checkAvailability [raomRequest

1

|
requestReservation
{aRes, dates, rooms, student|D, group|D)

requestReservation
{aRes, dates, rooms, studentiD,

| amtDue

1
payForReservation {personalinfa, Paymentinfa)

Accommmodation

list, desc = petFacilities [)

I

| list, desc

|
, date]

|
|
|
|
= getRoFmTwes] |
|
|
|

avallablefooms := checkavailability {roomPegues

t, date) -

grouplD)

| aTraw = verifyTraveler |

[grpResrv] aGrp = verifyGroup | I|

|
| amtDue = createReservation (dates, rooms, alrav, aGrp)
|

payForReservation [personalinfo, Paymentinfo)

Lé _______ —reservation confirmation
reservation confirmation!
1

payForfeservation [Paymentinfo)

=1)
createPaymentTxn (Info)

4. A multilayer sequence diagram for the Book a reservation use case that includes domain classes

and data access classes.

5. A separate multilayer sequence diagram for the Book a reservation use case that includes the
domain classes and the view layer classes.
Note: Due to the complexity of this diagram, it will be best to divide this use case into two pages. A

good dividing point is before checkAvailability () message.

Systems Analysis and Design in a Changing World, sixth edition 11-43

6. A final design class diagram that includes the classes from both use cases. Include elaborated
attributes, navigation arrows, and all the method signatures from both use cases.

Resort
name: string Accommaodation
ResortController address: string :
telephone: string roomiumber; string
emall: string telephone: string
numhberCQfBeds: integer

tHindResorts [] ’—,/_,?

froreatedccommaodation

[number, description, beds...)
- getRoomTypes |)

jf-createﬁesort (name, description, ..}
frshowResortDetails (name)

[rchecktvailability [roomRequest, date)
frrequestReservation

{aRes, dates, rooms, student! D, groupl D)
tpayForReservation [personalinfo, Paymentinfa)
freateFacility (name, description...|

reatedccommedation (number, description, beds..]

ReservationContraller

Facility

name: string
description: string
lacatian: string
capacity: integer

Reservation

arrivalDate: date
departureDate: date
nurnberOfBeds: integer

[rereatefeservation (dates, rooms, alray, aGrp) | roreatefacility (name, description...)
fcheckAvailability [reomRequest, date) tretFacilities [|

Comment
dateTime: time Traveler
Fating: string h_\
name: string Interest Activity

narrative: string

address: string
telephane: string
emall: string

description: string.
startDateTime: time
endDateTime: time

description: string

F''_'_'___,_,_._‘,:D intensity: string

fwerifyTrawveler |)
Group J PaymentTxn
PersonAccount amountPaid: currency TravelerinRoom

respansiblePersan: string
numberi nGroup: integer

balanceAmt: currency

fwerifyGroup |)

Ceinformation: string
datelastPayment: date
amtLast Pa','ment; CUFFENTY

trpayForReservation | Paymentinfo)

datePaid: date

| —= typeOfPayment: string

paymentDetails: string

froreatePaymentTuan (infia)

EheckinDateTime: time
EheckOutDateTime: time

Systems Analysis and Design in a Changing World, sixth edition 11-44

7. A package diagram of the four subsystems (Resort relations, Student booking, Accounting and
finance, and Social networking) that includes all the problem domain classes.

Resart Relations
Accounting and Finance

Resort

Accommodation
PersonAccount

Facility

TravelerinRoom

-
o
=
3
@
3
=
5

Student Booking Social Networking

Comment

Traveler

Reservation Interest

Group Activity

Systems Analysis and Design in a Changing World, sixth edition 11-45

Running Cases: On the Spot Courier Services

In Chapter 10, you developed a first-cut design class diagram and CRC card solutions for two use
cases: Request a package pickup and Pickup a package. Let us extend your solution from that
chapter by developing the following:

1. Afirst-cut sequence diagram for each use case (domain classes and controller classes only).

Request package pickup

:RequestController aC:Customer aP:PickupRequest

Custbmer

\ |
| verifyCustomer (name, pwd) ‘ |
| : =) aC := verifyCustomer (name, pwd) |

| |

| processTypeOfService (type)

recordTypeOfService (type)
| i =) aP := createPickupRequest (type)
processTOInformation {name, address, ...)
storeTOInfo {...
| 7 - |

storeTOlInfo {...)

processSizeWeight (size, weight,...) |
L J storeSizeWeight (...)

| ‘ /] finalizeRequest (...)

| I]

ﬁ_ ___________________] package information

- ¥V _ N

Systems Analysis and Design in a Changing World, sixth edition 11-46

Pickup a package

aPR:PickupRequest May £ Custormerfccount

PickupController aC:Customer | a®:Package | ‘Employee | ayment

Custbmer | | | [[| !
| | | | | | | |

[no labed] requestinfa = | | | |
| |

findPickupRequests {customerMame) |
e

[| [no label] aPR = | | | | |
findPickupRequests {customerName) |
	=				
	aPR:=showReguest()				
o					
[aBR] aP := processPackageRickup)				
P := processPackagePickup	aPR)				
L =l 3P = createMewPackage {aPR)					
		> ok =getEmployee()			
e

| T
| | | recerdEvent (aP, aE) |
[no label and no request| aP = | |
processMewPackageinfo (name, address, ..) | | updatedccount | allfnt) |
L |

| I >
| aP =processNewPackagelnfo (name, address, .., | | | | |
| | ‘:;-l aP := createMewPackage (...) | | | |
} = af:= g:—tEm?los-eet) | |
| | | | telcordE'.'ent [aP, aE) 1 |
| | | | | | |
[needlabel] requestLabel [aP) | | | | |
[= Ineedlabel] printLabel {aP) | | |
e
e J | | 7] | | |
label | |
| | | | | | | |
| | |
[cash custamer] processPayment (paymentinfa) | | | | | | |
e
|
| JJ;:IIFOCESSP’E','MEHT {paymentinfo) | | | | |
e
| | = | updalteﬁ\(wuntl amt) | - |

T
| | | | cre;atepavmentTmi aC, aP, amtil [

. | I T
[é T confirmation | confirmation | | |

Systems Analysis and Design in a Changing World, sixth edition

11-47

2. A multilayer sequence diagram for each use case that includes domain classes and data access

classes.

3. A separate multilayer sequence diagram for each use case that includes the domain classes and
the view layer classes. (We won’t combine view and data access layers on the same drawing. It

makes the drawing too complex.)

Request package pickup

:CustomerDA

<<view=>

:RequestController
ReguestForm

aC:Customer

Custbmer [[

|
verifyCustomer (name, pwd) | |
| ,-] verifyCustomer {(name, pwd) |

|
aC := verifyCustomer (name, pwd)

processTypeOfsService [type) |

processTypeOfService (type)

 recordTypeOfService (type)
1

processTOInformation (name, address, ... }
|

aC := readCustomer {)

aP := createPickupRequest [type)
|

:PickupRegDA

aP:PickupReguest

storeTC1|nfo (..

finalizeRéquest (...)

=]
|
|

| .
I =] processTOInformation (... } storeTOInfo () |
processSizeWeight (size, weight,...)

| | . .
[= processSizeWeight {...) | storeSizeWeight ... |
| | | 71

______________ -=————————————————
|-< ———————————— f package information —| package information

writePReq {aP)

Systems Analysis and Design in a Changing World, sixth edition 11-48

4. Afinal design class diagram that includes the classes from both use cases. Include elaborated
attributes, navigation arrows, and all the method signatures from both use cases.

RequestController

kverifyCustomer (name, pwd)
fprocessTypeCOfSarvice {type)

[FprocesssizeWeight (size, weight,...)

FprocessTOInfarmation (name, address, ...}

Customer

Fname: string

/-address: string

phone: string

PickupRequest

FdateDTReguested: date
DOTPickedup: date
HocationAddress: string

kereatePickupRequest (type)
EstoreTOInfa {...)

HverifyCustomer (name, pwd)
rrecordTypeOfService (type)
HstoreTOInfo {...)

HstoreSizeWeight (...)
iHindPickupRequests {customerName)

/+DrocessPackagePickup {aPR)
itprocessNewPackagelnfo (name, address, ...)

PickupController

FprocessPayment {paymentinfo)

HindPickupReguests (customerMame)
[rprocessPackagePickup ()

brequestLabel (aP)
rprocessPayment (paymentinfo)

processMewPackagelnfo (name, address, ...

]

CustomerAccount

balance: currency
dateBilled: date
amountBilled: currency

tupdateAccount { amt)

Payment

rdatePaid: date
amountPaid: currency

Ftype: string

kcreatePaymentTxn { aC, aP, amt)

lfinalizeRequest (..)
eshowRequest()

Package

HeliverToMName: string
deliverToAddress: string
Pweight: number

FODAL CUrrency
tDTDelevered: date

kereateMewPackage (aPR)
rereataNewPackags (..)
tprintLabel (aP)

/

MovementEvent

Fname: string
Laddress: string
phone: string

[rrecordEvent (aP, aE)

/

Employee

Fname; string
Faddress: string
Fphone: string

getEmployee ()

Systems Analysis and Design in a Changing World, sixth edition 11-49

In Chapter 9, we defined four subsystems:
m Customer account (like customer account)
m Pickup request (like sales)
m Package delivery (like order fulfillment)
m Routing and scheduling

Even though these subsystems are somewhat arbitrary, we can treat each one as a separate
package. Develop a package diagram for each of the four subsystems by assigning domain model
classes to each package. A domain model class should belong to only one subsystem package.
Normally, it is the subsystem that instantiates objects from that class. Also, show dependency
relationships among the various packages and classes.

Customer Account | Pickup Request |

‘ CustomerAccount ‘ PickupRequest

Customer

Payment

Package Delivery | Routing & Scheduling |

MovementEvent ‘ Employee

Systems Analysis and Design in a Changing World, sixth edition

11-50

Running Cases: Sandia Medical Devices

Review your answers to the case-related questions in Chapter 10 and then do the following:

1. Develop a first-cut sequence diagram for the patient use case View/respond to alert.

|
|
ReceiveMedicalAlert {patiD, msg, alert, obs)
| . . | =7
= |
| storeData {msg, alert, obs) | | | | |
L%‘ | createhsg {msg) | | | |
t tient
roiveatent(]	createAlert {alert)				
			createbs (obs)		
viewAlert {)					
viewalert (segiumb					
	aM := gethlsg (msg)				
		ah o= getAlert (alert)			
I I aGC := getObs (obs) I					
I‘5 I I I {					
LE ________ B alertData					
lertDat					
alertData					
respondToAlert {msg)					
l% respondTodlert {msg)					
	createMsg {msg)				
			respondTodlert (msg)	__L.;—;‘?	

Phone App to View/Respond to alert

:PatientAlertController

aP:Patient

a:Message af:blert

aGC:GlucoseObservation

Systems Analysis and Design in a Changing World, sixth edition

11-51

2. Develop a multilayer sequence diagram that includes domain classes and data access classes.

I'-‘at|enl

o

,ﬂ viewhlert (segNumb |

respondTodlert {msg)
% respondTodlert {msg)

storeData {msg, alert, obs) |

notifyPatient ()

=

createMsg {msg) |

,—)] writeMsg (msg)

(MessageDA AlertDA GlucoseDA
I I
I I
PatientAlertController aP:Patient ahl:Message | af:flert | aGC:GlucoseObservation
I I I I I I Médical
Senver
| | | | | | (Rerpote)
| Receiuemledical.ﬂ.l ert (patlD, msg, alerlt. obs) | | L—7
=T —7
=
I I I
I I
I
|
t

viewdslert |)

createdlert {alert) |

createClbs [obs)

ritedlert {alert)

)

\

alertData |

ahl := gethlsg [msg)

|
readMsg (1D)

ah := gethlert (alert)

I
|
|
|
|
D

aGl = gerObs [obs)

_..l readalert {1D)

createMsg (msg)
,]%J writeMsg (msg)

respondToAl«Ert (msg)

readObs (1D}

writeObs{obs)

Systems Analysis and Design in a Changing World, sixth edition

11-52

3. Develop a separate multilayer sequence diagram that includes the domain classes and the view
layer classes. (We won’t combine view and data access layers on the same drawing. It makes the
drawing too complex.)

afdlert

I
) I
SoviewE2 ‘PatientAlertController aP:Patient ahl:Message aGC:GlucoseObservation
displayScreen |
I I I I | I Médical
Server
Patlent | | | | | | (RerTote]
| | | ReceiveMedicalAlert {patlD, msg, alert, obs) | —
1 I =
L= I
| [~ notifyPatient {) |5mreUata (msg, alert, obs) | | | | |
| notifyPatient {) | | = | | |
createMsg (msg) |
		createdlert (alert)			
			creatleObs (obs) 71		
viewdlert [)					
viewAlert)				
viewhlert {seqNumb)					
	il	ahd := gethsg {msg)			
		ah = gethlert (alert)			
I I I		il I			
aGC := getObs [obs)					
	e N	!			
——————————— alertData					
k ————————— f alertData —					
alertData					
I I I I I I I					
respondTodlert (msg)					
respondToAlert (msg)					
	= respandToslert (msg)				
createMsg (msg)					
	respondTodlert (msg)	. __	——J,.r		
e
I I |
I I
I

Systems Analysis and Design in a Changing World, sixth edition 11-53

4. Update your DCD from Chapter 10 to include the methods you have identified. Also, include
any changes you may have made to navigation visibility and attribute details.

DCD for View/Respond to alert

Patient

rid: integer
PatientAlertController medicalRecordNumber: string

— astName: string
dateOfBirth: date

gender: string

+ReceiveMedicalAlert (patlD, msg, alert, obs) race: string
+viewAlert () height: string
+respondToAlert (msg weight: integer

+storeData (msg, alert, obs)
+viewAlert (seqNumb)
+respondToAlert (msg)

Alert GlucoseQObservation Message
rdateTIime: datetime rdateTime: datetime rdateTime: datetime
rurgentLevel: string Hevel: string Ftext: string

+createllert (alert) +createObs (obs) +createMsg (msg)
+getAlert (alert) +getObs (obs) +getMsg (msg)

