Tutorial letter 201/1/2018

Statistical Inference III STA3702

Semester 1

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01, SOLUTIONS TO ASSIGNMENT 02, TRIAL PAPER AND SOLUTIONS

SOLUTIONS TO ASSIGNMENT 01

Question 1 [13]

(a) (i)
$$E(X) = \theta p$$
 and $E(X^2) = Var(X) + [E(X)]^2 = \theta p(1-p) + \theta^2 p^2$. (1+2=3)

(b)
$$\bar{X}$$
 and $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ correspond to $E(X)$ and $E(X^{2})$, respectively. (1+1=2)

(c) $\bar{X} = \tilde{\theta}\,\tilde{p}$ and $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = \tilde{\theta}\,\tilde{p}(1-\tilde{p}) + \tilde{\theta}^{2}\,\tilde{p}^{2}$ where $\tilde{\theta}$ and \tilde{p} are method of moments estimators of θ and p, respectively. (1+1=2)

(d)
$$\tilde{p} = \frac{\bar{X}}{\tilde{\theta}} \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} = \tilde{\theta} \frac{\bar{X}}{\tilde{\theta}} \left(1 - \frac{\bar{X}}{\tilde{\theta}} \right) + \tilde{\theta}^{2} \frac{\bar{X}^{2}}{\tilde{\theta}^{2}} = \bar{X} \left(1 - \frac{\bar{X}}{\tilde{\theta}} \right) + \bar{X}^{2} = \bar{X} - \frac{\bar{X}^{2}}{\tilde{\theta}} + \bar{X}^{2} \Longrightarrow \frac{\bar{X}^{2}}{\tilde{\theta}} = \bar{X} - \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} + \bar{X}^{2} \Longrightarrow \tilde{\theta} = \frac{\bar{X}^{2}}{\bar{X} - \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} + \bar{X}^{2}}.$$
(6)

Question 2 [22]

(i) The likelihood function of μ and λ is

$$L(\mu, \lambda | \mathbf{x}) = \prod_{i=1}^{n} f(x_i | \mu, \lambda)$$

$$= \prod_{i=1}^{n} \left(\frac{\lambda}{2\pi x_i^3}\right)^{1/2} \exp\left\{-\frac{\lambda}{2} \left(\frac{\sqrt{x_i}}{\mu} - \frac{1}{\sqrt{x_i}}\right)^2\right\}$$

$$= (\lambda/2\pi)^{n/2} \left(\prod_{i=1}^{n} x_i\right)^{-3/2} \exp\left\{-\frac{\lambda}{2} \sum_{i=1}^{n} \left(\frac{\sqrt{x_i}}{\mu} - \frac{1}{\sqrt{x_i}}\right)^2\right\}$$
(2)

(ii) The log likelihood function of μ and λ is

$$l(\mu, \lambda) = \ln L(\mu, \lambda | \mathbf{x})$$

$$= -\frac{n}{2} \ln(2\pi) + \frac{n}{2} \ln \lambda - \frac{3}{2} \sum_{i=1}^{n} \ln x_i - \frac{\lambda}{2} \sum_{i=1}^{n} \left(\frac{\sqrt{x_i}}{\mu} - \frac{1}{\sqrt{x_i}} \right)^2$$
(2)

Differentiating $l(\mu, \lambda)$ with respect to μ and equating the derivative to zero obtains:

$$0 = l'(\hat{\mu}, \lambda) = \frac{\lambda}{\hat{\mu}^2} \sum_{i=1}^n \left(\frac{\sqrt{X_i}}{\hat{\mu}} - \frac{1}{\sqrt{X_i}} \right) \sqrt{X_i} = \frac{\lambda}{\hat{\mu}^2} \sum_{i=1}^n \left(\frac{X_i}{\hat{\mu}} - 1 \right)$$

where $\hat{\mu}$ is the maximum likelihood estimator of μ . The solution for $\hat{\mu}$ in the equation is $\hat{\mu} = \bar{X}$.

(8)

Differentiating $l(\hat{\mu}, \lambda)$ with respect to λ and equating the derivative to zero obtains:

$$0 = l'(\hat{\mu}, \hat{\lambda}) = \frac{n}{2\hat{\lambda}} - \frac{1}{2} \sum_{i=1}^{n} \left(\frac{\sqrt{X_i}}{\hat{\mu}} - \frac{1}{\sqrt{X_i}} \right)^2$$

where $\hat{\lambda}$ is the maximum likelihood estimator of λ . The solution for $\hat{\lambda}$ in the equation is $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \left(\frac{\sqrt{X_i}}{\bar{X}} - \frac{1}{\sqrt{X_i}}\right)^2}.$ (8)

(c) By the invariance property of maximum likelihood estimators, the maximum likelihood estimator of $\frac{1}{2}$ is

$$\frac{1}{\hat{\lambda}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\sqrt{X_i}}{\bar{X}} - \frac{1}{\sqrt{X_i}} \right)^2.$$
 (2)

Question 3 [20]

(i) From given,
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1} \Longrightarrow n-1 = E\left(\frac{(n-1)S^2}{\sigma^2}\right) = \frac{(n-1)}{\sigma^2}E(S^2) \Longrightarrow E(S^2) = \sigma^2.$$
 (3)

(ii) From given,
$$\frac{n\bar{S}^2}{\sigma^2} \sim \chi^2_{n-1} \Longrightarrow n-1 = E\left(\frac{n\bar{S}^2}{\sigma^2}\right) = \frac{n}{\sigma^2}E(\bar{S}^2) \Longrightarrow E(\bar{S}^2) = \frac{n-1}{n}\sigma^2 \neq \sigma^2.$$
 (3)

(i) From given,
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2 \Longrightarrow 2(n-1) = Var\left(\frac{(n-1)S^2}{\sigma^2}\right) = \frac{(n-1)^2}{\sigma^4} Var(S^2) \Longrightarrow Var(S^2) = \frac{2}{n-1}\sigma^4.$$
 (4)

(ii) From given,
$$\frac{n\bar{S}^2}{\sigma^2} \sim \chi_{n-1}^2 \Longrightarrow 2(n-1) = Var\left(\frac{n\bar{S}^2}{\sigma^2}\right) = \frac{n^2}{\sigma^4} Var(\bar{S}^2) \Longrightarrow Var(\bar{S}^2) = \frac{2(n-1)}{n^2} \sigma^4.$$
 (4)

That $E(S^2) = \sigma^2$ and $\lim_{n \to \infty} Var(S^2) = \lim_{n \to \infty} \frac{2\sigma^4}{n-1} = 0$ implies that S^2 is a consistent estimator of σ^2 .

That
$$\lim_{n \to \infty} E(\bar{S}^2) = \lim_{n \to \infty} \frac{n-1}{n} \sigma^2 = \sigma^2$$
, (2)

and $\lim_{n\to\infty} Var(\bar{S}^2) = \lim_{n\to\infty} \frac{2(n-1)\sigma^4}{n^2} = 0$ implies that \bar{S}^2 is a consistent estimator of σ^2 .

(2)

Question 4 [35]

(i) The likelihood function of θ is

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i|\theta) = \theta^n \left(\prod_{i=1}^{n} x_i\right)^{\theta} \left(\prod_{i=1}^{n} x_i\right)^{-1}$$

and the log likelihood function of θ is

$$l(\theta) = \ln L(\theta | \mathbf{x}) = n \ln \theta + \theta \sum_{i=1}^{n} \ln x_i - \ln \prod_{i=1}^{n} x_i.$$

Now

$$l'(\theta) = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i \text{ and } l''(\theta) = -\frac{n}{\theta^2} \Longrightarrow \mathbf{I}(\theta) = -l''(\theta) = \frac{n}{\theta^2}.$$

(8)

(ii) The MLE of θ is $\hat{\theta}$ which solves the equation

$$0 = l'(\hat{\theta}) = \frac{n}{\hat{\theta}} + \sum_{i=1}^{n} \ln X_i.$$

The solution is $\hat{\theta} = \frac{-n}{\sum_{i=1}^{n} \ln X_i}$.

$$\mathbf{I}(\mathbf{x}) = -l''(\hat{\theta}) = \frac{n}{\hat{\theta}^2}.$$

(5)

(iii) The Cramer-Rao lower bound is
$$\left[\frac{\partial \theta}{\partial \theta}\right]^2/\mathbf{I}(\theta) = \frac{\theta^2}{n}$$
. (3)

From part (a)(i) above:

$$L(\theta|\mathbf{x}) = \left(\prod_{i=1}^{n} x_i\right)^{-1} \theta^n \left(\prod_{i=1}^{n} x_i\right)^{\theta}$$
$$= m_1(\mathbf{x}) \times m_2 \left(\theta, \prod_{i=1}^{n} x_i\right)$$

where $m_1(\mathbf{x}) = \left(\prod_{i=1}^n x_i\right)^{-1}$ and $m_2\left(\theta, \prod_{i=1}^n x_i\right) = \theta^n \left(\prod_{i=1}^n x_i\right)^{\theta}$. Hence $\prod_{i=1}^n X_i$ is a sufficient statistic for θ by the factorisation theorem. (3)

Now let $Y_1, Y_2, Y_3, ..., Y_n$ be another random sample from the same distribution. Then

$$\frac{L(\theta|\mathbf{x})}{L(\theta|\mathbf{y})} = \left(\prod_{i=1}^{n} \frac{x_i}{y_i}\right)^{-1} \left(\frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} y_i}\right)^{\theta}$$

is independent of θ if $\prod_{i=1}^n x_i / \prod_{i=1}^n y_i = 1$ equivalently if $\prod_{i=1}^n y_i = \prod_{i=1}^n x_i$. This means that $\prod_{i=1}^n X_i$ is a minimal sufficient statistic for θ . (4)

The maximum likelihood estimate of
$$\hat{\theta}$$
 is $\hat{\theta} = \frac{-10}{\sum_{i=1}^{10} \ln x_i} = \frac{10}{-14.6230} = 0.6839.$ (4)

The standard error of
$$\hat{\theta}$$
 is $se(\hat{\theta}) = \sqrt{1/I(\mathbf{x})} = \sqrt{\hat{\theta}^2/10} = 0.2163$. (4)

The 95% confidence interval of
$$\theta$$
 is $.6839 \pm 1.96 \times .2163 = [0.2700; 1.1077]$. (4)

TOTAL: [90]

SOLUTIONS TO ASSIGNMENT 02

Question 1 [30]

$$f(x|\theta) = \frac{1}{\sqrt{2\pi\theta}} \exp\left\{-\frac{x^2}{2\theta}\right\}$$
$$= \exp\{-\frac{x^2}{2\theta} - \ln\sqrt{2\pi} - \ln\sqrt{\theta}\}$$
$$= \exp\{p(\theta)K(x) + S(x) + q(\theta)\}$$

where $p(\theta) = \frac{1}{2\theta}$, $K(x) = -x^2$, $S(x) = -\ln \sqrt{2\pi}$ and $q(\theta) = -\ln \sqrt{\theta}$.

 $-\sum_{i=1}^{n}X_{i}^{2}$ is the complete sufficient statistic for θ - a property of the members of the exponential family of distributions.

$$p'(\theta) = -\frac{1}{2\theta^2}, \ p''(\theta) = \frac{1}{\theta^3}, \ q'(\theta) = -\frac{1}{2\theta}, \ q''(\theta) = \frac{1}{2\theta^2}.$$
 (2)

$$-E\left[\sum_{i=1}^{n} X_{i}^{2}\right] = -n\frac{q'(\theta)}{p'(\theta)} = -n\frac{-1/(2\theta)}{-1/(2\theta^{2})} = -n\theta.$$
(2)

$$Var\left[-\sum_{i=1}^{n} X_{i}^{2}\right] = \frac{n}{[p'(\theta)]^{3}} \left\{p''(\theta)q'(\theta) - q''(\theta)p'(\theta)\right\}$$

$$= \frac{n}{[-1/(2\theta^{2})]^{3}} \left\{(1/\theta)^{3} \times (-1/(2\theta)) - (1/(2\theta^{2})) \times (-1/(2\theta^{2}))\right\}$$

$$= \frac{n}{[-1/(2\theta^{2})]^{3}} \left\{-\frac{1}{2\theta^{4}} + \frac{1}{4\theta^{4}}\right\} = 2n\theta^{2}$$
(4)

The likelihood function is

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i|\theta) = (2\pi)^{-n/\theta} \theta^{-n/2} \exp\left\{-\frac{1}{2\theta} \sum_{i=1}^{n} x_i^2\right\}$$

and the log likelihood function is

$$l(\theta) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\theta - \frac{1}{2\theta}\sum_{i=1}^{n}x_{i}^{2}.$$
(4)

Now,

$$l'(\theta) = -\frac{n}{2\theta} + 12\theta^2 \sum_{i=1}^{n} x_i^2 \text{ and } l''(\theta) = \frac{n}{2\theta^2} - \frac{1}{\theta^3} \sum_{i=1}^{n} x_i^2.$$
 (2)

The Fisher information about θ in the sample is

$$I(\theta) = -E\left[l''(\theta)\right] = -\frac{n}{2\theta^2} + \frac{1}{\theta^3} E\left(\sum_{i=1}^n X_i^2\right) = -\frac{n}{2\theta^2} + \frac{n\theta}{\theta^3} = \frac{n}{2\theta^2}.$$
 (2)

Hence the required Cramer-Rao lower bound is
$$\frac{1}{I(\theta)} = \frac{2\theta^2}{n}$$
. (1)

From part (c) above, $E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right]=\theta$. Therefore, $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ is a minimum variance unbiased estimator of θ because it is an unbiased estimator of θ and a function of a complete sufficient statistic for θ . (3+2=5)

The probability density function of Y is

$$\begin{split} g(y|\theta) &= \frac{\partial G(y|\theta)}{\partial y} = n[1 - F(y|\theta)]^{n-1} f(y|\theta) \\ &= \begin{cases} n \exp\{-(n-1)(y-\theta)\} \times \exp\{-(y-\theta)\} = n \exp\{-n(y-\theta)\} & \text{if } \theta < y < \infty, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

(b) (6)

The moment generating function of *Y* is

$$M_{y}(t) = \int_{\theta}^{\infty} n \exp\{ty\} \exp\{-n(y-\theta)\} dy$$

$$= \int_{\theta}^{\infty} \frac{n}{n-t} (n-t) \exp\{-(n-t)(y-\theta) + t\theta\} dy$$

$$= \frac{n}{n-t} \exp\{t\theta\} \int_{\theta}^{\infty} (n-t) \exp\{-(n-t)(y-\theta)\} dy = \frac{n}{n-t} \exp\{t\theta\}$$
(4)

$$E[Y] = \frac{\partial \ln M_{y}(t)}{\partial t} \bigg|_{t=0} = -\frac{1}{n} + \theta.$$
(2)

(c) (5)

From part (b) above, $E\left[Y+\frac{1}{n}\right]=\theta$. Therefore, $Y+\frac{1}{n}$ is a minimum variance unbiased estimator of θ because it is an unbiased estimator of θ and a function of a complete sufficient statistic for θ . (3+2=5)

$$0.95 = P(\theta < Y < c) = \exp\{-n(c - \theta)\} \Longrightarrow -n(c - \theta) = \ln(0.95) \Longrightarrow c = \theta + \frac{0.05129}{n}.$$

From part (d)

$$\theta < Y < \theta + \frac{0.05129}{n} \implies 0 < Y - \theta < \frac{0.05129}{n}$$

$$\implies -\frac{0.05129}{n} < \theta - Y < 0$$

$$\implies Y - \frac{0.05129}{n} < \theta < Y$$

is the 95% confidence interval for θ .

Question 3 [15]

The likelihood function of
$$\theta$$
 is: $L(\theta|\mathbf{x}) = (2\pi\theta)^{-n/2} \exp\left\{-\frac{1}{2\theta} \sum_{i=1}^{2} x_i^2\right\}$. (2)

Hence for any
$$\theta > 1$$
, $r(1, \theta | \mathbf{x}) = \frac{L(1|\mathbf{x})}{L(\theta | \mathbf{x})} = \theta^{n/2} \exp \left\{ -\left(\frac{\theta - 1}{2\theta}\right) \sum_{i=1}^{n} x_i^2 \right\}$. (3)

According to the Neyman-Pearson theorem, the best test of the hypotheses rejects H_0 if

$$r(1,\theta|\mathbf{x}) = \theta^{n/2} \exp\left\{-\left(\frac{\theta-1}{2\theta}\right) \sum_{i=1}^{n} x_i^2\right\} \le k \in (0,1]$$

$$\equiv \text{ if } \exp\left\{-\left(\frac{\theta-1}{2\theta}\right) \sum_{i=1}^{n} x_i^2\right\} \le \theta^{-n/2} k = k^*$$

$$\equiv \text{ if } -\left(\frac{\theta-1}{2\theta}\right) \sum_{i=1}^{n} x_i^2 \le \ln k^*$$

$$\equiv \text{ if } \sum_{i=1}^{n} x_i^2 \ge -\left(\frac{2\theta}{\theta-1}\right) \ln k^* = c$$

where
$$c$$
 solves the probability equation $0.05 = P\left(\frac{\sum_{i=1}^{n} X_i^2}{\theta} \ge c | \theta = 1\right)$. (8)

(b)
$$c = 24.996$$
.

Question 4 [25]

The likelihood function of
$$\theta$$
 is: $L(\theta|\mathbf{x}) = \frac{e^{-10\theta}\theta^{\sum_{i=1}^{10}x_i}}{\prod\limits_{i=1}^{10}x_i!}$. (2)

Hence,
$$r(0.1, 0.5 | \mathbf{x}) = \frac{L(0.1 | \mathbf{x})}{L(0.5 | \mathbf{x})} = e^{(-1+5)} \left(\frac{0.1}{0.5} \right)^{\sum_{i=1}^{10} x_i} = e^4 (0.2)^{\sum_{i=1}^{10} x_i}.$$
 (3)

According to the Neyman-Pearson theorem, the best test of the hypotheses rejects H_0 if

$$r(0.1, 0.5 | \mathbf{x}) = e^{4} (0.2)^{\sum_{i=1}^{10} x_{i}} \le k \in (0, 1]$$

$$\equiv \text{ if } (0.2)^{\sum_{i=1}^{10} x_{i}} \le e^{-4} k = k^{*}$$

$$\equiv \text{ if } \sum_{i=1}^{10} x_{i} \ge \ln k^{*} / \ln 0.2 = c$$

where c solves the probability equation $\alpha = P\left(\sum_{i=1}^{10} X_i \ge c | \theta = 0.1\right)$. (8)

(i)
$$\alpha = P\left(\sum_{i=1}^{10} X_i \ge 3|\theta = 0.1\right) = 1 - P\left(\sum_{i=1}^{10} X_i \le 2|\theta = 0.1\right)$$

= 1 - (0.3679 + 0.3679 + 0.1839) = 0.0803. (6)

(ii) The probability of the type II error is
$$\beta = P\left(\sum_{i=1}^{10} X_i \le 2|\theta = 0.5\right)$$

= $0.006747 + 0.03369 + 0.08422 = 0.12465$. (5)

Hence the power of the test is
$$1 - \beta = 0.8753$$
. (1)

TOTAL: [95]

1 Trial Examination Paper

INSTRUCTIONS

- 1. Answer all questions.
- 2. Show intermediate steps.

Abbreviations	
MLE	Maximum Likelihood Estimator
MSE	Mean Square Error
pdf	probability density function
cdf	cumulative distribution function
MVUE	Minimum Variance Unbiased Estimator
MME	Method of Moments Estimator
CRLB	Cramer Rao Lower Bound
pmf	probability mass function
mgf	moment generating function
re	relative efficiency

Question 1 [33]

A distribution belongs to the regular 1-parameter exponential family if among other regularity conditions its pdf or pmf has the form:

$$f(y|\theta) = a(\theta)g(y) \exp\{b(\theta)r(y)\}, \ y \in \chi \subset (-\infty, \infty) \text{ and } \theta \in \Theta \subset (-\infty, \infty)$$

where g(y)>0, r(y) is a function of y which does not depend on θ , and $a(\theta)>0$ and $b(\theta)\neq 0$ are real valued functions of θ . Furthermore, for this distribution (assuming the first and second derivatives of $a(\theta)$ and $b(\theta)$ exist)

$$E[r(Y)] = -\frac{a'(\theta)}{a(\theta)b'(\theta)}.$$

Suppose that $Y_1, Y_2, ..., Y_n$ is a random sample from this distribution.

(a) Show that $f(y|\theta)$ can also be expressed as:

$$f(y|\theta) = g(y) \exp\{b(\theta)r(y) - q(\theta)\}, \ y \in \chi \subset (-\infty, \infty) \text{ and } \theta \in \Theta \subset (-\infty, \infty).$$

(2)

- **(b)** Prove that $\sum_{i=1}^{n} r(Y_i)$ is a minimal sufficient statistic for θ .
- (c) Justify that $\sum_{i=1}^{n} r(Y_i)$ is also a complete sufficient statistic for θ .
- (d) Write down a function of the complete sufficient statistic for θ that is a minimum variance unbiased estimator (MVUE) of E[r(Y)]. Justify your answer. (3)
- (e) Suppose that $X_1, X_2, ..., X_n$ is random sample from a distribution with pdf:

$$f(x|\theta) = \begin{cases} \frac{\theta}{(1+x)^{1+\theta}} & \text{if } x > 0 \text{ and } \theta > 0, \\ 0 & \text{otherwise.} \end{cases}$$

(i) Show that $f(x|\theta)$ belongs to the regular 1-parameter exponential family by showing that the pdf can be expressed as:

$$f(x|\theta) = a(\theta)g(x) \exp\{b(\theta)r(x)\}, \ x > 0 \text{ and } \theta > 0.$$

(5)

- (ii) What is the mean of the complete sufficient statistic for θ ? Justify your answer. (6)
- (iv) What is the maximum likelihood estimator (MLE) of θ ? Justify your answer. (6)
- (v) What is the method of moments estimator (MME) of θ ? Justify your answer. (2)
- (vi) What is the minimum variance unbiased estimator (MVUE) of $\frac{1}{\theta}$? Justify your answer.

Question 2 [30]

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pdf:

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 < x \le \theta, \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$. Let $Y_n = \max\{X_1, X_2, ..., X_n\}$. The probability density function of Y_n is

$$g(y|\theta) = \begin{cases} ny^{n-1}\theta^{-n} & \text{if } 0 < y \le \theta, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose that the ten independent observations,

are from a population with probability density function $f(x|\theta)$.

- (a) What are the method of moments estimator and estimate of θ ? (4)
- (b) What are the maximum likelihood estimator and estimate of θ ? (8)
- (c) Find the mean and the variance, in terms of θ and n, of the maximum likelihood **estimator** of θ . Is the estimator consistent? (10)
- (d) What is an estimate of the standard error of the maximum likelihood estimate of θ ? (3)
- (e) Find an approximate 95% confidence interval for θ . (5)

Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with pdf:

$$f(x|\theta_1,\theta_2) = \left\{ \begin{array}{ll} \frac{\theta_1}{\theta_2^{\theta_1}} x^{\theta_1 - 1} & \text{if } 0 < x \leq \theta_2 \text{ and } \theta_1 > 0, \\ 0 & \text{otherwise.} \end{array} \right.$$

- (a) Find the likelihood function and the log-likelihood function of θ_1 and θ_2 . (6)
- **(b)** Show that the respective maximum likelihood estimators (MLE's) of θ_1 and θ_2 are

$$\hat{\theta}_1 = \frac{n}{n \ln X_{(n)} - \sum_{i=1}^n \ln X_i} \text{ and } \hat{\theta}_2 = X_{(n)} = \max\{X_1, X_2, ..., X_n\},$$

respectively. Hint: First find the MLE of θ_2 and then that of θ_1 . (12)

Question 4 [19]

A random variable *X* has probability density function

$$f(x|\theta) = \frac{\exp\{x - \theta\}}{(1 + \exp\{x - \theta\})^2}, \quad -\infty < x < \infty \text{ and } -\infty < \theta < \infty,$$

and **cumulative** distribution function

$$F(x|\theta) = 1 - \frac{1}{1 + \exp\{x - \theta\}}, \quad -\infty < x < \infty \text{ and } -\infty < \theta < \infty.$$

It is desired to test the null hypothesis H_0 : $\theta = 0$ against the alternative H_1 : $\theta = 1$ using one random observation X.

- (a) Calculate the level of significance and the power of the test which rejects H_0 if X > 1. (12)
- **(b)** Consider the test which rejects H_0 if $X_1 \ge c$. Find c for which the level of significance of the test is 0.1.

(7)

TOTAL [100]

2 Trial Examination Solutions

Question 1 [Total marks=30]

(a)

$$f(y|\theta) = a(\theta)g(y)\exp\{b(\theta)R(y)\}$$

= $g(y)\exp\{b(\theta)r(y) - -\ln[a(\theta)]\}$
= $g(y)\exp\{b(\theta)r(y) - q(\theta)\}$

where
$$q(\theta) = -\ln[a(\theta)]$$
. (2)

(b) The likelihood function of θ is

$$L(\theta|y) = \prod_{i=1}^{n} f(y_i|\theta) = \left(\prod_{i=1}^{n} g(y_i)\right) \exp\left\{b(\theta) \sum_{i=1}^{n} r(y_i) - nq(\theta)\right\}$$
$$= m_1(y) \times m_2\left(\theta, \sum_{i=1}^{n} r(y_i)\right)$$

where
$$m_1(\mathbf{y}) = \prod_{i=1}^n g(y_i)$$
 and $m_2\left(\theta, \sum_{i=1}^n r(y_i)\right) = \exp\left\{b\left(\theta\right) \sum_{i=1}^n r(y_i) - nq\left(\theta\right)\right\}$. This means $\sum_{i=1}^n r(Y_i)$ is sufficient statistic for θ by the factorisation theorem.

Now let $X_1, X_2, ..., X_n$ be another random sample from the same distribution. Then

$$\frac{L\left(\theta|y\right)}{L\left(\theta|x\right)} = \prod_{i=1}^{n} \frac{g\left(y_{i}\right)}{g\left(x_{i}\right)} \exp\left\{b\left(\theta\right) \sum_{i=1}^{n} \left(r\left(y_{i}\right) - r\left(x_{i}\right)\right)\right\}$$

is independent of
$$\theta$$
 if $\sum_{i=1}^{n} (r(y_i) - r(x_i)) = 0$ equivalently if $\sum_{i=1}^{n} r(y_i) = \sum_{i=1}^{n} r(x_i)$. This means that $\sum_{i=1}^{n} r(Y_i)$ is a minimal sufficient statistic for θ . (5)

(c) It is because $f(y|\theta)$ belongs to the 1-parameter exponential family. (1)

(d) $\frac{1}{n}\sum_{i=1}^{n}r\left(Y_{i}\right)$ because it is a function of the complete sufficient statistic for θ and

$$E\left[\frac{1}{n}\sum_{i=1}^{n}r\left(Y_{i}\right)\right]=E\left[r\left(Y\right)\right].$$
(3)

(e) (i)

$$f(x|\theta) = \frac{\theta}{(1+x)^{1+\theta}}$$
= $\theta (1+x)^{-1} (1+x)^{-\theta}$
= $\theta (1+x)^{-1} \exp \{-\theta \ln (1+x)\}$
= $a(\theta) g(x) \exp \{b(\theta) r(x)\}$

where
$$a(\theta) = \theta$$
; $g(x) = (1+x)^{-1}$; $b(\theta) = \theta$; and $r(x) = -\ln(1+x)$. (5)

- (ii) The complete sufficient statistic is $\sum_{i=1}^{n} r\left(X_{i}\right) = -\sum_{i=1}^{n} \ln\left(1 + X_{i}\right)$ since $f\left(x|\theta\right)$ belongs to the 1-parameter exponential family. $E\left[r\left(X\right)\right] = -\frac{a'\left(\theta\right)}{a\left(\theta\right)b'\left(\theta\right)} = \frac{1}{\theta \times 1} = \frac{1}{\theta} \Rightarrow E\left[-\sum_{i=1}^{n} \ln\left(1 + X_{i}\right)\right] = -\frac{n}{\theta}.$ (6)
- (iii) The likelihood function is

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i|\theta) = \theta^n \prod_{i=1}^{n} (1+x_i)^{-1} \prod_{i=1}^{n} (1+x_i)^{-\theta}$$

and the log-likelihood function is

$$l(\theta) = n \ln \theta + \ln \left[\prod_{i=1}^{n} (1 + x_i)^{-1} \right] - \theta \sum_{i=1}^{n} \ln (1 + x_i).$$

The MLE of θ is $\hat{\theta}$ which solves the equation

$$0 = l'(\theta) = \frac{n}{\hat{\theta}} - \sum_{i=1}^{n} \ln(1 + x_i).$$

The solution is
$$\hat{\theta} = \frac{n}{\displaystyle\sum_{i=1}^{n} \ln{(1+X_i)}}$$
. (6)

(iv)
$$E[\ln{(1+X)}] = \frac{1}{\theta} \Longrightarrow \theta = \frac{1}{E[\ln{(1+X)}]} \Longrightarrow \text{the } MME \text{ of } \theta \text{ is } \widetilde{\theta} = \frac{n}{\sum_{i=1}^{n} \ln{(1+X_i)}}$$
. (2)

(v) The minimum variance unbiased estimator (MVUE) of $\frac{1}{\theta}$ is $\frac{1}{n}\sum_{i=1}^{n}\ln{(1+X_i)}$ because the estimator is a function of a complete sufficient statistic for θ and

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\ln\left(1+X_{i}\right)\right]=\frac{1}{\theta}.$$
(3)

Question 2 [Total marks=30]

(a)
$$E(X) = \int_0^\theta x/\theta dx \left[\frac{x^2}{2\theta}\right]_0^\theta = \frac{\theta}{2} \Rightarrow \theta = 2E[X]$$
. This means the method of moments estimate (MME) of θ is $\tilde{\theta} = 2\bar{x} = 2 \times 23.2 = 46.4$.

(b) The likelihood function of θ

$$L(\theta|\mathbf{x}) = \begin{cases} \theta^{-n} & \text{if } \theta \ge x_{(n)} = \max\{x_1, x_2, ..., x_n\} \\ 0 & \text{otherwise,} \end{cases}$$

decreases as θ increase. Thus the function attains its maximum at the smallest value of θ which is $x_{(n)}$. This means the maximum likelihood estimate of θ is $x_{(10)} = 25$.

(c)
$$E[Y_n] = \int_0^\theta y n y^{n-1} \theta^{-n} dy = \left[\frac{n}{n+1} y^{n+1} \theta^{-n} \right]_0^\theta = \frac{n}{n+1} \theta.$$
 (2)

$$E\left[Y_n^2\right] = \int_0^\theta y^2 n y^{n-1} \theta^{-n} dy = \left[\frac{n}{n+2} y^{n+2} \theta^{-n}\right]_0^\theta = \frac{n}{n+2} \theta^2 \Rightarrow$$

$$Var(Y_n) = E[Y_n^2] - (E[Y_n])^2 = \left(\frac{n}{n+2} - \frac{n^2}{(n+1)^2}\right)\theta^2 = \frac{n}{(n+2)(n+1)^2}\theta^2.$$
 (4)

That the bias of the estimate is $\theta - E[Y_n] = \frac{1}{n+1}\theta \to 0$ as $n \to \infty$ and $\lim_{n \to \infty} Var(Y_n) = 0$ means Y_n is a consistent estimator of θ . (4)

(d) The estimate is
$$\sqrt{Var(Y_n)}|_{n=10, \ \theta=x_{(10)}=25} = \sqrt{\frac{10}{12\times 11^2}\times 25^2\widetilde{\theta}} = 2.0747.$$

(e) The 95% confidence interval is
$$25 \pm 1.960 \times 2.0747 = [20.9334; 29.0664]$$
. (5)

Question 3 [Total marks=18]

(a) The likelihood function of θ_1 and θ_2 is

$$L(\theta_1, \theta_2 | \mathbf{x}) = \prod_{i=1}^n f(x_i | \theta_1, \theta_2) = \begin{cases} \left(\prod_{i=1}^n x_i\right)^{-1} \frac{\theta_1^n}{\theta_2^{n\theta_1}} \left(\prod_{i=1}^n x_i\right)^{\theta_1} & \text{if } \theta_1 > 0, \ \theta_2 \ge \text{ all the } x_i's, \\ 0 & \text{otherwise.} \end{cases}$$

Equivalently,

$$L(\theta_1, \theta_2 | \mathbf{x}) = \prod_{i=1}^n f(x_i | \theta_1, \theta_2) = \begin{cases} \left(\prod_{i=1}^n x_i\right)^{-1} \frac{\theta_1^n}{\theta_2^{n\theta_1}} \left(\prod_{i=1}^n x_i\right)^{\theta_1} & \text{if } \theta_1 > 0, \ \theta_2 \ge x_{(n)}, \\ 0 & \text{otherwise.} \end{cases}$$

where
$$x_{(n)} = \max\{x_1, x_2, x_3, ..., x_n\}$$
. (3)

The log likelihood function is

$$l(\theta_1, \theta_2) = \ln L(\theta_1, \theta_2)$$

$$= \begin{cases} \ln \left(\prod_{i=1}^n x_i \right)^{-1} + n \ln \theta_1 - n\theta_1 \ln \theta_2 + \theta_1 \ln \left(\prod_{i=1}^n x_i \right) & \text{if } \theta_1 > 0, \ \theta_2 \ge x_{(n)}, \\ -\infty & \text{otherwise.} \end{cases}$$
(3)

(b) For any $\theta_1 > 0$, $L(\theta_1, \theta_2 | \mathbf{x})$ decreases as θ_2 increases. Thus the function attains its maximum at the smallest value of θ_2 which is $x_{(n)}$. This means the maximum likelihood estimator of θ_2 is $X_{(n)}$.

Consider the log likelihood

$$l(\theta_1, x_{(n)}) = \ln \left(\prod_{i=1}^n \right)^{-1} + n \ln \theta_1 - n\theta_1 \ln x_{(n)} + \theta_1 \ln \left(\prod_{i=1}^n x_i \right)$$

whose derivative with respect to θ_1 is

$$l'(\theta_1 x_{(n)}) = \frac{n}{\theta_1} - n \ln x_{(n)} + \ln \left(\prod_{i=1}^n x_i \right) = \frac{n}{\theta_1} - n \ln x_{(n)} + \sum_{i=1}^n \ln x_i.$$

The MLE of θ_1 is $\hat{\theta}_1$ which solves the equation

$$0 = l'\left(\hat{\theta}_1, X_{(n)}\right) = \frac{n}{\hat{\theta}_1} - n \ln X_{(n)} + \ln \left(\prod_{i=1}^n X_i\right) = \frac{n}{\hat{\theta}_1} - n \ln X_{(n)} + \sum_{i=1}^n \ln X_i.$$

The solution is

$$\hat{\theta}_1 = \frac{n}{n \ln X_{(n)} - \sum_{i=1}^n \ln X_i} = \frac{n}{n \ln X_{(n)} - \ln \left(\prod_{i=1}^n X_i\right)}.$$
 (6)

Question 4 [Total marks=19]

(a)
$$\alpha = P(X > 1 | \theta = 0) = 1 - P(X < 1 | \theta = 0) = 1 - F(1 | 0) = \frac{1}{1 + \exp(1)} = 0.2689.$$
 (5)

$$\beta = P(X < 1|\theta = 1) = F(1|1) = 1 - \frac{1}{1 + \exp(0)} = \frac{1}{2}.$$
 (5)

Hence the power
$$=1-\beta=\frac{1}{2}.$$
 (2)

(b)
$$0.1 = P(X \ge c | \theta = 0) = 1 - F(c | 0) = \frac{1}{1 + \exp(c)} \Rightarrow 10 = 1 + \exp(c) \Rightarrow 9 = \exp(c) \Rightarrow c = \ln 9 = 2.1972.$$
 (7)

TOTAL [100]