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1 INTRODUCTION

Dear Student

Welcome to the MAT3711 module in the Department of Mathematical Sciences at Unisa. We trust
that you will find this module both interesting and rewarding.

Some of this tutorial matter may not be available when you register. Tutorial matter that is not
available when you register will be posted to you as soon as possible, but is also available on
myUnisa.

1.1 myUnisa

You must be registered on myUnisa (http://my.unisa.ac.za) to be able to submit assignments
online, gain access to the library functions and various learning resources, download study ma-
terial, “chat” to your lecturers and fellow students about your studies and the challenges you en-
counter, and participate in online discussion forums. myUnisa provides additional opportunities to
take part in activities and discussions of relevance to your module topics, assignments, marks and
examinations.

1.2 Tutorial matter

A tutorial letter is our way of communicating with you about teaching, learning and assessment.
You will receive a number of tutorial letters during the course of the module. This particular tutorial
letter contains important information about the scheme of work, resources and assignments for this
module as well as the admission requirements for the examination. We urge you to read this and
subsequent tutorial letters carefully and to keep it at hand when working through the study material,
preparing and submitting the assignments, preparing for the examination and addressing queries
that you may have about the course (course content, textbook, worked examples and exercises,
theorems and their applications in your assignments, tutorial and textbook problems, etc.) to your
MAT3711 lecturers.

2 PURPOSE AND OUTCOMES FOR THE MODULE

2.1 Purpose

The purpose of this module is to equip students with a sound grounding in the theory of metric
spaces, linear analysis and Riemann-Stieltjies integration. The expected outcomes include, but
are not limited to:

• The ability to construct metric spaces.

• Grasp the rudiments of the key notions such as compactness and its various variants.

• Familiarity with basic concepts in Banach spaces.
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2.2 Outcomes

2.2.1 Be able to determine if a set is countable.

2.2.2 Be able to compute suprema and infima of sets.

2.2.3 Determine when a metric space is complete.

2.2.4 Understanding of the notion of compactness and all it characterisations.

2.2.5 Good grasp of continuity and its variants.

2.2.6 Ability to use convergence concepts to construct continuous functions.

2.2.7 Thorough understanding of Banach spaces and linear transformations.

2.2.8 Understanding of the abstract notion of integration.

3 LECTURER(S) AND CONTACT DETAILS

3.1 Lecturer(s)

The contact details for the lecturer responsible for this module is

Postal address: The MAT3711 Lecturers
Department of Mathematical Sciences
Private Bag X6
Florida
1709
South Africa

Additional contact details for the module lecturers will be provided in a subsequent tutorial letter.

All queries that are not of a purely administrative nature but are about the content of this module
should be directed to your lecturer(s). Tutorial letter 301 will provide additional contact details for
your lecturer. Please have your study material with you when you contact your lecturer by tele-
phone. If you are unable to reach us, leave a message with the departmental secretary. Provide
your name, the time of the telephone call and contact details. If you have problems with questions
that you are unable to solve, please send your own attempts so that the lecturers can determine
where the fault lies.

Please note: Letters to lecturers may not be enclosed with or inserted into assignments.

3.2 Department

The contact details for the Department of Mathematical Sciences are:

Departmental Secretary: (011) 670 9147 (SA) +27 11 670 9147 (International)
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3.3 University

If you need to contact the University about matters not related to the content of this module, please
consult the publication Studies @ Unisa that you received with your study material. This booklet
contains information on how to contact the University (e.g. to whom you can write for different
queries, important telephone and fax numbers, addresses and details of the times certain facilities
are open). Always have your student number at hand when you contact the University.

4 RESOURCES

4.1 Prescribed books

There are no prescribed books for this module.

4.2 Recommended books

Title Author
1. Principles of Mathematical Analysis Walter Rudin
2. Real Mathematical Analysis Charles C. Pugh
3. Real Analysis John M. Howie
4. Introduction to Real Analysis Manfred Stoll
5. Mathematical Analysis Tom M. Apostol

4.3 Electronic reserves (e-Reserves)

There are no e-Reserves for this module.

4.4 Library services and resources information

For brief information go to:
http://www.unisa.ac.za/brochures/studies

For more detailed information, go to the Unisa website: http://www.unisa.ac.za/, click on Li-
brary. For research support and services of Personal Librarians, go to:
http://www.unisa.ac.za/Default.asp?Cmd=ViewContent&ContentID=7102

The Library has compiled numerous library guides:

• find recommended reading in the print collection and e-reserves
- http://libguides.unisa.ac.za/request/undergrad

• request material
- http://libguides.unisa.ac.za/request/request

• postgraduate information services
- http://libguides.unisa.ac.za/request/postgrad

• finding , obtaining and using library resources and tools to assist in doing research
- http://libguides.unisa.ac.za/Research_Skills

6

http://www.unisa.ac.za/brochures/studies
http://www.unisa.ac.za/
http://www.unisa.ac.za/Default.asp?Cmd=ViewContent&ContentID=7102
http://libguides.unisa.ac.za/request/undergrad
http://libguides.unisa.ac.za/request/request
http://libguides.unisa.ac.za/request/postgrad
http://libguides.unisa.ac.za/Research_Skills


MAT3711/101/3/2018

• how to contact the Library/find us on social media/frequently asked questions
- http://libguides.unisa.ac.za/ask

5 STUDENT SUPPORT SERVICES

For information on the various student support services available at Unisa (e.g. student counsel-
ing, tutorial classes, language support), please consult the publication Studies @ Unisa that you
received with your study material.

6 STUDY PLAN

The following table provides an outline of the outcomes and ideal dates of completion, and other
study activities.

Study plan Semester 1 Semester 2
Outcomes 2.2.1 to 2.2.4 to be achieved by 16 March 22 August
Outcomes 2.2.5 to 2.2.8 to be achieved by 25 April 22 September
Work through previous exam paper 30 April 25 September
Revision 5 May 5 October

See the brochure Studies @ Unisa for general time management and planning skills.

7 PRACTICAL WORK AND WORK INTEGRATED LEARNING

There are no practicals for this module.

8 ASSESSMENT

8.1 Assessment criteria

Specific outcome 1: Demonstrate the concept of countability of sets.

Assessment criteria

You must be able to do the following.

• The definition and concept of countability of sets is given accurately.

• The ability to determine if a set is countable is sufficiently demonstrated.

• The ability to determine if two sets have the same cardinality is sufficiently demonstrated.

• Problems on determining if two sets are equipotent are solved.
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Specific outcome 2: Demonstrate the concepts of upper and lower bounds, suprema and infima.

Assessment criteria

You must be able to do the following.

• The definitions of upper and lower bound, suprema, and infima are given accurately.

• The concepts of suprema and infima are explained sufficiently.

• Problems on finding suprema and infimaof sets are solved.

Specific outcome 3: Demonstrate the concept of a metric space.

Assessment criteria

You must be able to do the following.

• The definition of a metric space is given accurately.

• The concepts of open sets, closed sets, interior, closure, boundary, Cauchy sequence, bounded
subset are explained sufficiently.

• Problems on finding closures and interiors are solved.

• Problems on determining completeness of metric spaces are solved.

• Openness and /or closedness of subspaces are verified.

Specific outcome 4: Demonstrate the concept of a compact metric space.

Assessment criteria

The student must be able to:

• The definition of a compact metric space is given accurately.

• Various variants of compactness (such as sequential compactness and countable compact-
ness) are explained sufficiently.

• Problems on determining if metric spaces and subspaces are compact are solved.
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Specific outcome 5: Demonstrate the concept of continuity.

Assessment criteria

The student must be able to:

• The definition and the characterisations of continuous functions are given accurately.

• The concept of uniform continuity is explained sufficiently,

• Problems on determining if functions are continuous or uniformly continuous are solved.

• Connections between continuity and compactness, continuity and connectedness are clearly
understood.

• The concept of contraction mappings (and especially The Banachs Fixed Point Theorem)is
well understood.

• Problems on contraction mappings and fixed points are solved.

Specific outcome 6: Demonstrate the concept of convergence of function spaces.

Assessment criteria

The student must be able to:

• The definitions of pointwise and uniform convergence of functions are given accurately.

• Problems on determining if sequences of functions converge uniformly are solved.

Specific outcome 7: Demonstrate the concept of linear analysis.

Assessment criteria

The student must be able to:

• The definition of a normed vector space is given accurately.

• The definition of a Banach space is fully understood.

• Linear maps are clearly defined.

• Problems on determining the norm of a bounded linear map are solved.
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Specific outcome 8: Demonstrate the concept of the Riemann-Stieltjies Integral.

Assessment criteria

The student must be able to:

• The definitions of the upper Stieltjies and lower Stieltjies sums, upper Stieltjies and lower
Stieltjies integrals are given accurately.

• Problems on the Riemann-Stieltjies integrals are solved.

• The Fundamental Theorem of Calculus is understood clearly.

• The connection between integration and convergence is sufficiently explained.

8.2 Assessment plan

A final mark of at least 50% is required to pass the module. If a student does not pass the module
then a final mark of at least 40% is required to permit the student access to the supplementary
examination. The final mark is composed as follows:

Year mark Final mark
Assignment 01: 50% −→ Year mark: 20%
Assignment 02: 50% Exam mark: 80%

8.3 Assignment numbers

8.3.1 General assignment numbers

The assignments for this module are Assignment 01, Assignment 02, etc.

8.3.2 Unique assignment numbers

Please note that each assignment has a unique assignment number which must be written on the
cover of your assignment.

8.3.3 Assignment due dates

The dates for the submission of the assignments are:

Semester 1

Assignment 01: Monday, 19 March 2018
Assignment 02: Wednesday, 25 April 2018

Semester 2

Assignment 01: Wednesday, 22 August 2018
Assignment 02: Thursday, 20 September 2018
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8.4 Submission of assignments

You may submit written assignments either by post or electronically via myUnisa. Assignments
may not be submitted by fax or e-mail.

For detailed information on assignments, please refer to the Studies @ Unisa
brochure which you received with your study package.

Please make a copy of your assignment before you submit!

To submit an assignment via myUnisa:

• Go to myUnisa.

• Log in with your student number and password.

• Select the module.

• Click on “Assignments” in the menu on the left-hand side of the screen.

• Click on the assignment number you wish to submit.

• Follow the instructions.

8.5 The assignments

Please make sure that you submit the correct assignments for the 1st semester, 2nd semester or
year module for which you have registered. For each assignment there is a fixed closing date,
the date at which the assignment must reach the University. When appropriate, solutions for each
assignment will be dispatched, as Tutorial Letter 201 (solutions to Assignment 01) and Tutorial
Letter 202 (solutions to Assignment 02) etc., a few days after the closing date. They will also be
made available on myUnisa. Late assignments will not be marked!

Note that Assignment 01 is the compulsory assignment for admission to the examination
and must reach us by the due date.

8.6 Other assessment methods

There are no other assessment methods for this module.

8.7 The examination

During the relevant semester, the Examination Section will provide you with information regarding
the examination in general, examination venues, examination dates and examination times. For
general information and requirements as far as examinations are concerned, see the brochure
Studies @ Unisa which you received with your study material.
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Registered for . . . Examination period Supplementary examination period
1st semester module May/June 2018 October/November 2018
2nd semester module October/November 2018 May/June 2019
Year module January/February 2019 May/June 2019

9 FREQUENTLY ASKED QUESTIONS

The Studies @ Unisa brochure contains an A–Z guide of the most relevant study information.

10 IN CLOSING

We hope that you will enjoy MAT3711 and we wish you all the best in your studies at Unisa!
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ADDENDUM A: ASSIGNMENTS – FIRST SEMESTER

ASSIGNMENT 01
Due date: Monday, 19 March 2018

Total Marks: 40
UNIQUE ASSIGNMENT NUMBER: 791595

ONLY FOR SEMESTER 1

This assignment is based on Learning units 0, 1, 2 and 4

Question 1: 20 Marks

(1.1) (8)Let A1, A2, · · · , An be countable sets. Prove that the product

A1 × A2 × · · · × An = {(a1, a2, · · · , an) | ai ∈ Ai}

is countable.

(1.2) Let A be a subset of a metric space X.

(a) (5)Prove that A0, (X \ A)0 and bd(A) are pairwise disjoint sets whose union is X.

(b) (7)Prove that A = A0 ∪ bd(A).

Question 2: 20 Marks

(2.1) (10)Show that the intersection of an arbitrary collection of compact sets is compact.

(2.2) (10)Show that a closed subset of a complete metric space is compact if and only if it is
totally bounded.
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ASSIGNMENT 02
Due date: Wednesday, 25 April 2018

Total Marks: 40
UNIQUE ASSIGNMENT NUMBER: 678986

ONLY FOR SEMESTER 1

This assignment is based on Learning units 0, 1, 2, 3 and 5

Question 1: 20 Marks

(1.1) (12)Let (X, d) be a metric space. Define d : X ×X → R by d(x, y) = min{d(x, y), 1}.
Show that:

(i) d is a metric on X, and

(ii) (X, d) is complete if and only if (X, d) is complete

(1.2) (8)Show that if K is compact and C is closed, then K ∩ C is compact.

Question 2: 20 Marks

(2.1) (10)Let A be a subset of a metric space X with bd(A) = ∅. Show that A is both open and
closed.

(2.2) (10)Let 〈· , ·〉 be an inner product. Show that if 〈x, y〉 = 〈x, z〉 for all x; then y = z.
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ADDENDUM B: ASSIGNMENTS – SECOND SEMESTER

ASSIGNMENT 01
Due date: Wednesday, 22 August 2018

Total Marks: 40
UNIQUE ASSIGNMENT NUMBER: 673294

ONLY FOR SEMESTER 2

This assignment is based on Learning units 0, 1, 2 and 4

Question 1: 20 Marks

(1.1) (8)Let S be the collection of all sequences whose terms are the integers 0 and 1. Show that
S is not countable. (Hint: mimic the proof of example Example 04.4 on page 14).

(1.2) Let A be a subset of a metric space.

(a) (5)Prove that the derived set of A denoted by A′ is closed.

(b) (7)Prove that A and A have the same accumulation points.

Question 2: 20 Marks

(2.1) (10)Show that the union of a finite number of compact sets is compact.

(2.2) (10)Let A be a subset of a metric space. Show that A is totally bounded if and only if A is
totally bounded.
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ASSIGNMENT 02
Due date: Thursday, 20 September 2018

Total Marks: 40
UNIQUE ASSIGNMENT NUMBER: 682164

ONLY FOR SEMESTER 2

This assignment is based on Learning units 1, 2, 3 and 5

Question 1: 20 Marks

(1.1) (10)Let (X, d) be a metric space and A be a dense subset of X such that every sequence in
A has a limit in X. Prove that (X, d) is complete.

(1.2) (10)Let (X, d) be a metric space and S ⊆M ⊆ X. Show that S is compact in (X, d) if and
only if it is compact in (M,dM).

Question 2: 20 Marks

(2.1) (10)Let A and B be subsets of a metric space X. Prove that X \(A ∪B) = (X \A)∩(X \B).

(2.2) (10)Let [a, b] be a compact interval in R. A function f : [a, b] → C is continuous if and
only if its real and imaginary parts are continuous real-valued functions, ie if for f(t) =
u(t) + iv(t) where u : [a, b]→ R and v : [a, b]→ R, u and v are continuous. For such a

function the integral
∫ b

a
f is defined by∫ b

a

f =

∫ b

a

u + i

∫ b

a

v.

Now let V be the set of all continuous complex-valued functions on [a, b]. Define 〈· , ·〉
on V by

〈f, g〉 =

∫ b

a

f(t)g(t)dt.

Show that (V, 〈· , ·〉) is an inner product space.
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