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MODULE 4 

LAPLACE TRANSFORMS 

 

LEARNING UNIT 1 

PROPERTIES OF LAPLACE TRANSFORMS 

 

OUTCOMES 

At the end of this learning unit, you should be able to 

 define a Laplace transform 

 derive Laplace transforms of elementary functions using the properties of the Laplace 

transform 

 use a standard list of Laplace transforms 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 
prescribed book. 
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1.1 THE LAPLACE TRANSFORM 

In recent years, the Laplace transform has been used increasingly in the solution of 

differential equations. While of great theoretical interest to mathematicians, the transform 

provides an easy and effective means of solving many problems occurring in the fields of 

science and engineering. Its usefulness lies in its ability to transform a differential equation 

into a purely algebraic problem. We shall begin by studying the theory of the Laplace 

transform and its inverse, and then go on to apply what we have learnt to the solution of 

differential equations. 

 

1.1.1 Definition 

Let ( )f t  be a function of t defined for t > 0. 

Then the Laplace transform of ( )f t is the function 

   
0

( ) ( )stF s e f t dt
         (1.1) 

 

where, for our purposes, the parameter s is regarded as real (although in more advanced work 

it can be complex). 

 

It is clear that F(s) exists only if the improper integral (1.1) exists, that is, if the integral 

converges for some value of s. The values of s for which the transform does exist are those 

for which  ste f t   0 if t  . 

 

Consider the function 
2

( )  tf t e . 

The Laplace transform, if it exists, is given by 
2 2

0 0
( ) .st t t stF s e e dt e dt

     . 

We can see that as t  , the integrand 
2t ste   also approaches infinity. Thus the integral does 

not exist, and so 
2

( ) tf t e  possesses no Laplace transform. 

 

We often denote the Laplace transform as an operator, and this is written as:  

 ( ) ( )f t F sL  
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When referring to textbooks, you should take note of the notation used in the specific book. It 

is worth noting here that some textbooks use a capital letter for the function of t. In this case 

the corresponding small letter indicates the Laplace transform, that is:  

 
0

( ) ( ) ( )stF t f s e F t dt
   L  

When writing by hand it is easy to confuse the letter s with the number 5. To avoid this 

confusion you may opt to use the letter p instead of s when writing by hand. 

 

EXAMPLE 1 

Use the definition to find the Laplace transform of ( ) 1.f t   

SOLUTION 

0

0

0

By definition we have ( ) {1}

(1)

0 1
(Remember  1)

1

s t

st

F s

e dt

e

s

e
s

s

 







 
   

    





L

 

We stated above that the transform exists for values of s for which ( )ste f t  0 as t  . 

Now if, in this example, s < 0, we would have ( )lim lims t st

t t
e e 

 
  which is infinite and the 

transform will not exist.  

 

But if s > 0, then lim 0st

t
e


 , so that the transform exists only for s > 0.  

We therefore write the result as 
1

{1}
s

L , s > 0. 

 

EXAMPLE 2 

If ( )f t = eat, find L{ ( )f t } by using the definition. 

SOLUTION 

0

( )

0

{ } .at st at

s a t

e e e dt

e dt

 

  








L
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( )

0

{ }
( )

0 1

( )

1
,

s a t
at e

e
s a

s a

s a
s a

  
    

 
    

 


L

 

 

1.2 PROPERTIES OF THE LAPLACE TRANSFORM 

Listed below are some of the more important properties of the Laplace transform with 

examples of each. These properties can often be used to derive the transforms of complicated 

functions from those of elementary ones. 

 

1.2.1 Linearity property 

 

If f1(t) and f2(t) are functions with Laplace transforms F1(s) and F2(s), respectively, then 

   
1 2

1 2

1 2

{ ( ) ( )}

{ ( )} { ( )}

( ) ( )

a f t b f t

a f t b f t

a F s b F s


 
 

L
L L  

    where a and b are constants. 

 

Because of this property we say that L is a linear operator. The above result can be extended 

to the sum of more than two functions. 

 

EXAMPLE 3 

Find L{cos at} where a is any real constant. 

SOLUTION 

cos at  can be expressed in exponential form as: cos
2

iat iate e
at


  

Thus {cos }
2

iat iate e
at

 
  

 
L L  and using the linear property of the transform 

   1 1
{cos }

2 2
iat iatat e e L L L         (1.2) 
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Now  
0

( )

0

( )

0

.

( )

1
, 0

iat st iat

s ia t

s ia t

e e e dt

e dt

e

s ia

s
s ia

 

  

 





 
    

 





L  and   ( )

0

( )

0
( )

1
, 0

iat s ia t

s ia t

e e dt

e

s ia

s
s ia

  

 



 
    

 


L  

Thus equation (1.2) becomes: 

2 2 2

2 2

1 1 1
{cos }

2

1

2

, 0

at
s ia s ia

s ia s ia

s i a

s
s

s a

     
      

 


L

 

We can, of course, apply the definition and evaluate 
0

{cos } cos . stat at e dt
  L  using 

integration by parts without using the linear property.  

 

In the same way it can be shown that 
2 2

{sin } , 0
a

at s
s a

 


L . 

 

1.2.2 First translation or shifting property 

 

If L{f(t)} = F(s), then { ( )} ( )ate f t F s a L , where a is any real constant.  

 

EXAMPLE 4 

Evaluate L{e–3t cos t}. 

SOLUTION 

From example 3 we know that 
2 2

{cos }
s

bt
s b




L , 

so that:  
2

{cos }
1

s
t

s



L        (1.3) 

Using the first translation property we have 
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 

   
3

2 2

3 3
{ cos }

( 3 ) 1 3 1

t s s
e t

s s

   
 

    
L  

where the function of s in (1.3) has become the same function of (s  a). Thus we have 

replaced the s with s  a, which in this case is s  (3) = s + 3. 

Thus 3
2

3
{ cos }

6 10
t s

e t
s s

 


 
L . 

 

1.2.3 Second translation or shifting property 

 

If L{ ( )f t } = F(s) and g(t) is the function defined by 
( )

( )             
     0

f t a t a
g t

t a

 
  

 

then { ( )} ( )asg t e F sL , where a is any real constant.  

 

EXAMPLE 5 

Find L{g(t)} if 

2 2
cos                  

3 3
( )

2
          0                        

3

t t
g t

t

        
 

  

SOLUTION 

Using the result of example 3, 
2

{cos } ( )
1

s
t F s

s
 


L  and the second shifting property  

2

3
2

{ ( )} ( )
1

s
as s

g t e F s e
s


      

L  

 

1.2.4 Change of scale property 

 

If L{f(t)} = F(s), then 
1

{ ( )}
s

f at F
a a

   
 

L  where a is any real constant. 

 

EXAMPLE 6 

If 
2

2

1
{ ( )}

(2 1) ( 1)

s s
f t

s s

 


 
L , find { (2 )}f tL . 
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SOLUTION 

By the change of scale property 
1

{ (2 )}
2 2

s
f t F

   
 

L  

We are given that 
 

2

2

1
( )

2 1 ( 1)

s s
F s

s s

 


 
 

             

 

 
 

2

2

2

2

2

2

1
2 2Thus

2 2
1 1

2 2

1
2 4

4
1

( 1) ( 2)
2

2 4

2 1 ( 2)

s s
s

F
s s

s s

s s

s s

s s

        
         

   

 


 

 


   

 

 and 

2

2

1
{ (2 )}

2 2

2 4

4( 1) ( 2)

s
f t F

s s

s s

   
 
 


 

L  

 

1.2.5 Multiplication by tn 

 

If L{ ( )f t } = F(s), then: 

( )

{ ( )} ( 1) ( )

( 1) ( )

n
n n

n

n n

d
t f t F s

ds

F s

 

 

L  

 

EXAMPLE 7 

Find the Laplace transform of  2 att e .  

 

SOLUTION 

From example 2 we know that: 
1

{ }

( )

ate
s a
F s






L  
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Thus 
2

2 2
2

2

3

1
{ } ( 1)

1

2
 ,      

( )

at d
t e

ds s a

d

ds s a

s a
s a

     

     

 


L  

 

In general 

1

1
{ } ( 1)

!
,              

( )

n
n at n

n

n

d
t e

ds s a

n
s a

s a 

     

 


L      (1.4) 

where n! = 1  2  3  ...  (n – 1)  n and 0! = 1 (by definition). 

 

 

Putting a = 0 in (1.4) leads to: 

1

!
{ } 0n

n

n
t s

s  L  

 

1.2.6 Division by t 

 

If L{ ( )f t } = F(s), then 
( )

( )
s

f t
F u du

t

   
  L  provided that 

 
0

lim
t

f t

t
 exists. 

 

EXAMPLE 8 

Find 
at bte e

t

  
 
 

L . 

SOLUTION 

Let ( ) at btf t e e   .        (1.5) 

Before we can apply the rule for division by t, we must check that 
 

0
lim
t

f t

t
 exists. 

Then 
0 0

( )
lim lim

at bt

t t

f t e e

t t

 

 

 
  

 
. 
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This has the indeterminate form 
0

0
, so we have to use l’Hospital’s rule to obtain: 

 

 
0 0

0

( )
lim lim

( )

lim
1

at bt

t t

at bt

t

d
e e

f t dt
dt t
dt

ae be

b a

 

 

 



  
  

 
  
  

  
 

 

 

 

Thus the limit exists and we can use the rule to find 
 f t

t

 
 
 

L . 

From equation (1.5) we have { ( )} { }

{ } { }

at bt

at bt

f t L e e

L e L e

 

 

 

 

L  

which, on using the result of example 2, becomes: 

  
   1 1

( )

f t
s a s b
F s

 
 



L 
 

Then     
 

( )

1 1

s

s

f t
F u du

t

du
u a u b





 
 

 

     









L  

where the function of s has become the same function of u. 

 

Thus        ( )

0

s

s

f t
n u a n u b

t

u a
n

u b

s a
n

s b

s b
n

s a





          

        
     

    

 







L  
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1.3 LAPLACE TRANSFORM OF DERIVATIVES 

 

If L{ ( )f t } = F(s) and ( )f t  is continuous for t  0, then  '( ) ( ) (0)f t sF s f L ,  

where '( ) ( )
d

f t f t
dt

 . 

 

By definition (1.1) we have:  

 
0

0

'( ) '( )

lim '( )

st

B st

B

f t e f t dt

e f t dt

 












L
 

On integrating by parts this becomes: 

   
 

0 0

0

'( ) lim ( ) ( )

lim ( ) (0) ( )

BBst st

B

BsB st

B

f t e f t s e f t dt

e f B f s e f t dt

 



 



   

  





L 
 

Since we have assumed the existence of F(s), it follows that 
0

( )ste f t dt
   

is convergent, and so lim ( ) lim ( ) 0st sB

t B
e f t e f B 

 
  . 

 

Thus  
0

'( ) (0) ( )

( ) (0)

stf t f s e f t dt

sF s f

   

 
L       (1.6) 

 

In a similar way it can be shown that   2"( ) ( ) (0) '(0)f t s F s sf f  L  

and in general  ( ) 1 2 ( 1)( ) ( ) (0) '(0) ... (0)n n n n nf t s F s s f s f f      L .  

The above results are of particular importance in the solution of differential equations by 

means of Laplace transforms. We will return to these in learning unit 4. 

 

EXAMPLE 9 

If   atf t e , find L{  'f t )}. 

SOLUTION 

Since   atf t e , we have (0)f = 1 and, by example 2: 
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  1

( )

ate
s a
F s






L 
 

Thus   '( ) ( ) (0)

1

f t sF s f

s

s a
a

s a

 

 





L  

 

1.4 LAPLACE TRANSFORM OF INTEGRALS 

 

If L{ ( )f t } = F(s), then   ( )
( )

F s
f u du

s
L . 

 

Let 
0

( ) ( )
t

g t f u du   

so that '( ) ( )g t f t  

and 

 0

( ) { ( )}

( )
t

G s g t

f u du



 

L 

L 

 

Then, by equation (1.6) ( ) { ( )]

{ '( )]

( ) (0)

F s f t

g t

sG s g



 

L 
L 

 

But     
0

0
(0) ( )

0

g f u du


  

Thus F(s) = s G(s) 

and  0

( )
( )

tF s
f u du

s
 L         (1.7) 

 

EXAMPLE 10 

Evaluate  0
sin

t
u duL . 

SOLUTION 

Let   ( )f u = sin u 

so that   ( )f t  = sin t. 
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Then, from example 3:    

2

( ) sin

1

1
( )

f t t

s
F s








L L  

By equation (1.7) we have  0

( )
( )

t F s
f u du

s
L , 

thus             20

1
sin

( 1)

t
u du

s s


L     (1.8) 

We can check this by evaluating the integral in (1.8): 

    
 
   

 

 

00

2

2 2

2

2

sin cos

cos 1

cos 1

1

1

1

1

1
 which agrees with our previous result.

1

t t
u du u

t

t

s

s s

s s

s s

s s

 

  

  

  


  







L L 

L 
L L 

 

We can now compile a standard list of Laplace transforms so that we need not find each 

transform from scratch using the definition and properties. This table will be supplied in the 

examination. 
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1.5 TABLE OF STANDARD LAPLACE TRANSFORMS 

 

 F(t) = L-1 {F(s)} F(s) = L{ ( )f t } defined for 

1. 1 1

s
 

s > 0 

2. t 
2

1

s
 

s > 0 

3. tn 
1

!
n

n

s   
s > 0 

4. eat 1

s a
 

s > a 

5. sin at 
2 2

a

s a
 

s > 0 

6. cos at 
2 2

s

s a
 

s > 0 

7. sinh at 
2 2

a

s a
 s > a  

8. cosh at 
2 2

s

s a
 s > a  

9. tneat 
1

!

( )n

n

s a 
 

s > a 

10. t sin at 

 22 2

2as

s a
 

s > 0 

11. t cos at 

 
2 2

22 2

s a

s a




 

s > 0 

12. t sinh at 

 22 2

2as

s a
 s > a  

13. t cosh at 

 
2 2

22 2

s a

s a




 

s > a  

14. eat sin bt 

 2 2

b

s a b 
 

s > a 

15. eat cos bt 

 2 2

s a

s a b



 
 

s > a 
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POST-TEST: MODULE 4 (LEARNING UNIT 1) 

(Solutions on myUnisa under additional resources) 

 

Time: 60 minutes 

 

1. Evaluate L{(t2 + 1)2}. (4) 

 

2. Find the Laplace transforms of: 

(a) e –2t cos3t (5) 

(b) 2e3tsin4t (5) 

 

3. If L{sin t} = 
1s

1
2 

, find L{sin5t} using the change of scale property. (5) 

 

4. Find 

(a) L{t4e4t} (2) 

(b) L{t2 cos t} (6) 

 

5. If ( )f t = sin2t, evaluate L{f "(t)}. (8) 

 

 [35] 

 

You should now be able to define a Laplace transform and use the definition and properties 

of Laplace transforms to find the transforms of elementary functions. You should also be able 

to use a standard list of Laplace transforms to determine the Laplace transform of a simple 

function. 

 

We are now ready to move to the next learning unit and investigate inverse Laplace 

transforms. 
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MODULE 4 

LAPLACE TRANSFORMS  

 

LEARNING UNIT 2 

INVERSE LAPLACE TRANSFORMS 

 

OUTCOMES 

At the end of this learning unit, you should be able to 

 define the inverse Laplace transform 

 use a standard list to determine the inverse Laplace transforms of simple functions 

 determine inverse Laplace transforms by using partial fractions 

 determine inverse Laplace transforms by completing the square 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

2.1 THE INVERSE LAPLACE TRANSFORM    16 

2.2 PROPERTIES OF THE INVERSE LAPLACE  

 TRANSFORM        18 

 2.2.1 Linearity property       18 

 2.2.2 First translation or shifting property     19 

 2.2.3 Second translation or shifting property    19 

 2.2.4 Change of scale property      20 

 2.2.5 Multiplication of sn       20 

 2.2.6 Division by s        21 

 2.2.7 The convolution property      22 

2.3 INVERSE LAPLACE TRANSFORMS OF DERIVATIVES 23 

2.4 INVERSE LAPLACE TRANSFORMS OF INTEGRALS  24 

2.5  POST-TEST         34 
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2.1 THE INVERSE LAPLACE TRANSFORM 

 

If   f tL  = F(s) = 
0

( )ste f t dt
   is the Laplace transform of a function ( )f t , 

then   1( ) Ft sf L = is called the inverse Laplace transform where 1L  is the inverse 

transform operator. 

For example, since L{eat} = 
1

s a
, the inverse transform is 1 1 ate

s a
     

L . 

The inverse transform ( )f t of a given ( )F s is unique in all the examples we shall deal with. 

 

For real values of s we have to refer to a table of commonly occurring functions and their 

Laplace transforms to find function ( )f t  whose transform is the given function ( ).F s  

Therefore given a transform, we can write down the corresponding function in t, provided we 

can recognise it from a table of transforms. In practice, however, this is not always easy, 

since F(s) is often a complicated function, which does not appear in the table in its given 

form. We then have to rewrite it as one or more “standard” functions as listed in the table. 

We use the same table as in learning unit 1 (page 13) to find the inverse Laplace transforms, 

this time reading from right to left. Remember that this table will be supplied in the 

examination. The table is given again on the next page. 
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Table of Laplace Transforms 

 F(t) = L–1{F(s)} F(s) = L{f(t)}  

1. 1 1

s
 

s > 0 

2. t 
2

1

s
 

s > 0 

3. tn 
1

!
n

n

s   
s > 0 

4. eat 1

s a
 

s > a 

5. sin at 
2 2

a

s a
 

s > 0 

6. cos at 
2 2

s

s a
 

s > 0 

7. sinh at 
2 2

a

s a
 s > a  

8. cosh at 
2 2

s

s a
 s > a  

9. tneat 
1

!

( )n

n

s a 
 

s > a 

10. t sin at 

 22 2

2as

s a
 

s > 0 

11. t cos at 

 
2 2

22 2

s a

s a




 

s > 0 

12. t sinh at 

 22 2

2as

s a
 s > a  

13. t cosh at 

 
2 2

22 2

s a

s a




 

s > a  

14. eat sin bt 

 2 2

b

s a b 
 

s > a 

15. eat cos bt 

 2 2

s a

s a b



 
 

s > a 
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2.2 PROPERTIES OF THE INVERSE LAPLACE TRANSFORM 

 

For all the properties of the Laplace transform discussed in the previous unit, there are 

corresponding properties of the inverse transform. These are listed below with examples, 

with one useful addition, namely the convolution property. 

 

2.2.1 Linearity property 

 

If F1(s) and F2(s) are the Laplace transforms of f1(t) and f2(t), respectively, then 

 
   

1
1 2

1 1
1 2

1 2

( ) ( )

( ) ( )

( ) ( )

a F s b F s

a F s b F s

a f t b f t



 



 

 

L 
L L  

where a and b are constants.  

 

This result holds for any number of functions. 

 

EXAMPLE 1 

Find the inverse transform of 
3

5 4
( )

s
F s

s


 . 

SOLUTION 

There is nothing in the table which resembles F(s) in the given form, so we rewrite it as: 

2 3

5 4
( )F s

s s
   

By the linearity property we then have: 

1 1 1
3 2 3

5 4 1 1
5 4

s

s s s
             
     

L L L     (2.1) 

Referring to the table, we see from no.2 that 1
2

1
t

s
    
 

L  and from no.3 that 
2

1
3

1

2!

t

s
    
 

L . 

Thus equation (2.1) becomes: 

1 2
3

5 4
5 2

s
t t

s
     
 

L  
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2.2.2 First translation or shifting property 

 

If 1{ ( )} ( )F s f t L , then  1 ( ) ( )atF s a e f t  L . 

 

EXAMPLE 2 

Find 
 

1
3

2

3s


  
 

  
L . 

SOLUTION 

Let 
3

2
( )F s

s
 , then, by no. 3 of the table, 1 2{ ( )}F s t L .  

By the first translation property 
 

1 3 2
3

2

3

te t
s


    

  
L  

where the function of s has become a function of s  a, which in this case is (s 3). 

 

2.2.3 Second translation or shifting property 

 

If  1 ( ) ( )F s f t L , then  1 ( )
( )

      0                
as f t a t a

e F s
t a

   
  

L  

 

EXAMPLE 3 

Find 
2

1
2 16

sse

s


  
 

 
L . 

SOLUTION 

Let 
2

( )
16

s
F s

s



, 

then  1 ( ) cos 4F s t L      (no. 6 of the table) 

and 1
2

cos 4( 2) 2

        0 216
as t ts

e
ts

             
L  
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2.2.4 Change of scale property 

 

If  1 ( ) ( )F s f t L , then  1 1
( )

t
F as f

a a
    

 
L . 

 

EXAMPLE 4 

Find 1
2

2

4 4

s

s
  
 

 
L . 

SOLUTION 

Let 
2

( )
4

s
F s

s



, 

then  1 ( ) cos 2F s t L     (no. 6 of the table) 

and so 
 

 1 1
2

2
(2 )

2 4

1 2
cos

2 2
1

cos
2

s
F s

s

t

t

 
    

  





L L  

where we have used the change of scale property. 

 

2.2.5 Multiplication by sn 

 

If  1 ( ) ( )F s f t L  and  0 0f  , then  1 ( ) ( ) '( )
d

sF s f t f t
dt

  L . 

 

This result follows from taking the inverse transform of equation (1.6) of learning unit 1, and 

it can be generalised to 1L {sn F(s)}. 

 

EXAMPLE 5 

If 1
2

2
sin 2

4
t

s
    

 
L , find 1

2

2

4

s

s
  
 

 
L . 
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SOLUTION 

Since  1 1
2

2
( )

4

sin 2

( )

F s
s

t

f t

     
 




L L  

and f (0) = sin 0 = 0, 

we have 

 

1 1
2 2

2 2

4 4

sin 2

2cos 2

s
s

s s

d
t

dt
t

               





L L  

 

2.2.6 Division by s 

 

If  1 ( ) ( )F s f t L , then 1

0

( )
( )

tF s
f u du

s
    
  L . 

 

Thus division by s (or multiplication by 1
s ) has the effect of integrating ( )f t from 0 to t. 

 

Taking the inverse transform of equation (1.7) in learning unit 1 leads to the above result, 

which can be generalised to 1

0 0

( )
.................. ( )

t t n
n

F s
f t dt

s
    
   L . 

 

EXAMPLE 6 

Find 1 1

( 1)s s
  
  

L . 

 

SOLUTION 

Let 
1

( )
1

F s
s




, 

then, since  1 1 1
( )

1

( )

t

F s
s

e

f t

 



    



L L  
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it follows that 1 1

0

( ) 1

( 1)
t u

F s

s s s

e du

 



         

 

L L  

 

where the function of t has become the same function of u, so that 

1

0

1

( 1)

1

1

tu

t

t

e
s s

e

e

 





        
  

 

L 

 

 

2.2.7 The convolution property 

 

If  1 ( ) ( )F s f t L  and  1 ( ) ( )G s g t L , then 

 1

0
( ) ( ) ( ) ( ) *

t
F s G s f u g t u du f g   L  

where f * g is called the convolution of ( )f t  and ( )g t .  

 

This property gives us a method of finding the inverse transform of a product. 

 

EXAMPLE 7 

Find 
  

1 1

2 3s s
   
    

L . 

SOLUTION 

If we let 
1

( )
2

F s
s




 and 
1

( )
3

G s
s




, then by no. 4 of the table: 

 1 1

2

1
( )

2

( )

t

F s
s

e

f t

      



L L  and  1 1

3

1
( )

3

( )

t

G s
s

e

g t

 



    



L L  

On using the convolution property we have  1

0

2 3( )

0

( ) ( ) ( ) ( )

.

t

t u t u

F s G s f u g t u du

e e du



 

 






L  

where ( )f t  has become the same function of u and ( )g t the same function of (tu). 
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Thus 
   

 

1 5 3

0

5 3

0

2 3

1

2 3

1

5
1

5

t
u t

tu t

t t

e du
s s

e

e e

 





       

   

 

L  

 

2.3 INVERSE LAPLACE TRANSFORMS OF DERIVATIVES 

 

If  1 ( ) ( )F s f t L , then:  1 ( ) 1( ) ( )

( 1) ( )

n
n

n

n n

d
f s F s

ds

t f t

   
  

 
 

L L     (2.2) 

 

This result follows directly from section 1.2.5 of learning unit 1 where it was stated that: 

   ( ) 1 ( )
n

nn
n

d
t f t F s

ds
 L  

 

Taking the inverse transform of this gives equation (2.2). For n = 1 we have: 

 1 '( ) ( )F s t f t  L  

 

EXAMPLE 8 

If 1 31

3
te

s
     

L , find 
 

1
3

1

3s


  
 

  
L . 

SOLUTION 

 
 2

1 1

3 3

d

ds s s

     
  

and 
 

2

2 3

1 2

3 3

d

sds s

     
 

Thus 
 

2

3 2

1 1 1

2 33

d

sdss

    
 

On taking the inverse transform of both sides we get 
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 

2
1 1

3 2

2 2 3

1 1 1

2 33

1
( 1)

2
t

d

sdss

t e

 



               

 

L L
 

where we have used equation (2.2) with n = 2. 

Thus 1 2 3
3

1 1

2( 3)
tt e

s
  

 
 

L . 

 

2.4 INVERSE LAPLACE TRANSFORMS OF INTEGRALS 

 

If  1 ( ) ( )F s f t L , then  1 ( )
( )

s

f t
F u du

t

 L     (2.3) 

 

This follows from 1.2.6 of learning unit 1 which states that 
( )

( )
s

f t
F u du

t

   
  L .  

Equation (2.3) is simply the inverse transform of this. 

 

EXAMPLE 9 

Find 1

0

1

( 1)
du

u u



  
   





L . 

 

SOLUTION 

Let 
1

( )
( 1)

f u
u u




 so that 
1

( )
( 1)

F s
s s




. 

In example 6 we found that 1 1
1 ( )

( 1)
te f t

s s
  

    
L . 

Thus  1 1 1
( )

( 1)

( )

1

s
s

t

F u du du
u u

f t

t

e

t


 



      








L L  
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EXAMPLE 10 

Find the inverse Laplace transform of 
2

7 6
( )

6

s
F s

s s




 
. 

SOLUTION 

Since s2s6 = (s3)(s + 2), we can express F(s) in partial fractions.  

Let 
7 6

( 3)( 2) 3 2

s A B

s s s s


 

   
 

We multiply both sides of the equation by (s3)(s + 2) to get: 

7s6 = A(s + 2) + B(s  3) 

          = (A + B)s + (2A  3B) 

Equating coefficients of like terms gives the following: 

s terms:        7 = A + B 

         A = 7  B 

constant terms:     6 = 2A 3B 

            = 2(7B)3B 

   –20 = –5B 

       B = 4 

and         A = 3 

Thus    
2

7 6
( )

6
3 4

3 2

s
F s

s s

s s




 

 
 

 

We can now use the linearity property. Each term is easily recognisable as the transform of 

an exponential function (see table, no. 4) and hence the inverse transform is: 

1 3 2
2

7 5
3 4

6
t ts

e e
s s

     
  

L  

 

EXAMPLE 11 

Find the inverse transform of 
2

2 1
( )

( 1)( 1)

s
F s

s s




 
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SOLUTION 

Let 
2 2

2 1

1( 1)( 1) 1

s A Bs C

ss s s

 
 

  
. 

Since the second partial fraction has a denominator of the second degree, we assume the 

numerator to have the form Bs + C. On multiplying both sides of the equation by  

(s + 1)(s2 + 1) we obtain: 

2

2

2 1 ( 1) ( )( 1)

( ) ( ) ( )

s A s Bs C s

A B s B C s A C

     

     
 

Equating coefficients of like terms gives the following: 

s2 terms: A + B = 0 

         B = A 

s terms:        2 = B + C 

         2 = A + C 

constant terms:       1 = A + C 

Hence  
3 1 1

,  and  
2 2 2

C A B     

 

Thus         
2

2 2

1 3
( )

2( 1) 2( 1)

1 1 1 3 1

2 1 2 21 1

s
F s

s s

s

s s s

 
 

 

                    

 

  

and  1 1 1 1
2 2

1 1 1 3 1
( )

2 1 2 21 1

s
F s

s s s
                       

L L L L  

The inverse transforms of these partial fractions are found from the table and we obtain: 

 

1
2

2 1 1 1 3
cos sin

2 2 2( 1)( 1)

1
(cos 3sin )

2

t

t

s
e t t

s s

t t e

 



 
    

  

  

L 
 

 



MAT3700  27 

EXAMPLE 12 

Find the inverse transform of 
2

3

4 4 2
( )

( 1)

s s
F s

s

 



. 

SOLUTION 

Since F(s) has the repeated factor (s  1)3 for its denominator, the corresponding partial 

fractions must have s  1, (s 1)2 and (s1)3 as denominators. 

 

Let 
   

2

3 2 3

4 4 2

1 ( 1)1 1

s s A B C

s ss s

 
  

  
. 

Multiplying both sides of the equation by (s  1)3 leads to: 

2 2

2

2

4 4 2 ( 1) ( 1)

( 2 1) ( 1)

( 2 ) ( )

s s A s B s C

A s s B s C

As A B s A B C

      

     

      

 

We equate coefficients of like terms to get the following: 

s2 terms:      A = 4 

s terms:   4 = 2A + B 

   4 = 8 + B 

       B = 4 

constant terms:     2 = A B + C 

      2 = 4  4 + C 

     C = 2 

Therefore          
2 3

4 4 2
( )

1 ( 1) ( 1)
F s

s s s
  

  
 

And                
 

1 1 1 1
2 3

1 1 1
( ) 4 4 2

1 ( 1) 1
F s

s s s

   
                   

L L L L  

We now use the table to find that: 

 

2
1 2

3

2

2

4 4 2
4 4

( 1)

(4 4 )

( 2)

t t t

t

t

s s
e te t e

s

e t t

e t

   
    
  

 

L 

 

Remember that when resolving a function into partial fractions you must find the prime 

factors of the denominator. 
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For example, 
2

1

( 2)( 1)s s 
 is not in prime factors, since (s21) = (s1)(s + 1). When the 

denominator for F(s) has no real factors, the use of the partial fraction method would involve 

the use of complex algebra. Instead, if we can, we write the denominator as the sum or 

difference of two squares. 

 

For example: 2 2

2

2 2

2

2 5 ( 2 1) 4

( 1) 4

8 9 ( 8 16) 25

( 4) 25

s s s s

s

s s s s

s

     

  

     

  

 

 

The numerator of F(s) is then expressed in terms of the same function of s (in the above 

examples (s + 1) and (s4)). The first translation property now enables us to remove an 

exponential factor te   and eut above, and the transform of what remains can easily be found 

from the table. 

 

EXAMPLE 13 

Find 1
2

2 1

4 13

s

s s
  
 

  
L . 

SOLUTION 

Since the denominator has no real factors we write it as 

2 24 13 ( 2) 9s s s      

which is the sum of two squares. Next we express the numerator in terms of s + 2 as well, 

thus obtaining: 

 

1 1
2 2

1
2

1
2

1

2 1 2 1

4 13 ( 2) 9

2 4 3

( 2) 9

2( 2) 3

( 2) 9

( 2)

s s

s s s

s

s

s

s

F s

 







       
      

  
  

  
  

  
  

 

L L

L

L

L
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On using the first translation or shifting property this becomes 

 

 1 2 1
2

2 1 1
2 2

2 3
( 2)

9

3
2

9 9

t

t

s
F s e

s

s
e

s s

  

  

    
 

              

L L

L L  by the linearity property.  

We now use the table to obtain: 

 1 2
2

2 1
2cos3 sin 3

4 13
ts

e t t
s s

     
  

L  

 

EXAMPLE 14 

Find 1
2

1 5

2 3

s

s s
  
 

  
L . 

SOLUTION 

Using the method described above of expressing both numerator and denominator in terms of 

the same function (s  a) we obtain 

1 1
2 2

1
2

1
2

1 5 1 5

2 3 ( 1) 4

6 5( 1)

( 1) 4

6 5

4
t

s s

s s s

s

s

s
e

s

 



 

       
      

  
  

  
   
 

L L

L

L

 

where e–t has been removed by virtue of the first translation property.  

Use the linearity property to write  

1 1 1
2 2 2

6 5 2
3 5

4 4 4
t ts s

e e
s s s

                          
L L L  

and from the table we find that 

1
2

1 5
(3sinh 2 5cosh 2 )

2 3
ts

e t t
s s

     
  

L . 

Sometimes the removal of some power of s or 1
s  will leave F(s) in a form which can be more 

easily handled.  

 

From learning unit 1 we use the facts that: 
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 
 

1

1

1

0

If     ( ) ( )

then ( ) '( )

( )
and ( )

t

F s f t

sF s f t

F s
f u du

s











   
  

L
L

L

 

 

EXAMPLE 15 

Find 
 

2
1

22 4

s

s


 
 
 

  

L . 

SOLUTION 

From the table we see that 
 

1
22 2

2
sin

as
t at

s a


 
   

  

L  

so that     1
2 2 2

sin

2( )

s t at

as a
  

 
 

L . 

Let   
2 2

( )
( 4)

s
F s

s



, 

then   
 

1 1
22

( )
4

sin 2

4
( )

s
F s

s

t t

f t

 
 
   

  





L L  

It follows that:  
 

 

2
1 1

22
( )

4

( )

sin 2

4

1
sin 2 2 cos 2

4

s
sF s

s

d
f t

dt
d t t

dt

t t t

 
 
   

  



   
 

 

L L  

 

EXAMPLE 16 

Find 1
5( 1)

s

s
  
 

 
L . 
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SOLUTION 

4
1

5

4

1

4!( 1)

24

t

t

t e

s

t e






 
 

 



L
 

Let 
5

1
( )

( 1)
F s

s



. 

Then  1 1
5

4

1
( )

( 1)

24
( )

t

F s
s

t e

f t

 



 
  

 





L L  

Thus  

 

1 1
5

4

3 4

( )
( 1)

( )

24

4
24

t

t

s
sF s

s

d
f t

dt

d t e

dt

e
t t

 





 
  

 



 
  

 

 

L L  

 

EXAMPLE 17 

Find 1
2

1

( 1)s s
  
 

 
L . 

SOLUTION 

Let 
2

1
( )

( 1)
F s

s



, 

then from the table we find that:  1 1
2

1
( )

( 1)

( )

t

F s
s

te

f t

 



 
  

 



L L  
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Thus 1 1
2

0

0

( ) 1

( 1)

( )
t

t u

F s

s s s

f u du

ue du

 



      
   








L L  

The integrand is the product of two functions of u, so we have to integrate by parts.  

To refresh your memory of integration by parts: 
dg df

f du fg g du
du du

   
 

 

In our example we put and udg
f u e

du
  . 

Thus    1 and udf
g e

du
   . 

 

Thus  1
2 0

0

1

( 1)

1

1 (1 )

tu u

tt u

t t

t

ue e du
s s

te e

te e

e t

  

 

 



 
       

     
   

  

L  

 

EXAMPLE 18 

Use the convolution property of the inverse transform to find 1
2

1

( 2) ( 2)s s
  
 

  
L . 

SOLUTION 

Let 
2

1 1
( ) and ( )

2( 2)
F s G s

ss
 


 

so that  1 2( ) ( )tF s te f t  L  

and       1 2( ) ( )tG s e g t  L . 

Then, by the convolution property: 

 

 1

0

2 2( )

0

2 4

0

( ) ( ) ( ) ( )
t

t u t u

t t u

F s G s f u g t u du

u e e du

u e du



 



 









L

 

Again it is necessary to integrate by parts.  
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If we put 2 4and t udg
f u e

du
  , 

then 2 41
1 and

4
t udf

g e
du

   . 

Thus          1 2 4 2 4

0 0

2 2 4

0

2 2 2

1 1

4 4

1 1

4 16

1 1 1

4 16 16

( ) ( )
t t

t u t u

t
t t u

t t t

F s G s u e e du

t e e

t e e e

  

 

 

           

      

   





L  

Thus  1 2 2 2
2

1 1
4

( 2) ( 2) 16
t t te e t e

s s
   

     
L  

You may remember that sinh at = 
1

( )
2

at ate e , so that the above result can also be written as 

1 2
2

1 1
(sinh 2 2 )

8( 2) ( 2)
tt te

s s
  

  
  

L  

 

This example can also be done by using partial fractions. 

Let 
2

1

2 2 2( 2) ( 2)

A B C

s s ss s
  

   
. 

Then 
1 1 1

, ,
16 4 16

A B C     . 

Thus 

 

1 1 1 1
2 2

2 2 2

2 2 2

1 1 1 1 1 1 1

16 2 4 16 2( 2) ( 2) ( 2)

1 1 1

16 4 16
1

4
16

t t t

t t t

s ss s s

e t e e

e e t e

   

 

 

                         

   

  

L L L L  

which agrees with our previous result. 
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2.5 POST-TEST: MODULE 4 (LEARNING UNIT 2) 

(Solutions on myUnisa under additional resources) 

 
Time: 108 minutes 

 
1. Find the following: 

(a) 1

2

1

16s
  
 

 
L  (2) 

(b) 1

6

2

s
  
 
 

L  (2) 

(c) 1
2

4 18

9

s

s
  
 

 
L  (4) 

(d) 1
2

1

( 9)s s
  
 

 
L  (4) 

 

2. If 1
2 2

sinh1 at

as a
    

 
L , show that 1

2 2 2

sinh

2( )

s t at

as a
  

 
 

L . (6) 

 
3. Find: 

(a) 1
4

6

( 3)s
  
 

 
L  (4) 

(b) 1
2

4

5 6

s

s s
  
 

  
L  (12) 

(c) 1
2

3 2

4 8

s

s s
  
 

  
L  (7) 

(d) 1
2

2

( 1)s s
  
 

 
L  (7) 

(e) 
2

1
2 2

4 ( 9)

( 9)

s s

s
  
 

 
L  (8) 

 
4. Use the convolution property of the inverse transform to show that: 

1
2

1
1

( 1)
te t

s s
  

   
 

L  (16) 

[72] 
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You should now be able to define the inverse Laplace transform and use a standard list to 

determine the inverse Laplace transforms of simple functions. You should also be able to 

determine inverse Laplace transforms by using partial fractions and by completing the square. 

 

We are now ready to move to the next learning unit and study the Laplace transforms of two 

special functions, namely the Heaviside unit step function and the Dirac delta function. 
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MODULE 4 

LAPLACE TRANSFORMS 

 

LEARNING UNIT 3 

SPECIAL FUNCTIONS  

 

OUTCOMES 

At the end of this learning unit, you should be able to 

 define the Heaviside unit step function 

 use a standard list to determine the Laplace transform of ( )H t c  

 use a standard list to determine the Laplace transform of  ( ).H t c f t c   

 define the unit impulse or Dirac delta function 

 use a standard list to determine the Laplace transform of  t c   

 determine the inverse Laplace transforms of ( )H t c  and  t c   

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 
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3.4 LAPLACE TRANSFORM OF THE UNIT IMPULSE  

 FUNCTION          43 

3.5 TABLE OF LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS 47 

3.6 POST-TEST           48 
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3.1 THE HEAVISIDE UNIT STEP FUNCTION 

 

One of the main advantages of the Laplace transform in solving differential equations is the 

ability to handle discontinuous functions. These occur in problems where stimuli are 

suddenly applied, such as when a switch is opened or closed. They are also to be found in 

problems on discontinuous loading in beams where, for example, a load is uniformly 

distributed over one section of a beam, with no load on the remainder. 

 

To deal with this type of problem where a “step discontinuity” is involved, we use the unit 

step function U(t), also called Heaviside’s unit function H(t), which is defined as: 

 
0 when 0

( )
1 when 0

t
U t H t

t


   

     (3.1) 

 

 

 

 

 

 

Figure 1 

U(t) has a unit step discontinuity at t = 0.  

From the definition it follows that: 
0

( )
1

t a
U t a

t a


   

 

Therefore U(t a) is a unit step function with step at t = a. 

 

 

 

 

 

 

Figure 2 

It is clear that U(t a) is the function obtained by shifting U(t) a distance a along the positive 

t-axis. 

t 0

1 

t 0 

1 

a
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3.2 LAPLACE TRANSFORM OF THE HEAVISIDE UNIT STEP 

FUNCTION 

 

By definition, the Laplace transform of U(t a) is given by  0
( ) ( )stU t a e U t a dt

   L . 

 

Since U(t a) has the value 0 when t < a and 1 when t > a, it follows that: 

0 0
( ) (1) (0)

0

ast st st

a

st

a

st

a

s a

e U t a dt e dt e dt

e dt

e

s

e

s

   

 





  



 
   

 
   

  


 

Thus   ( )
ase

U t a
s



 L          (3.2) 

and  1 ( )
ase

U t a
s


  

  
 

L         (3.3) 

Putting a = 0 in equations (3.2) and (3.3) gives: 

 
 

1

1
( )

1
( )

U t
s

U t
s





   
 

L

L
 

 

EXAMPLE 1 

Write the function 
3

( )
0 3

te t
f t

t

 
 


 in terms of the unit step function and find L{f(t)}. 

 

SOLUTION 

In its given form ( )f t does not represent a unit step function. If we subtract e– t from both 

sides of the equation we get: 
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3
( )

0 3

0 3

3

0 3

1 3

t t
t

t

t

t

e e t
f t e

e t

t

e t

t
e

t

 








  
  

 

 
 


   

 

This is a unit step function, with step discontinuity of magnitude – e–t at t = 3. 

Thus  ( ) ( 3)

( ) ( 3)

t t

t t

f t e e U t

f t e e U t

 

 

   

  

 

We now take Laplace transforms of both sides to obtain: 

   
   

0

3

3 0

( 1)

3

( 1)

3

3( 1)

3( 1)

( ) ( 3)

( 3)

1
( 3)

1
1

(1) (0)
1

1

1

1

1 ( 1)

1

1 ( 1)

1

1

t t

t t

st t

st t st

s t

s t

s

s

f t e e U t

e e U t

e e U t dt
s

e e dt e dt
s

e dt
s

e

s s

e

s s

e

s

 

 

  

   

  

 

 

 

  

  

  


  


 


 
      

 
 








 



L L

L L

 

 

EXAMPLE 2 

Express the following function in terms of unit step functions. Hence find the Laplace 

transform of ( )f t : 

0            a

( ) 2      

0            b

t

f t a t b

t


  
 

  

SOLUTION 

( )f t may be represented graphically as follows: 
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Figure 3 

[This function is called a pulse of duration (ba), magnitude 2 and strength 2(ba). The 

strength of a pulse is the product of its magnitude and duration, that is the area under the 

graph.] 

 

We would like to express ( )f t in terms of the unit step function. We begin by introducing 

step functions at each point where there is a kink or jump in the graph. In this case at t = a 

and t = b. At each jump we will add in the new behaviour and subtract the old behaviour. 

         
   
   

2 0 0 2

2 2

2

f t U t a U t b

U t a U t b

U t a U t b

     

   

     

      (3. 4) 

[In general, a pulse is defined by  ( ) ( ) ( )f t k U t a U t b     where (ba) is the duration 

and k the magnitude.] 

We now take Laplace transforms of both sides of equation (3.4), obtaining: 

    
   

( ) 2 ( ) ( )

2 ( ) 2 ( )

2 2

2 , 0

as bs

as bs

f t U t a U t b

U t a U t b

e e

s s

e e
s

s

 

 

   

   

 

 
  

 

L L
L L

 

 

U(ta) can be written in another form using the second translation or shifting property of 

the inverse transform which states that if  1 ( ) ( )F s f t L , 

t a b0 

2 
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then     
1

0            
( )

     
as

t a
e F s

f t a t a
 

   
L  

 

We also have 
0            

( ) ( ) ( )
1            

0            

( )     

t a
f t a U t a f t a

t a

t a

f t a t a


     


   

 

from which it follows that  1 ( ) ( ) ( )ase F s f t a U t a    L  

and  ( ) ( ) ( )ase F s f t a U t a   L . 

 

EXAMPLE 3 

Find 
2

1
2

se

s


  
 
 

L . 

SOLUTION 

Let 
2

1
( )F s

s
  so that:  1 1

2

1
( )

( )

F s
s

t

f t

     
 




L L  

In this example a = 2, so that  ( ) 2f t a f t    and we obtain 

2
1

2
( 2) ( 2)

se
t U t

s


  

   
 

L . 

 

3.3 THE UNIT IMPULSE FUNCTION 

 

A pulse of very large magnitude and infinitesimally short duration (but of finite strength) is 

called an impulse. For example, in mechanics we use the term when speaking of a large force 

that acts for a very short time, but produces a finite change in momentum. It is also used in 

beam problems where a concentrated load acts at a point, thus giving a very great load 

intensity. 

Let 
1

      0
( )

0             
x

t
f t

t

    
  
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represent a pulse of duration  from t = 0 to t =  and of magnitude 
1


. 

 

 

 

 

 

 

 

 

Figure 4 

 

As   0, the height of the rectangle increases indefinitely, while the width decreases in 

such a way that the strength of the pulse, i.e. the area, is always equal to 1
1




. The limit 

of ( )f t  as   0 is denoted by the Dirac delta (t) and we call this limiting function the unit 

impulse or Dirac delta function. It represents an impulse of unit strength at t = 0. 

 

(t) has the following properties: 

(a) 
0

( ) 1t dt

   

(b) 
0

( ) ( ) (0)t g t dt g

   

(c) 
0

( ) ( ) ( )t a g t dt g a

    where g(t) is any continuous function 

 

Since ( )f t  is a pulse of magnitude 

1

 and duration , it can be expressed in terms of unit 

step functions (see example 2) as  1
( ) ( ) (f t U t U t    


. 

Hence   
0 0

1
( ) lim ( ) lim ( ) (t f t U t U t 
     


. 

 

A unit impulse at t = a is represented by (ta) where 

t
 0 


1
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    
0

lim ( )t a f t a
     

And   
1

       
( )

0              

a t a
f t a

t a


      
   

 

 

3.4 LAPLACE TRANSFORM OF THE UNIT IMPULSE FUNCTION 

 

In order to evaluate the Laplace transform of (t  a), we first find the Laplace transform of 

f(t  a) and then take the limit of this as   0, that is: 

   
0

( ) lim ( )t a f t a
   L L  

By definition: 

  

 

 

 

( ) 0

1

( )

( )

(0)

1

(1 )
( )

st
t a

ast st

a a

a st

a

ast

a

s a s

as s

as s

f e f t a dt

e dt e dt

e
dt

e

s

e e

s

e e

s

e e
f t a

s

 
  

  


 



   

  

  



 

 




 
    




 



 


 







 

L

L

 

and    
0

0

( ) lim ( )

1
lim

s
as

t a f t a

e
e

s



 




   

 
   

L L  

But 
0

1 0
lim

0

se

s

 



 
  

, which is an indeterminate form, so we use l’Hospital’s rule, to obtain: 



MAT3700  44 

0 0

0

0

(1 )

( )

1
lim lim

lim

lim

1

s
s

s

s

d
e

d
d

s
d

e

s

s e

s

e

 
 

 

 



 









 
  

      
 
 

  
 





 

Then      
0

( ) lim ( )

as

t a f t a

e





   



L L  

Setting a = 0 in this equation, we find that: 

 
   

0
( ) lim ( )

1

t f t
 



L L
 

The inverse transforms are    1 ast a e    L  

and    1 1t   L . 

 

EXAMPLE 4 

Show ( 3)f t   graphically and find  ( 3)t L . 

 

SOLUTION 

The function ( 3)f t   is defined as: 

1
        3 3

( 3)
0         3

t
f t

t


      
   
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Figure 5 

 

Now  
0

3 lim ( 3)t f t


      

and since    ast a e  L , 

it follows that   3( 3) st e  L . 

 

EXAMPLE 5 

Find   ( 1) 1t t  L . 

 

SOLUTION 

       
0

1 1 lim 1 ( 1)t t t f t
     L L  

 where  
1

      1 1
1

0            1

t
f t

t


      
   

 

Then         

 

0

1

1

1 1 1 1

1

st

st

t f t e t f t dt

e
t dt

 
 



    

 






L  

 

Since the integrand is the product of two functions of t, we have to integrate by parts. 

Let ( 1) and
stdg e

f t
dt



  


. 

Then 1 and
stdf e

g
dt s



 
 

. 

t
3  3+

0 


1
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Thus:        
1 1

11

1(1 )

2
1

(1 ) (1 )

2

1 1 1
st st

s st

s s s

e e
t f t t dt

s s

e e

s s

e e e

s s

  



  

    

 
         

 
      


  







L  

In the limit as 0 , this becomes: 

         
0

(1 ) (1 )

20

(1 )

20

1 1 lim 1 1

lim

lim

s s s

s s s

t t t f t

e e e

s s

e e e

s s



    



   



     

 
    

 
     

L L

 

The term in brackets has the indeterminate form 
0

0
 so we use l’Hospital’s rule to obtain: 

 
 

(1 )
(1 )

20 0 2

(1 )

20

lim lim

lim

s s
s s

s

s

d
e ee e dx
ds s

d

se

s

e

s

  
  

 

 





     
      

 
 

  
 



 

 

Thus     1 1

0

s se e
t t

s s

 

     



L  

 

Remember that to find L{(t  a)}, we must first evaluate L{f(t  a)} and then take the 

limit as 0 , that is  

     
0

limt a L f t a
   L  
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3.5 TABLE OF LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS 

 

The following table is a summary of the results of this unit and will be added to the table of 

Laplace transforms that will be given with your examination paper: 

 

f(t) L{f(t)} 

( )U t  1

s
 

( )U t a  ase

s



 

( )t  1 

 t a   ase  
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3.6 POST-TEST: MODULE 4 (LEARNING UNIT 3) 

(Solutions on myUnisa under additional resources) 

 
Time: 40 minutes 

 

1. Write the function 
1        2

( )
0        2

t
f t

t


  

 

in terms of the unit step function and hence find L{ ( )f t }. (6) 

 

2. Find the Laplace transform of 
2         1

( )
0            1

te t
f t

t

 
 


 (9) 

 

3. Express 

0          3

( ) 6    3 5

0          5

t

f t t

t


  
 

 

in terms of the unit step function and find L{ ( )f t }. (5) 

 

4. Write the function 
3

        2 2
( )

0         

t
f t

t

     
  

 

in terms of the unit impulse function and find its Laplace transform. (4) 

[24] 

 

You should now be able to define the Heaviside unit step function and the unit impulse 

function, and find their Laplace transforms and inverse Laplace transforms using a table of 

standard transforms. 

 

We are now ready to start using Laplace transforms to solve ordinary differential equations as 

will be explained in the next learning unit. 
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MODULE 4 

LAPLACE TRANSFORMS 

 

LEARNING UNIT 4 

 SOLVING DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 

 

OUTCOMES 

At the end of this learning unit, you should be able to 

 understand the procedure to solve differential equations using Laplace transforms 

 solve differential equations using Laplace transforms 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

4.1 SOLUTION OF DIFFERENTIAL EQUATIONS USING  

 LAPLACE TRANSFORMS       50 

4.2 POST-TEST         61 

 



MAT3700  50 

4.1 SOLUTION OF DIFFERENTIAL EQUATIONS USING LAPLACE 

 TRANSFORMS 

 

Laplace transforms can also be used to solve differential equations. We will use the following 

results from learning unit 1: 

If   L{f(t)} = F(s), 

then   L{f '(t)} = sF(s)f (0)      (4.1) 

and   L{f "(t)} = s2F(s)s f (0)f '(0).     (4.2) 

 

Consider the second-order linear differential equation 

2

2
( )

d y dy
a b cy f t

dx dx
    

or 

"( ) '( ) ( ) ( )ay t by t cy t f t        (4.3) 

where a, b and c are constants. Suppose we are asked to solve this equation subject to the 

initial or boundary conditions (0) and '(0)y A y B  , where A and B are given constants.  

 

On taking Laplace transforms of both sides of equation (4.3) we obtain: 

   { "( )} '( ) ( ) { ( )}a y t b y t c y t f t  L L L L    (4.4) 

 

Let  ( ) ( )y t Y sL .         (4.5) 

By equations (4.1) and (4.2) it follows that  

  '( ) ( ) (0)y t sY s y L        (4.6) 

and    2"( ) ( ) (0) '(0)y t s Y s sy y  L       (4.7) 

 

Equation (4.4) thus becomes 

   2
1 ( ) (0) '(0) ( ) (0) ( ) ( )a s Y s sy y b sY s y cY s F s       

and substitution of the initial conditions gives: 

   2 ( ) ( ) ( ) ( )a s Y s sA B b sY s A cY s F s       

This is an algebraic equation from which we can determine Y(s), that is: 
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 
2

( )
( )

F s a As B bA
Y s

as bs c

  


 
 

The required solution is then obtained by taking the inverse Laplace transform to find: 

 1 ( ) ( )Y s y t L  

The above method can be extended to differential equations of higher order. 

For first-order differential equations a = 0 and so: 

          ( )
( )

F s bA
Y s

bs c





 

 

EXAMPLE 1 

Solve the differential equation 
2

2

d y
y t

dt
   given the initial conditions 

 (0) 0 and '(0) 1y y  . 

These conditions are also sometimes written as 0 and 1
dy

y
dt

   when t = 0. 

 

SOLUTION 

We take Laplace transforms of both sides of the given equation to obtain: 

     "( ) ( )y t y t t L L L  

On using equations (4.5) and (4.7) this becomes 

2
2

1
( ) (0) '(0) ( )s Y s sy y Y s

s
         (4.8) 

where L{t} are found from the table of transforms.  

Substitution of the initial values gives:  

 

 

2
2

2
2

2

2

1
( ) 1 ( )

1
1 ( ) 1

1

s Y s Y s
s

s Y s
s

s

s

  

  




 

  
2

2 2

2

1
( )

(1 )

1

s
Y s

s s

s








 



MAT3700  52 

 

Thus the original differential equation has been transformed into the algebraic equation: 

2

1
( )Y s

s
  

We now take the inverse transform of each side, that is: 

 1 1
2

1
{ ( )}Y s

s
     

 
L L  

Using the table shows that y(t) = t. 

 

EXAMPLE 2 

Solve the equation '( ) 3 ( )y t y t t   given that  0 1.y   

 

SOLUTION 

On taking Laplace transforms of both sides we obtain: 

   '( ) 3 ( ) { }y t y t t L L L  

We now use equations (4.5) and (4.6) to get 

2

1
( ) (0) 3 ( )sY s y Y s

s
    

Substitution of the initial values gives: 

2

2

2

2

2

2

1
( ) 1 3 ( )

1
( 3) ( ) 1

1

1
( )

( 3)

sY s Y s
s

s Y s
s

s

s

s
Y s

s s

  

  









 

 

Once again we have an algebraic equation giving Y(s) in terms of s and the required solution 

is obtained by taking the reverse transform of each side. In order to do this we express Y(s) in 

partial fractions. 

Let 
2

2 2

1

3( 3)

s A B C

s ss s s


  


. 

We multiply both sides of the equation by s2(s + 3) so that: 
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2 2

2 2

2

1 ( 3) ( 3)

3 3

( ) (3 ) 3

s As s B s Cs

As As Bs B Cs

A C s A B s B

     

    

    

 

Equating coefficients of like terms yields the following: 

constant terms:        1 = 3B 

         B = 
3

1
 

s-terms:        0 = 3A + B 

         A = 
9

1
  

s2-terms:         1 = A + C 

          C = 
9

10
 

Thus 

 

2

2

2

1 1 1 1
2

1
( )

( 3)

1 1 10

9 9( 3)3

1 1 1 1 10 1
( )

9 3 9 3

s
Y s

s s

s ss

Y s
s ss

   






   


                  
L L L L

 

Referring to the table we find 

1

1
2

1

1
1

1

1

3
t

s

t
s

e
s





 

   
 
   
 

    

L

L

L

 

 

so that 310 1
( )

9 3 9
t t

y t e   . 

 

 

EXAMPLE 3 

Solve the equation 
2

2
2 3 sintd y dy

y e t
dtdt

    given (0) 0 and '(0) 1y y  . 
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SOLUTION 

We take Laplace transforms of both sides of the given equation to obtain: 

       "( ) 2 '( ) 3 ( ) sinty t y t y t e t  L L L L  

Reference to the table shows that   2

1
sin

1
t

s



L  

so that by the first translation or shifting property: 

  2

2

1
sin

( 1) 1

1

2 2

te t
s

s s

 
 


 

L
 

Thus 2
2

1
( ) (0) '(0) 2 ( ) 2 (0) 3 ( )

2 2
s Y s sy y sY s y Y s

s s
     

 
 

Using the given initial conditions we have: 

     

 

  

 

2
2

2
2

2

2

2

2

2

2 2

2

2

1
( ) 1 2 ( ) 3 ( )

2 2
1

2 3 ( ) 1
2 2

1 2 2

2 2

2 3

2 2

2 3
( )

2 2 2 3

1

2 2
1

1 1

s Y s sY s Y s
s s

s s Y s
s s

s s

s s

s s

s s

s s
Y s

s s s s

s s

s

   
 

   
 

  


 
 


 

 


   


 


 

 

We now take the inverse transform of each side to obtain 

        

1 1
2

1
2

1
{ ( )}

( 1) 1

1

1
t

Y s
s

e
s

 

 

 
  

  
   

 

L L

L
 

by the first translation property.  

Using the table we find that the solution is: 

 ( ) sinty t e t  
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EXAMPLE 4 

Solve the equation 
2

2
2 xd y dy

y e
dxdx

    

subject to the initial conditions y(0) = 0 and y'(0) = 0. 

 

SOLUTION 

In this example the independent variable is x, so we use x instead of t in defining the Laplace 

transform, that is, we put  
0

( ) ( )sxY s e f x dx
   . 

Taking the Laplace transform of both sides of the given equation we have: 

           "( ) 2 '( ) ( ) xy x y x y x e  L L L L  

Thus  2 1
( ) (0) '(0) 2 ( ) 2 (0) ( )

1
s Y s sy y sY s y Y s

s
     


 

and substituting the initial values: 

  

 

  

2

2

2

3

1
( ) 2 ( ) ( )

1
1

2 1 ( )
1

1
( )

1 2 1

1

( 1)

s Y s sY s Y s
s

s s Y s
s

Y s
s s s

s

  


  



  




 

We now take the inverse transform of each side to get 

          1 1
3

1
( )

( 1)
Y s

s
   

  
 

L L  

The table shows that    
 

2
1

3

1

21

xx e

s



    

  
L  

and the required solution is        
2

( )
2

xx e
y x



  
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EXAMPLE 5 

Solve the equation "( ) 9 ( ) 6sinh 3y t y t t   given (0) 0 and '(0) 4y y  . 

 

SOLUTION 

We take Laplace transforms of both sides of the equation obtaining 

      "( ) 9 ( ) 6 sinh 3y t y t t L L L  

from which we get  2
2

3
( ) (0) '(0) 9 ( ) 6

9
s Y s sy y Y s

s
       

 

Substitution of the initial values gives:  

          

 

 

2
2

2
2

2

2

2

22

3
( ) 4 9 ( ) 6

9

18
9 ( ) 4

9

18 4 36

9

4 18
( )

9

s Y s Y s
s

s Y s
s

s

s

s
Y s

s

      

  

 









 

In order to take inverse transforms of this we shall have to rewrite the equation in a form 

which appears in the table. Reference to the table shows that 

          
 

2
1

22

9
cosh 3

9

s
t t

s


    

  

L  

so we write the equation as: 

    
 

 
 
 

2 2

22

22

2 22 2

9 3 27
( )

9

3 99

9 9

s s
Y s

s

ss

s s

  





 

 

 

Thus       
 

2
1 1 1

2 22

9 3
( )

99

s
Y s

ss

  
        

   

L L L  

and       ( ) cosh 3 sinh 3y t t t t  . 
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EXAMPLE 6 

Solve the equation 
2

2
2

d y dy
y t

dtdt
    given that y(0) = 0 and y'(0) = 0. 

 

SOLUTION 

On taking Laplace transforms of each side we get 

       
2

2

"( ) '( ) 2 ( )

1
( ) (0) '(0) ( ) (0) 2 ( )

y t y t y t t

s Y s sy y sY s y Y s
s

  

     

L L L L
 

and we insert the given initial conditions to obtain: 

              

 

 

2
2

2 2

1
2 ( )

1
( )

2

s s Y s
s

Y s
s s s

  


 

 

Since the denominator of Y(s) can be factorised, we resolve it into partial fractions to enable 

us to find the inverse transform. 

Let 
  2 2

1

1 21 2

A B C D

s s ss s s s
   

  
. 

On multiplying both sides of the equation by s2(s +1)(s 2) 

we obtain:     

   

2 2 2 2

3 2 2 3 2 3 2

3 2

1 2 2 ( 2) ( 1)

2 2

2 ( 2 ) 2

As s s B s s Cs s Ds s

As As As Bs Bs B Cs sCs Ds Ds

A C D s A B C D s A B s b

         

         

           

 

Equating coefficients of like terms gives the following: 

s3-terms:  A + C + D = 0 

s2-terms:  A + B2C + D = 0 

s-terms:     2AB = 0 

constant terms:           2B = 1 

Hence 
1 1 1 1

, , ,
2 4 3 12

B A C D      . 

Thus 
2

2

1
( )

( 1)( 2)

1 1 1 1

4 3( 1) 12( 2)2

Y s
s s s

s s ss


 

   
 
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and  1 1 1 1 1
2

1 1 1 1 1 1 1 1
( )

4 2 3 1 12 2
Y s

s s ss
                             

L L L L L  

Reference to the table gives the solution: 

21 1 1 1
( )

4 2 3 12
t ty t t e e     

 

EXAMPLE 7 

Solve the equation y"(t) + 4y(t) = (t) given y(0) = 0 and y'(0) = 1. 

 

SOLUTION 

We have      "( ) 4 ( ) ( )y t y t t  L L L . 

Thus 2 ( ) (0) '(0) 4 ( ) 1s Y s sy y Y s     

and on substituting the initial conditions this becomes: 

2 ( ) 1 4 ( ) 1s Y s Y s     

so that 2

2

( 4) ( ) 2

2
( )

( 4)

s Y s

Y s
s

 




 

Then  1 1
2

2
{ ( )}

4
Y s

s
     

 
L L  

and   ( ) sin 2 , 0y t t t  . 

 

EXAMPLE 8 

Solve the equation "( ) 6 '( ) 9 ( ) 0y x y x y x    given that y(0) = 0 and y(1) = 1. 

 

SOLUTION 

Taking Laplace transforms of both sides we have: 

      { "( )} 6 { '( )} 9 { ( )} 0y x y x y x  L L L  

Thus 2 ( ) (0) '(0) 6 ( ) 6 (0) 9 ( ) 0s Y s sy y sY s y Y s       

 

Since the value of y'(0) is not given, we write y'(0) = C and substitute for y(0) and y'(0) in the 

above equation to get: 



MAT3700  59 

 

2

2

2

2

( ) 6 ( ) 9 ( ) 0

( 6 9) ( )

( )
6 9

( 3)

s Y s C sY s Y s

s s Y s C

C
Y s

s s
C

s

   

  


 




 

Take the inverse transform of each side obtaining: 

    1 1
2

{ ( )}
( 3)

C
Y s

s
   

  
 

L L  

Thus     3( ) xy x cxe  

To find the value of C we substitute the given initial condition (1) 1y   in this equation to get: 

      1 = Ce3 

     C = 3
3

1
e

e
  

The solution is therefore:  3 3

3( 1)

( ) x

x

y x e e

xe





 



 

 

In all the examples so far worked out, initial or boundary conditions were supplied. These 

enable us to find particular solutions of the given differential equations. However, you will 

remember from earlier units that frequently initial conditions are not given, and we then have 

to find the general solution of the equation. This solution contains arbitrary constants, equal 

in number to the order of the equation. 

 

EXAMPLE 9 

Find the general solution of 
2

2
16 0

d y
y

dt
  . 

SOLUTION 

On taking Laplace transforms we get:  

   { "( )} 16 { ( )} 0y t y t L L  

Thus 2 ( ) (0) '(0) 16 ( ) 0s Y s sy y Y s     

Let y(0) = a and y'(0) = b 
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so that       2

2

16 ( )

( )
16

s Y s as b

as b
Y s

s

  






 

We therefore have  1 1
2

1 1
2 2

{ ( )}
16

4

416 16

cos 4 sin 4
4

as b
Y s

s

s b
a

s s

b
a t t

 

 

   
 

       
    

 

L L

L L

 

If we put a = c1 and 24

b
c , then the general solution of the given equation is:  

1 2( ) cos 4 sin 4y t c t c t   
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4.2 POST-TEST: MODULE 4 (LEARNING UNIT 4) 

(Solutions on myUnisa under additional resources) 

 
Time: 75 minutes 

 

Use Laplace transforms to solve the following differential equations: 

1. 
2

2
5 4 0

d y dy
y

dtdt
    given that y(0) = 0 and y'(0) = 2 (10) 

 

2. 
2

2 2
2

4 4 td y dy
y t e

dtdt
    given that y(0) = 0 and y'(0) = 0 (5) 

 

3. "( ) '( ) 2 ( ) 4y t y t y t    given that y(0) = 1 and y'(0) = 6 (12) 

 

4. "( ) ( )y t y t t   given that y(0) = 2 and y'(0) = 1 (8) 

 

5. '( ) ( ) 1y x y x   given that y(0) = 0 (8) 

 

6.  
2

2 3
2

2 10 25 16 2 td y dy
y t t e

dtdt
      given that y(0) = 0 and y'(0) = 0 (8) 

[51] 

 

You should now be able to solve differential equations using Laplace transforms. 

 

In the next learning unit, we shall study examples of how to use Laplace transforms to solve a 

system of simultaneous equations. 
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MODULE 4 

LAPLACE TRANSFORMS 

 

LEARNING UNIT 5 

 SOLVING SIMULTANEOUS DIFFERENTIAL EQUATIONS USING LAPLACE 

TRANSFORMS 

 

OUTCOMES 

At the end of this learning unit, you should be able to 

 understand the procedure to solve differential equations using Laplace transforms 

 solve differential equations using Laplace transforms 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

5.1 SOLUTION OF SIMULTANEOUS DIFFERENTIAL 

EQUATIONS USING LAPLACE TRANSFORMS   63 

5.2 POST-TEST         64 
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5.1 SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS 

USING LAPLACE TRANSFORMS 

 

We can also solve a system of simultaneous equations using Laplace transforms. 

 

You will not be able to master the outcomes for this learning unit without referring to your 

prescribed book. 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 
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5.2 POST-TEST: MODULE 4 (LEARNING UNIT 5) 

(Solutions on myUnisa under additional resources) 

 

Time: 60 minutes 

 

Use Laplace transforms to solve the following simultaneous differential equations: 

1. 

2

t

t

dx dy
y e

dt dt
dy

x y e
dt

   

  

 (10) 

 

2. 

2

3 1

2

t

t

dx dy
x y e

dt dt
dx dy

x y e t
dt dt

    

    

 (12) 

 

3. 

2

2 3

3 2 t

dx
x y t

dt
dy

x y e
dx

  

  

  (11) 

[33] 

 

You should now be able to solve simultaneous differential equations using Laplace 

transforms. 

 

In the next learning unit, we shall study examples of how to use Laplace transforms in 

problems relating to electrical circuits, vibrations and beams. 
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MODULE 4 

LAPLACE TRANSFORMS 

 

LEARNING UNIT 6 

 PRACTICAL APPLICATIONS  

 

OUTCOMES 

At the end of this learning unit, you should be able to solve problems using Laplace 

transforms relating to 

 electric circuits 
 vibrating systems 
 beams  
 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 
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6.1 PRACTICAL APPLICATIONS OF THE LAPLACE TRANSFORM 

 

In Module 1 we studied some ways in which differential equations are used in engineering. 

We discussed the solution of problems on electric circuits, vibrating systems and the 

deflection of beams. We shall now see how the same type of problem can be solved using 

Laplace transforms. 

 

6.1.1 Application to electric circuits 

 

The simple electric circuit shown below has an inductance L, resistance R and a capacitance 

C, connected in series with an electromotive force E. 

 

 

 

 

 

 

 

Figure 1 

 

Let Q be the charge which flows to the capacitor plates when the switch is closed. Then, by 

Kirchhoff’s second law: 

  
2

2

1d Q dQ
L R Q E

dt Cdt
    

By solving this equation, we can find the charge Q and also the current I, which is the rate of 

flow of charge, that is:  

 
dQ

I
dt

  

 

EXAMPLE 1 

An inductor of 1 H, a resistor of 6  and a capacitor of 0.1 F are connected in series with an 

electromotive force of 20sin2t volts. At t = 0 the charge on the capacitor and the current in 

the circuit are zero. Find the charge and current at any time t > 0. 

E

R 

L

C 
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SOLUTION 

We are required to solve the equation 

2

2
6 10 20sin 2

d Q dQ
Q t

dtdt
    

given the initial values 

(0) 0Q   and '(0) 0Q  . 

 

Taking Laplace transforms on both sides of the equation we obtain: 

{ ( )} 6 { ( )} 10 { ( )} 20 {sin 2 }Q t Q t Q t t   L LLL  

Let  { ( )} ( )Q t q sL . 

Then  { ( )} 2 ( ) (0)Q t q s Q  L  

and 2{ ( )} ( ) (0) (0)Q t s q s sQ Q   L . 

 

We therefore have  

2
2

2
( ) (0) (0) 6 ( ) 6 (0) 10 ( ) 20

4
s q s sQ Q sq s Q Q s

s
         

 

and substituting the given initial values leads to 

2
2

40
( 6 10) ( )

4
s s q s

s
  


 

so that 
2 2

40
( )

( 4)( 6 10)
q s

s s s


  
. 

 

In order to find the inverse transform, we resolve q(s) into partial fractions. 

Let 
2 2 2 2

40

( 4)( 6 10) 4 6 10

As B Cs D

s s s s s s

 
 

     
 

 

Multiplication of both sides by (s2 + 4)(s2 + 6s + 10) gives: 

2 2

3 2 2 3 2

3 2

40 ( )( 6 10) ( )( 4)

6 10 6 10 4 4

( ) (6 ) (10 6 4 ) (10 4 )

As B s s Cs D s

As As As Bs Bs B Cs Cs Ds D

A C s A B D s A B C s B D

      

         

         
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We now equate coefficients of like terms to get the following: 

s3-terms:      A + C = 0 

s2-terms:        6A + B + D = 0 

s-terms:  10A + 6B + 4C = 0 

constant terms:          10B + 4D = 40 

Hence:  
4 4 4 20

, ,  and
3 3 3 3

A B C D      

Thus: 

 

2 2

2 2

2 2 2

40
( )

( 4)( 6 10)

4 4 4 20

3( 4) 3( 6 10)

3 24 2 2 4

3 3 34 4 ( 3) 1

q s
s s s

s s

s s s

ss

s s s


  

  
 

  

                     

 

 

and 
 1 1 1 1

2 2 2

3 1 1
2 2

3 24 2 2 4
{ ( )}

3 3 34 4 ( 3) 1

4 2 4 1
cos 2 sin 2 2

3 3 3 1 1
t

ss
q s

s s s

s
t t e

s s

   

  

             
        

                 

L L L L

L L

 

The solution is therefore: 

3 34 2 4 8
( ) cos 2 sin 2 cos sin

3 3 3 3
t tQ t t t e t e t       

and  

3 3

( )

8 4 4 28
sin 2 cos 2 cos sin

3 3 3 3
t t

dQ
I t

dt

t t e t e t 



   

 

 

For large values of t, those terms of Q and I that contain e–3t are negligible and are called the 

transient part of the solution. The remaining terms are called the steady-state part of the 

solution. The transient terms of I, that is the last two terms 

3 34 28
cos sin

3 3
t te t e t   , 

vanish as t   and the steady-state solution is: 

8 4
( ) sin 2 cos2

3 3
I t t t   
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EXAMPLE 2 

An inductor of 1 H, a resistor of 4  and a capacitor of 0.05 F are connected in series with an 

electromagnetic force of 100 V. At t = 0 the charge on the capacitor and the current in the 

circuit are zero. Find the charge and the current at any time t > 0. 

 

SOLUTION 

Let Q and I be the instantaneous charge and current, respectively, at time t. By Kirchhoff’s 

second law we have 

2

2
4 100

0.05

d Q dQ Q

dt dt
    

or 

2

2
4 20 100

d Q dQ
Q

dtdt
    

with initial conditions 

(0) 0 and (0) 0Q Q  . 

Taking Laplace transforms, we find: 

         { ( )} 4 { ( )} 20 { ( )} 100 {1}Q t Q t Q t   L L L L  

Thus 2 100
( ) (0) (0) 4 ( ) 4 (0) 20 ( )s q s s Q Q s q s Q q s

s
       

which, on inserting the initial conditions, becomes 

     2 100
( 4 20) ( )s s q s

s
    

so that       
2

100
( )

( 4 20)
q s

s s s


 
 

Let 
2 2

100

( 4 20) 4 20

A Bs C

ss s s s s


 

   
. 

 

Thus  2

2

100 ( 4 20) ( )

( ) (4 ) 20

A s s Bs C s

A B s A C s A

    

    

 

Equating coefficients of like terms gives the following: 

constant terms:100 = 20A 

      A = 5 



MAT3700  70 

s-terms:     0 = 4A + C 

      C = 20 

s2-terms:     0 = A + B 

      B = 5 

Thus  
2

2

2

100
( )

( 4 20)

5 5 20

4 20

5 5( 2) 10

( 2) 16

q s
s s s

s

s s s

s

s s


 


 

 

 
 

 

 

and 1 1 2 1
2

2 1 1
2 2

1 5 10
{ ( )} 5

16

5 4
5 5

216 16

t

t

s
Q s e

s s

s
e

s s

   

  

       
   

               

L L L

L L

 

 

Thus 1 1 1
2 2

1 1 6
{ ( )}

4 336 36

s
Y s

s s
          

    
L L L  

 

Thus  2 25
( ) 5 5 cos 4 sin 4

2
t tQ t e t e t     

and 2 2 2 2

2

( ) 10 cos 4 20 sin 4 5 sin 4 10 cos 4

25 sin 4

t t t t

t

I t e t e t e t e t

e t

   



   



 

 

6.1.2 Application to vibrating systems 

 

Suppose a mass m hangs in equilibrium from the lower end of a vertical spring. If it is given a 

small vertical displacement and then released, the mass will undergo vertical vibrations.  

 

Let ( )y t  be the instantaneous displacement of m at time t.  

Then the equation of motion of the system is 

2

2
( )

d y dy
m c k y f t

dt dt
    
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where 
dy

c
dt

 is the damping force proportional to the velocity of m, ky is the restoring force 

and ( )f t  is an external, variable force acting vertically on m. 

Sometimes no damping and/or external forces are present, in which case 

0 and/or ( ) 0
dy

c f t
dt

  . 

 

EXAMPLE 3 

The equation of motion of a mass performing free vibrations is 
2

2
36 0

d y
y

dt
   

if 
1

4
y    and 2

dy

dt
   when t = 0. 

Determine the amplitude and period of the motion. 

 

SOLUTION 

The initial values are 
1

(0) and (0) 2
4

y y    . 

Note that 0
dy

c
dt

  and   0,f t   there are no damping and external forces acting on m, so 

the vibrations are said to be free.  

 

Taking Laplace transforms of the equation we have: 

 { ( )} 36 { ( )} 0y t y t  L L  

Thus 2 ( ) (0) (0) 36 ( ) 0s Y s sy y Y s     

Substitution of the initial conditions gives 

       2( 36) ( ) 2
4

s
s Y s     

so that           
2 2

2 2 2 2

2
( )

4( 36) ( 36)
1 6

4 ( 6 ) 3( 6 )

s
Y s

s s
s

s s


 

 

  
 

 

We want a 6 as numerator in the second term so that we can easily use the table of 

transforms. 
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Thus   1 1 1
2 2

1 1 6
( )

4 336 36

s
Y s

s s
          

    
L L L  

and  
1 1

( ) cos 6 sin 6
4 3

y t t t    

 

The period of the motion is 
2

6 3
T

 
   

and the amplitude is 
2 2

1 1 5

4 3 12
a

        
   

. 

 

EXAMPLE 4 

A system vibrates according to the equation 
2

2
4 3sin

d y
y t

dt
  . 

If y = 0 at t = 0 and 1
dy

dt
  at 

2
t


 , find the displacement of the mass at any time t. 

 

SOLUTION 

In this case we have an external force ( )f t  = 3sint acting on m, but no damping force. The 

vibrations are said to be forced. 

 

Take Laplace transforms on both sides of the equation: 

      ( ) 4 ( ) 3 siny t y t t  L L L  

Thus 2
2

3
( ) (0) (0) 4 ( )

1
s Y s sy y Y s

s
   


 

We are given y(0) = 0, but since we do not know the value of (0)y , we put (0)y  = c1. 

Substituting these values into the equation gives: 

     2
12

3
4 ( )

1
s Y s c

s
  


 

and       
  

2
1 1

2 2

3
( )

1 4

c s c
Y s

s s

 


 
 

This must be expressed in partial fractions so that we can find the inverse transform. 

Let   
2

1 1
2 22 2

3

1 41 4

c s c As B Ds E

s ss s

   
 

  
. 
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Then             

   

2 2 2
1 1

3 2 3 2

3 2

3 4 1

4 4

( ) ( ) 4 4

c s c As B s Ds E s

As As Bs B Ds Ds Es E

A D s B E s A D s B E

       

       

       

 

We equate coefficients of like terms to get 

s3-terms:  0 = A + D 

s2-terms:  c1 = B + E 

s-terms:  0 = 4A + D 

constant terms:    c1 + 3 = 4B + E 

from which it follows that 

10, 1 and 1A D B E c     .  

Thus           
  

2
1 1

2 2

1
2 2

3
( )

1 4

11

1 4

c s c
Y s

s s

c

s s

 


 


 

 

 

and  1 1 1 11
2 2 2

1 2 1 2
( )

2 21 4 4

c
Y s

s s s
               

       
L L L L  

so that           1 1
( ) sin sin 2 sin 2

2 2

c
y t t t t   . 

To find the value of c1 we make use of the initial condition  

1
2

y
   

 
, that is ( ) 1y t   when 

2
t


 . 

Differentiate the equation of y(t) to get 

       1( ) cos cos 2 cos 2y t t c t t     

and then substitute the given values of ( )y t  and t to get: 

            11 cos cos cos
2

c


      

Since cos 0
2


  and cos 1   , this becomes: 

           1 = c1 + 1 

          c1 = 0 

Substituting this value for c1 we obtain: 

1
( ) sin sin 2

2
y t t t   
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6.1.3 Application to beams 

 

Consider a transversely loaded beam that is co-incident with the x-axis. Let the length of the 

beam be b and its load per unit length k. The axis of the beam has a transverse deflection y(x) 

at any point x which satisfies the differential equation 

4

4 I

d y k

Edx
   0 < x < b 

where E is the modulus of elasticity for the beam and I is the moment of inertia of a small 

cross-section at x. 

 

This transverse deflection is often called the curve of deflection of the beam and is the shape 

into which the axis of the beam is bent by gravity and other forces acting upon it. 

 

Solution of the equation subject to given initial conditions will yield the equation of the curve 

of deflection, from which we can find the deflection y(x) at any point. The initial conditions 

associated with the equation depend on the manner in which the beam is supported. Most 

commonly we find 

(a) clamped, built-in or fixed 

(b) simply supported or hinged 

(c) free end 

 

EXAMPLE 5 

A simply supported beam of length b carries a uniform load k per unit length. Find the 

deflection at any point, given the differential equation 

4

4 I

d y k

Edx
   0 < x < b 

and initial conditions (0) 0, (0) 0, ( ) 0 and ( ) 0y y y b y b     . 
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Figure 2 

SOLUTION 

Taking Laplace transforms of both sides of the equation gives: 

      4 ( ) {1}
I

k
y x

E
L L  

Thus: 4 3 2 1
( ) (0) (0) (0) (0)

I

k
s Y s s y s y sy y

E s
        

Since we do not know the values of (0)y  and (0)y , we put (0)y  = c1 and (0)y  = c2.  

We substitute these and the given initial values in the equation to get: 

     4 2
1 2

1
( )

I

k
s Y s s c c

E s
    

Thus           4 2
1 2

1
( )

I

k
s Y s s c c

E s
    

and              1 2
2 4

1
( )

I

k c c
Y s

E s s s
     

Taking the inverse transforms we get: 

             1 1 1 1
1 25 2 4

1 1 1
( )

I

K
Y s c c

E s s s
               

     
L L L L  

so that             
4 3

1 2

4 3
2

1

( )
I 4! 3!

24 I 6

k x x
y x c x c

E

kx c x
c x

E

   
     

   

  

 

To evaluate the constants c1 and c2, we differentiate this equation twice. 
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Thus 
23

2
1

2

2

( )
6 I 2

( )
2 I

c xkx
y x c

E

kx
y x c x

E

   

  

 

We make use of the initial conditions to get: 

      

2

2

2

0
2 I

3 I

kb
c b

E

kb
c

E

 

 

 

Substituting this and the initial values we get: 

4 4

1

3

1

0
24 I 12 I

24 I

kb kb
c b

E E

kb
c

E

  



 

Thus 

 

4 3 3

4 3 3

( )
24 I 24 I 12 I

2
24 I

kx kb x kbx
y x

E E E

k
x bx b x

E

  

  

 

 

EXAMPLE 6 

A cantilever beam is fixed at one end x = 0 and free at the other end x = b.  

It carries a load per unit length given by: 

0
3( )

0
3

o

b
k x

k x
b

x b

      
  
  

 

If the differential equation and initial conditions are 

4

4

( )

I

d y k x

Edx
  given that (0) 0, (0) 0, ( ) 0 and ( ) 0y y y b y b      , 

find the deflection at any point of the beam. 
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Figure 3 

SOLUTION 

Since the beam has a load uniformly distributed over one-third of its length and no load on 

the remainder, there is a step discontinuity of magnitude ko at 
3

b
x  .  

k(x) can therefore be written in terms of unit step functions as: 

( ) ( )
3o o

b
k x k U x k U x

    
 

 

Thus    
4

4
( )

I 3
okd y b

U x U x
Edx

        
 

 

Taking Laplace transforms we get:    ( ) ( )
I I 3

o ok k b
y x U x U x

E E

       
  

L L L  

Thus: 
3

4 3 2 1 1
( ) (0) (0) (0) (0)

I I

bs

o ok k e
s Y s s y s y sy y

E s E s



         

Let 1(0)y c   and 2(0)y c   and substitute these and the initial conditions to obtain: 

    
3

4
1 2

1 1
( )

I I

bs

o ok k e
s Y s sc c

E s E s



     

Thus           
3

4
1 2( )

I I

bs

o ok k e
s Y s sc c

E s E s



     

and              
3

1 2
3 4 5 5

( )
I I

bs

o ok k ec c
Y s

s s E s E s



     
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Thus  
3

1 1 1 1 1
1 23 4 5 5

1 1 1
( )

I I

bs

o ok k e
Y s c c

s s E s E s


    

                 
        

L L L L L  

and             
42 3 4

1 2( ) ...............(6.1)
2 6 24 I 24 I 3 3

o oc x c x k x k b b
y x x U x

E E
           
   

  

where the inverse transform of 
5

3
bs

e

s



 was obtained using the following: 

 
 

1

1

If ( ) ( )

then ( ) ( ) ( )as

F s f x

e F s f x a U x a



 



  

L
L

 

 

In this example 3
bs

ase e
  . 

Thus 
3

b
a   

and 
5

1
( )F s

s
  

so that 
4

( )
4!

x
f x   

and  
4

1

24 3

b
f x a x

    
 

. 

Thus 
3

4
1

5

1

24 3 3

bs

e b b
x U x

s



             

     
L  

 

Equation (6.1) is equivalent to: 

2 3 4
1 2

42 3 4
1 2

0
2 6 24 I 3

( )

2 6 24 I 24 I 3 3

o

o o

c x c x k x b
x

E
y x

c x c x k x k b b
x x

E E

 
    

   
          

 

 

Since we are given that ( ) 0y x   and ( ) 0y x   when x = b, we differentiate y(x) three 

times using the value for 
3

b
x  . 
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32 3
2

1

22

1 2

2

( )
2 6 I 6 I 3

( ) ...................(6.2)
2 I 2 I 3

( )
I I 3

o o

o o

o o

c x k x k b
y x c x x

E E

k x k b
y x c c x x

E E

k x k b
y x c x

E E

       
 

       
 

      
 

 

On substituting ( ) 0y x   we get: 

        20
I 3

ok b
c b b

E
     
 

 

Thus         2 3 I
ok b

c
E

  . 

 

We now substitute this value and ( ) 0y b   in equation (6.2) to obtain:  

22 2

1

2 2 2

1

2

2
0

3 I 2 I 2 I 3

6 9 4

I 18

18 I

o o o

o

o

k b k b k b
c

E E E

k b b b
c

E

k b

E

      
 

  
  

 



 

 

Thus the required equation of the curve of deflection of the given beam is: 

 

2 2 3 4

42 2 3 4

                          0        
I 36 18 24 3

( )
1

         
I 36 18 24 24 3 3

o

o

k b x bx x b
x

E
y x

k b x bx x b b
x x

E

  
     

                  
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EXAMPLE 7 

Show that a concentrated load W acting at a point x = a on a beam can be expressed in terms 

of the unit impulse or Dirac delta function as  W x a  . 

 

 

 

 

 

 

Figure 4 

SOLUTION 

Let ko represent a uniform loading per unit length over a portion of the beam from a to . 

Then the total loading for this portion is ko(a + a) = ko which must be equal to W.  

Thus:  

for     

o

o

k W

W
k a x a

 

    


 

 

Since the loading is equal to zero, we can write: 

 
                   

0                otherwise

                   

0                otherwise

ok a x a
k x

W
a x a

    
  
 

       
  

 

This represents a pulse of duration  from x = a to x = a +  and magnitude 
W


.  

The strength of the pulse is, of course, 
W

W 


. 

 

In the limit as  tends to zero, the portion from x = a to x = a +  reduces to the point x = a. 

An impulse of strength W at x = a is represented by 

0
lim ( ) ( )k x W x a


   . 

 

a a + 
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EXAMPLE 8 

A beam of length b with its end built in has a concentrated load W acting at its centre.  

Find the resulting deflection. The differential equation is 

4

4 I 2

d y W b
x

dx E
    
 

  

with initial conditions (0) 0, (0) 0, ( ) 0 and ( ) 0y y y b y b     . 

 

 

 

 

 

 

 

 

Figure 5 

SOLUTION 

Take Laplace transforms of both sides of the given equation to get: 

    ""( )
I 2

W b
y x x

E

      
  

L L   

Thus    24 3 2( ) (0) (0) (0) (0)
I

bsW
s Y s s y s y sy y e

E
       . 

Using the initial conditions and writing 1(0)y c   and 2(0)y c  , we have: 

        

2

2

2

4
1 2

4
1 2

1 2
4 4

3

( )
I

( )
I

( )
I

bs

bs

bs

W
s Y s sc c e

E

W
s Y s sc c e

E

c c We
Y s

s s E s







  

  

  

 

 

Thus      
2

1 1 1 1
1 23 4 4

1 1
( )

I

bs

W e
Y s c c

Es s s


   

            
      

L L L L  

a 
2

b
 W 

b
x 
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and  
32 3

1 2( )
2 6 6 I 2 2

c x c x W b b
y x x U x

E
          
   

 

or    
32 3

1 2( )
2 6 6 I 2 2

c x c x W b b
y x x H x

E
          
   

 

 

We can also write y(x) as: 

 

2 3
1 2

32 3
1 2

                         0    
2 6 2

( )

        
2 6 6 I 2 2

c x c x b
x

y x
c x c x W b b

x x
E

 
      

         

 

In order to use the initial conditions, we differentiate y(x) using the value for 
2

b
x  . 

22
2

1

3
( )

2 6 I 2

c x W b
y x c x x

E
      
 

 

We now substitute   0y b  in the equation for y(x) and ( )y x , respectively, obtaining 

       
32 3

1 20
2 6 6 I 2

c b c b W b

E
     
 

 

and ( ) 0y b   in the equation for ( )y x , obtaining 

       
22

2
10

2 2 I 2

c b W b
c b

E
     
 

. 

Solving these simultaneous equations we find: 

     
1

2

8 I

2 I

Wb
c

E

W
c

E



 
 

The required equation of the curve of deflection is therefore: 

2 3

32 3

                        0        
I 16 12 2

( )
1

               
I 16 12 6 2 2

W bx x b
x

E
y x

W bx x b b
x x

E

  
    

                 

 

 

Examples 6 and 8 above may seem rather long and involved, but they have been included to 

demonstrate the use of unit step and impulse functions in beam problems. 



MAT3700  83 

6.2 POST-TEST: MODULE 4 (LEARNING UNIT 6) 

(Solutions on myUnisa under additional resources) 

 

Time: 70 minutes 

 

1. An inductor of 1 H, a resistor of 2  and a capacitor of 0.5 F are connected in series 

with an electromagnetic force of cos t  volts. At t = 0, the charge on the capacitor and 

the current in the circuit are zero. Find the current at any time t > 0 and discuss the 

solution as t  . (25) 

 

2. A system vibrates according to the equation 

2

2
6 10 0

d y dy
y

dxdx
    

where y is the displacement at time t. If the initial conditions are y(0) = 0 and 

(0) 3y  , find y in terms of t.  (9) 

 

3. A cantilever beam, clamped at x = 0 and free at x = b, carries a uniform load k per unit 

length. Given the differential equation 

4

4
               0    

I

d y k
x b

dx E
    

and initial conditions 

(0) 0, (0) 0, ( ) 0 and ( ) 0y y y b y b      , 

show that the equation of the curve of deflection of the beam is: 

 4 3 2 2( ) 4 6
24 I

k
y x x bx b x

E
    (16) 

[50] 

 

Using Laplace transforms, you should now be able to solve problems relating to electric 

circuits, vibrating systems and beams.  

 

This concludes our study of Laplace transforms. In the next module we shall continue our 

studies on linear algebra and learn how to solve a system of equations using Gaussian 

elimination. 
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MODULE 5 

LINEAR ALGEBRA  

 

LEARNING UNIT 1 

GAUSS ELIMINATION 

 

OUTCOMES 

At the end of this learning unit you should be able to 

 understand the process of Gaussian elimination 

 solve a system of simultaneous equations using Gaussian elimination 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

1.1 INTRODUCTION         85 

1.2 GAUSSIAN ELIMINATION       85 

1.3 POST-TEST         89 
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1.1 INTRODUCTION 

Linear algebra involves the systematic solving of linear algebraic or differential equations 

that arise during mathematical modelling of an electrical, mechanical or other engineering 

system where two or more components are interacting with each other. In the first-level 

mathematics engineering course you used elimination, substitution and Cramer’s rule to solve 

simultaneous equations. In the second level you used matrix multiplication and the inverse of 

the coefficient matrix to solve simultaneous equations. We are now adding another method to 

solve a system of simultaneous equations called Gaussian elimination. 

 

Recall that a system of m linear equations in n unknowns may have 

(1) no solution, in which case it is called an inconsistent system 

(2) exactly one solution, called a unique solution  

(3) an infinite number of solutions 

In the latter two cases, the system is said to be consistent. 

 

Before continuing: 

- Refer to myUnisa to refresh your memory on determinants, Cramer’s rule and using the 

inverse of a matrix to solve simultaneous equations.  

- See Tutorial Letter 101 to find the pages you must study from your prescribed book on 

Gaussian elimination.  

 

1.2 GAUSSIAN ELIMINATION 

 

In each step of the process, we may perform one of the following operations to keep an 

equivalent set of equations: 

1. Interchange two equations. 

2. Multiply or divide a row by a non-zero constant. 

3. Add (or subtract) a constant multiple of one row to (or from) another. 

 

To keep track of our solution we number the equations.  

Our object is to find a solution for one of the unknowns and then substitute backwards in the 

other equations to find the solution to all the unknowns.  
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EXAMPLE 1 

Use Gaussian elimination to solve the following system of linear equations: 

2 3 9

3 4

2 5 5 17

x y z

x y

x y z

  
   

    

 

SOLUTION 

2 3 9 Equation 1

3 4 Equation 2

2 5 5 17 Equation 3

x y z

x y

x y z

  
   

  

 

 

2 3 9 Equation 1

3 5 Equation 4 =  Equation 2 + Equation 1

1 Equation 5 Equation 3  2 times equation 1

x y z

y z

y z

  
  
     

 

2 3 9 Equation 1

3 5 Equation 4 

2 4 Equation 6 Equation 5 + Equation 4

2 3 9 Equation 1

3 5 Equation 4 

2 Equation 7 Equation 6 divided by 2

x y z

y z

z

x y z

y z

z

  
 

 

  
 

 

 

We can now substitute z = 2 in equation 4 to find y = –1 

and then substitute z and y in equation 1 to find x = 1. 

 

Instead of writing out the full equations, we can use matrix notation. We will now redo 

example 1 using matrix notation. 

Writing our equations in matrix form gives: 

1 2 3 9

1 3 0 4

2 5 5 17

x

y

z

     
            

             
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We then form what is called the augmented matrix by entering the right-hand side into the 

left-hand matrix and numbering our rows as follows: 

Row 1 1 2 3 9

Row 2 1 3 0 4

Row 3 2 5 5 17

 
   
    

Since each row of the augmented matrix corresponds to an equation, the three operations 

listed earlier correspond to the following three row operations on the augmented matrix: 

1. Interchange two rows. 

2. Multiplyor divide a row by a non-zero constant.  

3. Add (or subtract) a constant multiple of one row to (or from) another row. 

 

 

Row 1 1 2 3 9

Row 2 0 3 5 5 Row 4 = Row 2 + Row 1

Row 3 2 5 5 17

Row 1 1 2 3 9

0 3 5 5

0 1 1 1 Row 5 = Row 3  2 Row 1

Row 1 1 2 3 9

0 3 5 5

0 0 2 4 Row 6 = Row 3  2 Row 1

We now have 2 4,

thus               

z

 
 
 
  

 
 
 
     

 
 
 
   


   2

and substituting backwards give 1 and 1.

z

y x


  

  

 

EXAMPLE 2 

A simple pulley system gives the equations 1 2

1

2

0

3 3

2 2

x x

x T g

x T g

 
  
  

 




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where 1 2,x x   represent acceleration, T is the tension in the rope and g is the acceleration due 

to gravity. Determine 1 2,x x   and T using Gaussian elimination. (To clarify the notation used, 

derivatives to time, t, may be represented by a dot, thus 
2 2

1 1
1 22 2

 and 
d x d x

x x
dt dt

   .) 

 

SOLUTION 

In matrix form: 
1

2

1 1 0 0

3 0 1 3

0 2 1 2

x

x g

T g

    
         
        



  

 

In augmented matrix form and indicating which row operations have been performed: 

1

2

3

2 1 4

5 2
3 43 3

1 1 0 0

3 0 1 3

0 2 1 2

1 1 0 0

0 3 1 3 3  R

0 2 1 2

1 1 0 0

0 3 1 3

0 0 4

R

R g

R g

g R R

g

g

g R R

 
  
  

 
    
  

 
 

  
   

  

5
3

12
5

12
2 5

1
2 5

1 2

1
1 5

From the last row 4

Thus

Substitute in the second row 3 3

From the first row 0

Thus

T g

T g

T x g g

x g

x x

x g





 



 

 





 


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1.3 POST-TEST: MODULE 5 (LEARNING UNIT 1) 

(Solutions on myUnisa under additional resources) 

 

Time: 60 minutes 

 

1.  Use Gaussian elimination to solve the following sets of simultaneous equations: 

 

 (a) 2 2

3 2 1

2

x y z

x y z

x y z

  
  
  

 (10) 

 

 (b) 10 5 18

20 3 20 14

5 3 5 9

x y z

x y z

x y z

  
   

  

 (10) 

 

3. By applying Kirchhoff’s law and Ohm’s law to a circuit, we obtain the following 

equations: 

 
1 2 3

1 2 3

1 2 3

3 5 3 7,5

2 7 17,5

10 4 5 16

I I I

I I I

I I I

  
   
  

 

 where 1 2 3,  and  I I I  represent current. Find the values of 1 2 3,  and  I I I  by using 

 (a) Gaussian elimination (10) 

 (b) the inverse matrix method (10) 

 (c) Cramer’s rule (10) 

[50] 

 

You should now be able to solve simultaneous equations using Gaussian elimination. 

 

We can now move to the second unit on linear algebra and study how to determine 

eigenvalues and eigenvectors of a matrix. 
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MODULE 5 

LINEAR ALGEBRA  

 

LEARNING UNIT 2 

EIGENVALUES AND EIGENVECTORS 

 

OUTCOMES 

At the end of this learning unit you should be able to 

 determine the eigenvalues of a 2 by 2 and a 3 by 3 matrix 

 determine the eigenvectors of a 2 by 2 and a 3 by 3 matrix 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

2.1 INTRODUCTION        91 

2.2 EIGENVALUES        91 

2.3 EIGENVECTORS        92 

2.4 POST-TEST        96 

 



MAT3700  91 

2.1 INTRODUCTION 

 

In many applications of matrices to technical problems involving coupled oscillations and 

vibrations, equations of the form  

  A x x  

occur, where A is a square matrix and  is a number. Clearly, x = 0 is a solution for any value 

of  and is not normally useful. For non-trivial solutions, that is x ≠ 0, the values of  are 

called the eigenvalues of the matrix A and the corresponding solutions of the given equation 

  A x x  are called the eigenvectors of A. 

 

Before continuing: 

- Refer to myUnisa to refresh your memory on determinants and matrices. 

- Refer to Tutorial Letter 101 for the reference to your prescribed book. 

- Take your prescribed book and study the part on eigenvalues and eigenvectors.  

 

Now study the following examples: 

 

2.2 EIGENVALUES 

 

EXAMPLE 1 

Find the eigenvalues of the matrix 
4 1

2 1

 
  
 

A . 

SOLUTION 

       

   

2

2

1 2

4 1
Characteristic determinant: 

2 1

Characteristic equation:      0

4 1
Thus 0

2 1

4 1 1 2 0

4 5 2 0

5 6 0

3 2 0

3   and  2

  
  

 

  

  


 

      

     

    

    

   

A I

A I
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EXAMPLE 2 

Find the eigenvalues of the matrix 

2 3 2

1 4 2

2 10 5

 
   
  

A . 

SOLUTION 

The characteristic determinant is 

2 3 2

1 4 2

2 10 5

  
  

  
. 

Using the co-factor method to calculate the determinant and expanding along the first row we 

get: 

                      
      
      
       
   
 
 
  

2

2

2

2

2

2 4 5 20 3 1 5 2 2 2 10 4 2

2 20 20 3 5 4 2 10 8 2

2 3 1 2 2 2

2 . . 1 3 1 4 1

1 2 . 3 4

1 2 1

1 2 1

1 1

                    

                 

           

           

         
        
         

     

 

From the characteristic equation   2
1 1 0       

it follows that 1 2 31, 1 and  1       . 

 

2.3 EIGENVECTORS 

 

The eigenvalues for a matrix is unique. However, there are many possibilities for the 

corresponding eigenvectors, as can be seen from the following example.  

 

EXAMPLE 3 

Find the eigenvectors for the matrix 
4 1

3 2

 
  
 

A . 

 



MAT3700  93 

SOLUTION 

The characteristic equation is: 

  

  

2

1 2

4 1
0

3 2

4 2 3 0

6 5 0

1 5 0

1 and 5

 


 

     

    

    

   

 

For 1 1   the equation   A x x  becomes: 

1 1

2 2

4 1
1

3 2

x x

x x

    
    

     
 

Use matrix multiplication rules to find a set of simultaneous equations: 

1 2 1

1 2 2

4

3 2

x x x

x x x

 
 

 

From either of these equations we can obtain the relationship 2 13x x  . 

So if we choose x1 = 1, then the value of x2 will be 3. 

Then 
1

3

 
   

x  is an eigenvector corresponding to 1 1  . 

Depending on our choice we will get different answers which will all be correct eigenvectors. 

So if we choose x2 = 1, then the value of x1 will be 
1

3


. 

Then 
1

3

1

 
  
 

x  is an eigenvector corresponding to 1 1  . 

 

Both of the above answers are correct and there are many more depending on the choice of 

one of the variables. We always try to make our choice as simple as possible. 

 

For 2 5   the equation   A x x  becomes: 

1 1

2 2

4 1
5

3 2

x x

x x

    
    

     
 

Use matrix multiplication rules to find a set of simultaneous equations: 

1 2 1

1 2 2

4 5

3 2 5

x x x

x x x

 
 
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From either of these equations we can obtain the relationship 2 1x x . 

So if we choose x2 = 1, then the value of x1 will also be 1. 

We always try to make our choice as simple as possible. 

Then 
1

1

 
  
 

x  is an eigenvector corresponding to 2 5  . 

 

EXAMPLE 4 

If 

3 1 4

0 2 6

0 0 5

 
   
  

A  find the eigenvalues of A and the eigenvector that corresponds with one of the 

eigenvalues .5   

 

SOLUTION 

The characteristic equation is 

   
1 2 3

3 1 4

0 2 6 0

0 0 5

Develop along the first column

3 2 5 0

3 , 2 and 5

 
  

 

      

     

  

It is often more convenient to use the form   0  A I x  instead of   A x x . 

For 3 5   the equation   0  A I x  becomes: 

1

2

3

3 1 4

0 2 6 0

0 0 5

2 1 4 0

0 3 6 0

0 0 0 0

x

x

x

x

  
    

   

     
         
        

 

Use matrix multiplication to obtain the set of simultaneous equations: 

 
 

1 2 3

2 3

2 4 0 1

3 6 0 2

0 0  (the last one can be omitted as it does not lead to a solution)

x x x

x x

   

  


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 

 

 

2 3

1 3 3

1 3

1 3

From equation (2) 2 A

into equation 1 : 2 2 4 0

2 6

3 B

x x

x x x

x x

x x



   





 

Equation (A) and (B) gives us the relationships between 1 2 3,  and x x x . 

Choose 3 1x   and the eigenvector corresponding to 2 5   is 

3

2

1

 
   
  

x .  
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2.4 POST TEST: MODULE 5 (LEARNING UNIT 2) 

(Solutions on myUnisa under additional resources) 

 

Time: 90 minutes 

For the coefficient matrix A given in each case, determine the eigenvalues and an eigenvector 

corresponding to each eigenvalue: 

1. 

2 1 1

1 3 2

1 1 2

 
   
  

A  (12) 

 

2. 

1 2 2

1 3 1

2 2 1

 
   
  

A  (12) 

 

3. 

2 0 1

1 4 1

1 2 0

 
    
  

A  (12) 

 

4. 

1 4 2

0 3 1

1 2 4

  
   
  

A  (12) 

 

5. 

3 0 3

0 3 3

2 3 1

 
   
  

A  (12) 

[60] 

 

You should now be able to determine the eigenvalues and eigenvectors of a 2 by 2 and a  

3 by 3 matrix. 

 

We shall now continue to the next module on Fourier series.  
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MODULE 6 

FOURIER SERIES 

 

LEARNING UNIT 1 

FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD 2π 

 

OUTCOMES 

At the end of this learning unit you should be able to 

 describe a Fourier series 

 understand periodic functions 

 state the formula for a Fourier series and Fourier coefficients 

 obtain Fourier series for a given function 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

1.1 INTRODUCTION        98 

1.2 PERIODIC FUNCTIONS      98 

1.3 FOURIER SERIES FOR PERIODIC FUNCTIONS OF  

 PERIOD 2π         99 

1.4 POST-TEST        103 
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1.1 INTRODUCTION 

 

Many functions can be expressed in the form of an infinite series. Problems involving various 

forms of oscillations are common in all fields of modern technology and Fourier series enable 

us to represent a periodic function as an infinite trigonometrical series in sine and cosine 

terms. One important advantage of Fourier series is that it can represent a function containing 

discontinuities, whereas Maclaurin and Taylor’s series require the function to be continuous 

throughout. 

 

- Refer to myUnisa and revise integration by parts. 

- Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

You will not be able to master the outcomes for this learning unit without referring to your 

prescribed book. 

 

1.2 PERIODIC FUNCTIONS 

 

Periodic functions repeat themselves at regular intervals. The trigonometric functions are 

examples of periodic functions. 

 

A function  f x  is said to be periodic if    f x T f x   for all values of x, where T is a 

positive number. T is the interval between two successive repetitions and is called the period 

of the function  f x . 

 

For example, siny x  is periodic in x with period 2 since 

     sin sin 2 sin 4x x x       and so on. 
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1.3 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD 2π 

 

The basis of Fourier series is that all functions, which are defined in the interval t    , 

can be expressed in terms of a convergent trigonometric series of the form: 

 

 

 

 

 

 

0

0

cos sin
1 1

where for the range -  to :

1

2
1

cos

1
sin

1,2,3,...

n n

n

n

f t a a nt b nt
n n

a f t dt

a f t nt dt

b f t nt dt

n







 
   

 



























 







 

 

0,  and n na a b  are called the Fourier coefficients of the series. 

 

If you refer to a book other than the prescribed book, make sure that you know the meaning 

of the symbols used. Whichever reference you use, the final Fourier series will be the same. 

 

Note that the limits of integration may be replaced by any interval of length 2π, such as from 

0 to 2π, and need not always be from –π to π.  

 

EXAMPLE 1 

A function  f x  is defined by f x
x x

x
( ) 

   
 







0

0 0
  

and  f x f x( ) ( )  2 . 

Determine the Fourier series of  f x . 
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SOLUTION 

Sketch the given function: 

2.51.250-1.25-2.5

3

2.5

2

1.5

1

0.5

0

x

y

x

y

 

    Figure 1 

Now calculate the Fourier coefficients: 

 0

0

0

02

2

1

2
The integral must be split over the two pieces over which   is defined

1
0  

2

1
0

2 2

1
0

2 2

4

a f x dx

f

xdx dx

x














      

 
    

       






 

 

 

01
cos

[Use integration by parts let and cos

cos

1 sin ]

a x nx dxn

u x dv nxdx

dv nx dx

v nx
n


 


  







 
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2

2 2

01 1
sin sin

01 1
sin cos

1 1 1
0 sin cos

Remember is a natural number.

n
x

a nx nx
n n

x
nx nx

n n

n n
nn n

n

       

      
         

 

Investigate the behaviour of the trigonometric functions for different values of n. Do the same 

for  1 n .  We will use the result to simplify na  and nb . 

n sin n  cosn   1
n  

1 0 –1 –1 
2 0 1 1 
3 0 –1 –1 
4 0 1 1 
5 0 –1 –1 
 

Now 
   

2 2 2

1 1 11 1
0 0

n n

na
n n n

    
     
   

 

   

0

0

2

0

0

1
sin

Integrate by parts let  and sin cos

1 1
cos cos

1 1
cos sin

1
cos 0

1
cos

1
0 cos Remember cos cos

nb x nxdx

u x v nx dx nx

x
nx nx

n n

x
nx n

n n

x
nx

n

x
nx

n

n n n
n









 


   

     

      

     

     
          










 1
n

n   

We are now ready to write down the final answer. 



MAT3700  102 

The Fourier series expansion is given by: 

     

   

         

0

0 2

2

cos sin
1 1

1 1 1
 We calculated the coefficients to be  , and

4

1 1 1
Thus  cos sin

4 1 1
The answer may be left in sigma notation or expanded subst

n n

n n

n n

n n

f x a a nx b nx
n n

a a b
n n

f x nx nx
n nn n

 
   

 

   
  



    
   

 

 

ituting the values of 

2 1 1 1
cos cos3 ..... sin sin 2 sin 3 ......

4 9 2 3

n

f x x x x x x
                  
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1.4 POST-TEST: MODULE 6 (LEARNING UNIT 1) 

 (Solutions on myUnisa under additional resources) 

 

Time: 30 minutes 

 

Find the Fourier series for the following functions: 

1. 

 

( ) 1 0 2

( ) 2

x
f x x

f x f x

    


  

 

 up to and including the third harmonic (10) 

 

2. 

 

0
( )

0

( ) 2

x x
f x

x x

f x f x

    
     

  

 (10) 

[20] 

 

You should now be able to describe a Fourier series, understand periodic functions and state 

the formula for a Fourier series and Fourier coefficients. You should also be able to obtain 

the Fourier series for a given function with period 2π. 

 

We shall now continue to expand our knowledge of Fourier series and study Fourier series 

for a non-periodic function over range 2π in the next learning unit. 
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MODULE 6 

FOURIER SERIES 

 

LEARNING UNIT 2 

FOURIER SERIES FOR NON-PERIODIC FUNCTIONS OVER A RANGE OF 2π 

 

 

OUTCOMES 

At the end of this learning unit, you should be able to 

 understand that Fourier expansions of non-periodic functions have a limited range 

 determine Fourier series for non-periodic functions over a range of 2π 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

2.1 INTRODUCTION        105 

2.2 POST-TEST        105 
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2.1 INTRODUCTION 

 

You will not be able to master the outcomes for this learning unit without referring to your 

prescribed book. Refer to Tutorial Letter 101 for the relevant chapter. 

 

If a function  f x  is not periodic, then it cannot be expanded in a Fourier series for all 

values of x. However, given a non-periodic function we can construct a new function by 

taking the values for  f x  in the given range and then repeating them outside of the range at 

intervals of 2 . By our construction, this new function is periodic with period 2  and can 

thus be expanded in a Fourier series as described in learning unit 1 for all values of x. 

 

2.2 POST-TEST: MODULE 6 (LEARNING UNIT 2) 

 (Solutions on myUnisa under additional resources) 

 

Time: 30 minutes 

 

1. Determine the Fourier series for the function defined by: 

1 0
( )

1 0

x x
f x

x x

    
     

 (10) 

 

2. Find the Fourier series for the function ( )  within the range f x x x        .

 (10) 

[20] 

 

You should now be able to determine Fourier series for non-periodic functions over a range 

of 2π. 

 

We shall now continue to expand our knowledge of Fourier series and study half-range 

Fourier series in the next learning unit. 
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MODULE 6 

FOURIER SERIES 

 

LEARNING UNIT 3 

EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 

 

OUTCOMES 

At the end of this learning unit you should be able to 

 recognise even and odd functions 

 determine Fourier cosine series and Fourier sine series 

 determine Fourier half-range cosine series and Fourier half-range sine series 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

3.1 INTRODUCTION        107 

3.2 REVISION: EVEN AND ODD FUNCTIONS   107 

3.3 FOURIER SERIES       109 

3.4 POST-TEST        111 
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3.1 INTRODUCTION 

 

You will not be able to master the outcomes for this learning unit without referring to your 

prescribed book. 

 

3.2 REVISION: EVEN AND ODD FUNCTIONS 

 

A function is said to be even if it is symmetrical around the y-axis. The easiest way to check 

if a function is even is to make a sketch and fold on the y-axis. The two pieces should be 

identical. 

Mathematically  ( )f x f x  , for example the parabola y = x2: 

52.50-2.5-5

25

20

15

10

5

0

x

y

x

y

 

 

A function is said to be odd if it is symmetrical around the origin.  

Mathematically  ( )f x f x   , for example y = x3: 

52.50-2.5-5

100

50

0

-50

-100

x

y

x

y
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EXAMPLE 1 

Determine whether each of the following functions is odd, even or neither: 

(a)   2 3f x x   (1) 

(b)   cosf x x   (1) 

(c) 
3 0

2( )

3 0
2

t
f t

t

       


 (1) 

SOLUTION 

Sketch the given functions: 

(a) Straight line 

52.50-2.5-5

10

5

0

-5

x

y

x

y

 

(b) cosine function 

52.50-2.5-5

1

0.5

0

-0.5

-1

x

y

x

y
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(c) 

1.510.50-0.5-1-1.5

2.5

1.25

0

-1.25

-2.5

x

y

x

y

 

Answers 

(a) Neither 

(b) Even 

(c) Odd 

 

3.3 FOURIER SERIES 

 

EXAMPLE 2 

A function  f t  is defined by: 

 
3 0

( )
3 0

t
f t

t

  
    

 

  ( ) ( 2 )f t f t    

Determine the Fourier expansion of  f t . 

 

SOLUTION 

We have already found the function to be odd in example 1, thus 0 0na a  . 
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 

0

0

1
sin( )

2
3sin( ) 3sin( )

(No integration by parts necessary as 3 is a constant number)

02 3 3
cos( ) cos( )

0

2 3 3 3 3
cos cos

2 6 6

b f t nt dtn

nt dt nt dt

nt nt
n n

n n
n n n n

n








  

     

           

          

  


 

 

   
1

1

2 6 6
1 sin

12 1
sin sin 3 ...

3

n

n
n

nf t nt
n n

t t





   

       

       


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3.4 POST-TEST: MODULE 6 (LEARNING UNIT 3) 

 (Solutions on myUnisa under additional resources) 

 

Time: 90 minutes 

 

1. Find the Fourier series for the following function: 

 

 

   

0
3
2

( ) 0
3 3
2

3

a x

f x x

a x

f x f x

  


   


   

  

 (10) 

 

2. If  f x  is defined by  

     0f x x x x      , 

 express  f x  as a half-range cosine series. (10) 

[40] 

 

You should now be able to recognise even and odd functions, determine Fourier cosine series 

and Fourier sine series and determine Fourier half-range cosine series and Fourier half-range 

sine series. 
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MODULE 6 

FOURIER SERIES 

 

LEARNING UNIT 4 

FOURIER SERIES OVER ANY RANGE 

 

OUTCOMES 

At the end of this learning unit, you should be able to 

 determine the Fourier series of a periodic function of period 2L 

 determine the half-range Fourier series for functions of period 2L 

 

Refer to Tutorial Letter 101 for the reference to the pages you must study from your 

prescribed book. 

 

 CONTENTS        PAGE 

 

4.1 INTRODUCTION        113 

4.2 REVISION: DEFINITION OF PIECEWISE FUNCTIONS 113 

4.3 FOURIER SERIES OVER RANGE 2L    115 

4.4 POST-TEST        116 
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4.1 INTRODUCTION 

 

You will not be able to master the outcomes for this learning unit without referring to your 

prescribed book. 

 

4.2 REVISION: DEFINITION OF PIECEWISE FUNCTIONS 

 

EXAMPLE 1 

Analytically define the periodic function shown: 

 

                

                

 

 

 

 

               

 0 4 7 10 14 x 

 

SOLUTION 

 

   

3 0 4

5 4 7

0 7 10

10

x

f x x

x

f x f x

 
  
  

 

  

Remember to indicate the period.  

Also note that this function is neither odd nor even. 

 

y 

  
5 

 

3 
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4.3 FOURIER SERIES OVER RANGE 2L 

Definition:  

 

 

 

 

 

0

0

cos sin
1 1

1
where

2

1
cos

1
sin

n n

L

L

L

n
L

L

n
L

n t n t
f t a a b

L Ln n

a f t dt
L

n t
a f t dt

L L

n t
b f t dt

L L







          
    



   
 

   
 











 





 

Note that L is defined as half the period of the function. 

So if it is given that ( ) ( 2 )f t f t   , it means that the function repeats itself over the length 

2 . Thus the period is 2  and L =  .  

 

Whichever book you use as a reference, make sure that you know the meaning of the symbols 

in the formula. For instance, if the book you are referring to defined the function over a 

period of L, then you have to replace L with 
2

L
 in the definition above. 

 

The limits of integration for calculating the Fourier coefficients may be replaced by any 

interval equal to the period. In the above definition, we could have integrated from 0 to 2L. 

 

EXAMPLE 2 

A function  f t  is defined by: 

 
3 0

2( )

3 0
2

t
f t

t

       


 

  ( ) ( )f t f t    

 Determine the Fourier expansion of  f t . 
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SOLUTION 

We found this function to be odd in learning unit 3, thus 0 0na a  . 

 

   

   

0 2
02

1 22 sin

22

2
3sin 2 3sin 2

(No integration by parts necessary as 3 is a number)

02 3 3 2
cos 2 cos 2

2 2 02

2 3 3 3 3
cos cos

2 2 2 2

nt
b f t dtn

nt dt nt dt

nt nt
n n

n n
n n n n












     
 

 
    

 
            

       

 

 

 

   

 

2 6 6
1

2 2

sin
1

2 6 6
1 sin 2

2 21

12 1
sin 2 sin 6 ......

3

n

n
n n

n t
f t b

Ln

n nt
n nn

f t t t




       

     
 

         

       
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4.4 POST-TEST: MODULE 6 (LEARNING UNIT 4) 

 (Solutions on myUnisa under additional resources) 

 
Time: 30 minutes 

 
1. Find the Fourier series for the following functions: 

 

   

0
3
2

( ) 0
3 3
2

3

a x

f x x

a x

f x f x

  


   


   

  

  (10) 

 

2. If  f x  is defined by  

     0f x x x x      , 

 express  f x  as a half-range cosine series. (10) 

[20] 

 

You should now be able to determine the Fourier series of a periodic function of period 2L 

and the half-range Fourier series for functions of period 2L. 

 

This brings us to the end of study guide 2 and concludes the work necessary to successfully 

complete MAT3700. 
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