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LEARNING UNIT 0:  INTRODUCTION 
This material has been compiled to serve the mathematical needs of students engaged in 

engineering studies. A student entering this course should have studied at least two semesters 

of engineering mathematics.  

To achieve success requires discipline and hard work. You need to buy the prescribed book 

named in Tutorial Letter 101 to use with these notes. You must have access to myUnisa, 

where additional notes and explanations will be posted. You must also be prepared to consult 

other resources for a better understanding of the subject matter. To restrict your studies to the 

study guides alone will not be sufficient. 

Where do you start? 

Learn by heart 

 your student number
 the module (subject) code

Organise your workspace. You need 

 a place to write
 paper and a pen to try examples and do activities and exercises
 a scientific calculator
 the tutorial letter for MAT3700
 the prescribed book (Purchase the text book, details in tutorial letter 101, as soon as

possible.)

 Consult your tutorial letter to obtain information on 

 assignments
 how to obtain a year mark
 examinations
 due dates
 prescribed and recommended books (you must buy the prescribed book)
 contact details of your lecturer or tutor
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Set up a study plan: 

 Identify your goals.
 Make a weekly timetable.
 Indicate work and family responsibilities on your timetable.
 Remember to allow time for rest and relaxation.
 Evaluate the time available for studying.

Before you complete your plan, we must first explain the format of the study material.  

Format of study material 

 Study guides

The work is divided into two study guides consisting of modules.  Note: The corresponding 

chapters in your textbook are given in tutorial letter 101.  

 Modules
The work is divided into modules. Each module deals with a major subject area. Each module 

is divided into learning units. The end of each learning unit provides a natural break. This 

enables you to plan your time. You will find a complete list of modules and learning units in 

the list of contents. Your tutorial letter will give guidance as to the importance of each 

module and each learning unit. 

 Learning units
Each learning unit starts with OUTCOMES. These outcomes list what you should be able to 

do after you have mastered the content of the learning unit. To explain the content, you will 

find examples. An example gives both the question and the answer. Do the example yourself 

and add steps for your own understanding. Not all the thinking steps are written down in 

every example.  

An average student should be able to study a learning unit and a half per week. The 

lecturer/tutor should be contacted regularly by telephone or e-mail, if necessary, to clarify 

any points. Contact details are given in the tutorial letter. 

 Self-test
At the end of each module you need to assess your progress. The self-test should be used for 

self-evaluation. These questions include questions from past examination papers and 
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questions similar to what you can expect in future examination papers. The solutions to all 

the questions are given on myUnisa and should be used to mark your own work. An average 

student should be able to complete the test in an evening. 

Try to do the test without referring to your study notes. Warning: Do not look at the answers 
before attempting a solution!  

When answering a question, your writing should be clear. That is, the marker or any other 

person reading your answer must be able to follow your reasoning. In mathematics we are not 

only interested in the correct answer, but also in the method you used to obtain the answer. 

Pay attention to the correct use of symbols. 

 Use of computer software
We do not mention any specific programs in the notes because of the rapid development in 

this field, which results in any reference becoming outdated very quickly. Please read your 

tutorial letter carefully as we hope to introduce such programs in future. 

USEFUL INFORMATION 

MATHEMATICAL SYMBOLS 
+ plus

 minus  

 plus or minus  

 multiply by 

 multiply by  

 divide by 

= is equal to 

 is identically equal to 

 is approximately equal to 

 is not equal to  

 is greater than  
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 is greater than or equal to 

 is less than  

 is less than or equal to  

n! factorial n = 1  2  3  …  n 

k modulus of k, that is the size of k 

irrespective of the sign 

 is a member of set 

� set of natural numbers 

 set of integers 

� set of real numbers 

� set of rational numbers 

 therefore  

 infinity  

e base of natural logarithms (2,718…) 

ln natural logarithm

log logarithm to base 10 

 sum of terms 

lim
n

limiting value as n   

 integral  

dy

dx
derivative of y with respect to x 

GREEK ALPHABET 

Greek letter Greek name 

  Alpha 

  Beta 

  Gamma 

  Delta 

  Epsilon 

  Zeta 

  Eta 
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  Theta 

  Iota 

  Kappa 

  Lambda 

  Mu 

  Nu 

  Xi 

  Omicron 

  Pi 

  Rho 

  Sigma 

  Tau 

  Upsilon 

  Phi 

  Chi 

  Psi 

  Omega 

FORMULA SHEETS 

The following pages contain the formula sheets and tables that will be included with the 

examination paper. 
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FORMULA SHEETS 

ALGEBRA 

Laws of indices 

   

n

nn

n

n

n

n

n mn

m

mnmnnm

nm

n

m

nmnm

b

a

b

a

baab

a

a
a

a
a

aa

aaa

a
a

a

aaa






























.8

.7

1.6

1
and

1
.5

.4

.3

.2

.1

0

Factors 

  
  2233

2233

babababa

babababa





Partial fractions 

 
         

 
           

 
      dx

C

cbxax

BAx

dxcbxax

xf

bx

D

ax

C

ax

B

ax

A

bxax

xf

cx

C

bx

B

ax

A

cxbxax

xf



































22

323

Quadratic formula 

a

acbb
x

cbxax

2

4
then

0If
2

2






Logarithms 

Definitions: If xay  , then yx alog . 

If xey  , then ynx  .  
 

fefa

a

A
A

AnA

BA
B

A

BABA

ff

b

b
a

n

a 















nlog.5

log

log
log.4

loglog.3

logloglog.2

logloglog.1



Determinants 

     223132211323313321122332332211

3231

2221
13

3331

2321
12

3332

2322
11

333231

232221

131211

aaaaaaaaaaaaaaa

aa
aa

a
aa
aa

a
aa
aa

a
aaa
aaa
aaa




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SERIES 

Binomial Theorem 

       

       

1 2 2 3 3

2 3

1 1 2
...

2 3
and

1 1 2
1 1 ...

2! 3!
and 1 1

n n n n n

n

n n n n n
a b a na b a b a b

! !
b a

n n n n n
x nx x x

x

    
     



  
     

  

Maclaurin’s Theorem 

           
   











 


1
1

32

!1

0

!3

0

!2

0

!1

0
0 n

n

x
n

f
x

f
x

f
x

f
fxf  

Taylor’s Theorem 

                 
   

            




























af
n

h
af

h
af

h
afhaf

ax
n

af
ax

af
ax

af
ax

af
afxf

n
n

n
n

1
12

1
1

32

!1!2!1

!1!3!2!1

COMPLEX NUMBERS 

 

 

       

       

 

 21
2

1

2

1

212121

22

2

:Division.6

:tionMultiplica.5

andthen,If.4

:nSubtractio.3

:Addition.2

tanarg:Argument

:Modulus

1where

,sincos.1
















 

r

r

z

z

rrzz

qnpmjqpjnm

dbjcajdcjba

dbjcajdcjba

a

b
arcz

bazr

j

rerjrbjaz j

 

 
   

 

1

1 1

7. De Moivre's Theorem

cos sin

8. has  distinct roots:

360
with 0, 1, 2, , 1

9. cos sin

cos and sin

10. cos sin

11.

n n n

n

n n

j

j j

a jb a

j

r r n r n j n

z n

k
z r k n

n

re r j

re r re r

e e b j b

n re n r j



 





        

 
  

   

     

 

  





 

< 
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GEOMETRY 

1. Straight line:  11 xxmyy

cmxy




  

 Perpendiculars, then 
2

1

1

m
m




2. Angle between two lines:

21

21

1
tan

mm

mm






3. Circle:

 
    222

222

rkyhx

ryx





4. Parabola:
cbxaxy  2

 axis at 
a

b
x

2




5. Ellipse:

1
2

2

2

2


b

y

a

x
 

6. Hyperbola:

 

 axis-  round1

axis-  round1

2

2

2

2

2

2

2

2

y
b

y

a

x

x
b

y

a

x

kxy







STATISTICS 

i if x
x

n




 2

1
i if x x

s
n

 




2 L

me

n
n

Me L c
f


  

1
0

1 12
m m

m m m

f f
M L c

f f f


 

 
     

MENSURATION 

1. Circle: (  in radians)

 

 

2

2

2

Area

Circumference 2

Arc length

1 1
Sector area

2 2
1

Segment area sin
2

r

r

r

r r

r

 
 
 

  

  





2. Ellipse:

 ba

ab




nceCircumfere

Area
 

3. Cylinder:

2

2

22area  Surface

Volume

rrh

hr





4. Pyramid:

height base area
3

1
Volume 

5. Cone:

r

hr





surfaceCurved
3

1
Volume 2

6. Sphere:

3

2

3

4

4

rV

rA





7. Trapezoidal rule:

       0 1 1
1

2 2
2 n n

b a
f x f x f x f x

n 
         



8. Simpson’s rule:

       

       

0 1 2 3

4 2 1

1
[ 4 2 4

3

2 2 4 ]n n n

b a
f x f x f x f x

n

f x f x f x f x 

       
   

9. Mid-Ordinate rule

       1 2 1n n
b a

f m f m f m f m
n 
         


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HYPERBOLIC FUNCTIONS 

Definitions: 

xx

xx

xx

xx

ee

ee
x

ee
x

ee
x




















tanh

2
cosh

2
sinh

Identities: 

 

 

x

x

xxx

xxx

xx

xx

xx

xx

xx

2

2

22

2

2

22

22

22

sinh21

1cosh2

sinhcosh2cosh

coshsinh22sinh

12cosh
2

1
cosh

12cosh
2

1
sinh

cosech1coth

sechtanh1

1sinhcosh



















TRIGONOMETRY 

Identities: 

2 2

2 2

2 2

sin  cos  1

1 + tan  = sec  θ

cot  1 = cosec

sin( ) = sin  θ

cos ( ) = cos  θ

tan ( ) = tan  θ

sin
tan

cos

   

 

  
   
   
   


 



Compound angle addition and subtraction 
formulae: 
 sin(A + B) = sin A cos B + cos A sin B 
 sin(A – B) = sin A cos B – cos A sin B 
 cos(A + B) = cos A cos B – sin A sin B 
 cos(A – B) = cos A cos B + sin A sin B 

 

 
BA

BA
BA

BA

BA
BA

tantan1

tantan
tan

tantan1

tantan
tan











 Double angles: 
 sin 2A = 2 sin A cos A 
 cos 2A = cos2 A – sin2 A  
 = 2cos2 A – 1 
 = 1 – 2sin2 A 
 sin2 A = ½(1 – cos 2A) 
 cos2 A = ½(1 + cos 2A) 

 
A

A
A

2tan1

tan2
2tan




Products of sines and cosines into sums or 
differences: 
 sin A cos B = ½(sin (A + B) + sin (A – B)) 
 cos A sin B = ½(sin (A + B) – sin (A – B)) 
 cos A cos B = ½(cos (A + B) + cos (A – B)) 
 sin A sin B = –½(cos (A + B) – cos (A – B)) 

Sums or differences of sines and cosines into 
products: 





 





 







 





 







 





 







 





 



2
sin

2
sin2coscos

2
cos

2
cos2coscos

2
sin

2
cos2sinsin

2
cos

2
sin2sinsin

yxyx
yx

yxyx
yx

yxyx
yx

yxyx
yx
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DIFFERENTIATION 

   

   

dx

dv

dv

du

du

dy

dx

dy

xfxfnxf
dx

d

g

gffg

g

f

dx

d

fggfgf
dx

d

anxax
dx

d

k
dx

d
h

xfhxf

dx

dy

nn

nn

...7

)('.)()(.6

'.'.
.5
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MODULE 1 

FIRST-ORDER DIFFERENTIAL EQUATIONS 

LEARNING UNIT 1 

SOLVING FIRST-ORDER DIFFERENTIAL EQUATIONS 

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

CONTENTS PAGE 

1.1 INTRODUCTION 2 

1.2 FIRST-ORDER DIFFERENTIAL EQUATIONS 3 

 1.2.1 Direct integration 3 

 1.2.2 Equations with separable variables 4 

 1.2.3 Exact differential equations 5 

 1.2.4 Linear equations 7 

1.2.5 Equations reducible to linear form  – Bernoulli equations 9 

 1.2.6 Homogeneous equations 13 

1.3 PARTICUAR SOLUTIONS 14 

1.4 POST-TEST 15 

OUTCOMES 

At the end of this learning unit you should be able to 

 find the order of a differential equation

 solve first-order differential equations by using

- direct integration

- separation of variables

- an integrating factor

 identify and solve linear, Bernoulli and homogeneous first-order

differential equations
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1.1 INTRODUCTION 

Equations that involve differential coefficients are called differential equations. They play an 

important role in almost every branch of science and engineering, since most of the problems 

of the physical world can be formulated as differential equations of one type or another. 

For EXAMPLE: 

' ( )y f x (1.1) 

32

2
3 0

d y dy

dxdx

 
   

 
(1.2) 

23

3
xd y

y e
dx

 
   

 
(1.3) 

2 2

2 2
0

u u

x y

 
 

 
(1.4) 

are all differential equations. The first three of these are called ordinary differential equations 

since they involve the ordinary derivatives of the unknown function y. In each case there is 

only one independent variable x. Equation (1.4) contains partial derivatives of the unknown u 

and hence is known as a partial differential equation. 

In this course we shall be concerned only with ordinary differential equations and their 

solutions. By solution we mean that we shall try to eliminate the differential coefficients 

from the equation by means of integration. We shall then be left with a relation between the 

two variables x and y. In practice, however, it is not always possible to integrate the functions 

in question and so, in general, it is customary to regard a differential equation as solved when 

it can be reduced to expressions of the form ( )f x dx  and  y dy .

In equation (1.1) y' is used to denote 
dy

dx
 and this notation is frequently used. It can be 

extended to higher order derivatives so that 
2

2
"

d y
y

dx
  and so on. 
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You will recall from an earlier course that the order of a differential equation is the order of 

the highest derivative occurring in it. Thus, equation (1.1) is of first order, (1.2) is of second 

order and (1.3) is of third order. A differential equation of order n will have n arbitrary 

constants in its solution. The degree of a differential equation is the degree of the highest 

derivative contained in the equation after radicals and fractions have been cleared. Thus 

equation (1.1) is of first degree, (1.2) is of third degree and (1.3) is of second degree. 

1.2 FIRST-ORDER DIFFERENTIAL EQUATIONS 

A large number of first-order differential equations, including many which are of practical 

importance, can be classified into various types and the solutions can then be found by 

established methods. We shall now study some of these. 

1.2.1 Direct integration – equations depending on x only (without a y-term) 

Equations of the form ( )
dy

f x
dx

  can be solved by direct integration.  

The solution is ( )y f x dx c 
where c is the constant of integration and must always be included. 

EXAMPLE 1 

Solve the equation: 
2

1
0

dy

dx x
 

SOLUTION 

2

2

2

1

1

1

1

dy

dx x

dy dx
x

y dx c
x

y c
x

 

 

  

 




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1.2.2 Equations with separable variables 

These are equations of the form  

( ) ( )f x dx f y dy

where  f x  is a function of x only and  f y  a function of y only. 

In this case the variables are said to be separable. This type of equation can also be solved 

directly, its solution being: 

( ) ( )f x dx f y dy c  

If the equation is not given in the above form, it is sometimes possible to rearrange the terms 

into two groups, each containing only one variable. 

EXAMPLE 2 

Solve the equation: 0x dy y dx   

SOLUTION 

Divide through by 
1

xy
 to separate the variables: 

0
dy dx

y x

dy dx
C

y x

n y n x C

 

 

 

  
 

Since C is an arbitrary constant, we can set it equal to n k . We therefore have:  

n y n x n k

xy k

 


  

The factor 1
xy  used to multiply through to separate the variables is called an integrating

factor. Different integrating factors will be needed for different examples. 
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1.2.3 Exact differential equations 

An equation of the form 

   , , 0M x y dx N x y dy 

is said to be exact if it has been formed from its primitive by direct differentiation and 

without cancelling out any common factor. 

For example, if the primitive is 3 2 33  x x y y c , 

then by differentiation we get 

   
2 2 2

2 2 2

3 6 3 3 0

3 6 3 3 0

x dx xy dx x dy y dy

x xy dx x y dy

   

   

 

which is an exact equation. 

Equations that are not exact can often be made so by multiplying through by an integrating 

factor. In practice, however, this factor is not always easy to find. The next examples will 

illustrate how we solve exact differential equations. The solution for an exact differential 

equation will be a function of x and y. 

EXAMPLE 3 

Solve the exact differential equation: 

   2 2 2 26 10 3 5 6 3 0     x xy y dx x xy y dy

SOLUTION 

Solve:    
   

2 2 2 2

2 2 2 2

6 10 3 5 6 3 0

6 10 3 5 6 3 0

x xy y dx x xy y dy

x xy y dx x xy y dy

     

      

Check if it is exact:  

10 6 and 10 6

 Thus  and it is an exact differential equation.

 
     

 
 


 

M N
x y x y

y x

M N

y x

The signs in the check is very important. If the signs of the partial derivatives are not the 

same, the check fails and we must look for another method to solve the equation. 
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 

   

2 2

3 2 2

We can find the solution, starting with

, 6 10 3

Direct integration to  gives

 , 2 5 3

f
M x y x xy y

x
x

f x y x x y xy f y


   



   

 

 
 

2 2

2 2 3

3 3

3 2 2 3

, 5 6 3

Direct integration to  gives 

, 5 3 ( )

By comparing the two functions for ( , ) we find ,  and ( ) 2

Therefore the solution is 2 5 3

f
N x y x xy y

y

y

f x y x y xy y f x

f x y f y y f x x

x x y xy y C


    



    

  

   

EXAMPLE 4 

Solve the differential equation 2 xdy ydx x dx  given the integrating factor 
2

1

x
. 

SOLUTION 

This is an example of a differential equation which is not exact that can be converted into an 

exact one by using a suitable integrating factor. There is no general rule for finding this 

factor. In this course the integrating factor will be given as part of the question. 

Multiply the given equation with the given integrating factor of 
2

1

x
. 

2

1 y
dy dx dx

x x
 

Rearrange and group the terms in dx and dy together: 

2

1
1 0

y
dx dy

x x
     
 

 which compares to the form of an exact equation 

   , , 0.M x y dx N x y dy 

Check if it is exact: 

2 2

1 1
and 

 Thus  and it is an exact differential equation.

M N

y xx x

M N

y x

 
   

 
 


 



MAT3700 7

 

   

2

We can find the solution, starting with

, 1

Direct integration gives ,

f y
M x y

x x
y

f x y x f y
x


   



  

   

 

1
Differentiate this answer for ,  to find '

By comparing with  in the given equation we find ' 0,  so that ( )

Therefore the solution is .

f
f x y f y

y x

N f y f y c

y
x c

x


 



 

 

1.2.4 Linear equations 

An equation of the form 
dy

Py Q
dx

  (1.5) 

where P and Q are functions of x only, is called a linear differential equation. It is so called 

because the dependent variable y and its derivatives are of the first degree.  

The solution of  0
dy

Py
dx

dy
Pdx

y

 

 

(1.6) 

is

.

or

Pdx n k

Pdx n k

Pdx

Pdx

n y Pdx c

n y Pdx n k

y e

e e

y ke

ye k

 





  

  





 

 










 

On differentiating  P dx
ye k , that is    Pdxd d

y k
dx dx

  , 

 we obtain 0

0

( ) 0

  

   

  

Pdx Pdx

Pdx Pdx

Pdx

dy
e yPe

dx

dy e yPe dx

e dy Pydx

 using the product rule.  

This shows that Pdx
e  is an integrating factor of equation (1.6).
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We must therefore multiply both sides of our original equation (1.5) by the integrating factor 

to obtain the equation:  

Pdx Pdxdy
e Py Q e

dx
    
 

The left-hand side can be replaced by   Pdxd
ye

dx
 using the product rule in reverse, giving 

us the equation: 

 
integrating both sides

and              

Pdx Pdx

Pdx Pdx

Pdx Pdx

d
ye Qe

dx

ye Qe dx c

y e Qe dx c


 

   

    
 









(1.7) 

We can solve first-order linear equations either by substituting for P, Q and  Pdx  in this

formula or by multiplying both sides of the given equation by the integrating factor Pdx
e .

We may omit the constant of integration from  Pdx  since this cancels out.

EXAMPLE 5 

Solve: cos sin 1 
dy

x y x
dx

SOLUTION 

We divide through by cos x to get: 

tan sec 
dy

y x x
dx

This is of the form of a linear equation (refer to equation (1.5)) with P = tan x and Q = sec x. 

Now tan sec   Pdx x dx n x

so the integrating factor is 

sec sec  Pdx n xe e x  (See note.)

We substitute for P, Q and Pdx
e  in (1.7) to obtain:



MAT3700 9

 

 

1
sec .sec

sec

1
tan

sec

sin cos

y x x dx c
x

x c
x

x c x

 

 

 



NOTE: 

Here we have used the fact that sec secn xe x

 because if  y n x then  yx e and it follows that  n xx e . 

This holds for any function of x, for example:
1

4

1

4 4

sin

1

1

sin

   and

and

n x n x

n x n x

n x

x

x

e e x

e e x

e

 



  

 



 

 



1.2.5 Equations reducible to linear form – Bernoulli equations 

An equation of the form    ndy
Py Qy

dx
(1.8) 

is known as a Bernoulli equation and is the same as the linear equation (1.5) except for the 

presence of the factor yn. The above equation can be reduced to the linear type by eliminating 

yn using substitution as follows: 

Multiply (1.8) by yn to obtain: 
1

1
 

n n

dy P
Q

dxy y
(1.9) 

Let z = y1n. 

Then  1   ndz dy
n y

dx dx

Multiply equation (1.9) by  1 n :       1

1
1 1 1

n n

dy P
n n n Q

dxy y     

Substitute  and  in this equatio (1 ) ( )n: 1
dz

n Pz n Q
d

dz
z

dx x
   

which is a linear differential equation.  
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This can be solved in the usual way for linear equations, remembering to substitute back, that 

is, put z = y1 – n in the final solution. 

The general method for solving an equation in the form of a Bernoulli equation is illustrated 

in the following example: 

EXAMPLE 6 

21
. 

dy
y xy

dx x

Step 1:  Divide by the power of y on the right-hand side, which is 2y  in this example: 

2 11dy
y y x

dx x
    

 

Step 2:  Now put z = y1  n, in this case z = y1: 

2 
dz dy

y
dx dx

Step 3:  Multiply throughout by 1: 

2 11

1

dy
y y x

dx x

dz
z x

dx x

     
 

    
 

Step 4:  This is a linear equation with  1
 and      

 
P Q x

x
. Now solve it: 

1 1

1

1

Now from equation (1.7) the solution to the linear equation writing  for  is

Pdx n x n x

Pdx dx n x
x

e e e x
x

z y

 

   

    



 



 
 

  

2

1

1

( )

  

        

  

  

  









Pdx Pdx
z e Qe dx c

x x dx c
x

x dx c

x x c

x cx
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Step 5:  Convert back to x and y, substitute 1 1 z y
y

: 

2

2 1

1

( )

  

  

x cx
y

y x cx

EXAMPLE 7 

Solve the equation:  5 
dy

y xy
dx

SOLUTION 

Divide by y5:    5 4  
dy

y y x
dx

(1.10) 

Let z = y4, then 54  
dz dy

y
dx dx

Multiply equation 1.10 by 4:  

5 44 4 4    
dy

y y x
dx

substitute tNow 4 4o :   
dz

z
dx

z x  

Integrating factor is: 

4

4 4

Pdx x

Pdx dx x

e e

 

 

 

Therefore:  4 44  x xz e xe dx c

Use integration by parts to solve the integral: 

 

4 4 4

4 4 4 0

1

4

1
Remember that . 1.

4

x x x

x x x

z e xe e c

x ce e e e



 

     
 

     

Substitute back: 4 41

4
     xy x ce

EXAMPLE 8 

Solve: 2 61
. 

dy
y x y

dx x
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SOLUTION 

Divide by y6: 6 5 21  
dy

y y x
dx x

(1.11) 

Put 5,z y  then 65  
dz dy

y
dx dx

Multiply equation (1.11) by 5 and substitute: 25
. 5

dz
z x

dx x
  

Integrating factor: 

5
5

5
5

1Pdx n x

Pdx dx nx
x

e e
x



   

  








Therefore:  5 2
5

5
3

5 2

5 3 5

1
5 .

5

5

2

5

2





        
    
 
   
 

 








z x x dx c
x

x dx c
x

x x c

y x cx

 

EXAMPLE 9 

Solve:  5 51
 

dy
y x y

dx x

SOLUTION 

Multiply through by 5y to get: 

4
5 5dy y

y x
dx x


    

Using the substitution 4z y

we have 54
dz dy

y
dx dx

 

First multiply by –4: 
4

5 54 4 4
dy y

y x
dx x


     

The equation to solve then becomes: 

54
4

dz
z x

dx x
     
 
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This is a linear equation with 
4   

 
P

x
 and Q = (4x5). 

44
4Pdx dx n x n x

x
    

  

We substitute into equation (1.7) writing z for y: 

   
 
 
 

4 45

4 5 4

4

4 2

4 6 4

4 .

4 .

4

2

2







    
 

  

  

  

   







 n x n xz e x e dx c

x x x dx c

x x dx c

x x c

y x cx

1.2.6 Homogeneous equations 

These are equations of the form 
( , )

( , )


dy P x y

dx Q x y
(1.12) 

where P and Q are homogeneous functions of the same degree in both x and y.  

This means that the total degree for each term in the equation is the same.  

The expression 
2 2 4

3

x y y

xy
 is homogeneous, since each term is of the fourth degree. 

If we make the substitution y = v.x, where v is a function of x, then: 

 dy vdx xdv  

and equation (1.12) will reduce to the form 

( ) 
dv

v x F v
dx

(1.13) 

where we have put 
( , )

( )
( , )


P x vx

F v
Q x vx

Equation (1.13) is now expressed in terms of v and x, and can be solved by separating the 

variables. 
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EXAMPLE 10 

Solve: 
3 3

2




dy x y

dx xy

SOLUTION 

Let y = vx, then  
dy dv

v x
dx dx

and the given equation becomes:  

3 3 3

3 2

3

2

1


 


 

dv x v x
v x

dx x v

dv v
x v

dx v

3

3

3 3

2

2

2

3

3

3

3

1

1

3

Thus
3

Put 

y

x

dv v v
x

dx v
dv

x
dx v

dx
v dv

x

v
n x c

y
n x c

x
k n c

kx e

 






 

 





 
 
 







1.3 PARTICULAR SOLUTIONS 

Thus far we have considered the constants of integration to be completely arbitrary, that is, 

we have not assigned any particular values to them. A solution containing a number of 

arbitrary constants, which is equal to the order of the equation, is called a general solution. 

However, when certain information about the function is given, for example a value of y for a 

value of x, we can assign particular values to the constants. This gives us a particular 

solution. These given values of x and y are known as initial conditions. 
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EXAMPLE 11 

Solve the differential equation cot cos
dy

y x x
dx

   given that y = 0 when x = 0. 

(The condition can also be written in functional notation as  0 0y  ) 

SOLUTION 

This equation is linear with P = cot x and Q = cos x. 

cot sinPdx x dx n x   

And sin sin
Pdx n xe e x  

We substitute these values in equation (1.7) to get: 

 
2

1
cos sin

sin
1 1

sin
sin 2

1
sin cosec

2

y x x dx c
x

x c
x

x c x

 

   
 

 



This is the general solution of the given equation. The initial conditions for this problem are 

y = 0 when x = 0.  

Substituting these conditions in the general solution gives: 

   

1
0 sin 0 cosec0

2
1

0 0 0
2

0

c

c

c

 

 

 

The particular solution is obtained by inserting this value for c in the general solution so 

that 

1
sin

2
y x . 
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1.4 POST-TEST: MODULE 1 (LEARNING UNIT 1) 

(Solutions on myUnisa under additional resources) 

Time: 90 minutes  

1. Solve the following differential equations:

(a)    2 21 1 0   x y dx y x dy (8)

(b) sin cos sin cosx y dx y x dy (5)

2. Solve the following exact differential equation:

   2 22 2 2 2 0     xy y x dx x xy y dy (5)

3. Solve the following linear equation:

2 
dy

x y x
dx

(7)

4. Solve the following differential equation:

2 2 2 
dy

x y xy
dx

  (14)

5. Solve the following equation:

4xdy
y e y

dx
  (11)

6. Solve: 32 ( 1)
dy

x y x x y
dx

    (10)

7. Solve: 
4

2 32
. 3

dy
y x y

dx x
  (9)

8. Solve: cos sin 2ndy
y x y x

dx
    (13)

[82]
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We now move on to learning unit 2: Practical applications of first-order differential 

equations. 

You have now completed learning unit 1 and you should be able to 

 find the order of a differential equation

 solve first-order differential equations by using

- direct integration

- separation of variables

- an integrating factor

 identify and solve linear, Bernoulli and homogeneous first-order

differential equations
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MODULE 1 

FIRST-ORDER DIFFERENTIAL EQUATIONS 

 LEARNING UNIT 2 

PRACTICAL APPLICATIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS 

OUTCOMES 

At the end of this learning unit you should be able to solve practical problems in the areas of 

 growth and decay

 cooling

 mixtures

 falling bodies with resistance

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

 CONTENTS PAGE 

2.1 GROWTH AND DECAY 19 

2.2 COOLING 20 

2.3 MIXTURES 22 

2.4 FALLING BODIES WITH RESISTANCE 24 

2.5  OTHER APPLICATIONS 26 

2.6 POST-TEST 27 
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We will now apply our knowledge of first-order differential equations to certain areas of 

science and technology. We will approach this by doing an example in each area. 

2.1 GROWTH AND DECAY 

Suppose that we have a function ( )N t  representing the amount of a substance that is either 

growing or decaying. ( )N t  represents the amount that is present at any time t. We will 

assume that 
dN

dt
, the rate of change of this substance at any time, t , is proportional to the 

amount of the substance present at that time.  

Then 
dN

kN
dt

 or 0
dN

kN
dt

   where k is the constant of proportionality. 

EXAMPLE 1 

Radioactive material decays at a rate which is proportional to the amount present at a given 

time. The half-life   of such material is defined as the time required for half of the original 

material to decay. If A0 is the amount of radioactive material present originally and At the 

amount present after a time t, 

(a) find an equation to describe the radioactive process

(b) solve this equation

(c) calculate 

SOLUTION 

(a)
dA

kA
dt

  k a constant 

(b) 
0 0

t
tA

A

dA
k dt

A
   
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0

0 0

0

0

0

0

0

(0)

t

t
tA

A

A t

A

t

t

ktt

kt
t

dA
k dt

A

n A kt

n A n A kt k

A
n kt

A

A
e

A

A A e





 

 

   

 
  

 





  



 



(c) At t =  , then 0

1

2
A A . 

0 0

1

1
Thus   

2

1

2

2

2

1
2

k

k

A A e

e

k n

n

n
k

 

 







  

 

 





  

2.2 COOLING 

Newton’s law of cooling states that the time rate of change of the temperature of a body is 

proportional to the temperature difference between the body and the surrounding medium. 

Let T represent the temperature of the body and Tm the temperature of its surrounding 

medium. The time rate of change of the temperature of the body is 
dT

dt
. Newton’s law of 

cooling can be written as  m
dT

k T T
dt

   , where k is a positive constant. 
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EXAMPLE 2 

According to Newton’s law the rate of cooling of a substance in moving air is proportional to 

the difference between the temperature of the substance and that of the air. The temperature 

of the air is 30 C and a substance cools from 100 C to 70 C in 15 minutes. 

(a) Write down the differential equation which illustrates Newton’s law of cooling in this

case.

(b) Find when the temperature will be 45 C.

SOLUTION 

(a) ( 30)
dT

k T
dt

   , where k = constant, T = temperature and t = time. 

(b) First find the value of the constant k:

Separate the variables 
30

dT
k dt

T
 


.

Integrate between the limits t = 0 and t = 15, T = 100 and T = 70.

 

15 70

0 100

7015
0 100

30

30

15 40 70

7
15

4
0.0373

dT
kdt

T

k n T

k n n

k n

k

 


  

  



 

 


 



Now integrate between the limits t = 0, T = 100 and t = t, T = 45: 

45

100 0
0.0373

30

15 70 0.0373

41.3 minutes

tdT
dt

T

n n t

t

 


  

 

 
 
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2.3 MIXTURES 

Suppose you have a tank originally holding a quantity V0 of a solution that contains some 

quantity a of a dissolved chemical. Another solution containing quantity b of the same 

dissolved chemical is added to the tank at the rate of 1r , while at the same time the well-

mixed solution is emptied at the rate 2r . We want to find the quantity of the chemical in the 

tank at any time t. 

If we let Q(t) represent the amount of the chemical at any time, then 
dQ

dt
 represents the 

difference between the rate at which the chemical enters the tank and the rate at which it 

leaves. The chemical enters the tank at the rate of 1br  per unit of time. It leaves at the rate of 

2ar  per unit of time. The volume in the tank at any time is 0 1 2V rt r t  , where V0 represents 

the volume at t = 0. Thus, the concentration of the chemical at any time is 
0 1 2

Q

V rt r t 
 and so

it leaves at a rate of 2
0 1 2

Q
r

V r t r t

 
   

 per unit of time. 

This means that: 1 2
0 1 2

2 1
0 1 2

 or 

dQ Q
br r

dt V r t r t

dQ Q
r br

dt V r t r t

 
     

 
    

EXAMPLE 3 

A certain chemical dissolves in water at a rate proportional to the product of the amount 

undissolved and the difference between the concentration in the saturated solution and the 

concentration in the actual solution. 50 grams of the substance is dissolved in 100 grams of a 

saturated solution. If, when 30 grams of the chemical are agitated with 100 grams of water, 

10 grams are dissolved in two hours, how much will be dissolved in 5 hours? 

SOLUTION 

Let x denote the number of grams of chemical undissolved after t hours. At this time the 

concentration of the actual solution is 
30

100

x
 and that of the saturated solution is

100

50
.
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Then:  
50 30

100 100

20

100

( 20) 100

dx x
kx

dt

x
kx

dx kdt

x x

   
 

   
 




Now resolve the left-hand side into partial fractions and we eventually obtain: 

20 5

dx dx k
dt

x x
 



To find the value of k, integrate between t = 0 and t = 2, x = 30 and x = 30 10 = 20. 

 

   

   

   
   

220 20

30 30 0

2
2020

30 30
0

20 5

20
5

20 30 40 50 (2)
5

2
20 50 40 30

5

20 50 2

40 30 5

5 5

2 6

0.46

dx dx k
dt

x x

k
n x n x t

k
n n n n

k
n n n n

k
n

k n

 


  

   

   

 



 

     

 

   

   





Now integrate between t = 0 and t = 5, x = 30 and x = x: 

5

30 30 0

0,46

20 5

5

3( 20)

3
0.38

20 5

12

x xdx dx k
dt

x x

x
n k

x

x
e

x

x



 





 


 

     



The amount dissolved after 5 hours is 30  12 = 18 grams. 
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EXAMPLE 4 

A 100   tank is filled with a brine solution which contains 25 kg of salt. Water flows into 

this tank at a rate of 8 litres per minute and the mixture, which is well stirred, flows away at 

the same rate. How much salt will there be in the tank after 1 hour? 

SOLUTION 

Suppose the amount of salt in the tank after t minutes is a kg. During the interval dt, 8 litres 

dt water will flow into the tank and  

8 2

100 25

a a
dt dt

of salt solution will flow out of the tank. The change in the amount of salt thus is: 

2

25
1

1

2

25

120

25

2

25
2

25
2

25

If 0 then 25

25 and

25

If 60 then

25

0.2 kg

t

t

a
da dt

da
dt

a

na t c

a c e

t a

c

a e

t

a e







 

 

  



 
 









  

2.4 FALLING BODIES WITH RESISTANCE 

The force F acting on a freely falling body in a vacuum is given by F mg  where m is the 

mass and g is the force of gravity. Most of the time when an object falls, it is affected by a 

resisting medium such as air. The resistance depends on the velocity and the size and shape 

of the object. At relatively low velocities, the resistance appears to be proportional to the 

velocity of kv, where k > 0. 
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Newton’s second law of motion states that the net force acting on a body is equal to the time 

rate of change of the momentum of the body. For an object of constant mass, this means that 

dv
F m

dt
 , where F is the net force of the body and v its velocity, both at time t. Because the 

resistance opposes the velocity, the net force is .F mg kv   Substituting this into the 

equation 
dv

F m
dt

 , we obtain: 

 or 

dv
mg kv m

dt
dv kv

g
dt m

 

 

EXAMPLE 5 

A parachutist is falling with a speed of 50 m/s when his parachute opens. If the air resistance 

is 
2

16

Wv
N  where W is the total weight of the man and the parachute, find his speed as a

function of the time t after the parachute has opened. 

SOLUTION 

Net force on system = weight of system – air resistance 

2

2

2

2
2

16

1
1

16

1 16

16

( 10 m/s )
1616

W dv Wv
W

g dt

dv v

g dt

dv v

g dt

dv gdt
g

v

 

 




  


Now integrate between the limits t = 0 and v = 50, t = t and v = v: 
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   

2
50 0

2

50 0

50 0

50 0

10

16 16

1 1 1 1 1 1
Use partial fractions to find 

16 8 4 8 4 8 4 4

1 1 1 10

8 4 4 16

1 1
5

4 4

4
5

4

4 46
5

4 54

4

tv

tv

tv

tv

dv
dt

v

v v v v v

dt
v v

dt
v v

v
n t

v

v
n n t

v

v
n

 


          

      

      


 




  





  


 
 


 
 



 



5

5

5

54
. 5

4 46

27 4
.

23 4

27 23
We can show that 4

27 23

t

t

t

t
v

v
e

v

e
v

e







     






 
   

2.5 OTHER APPLICATIONS 

EXAMPLE 6 

Under certain conditions the constant quantity J joules/second of heat flowing through a wall 

is given by 
dT

Q kA
dx

 

where k is the conductivity of the material, A is the area of the face of the wall perpendicular 

to the direction of flow and T is the temperature 10x mm from that face such that T increases 

as x increases. Find the number of Joules of heat per hour flowing through one square metre 

of the wall of a refrigerator room 125 cm thick for which k = 0.0025 if the temperature of the 

inner face is –5 C and that of the outer face is 75 C. 
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SOLUTION 

Let x denote the distance of a point within the wall from the outer face: 

Q
dT dx

kA
 

Integrate within the limits x = 0 to 125, T2 = 75 and T1 = –5: 

   

 

5 125

75 0

5 125

75 0

5 75 125 0

80 125

80
joule

125
0.64 joule

(0.64)(0.0025)(1) joule

0.0016 joule

Q
kA

Q
kA

Q
dT dx

kA

t x

Q

kA
kA

Q

kA



    
 

      
 

 









 
 
 

T1 = –5 °C 

T2 = 75 °C 
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2.6 POST-TEST: MODULE 1 (LEARNING UNIT 2) 

(Solutions on myUnisa under additional resources) 

Time: 30 minutes 

1. A body with mass ma falls from rest in a medium for which the resistance (N) is

proportional to the square of the velocity. If the terminal velocity is 50 m/s, find

(a) the velocity at the end of 2 seconds

(b) the time required for the velocity to become 30 m/s (14) 

2. Tank A initially contains 500   of a brine solution with a concentration of 0.5 kg per

litre and tank B contains 500   of water. Solution is pumped from tank A to tank B at

a rate of 4  /min and from tank B to tank A at a rate of 8  /min. The tanks are kept

well stirred. Let the number of kilograms of salt in tank A be A1 after t minutes and B1

in tank B.

(a) Write down equations showing, respectively, the concentrations C1 and C2 in

the tanks after t minutes.  (2)

(b) Write down two differential equations to show how A1 and B1 vary with time.

(2)

(c) What is the relation between A1 and B1? (1)

(d) Eliminate B1 between the two equations in (b) and solve the resulting equation

for A1.  (8)

(e) What is the concentration in tank A after 10 minutes?  (1) 

[28] 

You have completed learning unit 2 and should be able to solve practical problems in the 

areas of 

 growth and decay

 cooling

 mixtures

 falling bodies with resistance

We can now move to learning unit 3 to learn how to solve first-order linear differential 

equations using numerical methods.  
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MODULE 1 

FIRST-ORDER DIFFERENTIAL EQUATIONS 

LEARNING UNIT 3 

NUMERICAL METHODS 

OUTCOMES 

At the end of this learning unit you should be able to 

 state the reason for solving first-order differential equations using numerical methods

 obtain a numerical solution to first-order differential equations by using

- Euler’s metod

- Euler-Cauchy method

- Runge-Kutta method

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

 CONTENTS PAGE 

3.1 INTRODUCTION 30 

3.2 EULER’S METHOD 30 

3.3 EULER-CAUCHY METHOD 30 

3.4 RUNGE-KUTTA METHOD 30 

3.5 POST-TEST 31 
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3.1 INTRODUCTION 

A numerical method is a procedure that gives approximate solutions. We can often measure 

certain points but would like to know the values at other points. With numerical methods we 

can find these values. 

The basic operations addition, subtraction, division and multiplication and the ability to use a 

formula are used in numerical methods. To get the desired solution, a great deal of 

calculations is often needed, which makes this ideal for calculator and computer programs.  

Always evaluate the answer, as this is an important skill for you as an engineer combined 

with your common sense.  

You have used analytical methods to solve differential equations in the previous modules. 

Sometimes it is difficult to find the solution using these methods. In these cases we can still 

get a solution if we know some numerical methods. These methods use repeated calculations 

so that the use of calculators and computer packages becomes very handy. You must, 

however, be able to do it by hand first. 

3.2 EULER’S METHOD 

This method approximates the solution of a differential equation by using tangent lines. 

Remember that the first derivative at a point gives the slope or gradient of the tangent line at 

that point. This section must be studied from other sources. Refer to Tutorial Letter 101 and 

myUnisa for the references to your prescribed book. 

3.3 EULER-CAUCHY METHOD 

This section must be studied from other sources. Refer to Tutorial Letter 101 and myUnisa 

for the references to your prescribed book. 

3.4 RUNGE-KUTTA METHOD 

This section must be studied from other sources. Refer to Tutorial Letter 101 and myUnisa 

for the references to your prescribed book. 
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3.5 POST-TEST: MODULE 1 (LEARNING UNIT 3) 

 (Solutions on myUnisa under additional resources) 

Time: 45 minutes 

1. Use Euler’s method to find a numerical solution for the equation 1
dy

xy
dx

   given

the initial conditions that 0x   when 1y   for the range 0 to 0.5x x   with

intervals of 0.1. (10) 

2. Obtain a numerical solution for the differential equation 3
dy y

dx x
   for the range 

 1.0 0.1 1.5,  given the initial conditions 1x   when 2.y  (15)

[25] 

You should now be able to 

 state the reason for solving first-order differential equations using numerical methods

 obtain a numerical solution to first-order differential equations by using

- Euler’s metod

- Euler-Cauchy method

- Runge-Kutta method

We can now move to module 2, learning unit 1 to learn how to solve second-order linear 

differential equations with constant coefficients.  
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MODULE 2 

SECOND-ORDER DIFFERENTIAL EQUATIONS 

LEARNING UNIT 1 

SOLVING SECOND-ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT 

COEFFICIENTS 

Outcome 

At the end of this learning unit you should be able to 
 identify and solve the auxiliary equation of a second-order differential equation

 solve second-order differential equations of the form
2

2
0

d y dy
a b cy

dxdx
  

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

CONTENTS PAGE 

1.1 INTRODUCTION  33 

1.2 SECOND-ORDER LINEAR EQUATIONS WITH  

CONSTANT COEFFICIENTS AND Q = 0 33 

 1.2.1 Roots real and different 35 

 1.2.2 Roots real and equal 36 

 1.2.3 Roots complex 38 

1.3 POST-TEST 41 
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1.1 INTRODUCTION 

The simplest second-order linear differential equations are those of the form 

2

2

d y dy
a b cy Q

dxdx
   (1.1) 

where Q is equal to zero, a constant or a function of x only, and a, b and c are constants. This 

type of equation is frequently used to solve practical problems in the field of engineering. 

In this unit we shall find the solution of equation (1.1) when Q = 0, and in the following unit 

we shall deal with the cases for Q = k, a constant, and  Q f x . 

1.2 SECOND-ORDER LINEAR EQUATIONS WITH CONSTANT 

COEFFICIENTS AND Q = 0 

When Q = 0, equation (1.1) reduces to 
2

2
0

d y dy
a b cy

dxdx
   (1.2) 

which is a homogenous equation. In finding the solution of this equation we shall make use 

of Theorem 1.1. 

THEOREM 1.1 

If y = y1(x) and y = y2(x) are any two solutions of equation (1.2), then the linear combination 

1 1 2 2( ) ( )c y x c y x  with c1 and c2 constants is also a solution of (1.2).  

By a linear combination we mean that 1 1 2 2 1 2( ) ( ) 0  for 0 and 0c y x c y x c c    . 

This theorem can be extended to the general case for nth-order homogeneous linear 

equations. 

We suppose that y1 and y2 are two solutions of equation (1.2).  

Then 
2

1 1
12

0
d y dy

a b cy
dxdx

  

and multiplying by c1 we get: 
2

1 1
1 1 1 12

0
d y dy

c a c b c cy
dxdx

   (1.3) 
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Also,  
2

2 2
22

0
d y dy

a b cy
dx dx

  

which, on being multiplied by c2, becomes: 

2
2 2

2 2 2 22
0

d y dy
c a c b c cy

dx dx
   (1.4) 

Adding equations (1.3) and (1.4) we find that: 

 
2 2

1 2 1 2
1 2 1 2 1 1 2 22 2

0
d y d y dy dy

a c c b c c c c y c y
dx dx dx dx

          
  

 

But  
2 2 2

1 2
1 2 1 1 2 22 2 2

d y d y d
c c c y c y

dx dx dx

 
   

 

and  1 2
1 2 1 1 2 2

dy dy d
c c c y c y

dx dx dx
    
 

. 

Thus      
2

1 1 2 2 1 1 2 2 1 1 2 22
0

d d
a c y c y b c y c y c c y c y

dx dx
     

which is the same as equation (1.2) with y replaced by  1 1 2 2c y c y .  

In other words, if y1 and y2 are solutions of (1.2), so also is 1 1 2 2c y c y . 

Let us now assume a solution of equation (1.2) to be m xy e . 

Then mxdy
me

dx


and 
2

2
2

mxd y
m e

dx
 . 

We substitute these values in (1.2) to obtain: 

2 0mx mx mxam e bme ce    

Dividing through by emx gives 

2 0am bm c    

which is a quadratic equation in m. As we know, this must have two roots which we shall call 

m1 and m2. It is clear then that 1m xy e  and 2m xy e  are two solutions of the equation 

2

2
0

d y dy
a b cy

dx dx
  

provided that m1 and m2 are roots of the equation 

2 0am bm c    

which is called the auxiliary equation. 
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By Theorem 1.1 it follows that 

1 2
1 2

m x m xy c e c e 

is also a solution of the given equation and it is called the general solution provided that 

1 2
1 2 0m x m xc e c e  . 

The roots m1 and m2 may be real or complex, and they may be different (m1  m2) or equal 

(m1 = m2). The method of solution of an equation varies according to the type of its roots. 

1.2.1 Roots real and different 

In this case the auxiliary equation has two real and different roots m1 and m2, and hence 

1m xy e  and 2m xy e  are two solutions of the given equation. Since m1 and m2 are not equal, 

we can see that 1 2
1 2 0m x m xc e c e  . 

(We assume here that the constants c1, c2, ..., cn are not all equal to zero.) 

Therefore the linear combination 

1 2
1 2

m x m xy c e c e   (1.5) 

is the general solution of the equation. c1 and c2 are the two arbitrary constants that we would 

expect to find in the solution of a second-order differential equation. 

EXAMPLE 1 

Find the general solution of 
2

2
2 0

d y dy
y

dxdx
   . 

SOLUTION 

First we form the auxiliary equation by writing m2 for 
2

2

d y

dx
, m for 

dy

dx
 and 1 for y. 

We have  m 2 + m – 2 = 0 

which we factorise as  (m – 1)(m + 2) = 0. 

The roots are therefore   m = 1 and m = –2. 

Substitution of these values in equation (1.5) will give us the general solution 

2
1 2

x xy c e c e  . 
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EXAMPLE 2 

Solve: 
2

2

3
2 0

d y dy
y

dx dx
  

SOLUTION 

The auxiliary equation is: 2 3 2 0

( 1)( 2) 0

m m

m m

  
   

. 

The roots are therefore m = 1 and m = 2, giving the general solution: 

2
1 2

x xy c e c e 

1.2.2 Roots real and equal 

Consider the differential equation 
2

2
4 4 0

d y dy
y

dxdx
   . 

The auxiliary equation 

 

2

2

4 4 0

2 0

m m

m

  

 

 

has two equal roots m = 2. 

We would therefore expect the solution of the differential equation to be: 

 2 2 2
1 2 1 2

x x xy c e c e c c e    (1.6) 

But 2 2
1 2

x xc e c e  is not a linear combination, since for 1 2c c   this expression is equal to 

zero. Also, equation 1.6 contains only one constant 1 2 3c c c  , say, and a second-order 

differential equation must have two constants in its solution. We therefore need another term 

containing a second constant.  

Let us assume that 2xy xe  is also a solution. 

Then  2 22x xdy
e xe

dx
 

and  
2

2 2 2
2

2 2 4x x xd y
e e xe

dx
   . 
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We substitute these in the original equation to obtain 

2 2 2 2 2 22 2 4 4 8 4 0x x x x x xe e xe e xe xe       

so that 2xy xe  is indeed a solution, and the general solution is 2 2
1 2

x xy c e c xe 

where the right-hand side is obviously a linear combination.  

In general, the differential equation (1.2) has the solution 1 2
1 2

m x m xy c e c xe 

when the roots of the auxiliary equation are real and equal. 

EXAMPLE 3 

Solve:  
2

2
4 4 0

d y dy
y

dxdx
  

SOLUTION 

We see that the auxiliary equation is 

 

2

2
4 4 1 0

2 1 0

m m

m

  

  

 

so that the two equal roots are   
1

2
m   .  

Hence the general solution is 2 2
1 2

x x

y c e c xe
 

  . 

EXAMPLE 4 

Solve:  
2

2
14 49 0

d y dy
y

dxdx
  

SOLUTION 

In this case the auxiliary equation is 

 

2

2

14 49 0

7 0

m m

m

  

  

giving the two equal roots  m = 7.  

The general solution is 7 7
1 2

x xy c e c xe  . 
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1.2.3 Roots complex 

When the auxiliary equation cannot be solved by factorising as we have done in the previous 

examples, we use the quadratic formula:  

2 4

2

b b ac
m

a

  
 (1.7) 

If the quantity within the square root sign is positive, the roots are real and the general 

solution can be found as before. However, we sometimes have a minus sign within the square 

root. For example, the quadratic equation 

m2 + 2 m + 2 = 0 

cannot be solved by direct factorisation, so we use the formula (1.7) which becomes 

2 4 8

2

4
1

2

m
  




  

which in terms of i = 1  can be written as 1m i   . 

We recall that the differential equation (1.2) has the general solution 

1 2
1 2

m x m xy c e c xe 

when the roots m1 and m2 of the associated equation are real and different. For the case of 

complex roots, m1 = a + ib and m2 = a – ib, and so the general solution is: 

   
1 2

a ib x a ib xy d e d e         (1.8) 

From the theory of complex numbers we have the identities 

cos sinixe x i x   

and cos sinixe x i x  

so that    cos sina ib x ax ibx axe e e e bx i bx   

and    cos sina ib x ax ibx axe e e e bx i bx    . 

Substitution of these values in (1.8) gives 

   1 2cos sin cos sinax axy d e bx i bx d e bx i bx   

   1 2 1 2cos sinaxe d d bx i d d bx      (1.9) 

    1 2cos sinaxe c bx c bx 
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where 1 1 2c d d   and  2 1 2c i d d  . 

Thus equation (1.9) is the general solution of the differential equation (1.2) when the 

auxiliary equation has complex roots. 

EXAMPLE 5 

Solve the equation 
2

2
4 8 0

d y dy
y

dxdx
   . 

SOLUTION 

The auxiliary equation m2 + 4m + 8 = 0 cannot be factorised, so we use formula (1.7) to 

obtain:  

4 16 32

2

16
2

2
2 2

m

i

  



  

  

Here a = 2 and b = 2, so the general solution (1.9) is: 

 2
1 2cos 2 sin 2xy e c x c x 

EXAMPLE 6 

Solve:  
2

2
8 4 0

d y dy
y

dxdx
  

SOLUTION 

The auxiliary equation is 8m2 + 4m + 1 = 0. 

We use the quadratic formula to obtain: 

4 16 32

16

1 16

4 16
1

4 4

m

i

  



  

  

The general solution is therefore 4
1 2cos sin

4 4

x x x
y e c c

    
 

. 
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EXAMPLE 7 

Solve:  
2

2
7 0

d y
y

dx
 

SOLUTION 

The auxiliary equation is m2 + 7 = 0 

giving the roots 7

7

m

i

  

 

and the solution is 1 2cos 7 sin 7y c x c x  . 

EXAMPLE 8 

Solve:  
2

2
9 0

d y
y

dx
 

SOLUTION 

The auxiliary equation is 2

2

9 0

9

and 3

m

m

m

 

 
 

giving the general solution 3 3
1 2

x xy c e c e  . 

If we use the hyperbolic identities 

3xe  = cosh3x + sinh3x 

3xe = cosh3x – sinh3x 

then the solution can be written as 

y = c1(cosh3x + sinh3x) + c2(cosh3x – sinh3x) 

  = (c1 + c2)cosh3x + (c1  c2)sinh3x 

  = d1cosh3x + d2sinh3x 

where we have set d1 = c1 + c2 

 d2 = c1  c2. 

In other words, y1 = d1cosh3x + d2sinh3x is also a general solution of 
2

2
9 0

d y
y

dx
  . 
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1.3 POST-TEST: MODULE 2 (LEARNING UNIT 1) 

 (Solutions on myUnisa under additional resources) 

Time: 60 minutes 

Solve the following differential equations: 

1. 
2

2
10 24 0

d y dy
y

dxdx
   (5)

2. 
2

2
6 6 0

d y dy
y

dxdx
   (6)

3. 
2

2
2 0

d y dy
y

dxdx
   (5)

4. 
2

2
4 12 9 0

d y dy
y

dxdx
   (5)

5. 
2

2
2 10 0

d y dy
y

dxdx
   (5)

6. 
2

2
4 11 0

d y dy
y

dxdx
   (5)

7. 
2

2
4 0

d y
y

dx
  (5)

8. 
2

2
16 0

d y
y

dx
  (4)

[40]
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You should now be able to identify and solve the auxiliary equation of a second-order 
differential equation and solve second-order differential equations of the form 

2

2
0

d y dy
a b cy

dxdx
   . 

We will now move to learning unit 2 and solve second-order differential equations of the 

form 
2

2

d y dy
a b cy Q

dxdx
   with Q ≠ 0, using the method of undetermined coefficients. 
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MODULE 2 

SECOND-ORDER DIFFERENTIAL EQUATIONS 

LEARNING UNIT 2 

METHOD OF UNDETERMINED COEFFICIENTS 

OUTCOME 

At the end of this learning unit you should be able to solve second-order differential 

equations of the form 
2

2

d y dy
a b cy Q

dxdx
    when Q = 

 a constant
 a function of the first degree in x
 a function of the second degree in x
 an exponential function
 a trigonometric function
 a hyperbolic function
 a sum of functions

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

 CONTENTS PAGE 

2.1 SECOND-ORDER LINEAR EQUATIONS WITH  

CONSTANT COEFFICIENTS AND Q = f(x) OR  

Q = k, A CONSTANT 44 

 2.1.1 Q = a constant 45 

 2.1.2 Q = a function of the first degree in x 46 

 2.1.3 Q = a function of the second degree in x 47 

 2.1.4 Q = an exponential function 48 

 2.1.5 Q = a trigonometric function 50 

 2.1.6 Q = a hyperbolic function 51 

 2.1.7 Q = a sum of functions 52 

2.2 PARTICULAR SOLUTIONS 53 

2.3 POST-TEST 55 
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2.1 SECOND-ORDER LINEAR EQUATIONS WITH CONSTANT 

COEFFICIENTS AND Q = f(x) OR Q = k, A CONSTANT 

You will remember from the previous unit that the equation 

2

2
0

d y dy
a b cy

dxdx
  

has a general solution of the type 

1 1 2 2( ) ( )y c y x c y x         (2.1) 

where the exact form of y1(x) and y2(x) depends on the roots of the auxiliary equation, and c1 

and c2 are constants. Now consider the equation 

2

2

d y dy
a b cy Q

dxdx
  

where  Q f x  or Q = k, a constant. If the solution (2.1) is substituted in this equation, the 

left-hand side (L.H.S.) will be equal to zero. Clearly another term is needed in the solution to 

make the L.H.S. equal to Q (Q  0). To find this term we make use of: 

THEOREM 2.1 

If 1 1( )c y x  and 2 2 ( )c y x  is the general solution of 
2

2
0

d y dy
a b cy

dxdx
   (2.2) 

and if y0(x) is any one particular solution of the differential equation 

2

2

d y dy
a b cy Q

dxdx
    (2.3) 

then the complete general solution of the equation is: 

0 1 1 2 2( ) ( ) ( )y y x c y x c y x    

The part 1 1 2 2( ) ( )c y x c y x  of the solution is known as the complementary function (C.F.), 

while y0(x) is called the particular integral (P.I.). The general solution is thus the sum of 

the complementary function and the particular integral. 

To solve a linear differential equation of the form (2.3), we first find the general solution of 

the equation with Q = 0 (that is, an equation of the form (2.2)) using the methods studied in 

learning unit 1 of this module. This gives us the C.F. Next we determine the P.I. by assuming 
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a trial solution of the general form of Q. The method of assuming a trial solution is called the 

method of undetermined coefficients. 

For example, if 22 3 6Q x x    we assume 2y Ax Bx C   . 

This assumed solution is then substituted in the given equation and coefficients of like terms 

are equated to obtain the values of the constants. We shall now discuss the various forms of 

Q, showing the solutions obtained in each case. 

2.1.1 Q = a constant 

When Q = k, a constant, we assume y = A, a constant. 

Q = a constant  y = a constant 

EXAMPLE 1 

Solve:  
2

2
3 2 4

d y dy
y

dxdx
  

SOLUTION 

The auxiliary equation is found from the homogeneous equation: 

2 3 2 0

( 1)( 2) 0

1 2

m m

m m

m m

  
  

 

The roots m = 1, m = 2 are real and different, so the C.F. is 

2
1 2

x xy c e c e  . 

To find the P.I., assume the general form y = A. 

Then: 
2

2
0 and 0

dy d y

dx dx
 

Substituting these values in the given equation we obtain: 

2A = 4 

 A = 2 

The P.I. is therefore y = 2 

and the general solution is 2
1 2 2x xy c e c e   . 
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2.1.2 Q = a function of the first degree in x 

If 1 2Q k x k   where k1 and k2 are constants, we use the trial solution y Ax B   and 

substitute in the given equation. On equating coefficients we are able to find the values of A 

and B. We can then determine the P.I. and finally the general solution. 

1 2Q k x k y Ax B    

EXAMPLE 2 

Solve:  
2

2
6 9 54 18

d y dy
y x

dxdx
   

SOLUTION 

To find the C.F. solve: 2

2

6 9 0

( 3) 0

3 3

m m

m

m m

  

 
 

 

The C.F. is 3 3
1 2

x xy c e c xe 

Since f(x) = 54x + 18, we assume the general form y Ax B 

Then 
2

2
 and 0

dy d y
A

dx dx
 

Substitution of these values in the original equation gives: 

6 9 9 54 18

9 ( 6 9 ) 54 18

A Ax B x

Ax A B x

    
     

We now equate coefficients of like terms: 

x-terms:  9A = 54 

A = 6 

Constant terms: 6A + 9B = 18 

36 + 9B = 18 

 9B = 54 

 B = 6 

We have found that A = 6 and B = 6, so (2.4) becomes y = 6x + 6 which is the P.I.  

The general solution is therefore: 

3 3
1 2 6 6x xy c e c xe x     
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2.1.3 Q = a function of the second degree in x 

If 2
1 2 3Q k x k x k   , we assume: 2y Ax Bx C       (2.5) 

Note that k2 and/or k3 can be zero. For example, if k2 = 0, then Q will have the form 

2
1 3Q k x k  . 

However, we still use (2.5) as a substitution. 

2 2
1 2 3Q k x k x k y Ax Bx c      

EXAMPLE 3 

Solve:  
2

2
2

25 5
d y

y x x
dx

  

SOLUTION 

The auxiliary equation m2 + 25 = 0 

has the roots  25

5

m

i

  
 

so that the C.F. is 1 2cos5 sin 5y c x c x 

Let 2y Ax Bx C  

Then 2
dy

Ax B
dx

 

and 
2

2
2

d y
A

dx


These values are substituted in the given equation to get: 

2 22 25 25 25 5A Ax Bx C x x    
2 225 25 (2 25 ) 5Ax Bx A C x x      

Equating coefficients of like powers gives: 

x2-terms: 25A = 5 

A = 
5

1

x-terms: 25B = 1 

B = 
25

1
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Constant terms: 2A + 25C = 0 

2
25

5
2

125

C

C

 

 

The P.I. is therefore given by 

2 2

5 25 125

x x
y   

and the general solution is: 

2

1 2

2
cos5 sin 5

5 25 125

x x
y c x c x    

2.1.4 Q = an exponential function 

When axQ ke , we assume the general form axQ ke .  

ax axQ ke y Ae  

EXAMPLE 4 

Solve:  
2

4
2

6 8 8 xd y dy
y e

dxdx
  

SOLUTION 

The auxiliary equation is: 2 6 8 0

( 2)( 4) 0

2 4

m m

m m

m m

  
  

 

 

The C.F. is thus 2 4
1 2

x xy c e c e  . 

Let 4xy Ae  be the trial solution. 

Then 44 xdy
Ae

dx


and 
2

4
2

16 xd y
Ae

dx
 . 

Substitution in the original equation gives 4 4 4 4

4

16 24 8 8

8 0

x x x x

x

Ae Ae Ae e

e

  



which is clearly not possible.  
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The usual method of determining the P.I. has failed in this case because the general form of 

the right-hand side is already included in the C.F. In other words, the term 4xe  on the right-

hand side is also a solution of the homogeneous equation 

2

2
6 8 0

d y dy
y

dxdx
   . 

To overcome this difficulty we multiply the assumed general form of the P.I. by x and 

proceed as usual. Thus in the given example we assume 4xy Axe . 

Then 4 4( 4 )x xdy
A e xe

dx
 

and 
2

4 4 4
2

(4 4 16 )x x xd y
A e e xe

dx
   . 

When these values are substituted in the original equation we obtain: 

4 4 4 4 4 4

4 4

8 16 6 24 8 8

(8 6 ) 8

x x x x x x

x x

Ae Axe Ae Axe Axe e

A A e e

    

 

We equate the terms in 4xe  to get: 

8A  6A = 8 

 A = 4 

The P.I. is therefore 44 xy xe

giving the general solution 2 4 4
1 2 4x x xy c e c e xe  

In all cases where the general form of the right-hand side is included in the C.F., remember to 

multiply the trial solution by x and continue as usual. If this term is also included in the C.F., 

then multiply again by x. 
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2.1.5 Q = a trigonometric function 

For the trigonometric function Q = k sin ax or Q = k cos ax 

the general form is   cos   siny A ax B ax  . 

Q = k sin ax or k cos ax  y = A cos ax + B sin ax 

EXAMPLE 5 

Solve:  
2

2
2 4sin

d y dy
y x

dx dx
  

SOLUTION 

We read off the auxiliary equation which is: 2

2

2 1 0

( 1) 0

1 1

m m

m

m m

  

 
 

 

The C.F. is 1 2
x xy c e c xe  . 

Although the R.H.S. is   4sinf x x , it is necessary to assume the full general form 

cos siny A x B x   

since in finding the differential coefficients, the cosine term will also give rise to sin x. 

We have sin cos
dy

A x B x
dx

  

and 
2

2
cos sin

d y
A x B x

dx
   . 

These values are substituted in the given equation so that: 

cos   sin   2 sin   2 cos   cos   sin   4sin

(   2   ) sin   (   2   ) cos   4sin

2 sin    2  cos   

A x B x A x B x A x B x x

B A B x A B A x x

A x B x

      
       

  4sin x

 

Equating coefficients of like terms gives:  

sin terms:  2A = 4 

 A = 2 

cos terms:  2B = 0 

 B = 0 

The P.I. is therefore y = 2 cos x 

and the general solution is 1 2 2cosx xy c e c xe x  
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2.1.6 Q = a hyperbolic function 

In the case of the hyperbolic functions 

Q = k sinh ax or Q = k cosh ax 

we assume the trial solution 

y = A cosh ax + B sinh ax. 

Q = k sinh ax or k cosh ax  y = A cosh ax + B sinh ax 

EXAMPLE 6 

Solve:  
2

2
4 4 2cosh

d y dy
y x

dxdx
  

SOLUTION 

The auxiliary equation 2 4 4 0m m    

has the two equal roots 2 and 2m m  . 

The complementary function is therefore: 

2 2
1 2

x xy c e c xe 

To find the P.I., let cosh sinhy A x B x  . 

Then sinh cosh
dy

A x B x
dx

 

and 
2

2
cosh sinh

d y
A x B x

dx
 

and the given equation becomes:  

   
   

cosh sinh 4 sinh 4 cosh 4 cosh 4 sinh 2cosh

4 4 cosh 4 4 sinh 2cosh

5 4 cosh 5 4 sinh 2cosh

A x B x A x B x A x B x x

A B A x B A B x x

A B x B A x x

     

     

   

We equate coefficients of like terms to get: 

sinh terms: 5B = 4A 

B = 
4

5
A  

cosh terms:  5A 4B = 2 
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16
5

5
A A  = 2 

9

5
A  = 2 

and  
10

9
A 

 B = 
9

8

The P.I. is therefore 
10 8

cosh sinh
9 9

y x x 

and the general solution is 2 2
1 2

10 8
cosh sinh

9 9
x xy c e c xe x x    . 

2.1.7 Q = a sum of functions 

If Q is the sum of two or more functions, we assume the sum of the general form of each. If, 

for example, xQ x e   

the trial solution is xy Ax B Ce   . 

x xQ x e y Ax B Ce     

EXAMPLE 7 

Solve:  
2

2
3 2 2 xd y dy

y e
dxdx

   

SOLUTION 

The auxiliary equation 2 3 2 0m m    

has the roots   m = 2 and m = 1 

and so the C.F. is 2
1 2

x xy c e c e  . 

Note that the term ex is contained in the C.F., so we assume xy A Bxe  . 

Then ( )x xdy
B e xe

dx
 

and 
2

2
( )x x xd y

B e e xe
dx

   . 
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Thus the given equation becomes: 

2 3 3 2 2 2x x x x x xBe Bxe Be Bxe A Bxe e      

        3 2 (2 3 ) 2 2x x xB B B xe B B e A e      

Equating coefficients of like terms we get: 

ex terms:  B = 1 

B = 1 

Constant terms: 2A = 2 

 A = 1 

The P.I. is therefore 1 xy xe 

and the general solution is 2
1 2 1x x xy c e c e xe    . 

2.2 PARTICULAR SOLUTIONS 

The general solution of a second-order differential equation contains two arbitrary constants 

c1 and c2, say. If we are given extra information that allows us to assign values to c1 and c2, 

we then have a particular solution. The values of the constants can be found only from the 

general solution and not from the complementary function. 

EXAMPLE 8 

Solve the equation 
2

2
3 2 3sin

d y dy
y x

dxdx
   given that when x = 0, y = 0.9 and 0.7

dy

dx
  .  

SOLUTION 

The auxiliary equation is m2 + 3m + 2 = 0 

  (m + 1)(m + 2) = 0 

giving the roots 1 and 2.  

The C.F. is therefore 2
1 2

x xy c e c e   . 

The R.H.S. is a trigonometric function, so in finding the P.I. we assume cos siny A x B x 

so that sin cos
dy

A x B x
dx

    and 
2

2
cos sin

d y
A x B x

dx
   . 
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Substitution in the original equation gives: 

cos   sin   3 sin   3 cos   2 cos   2 sin   3sinA x B x A x B x A x B x x        

           (  3   2 ) sin   (   3   2 ) cos   3sinB A B x A B A x x       

We equate coefficients of like terms to get: 

cos terms: A + 3B + 2A = 0 

        A = 3B 

sin terms:  B 3A + 2B = 3 

B + 9B + 2B = 3 

B = 
3

10

and A = 
9

10


The P.I. is 
9 3

cos sin
10 10

y x x    

and the general solution is: 2
1 2

9 3
cos sin

10 10
x xy c e c e x x     (2.6) 

We can now find the values of c1 and c2 using the given information.  

At x = 0, y = 0.9, so we insert these values into (2.6) which becomes: 

1 2

9 9

10 10
c c   

    1 2c c 

To find 
dy

dx
 we differentiate (2.6) obtaining: 

2
1 2

9 3

10 10
2 sin cosx xdy

c e c e x x
dx

     

We now substitute 0.7
dy

dx
   and x = 0 and 1 2c c   in this to get:  

2 2

7 3

10 10
2c c   

c2 + 2c2 = 1 

 c2 = 1 and c1 = 1 

The particular solution is 2 9 3

10 10
cos sinx xy e e x x     . 
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2.3 POST-TEST: MODULE 2 (LEARNING UNIT 2) 

 (Solutions on myUnisa under additional resources) 

Time: 105 minutes 

Solve the differential equations. 

1. 
2

2
3 2 2 3

d y dy
y x

dxdx
    (14)

2. 
2

2
2

2 xd y dy
y e

dxdx
   (10)

3. 
2

2
2

4 4 2 xd y dy
y x e

dxdx
    (13)

4. 
2

2
2

4 2 4
d y

y x
dx

   (13)

5. 
2

2
2 2 85sin 3

d y dy
y x

dxdx
  

given that at x = 0, y = 0 and 20
dy

dx
  (20)

[70] 

You should now be able to solve second-order differential equations of the form 
2

2

d y dy
a b cy Q

dxdx
    when Q = 

 a constant
 a function of the first degree in x
 a function of the second degree in x
 an exponential function
 a trigonometric function
 a hyperbolic function
 a sum of functions

We can now move to module 3, learning unit 1, an introduction to differential operators. 
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MODULE 3 

DIFFERENTIAL OPERATORS 

LEARNING UNIT 1 

INTRODUCTION TO DIFFERENTIAL OPERATORS 

OUTCOMES 

At the end of this learning unit you should be able to apply the 

 differential operator D to a function

 inverse differential operator 
1

D
 to a function 

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

 CONTENTS PAGE 

1.1 THE DIFFERENTIAL OPERATOR D 57 

1.2 THE INVERSE OPERATOR 1

D
58 

1.3 IMPORTANT THEOREMS 59 

1.4 POST-TEST 62 
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1.1 THE DIFFERENTIAL OPERATOR D 

The symbol 
dy

dx
 means that the operation of differentiation with respect to x is performed on 

the function y. Thus 
d

dx
 is an operator and for convenience we can replace it with the symbol 

D. In this notation 
dy

dx
 is written as Dy. Similarly, 

2

2

2

( )

d y d dy

dx dxdx
D Dy

D y

   
 





and in general: 

n
n

n

d y
D y

dx


The usual rules of differentiation still apply, for example: 

 
 

 

   

2

2 2

2

3 4 2 3

2

2

2

sin 2 sin 2 2 cos 2

( 1)

5 20

{60 }

120

x x

x x

D x x

D e e

D x x x x x

e e x
D

x x

D x D x

D x

x





 

     
  






The symbol D, when combined with constants, obeys many of the ordinary laws of algebra.  

If a and b are constants, then: 

1.  ( ) ( )D ay Da y aDy 

For example:    3 3

3

10 10

30

x x

x

D e D e

e




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2.  D a y Dy ay  

For example:   5 sinh {sinh } 5sinh

cosh 5sinh

D x D x x

x x

  

 

3. ( )D u v Du Dv  

For example:      2 24 3cos3 4 3cos3

8 9sin 3

D x x D x D x

x x

  

 

4. ( ) ( )m n n m m nD D y D D y D y 

For example:  
 
 

2 3

2 3

3 3

3 18

3 18

3 18

D D x

D D x

D x







5.    
 

2

2

( )

( )

D a D b y D aD bD ab y

D a b D ab y

     

   

For example:  

 2

2

2 ( 4){sin 2 }

2 8 {sin 2 }

{sin 2 } 2 {sin 2 } 8sin 2

4sin 2 4cos 2 8sin 2

12sin 2 4cos 2

D D x

D D x

D x D x x

x x x

x x

 

  

  
   
  

1.2 THE INVERSE OPERATOR 1

D

Since we have defined the operator D as being one of differentiation, it follows that its 

inverse 
1

D
 will indicate the process of integration with respect to x. However, we make one 

stipulation, namely that the arbitrary constant of integration be omitted at each stage of 

integration.  
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The usual rules of integration apply, so that, for example: 

 

 

2 3 2

2
2

2

2

1
3 2 9 9

1 1
cos sin

2

cos
4

x
x

x

x x x x x
D

e
e x x

DD

e
x

    

 
    

 

 

1.3 IMPORTANT THEOREMS 

THEOREM 1.1 

   ( )ax axF D e e F a

where F(D) is any function of D and a is a constant. 

Note that the result is the original expression with D replaced by a. 

This applies to any function of D operating on axe . 

For example, let F(D) = D2  1. 

Then:   2 21 ( 1)ax axD e e a  

Check by using algebraic methods:     
 

2 2

2

2

1

( 1)

ax ax ax

ax ax

ax ax

ax

D e D e e

D ae e

a e e

e a

  

 

 

 

Thus a replaced D in the given function  2 1D  .

In particular, the theorem holds for 
1

( )
( )

F D
f D



so that 
1 1

( ) ( )
ax axe e

f D f a
 . 

For example:  
 

3
3 3

2 2

1 1

134 3 4

x
x x e

e e
D


  

  
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THEOREM 1.2 

    . ( )ax axF D e y e F D a y 

where F(D) is any function of D, y a non-exponential function of x and a a constant. 

In general, ( ) ( )n ax ax nD e y e D a y 

and in particular, when 
1

( )
( )

F D
f D

 , we have 

   1 1
.

( ) ( )
ax axe y e y

f D f D a



. 

For example, let F(D) = D + 2.  

Then:     ( 2) 2ax axD e y e D a y   

Check by algebra:    

  

( 2) 2

2

( 2)

2

ax ax ax

ax ax ax

ax

ax

D e y D e y e y

ae y e Dy e y

e a D y

e D a y

  

  

  

  

so that (D + a) replaces D in the original function and axe  moves to the left, leaving only y to 

be acted on by D. 

THEOREM 1.3 

  2 2sin sin
( )

cos cos

ax ax
F D F a

ax ax

   
    

   

Thus when a function of 2D operates on sin ax or on cos ax  (or on both), the sin ax  or 

cos ax  does not change but 2D  is replaced by   2a  everywhere.

Note that this applies only to 2D  and not to D. 

For example, find:   2

1
sin 2 3cos

5
x x

D



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   

   

2 2

1 1
sin 2 3cos

5 5
1 1

sin 2 3cos
4 5 1 5

sin 2 3cos

9 6
sin 2 cos

9 2

x x
D D

x x

x x

x x

  
 

  
   

 


  

When the operator form of D contains D terms as well as 2D  terms, we can handle the 

solution as follows: 

For example, find:  
2

1
{4cos3 }

10 25
x

D D 
 

We can substitute  2a  for 2D  and obtain:

2

1
{4cos3 }

10 25
1

{4cos3 }
9 10 25

1
{4cos3 }

10 16
1 1

. {4cos3 }
2 5 8

x
D D

x
D

x
D

x
D

 


  







Multiply the expression by 
5 8

5 8

D

D




: 

 

 

 

2

5 81
. {4cos3 }

2 25 64
5 81

. {4cos3 }
2 (25)( 9) 64

5 81
. {4cos3 }

2 289
1

(5 8){4cos3 }
578

60 32
sin 3 cos3

578 578
30 16

sin 3 cos3
289 289

D
x

D
D

x

D
x

D x

x x

x x








 






  

 

 
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1.4 POST-TEST: MODULE 3 (LEARNING UNIT 1) 

 (Solutions on myUnisa under additional resources) 

Time: 35 minutes 

Determine: 

1.   3 2 1 5D D D   (3)

2.   22 4 3 sinD D x  (3)

3. 
2

cos5

1

x
D

x

 
 

 
(3)

4.  1
cosh 4x

D
(3)

5.  2
2

1
5 sin 3x x

D
 (3)

6.   2 27 3 xD D e  (3)

7.
     3 21

2 1
2 4

xe x
D D


 

(5)

8.
     2 21

3cos 4
3 1

xe x x
D D

 
 

(5)

[28] 

You should now be able to apply the differential operator D and the inverse differential 

operator 
1

D
 to a function. 

We will now move to the next unit and learn how to solve differential equations using 

differential operators. 
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MODULE 3 

DIFFERENTIAL OPERATORS 

LEARNING UNIT 2 

DIFFERENTIAL EQUATIONS AND D-OPERATOR METHODS 

OUTCOME 

At the end of this learning unit you should be able to solve second-order differential 

equations of the form 
2

2

d y dy
a b cy Q

dxdx
   , using D-operator methods when Q = 

 a constant
 a polynomial in x
 a trigonometric function
 a hyperbolic function
 a product of functions

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

 CONTENTS PAGE 

2.1 USE OF THE D-OPERATOR IN SOLVING SECOND-ORDER 

DIFFERENTIAL EQUATIONS OF THE FORM 
2

2

d y dy
a b cy Q

dxdx
  

WHEN Q = f(x) 64 

 2.1.1 When Q is a constant 64 

2.1.2 When Q is a polynomial in x 66 

 2.1.3 When Q is an exponential function 68 

 2.1.4 When Q is a trigonometric function 70 

 2.1.5 When Q is a hyperbolic function 74 

 2.1.6 When Q is a product of functions 76 

2.2 POST-TEST 79 
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2.1 USE OF THE D-OPERATOR IN SOLVING SECOND-ORDER  

DIFFERENTIAL EQUATIONS OF THE FORM 
2

2

d y dy
a b cy Q

dxdx
  

 WHEN Q = f(x) 

2.1.1 When Q is a constant 

When Q is a constant, we have an equation of the form  ( )f D y k

so that the P.I. is given by 
1

( )
y k

f D
 .

Since 0 0 1,xe e   it follows that k can be multiplied by this factor without changing its 

value. We then have  01

( )
xy ke

f D


which, by Theorem 1.1, page 59, becomes:  

1

(0)
y k

f
   * (In this case a = 0.)

EXAMPLE 1 

Solve  
2

2
3 2 4

d y dy
y

dxdx
  

SOLUTION 

Written in D notation this is 2( 3 2) 4D D y    

To find the C.F. we first solve the equation 2( 3 2) 0D D y    

On factorising we obtain ( 2)( 1) 0D D y    

so that the C.F. is 2
1 2

x xy c e c e  

The P.I. is found by solving   2

1
. 4

3 2
y

D D


 
 

which, on being multiplied by e0x, becomes  0
2

1
. 4

3 2
xy e

D D


 

We can now apply Theorem 1.1, page 59, to obtain 
1

.4
0 0 2

y 
 
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where the function of D has become the same function of a which, in this case, is zero. 

Thus the P.I. is y = 2 

and the general solution is 2
1 2 2x xy c e c e   

The above method of solution breaks down when f(0) = 0, since then we have 
1

.
0

y k  which 

is undefined. We can get around this problem by first factoring ( )f D  and then applying 

Theorem 1.1, page 59, to only one of the operators. 

EXAMPLE 2 

Evaluate  2

1
. 5

2
y

D D




SOLUTION 

If we were to introduce the factor e0x and proceed as above, we would get 
1

.5
0

y 

which is undefined. Instead we factorise f(D) to obtain  

 

 0

1
. 5

( 2)

1 1
. . 5

2
x

y
D D

e
D D







where we have multiplied by a factor e0x.  

We can now apply Theorem 1.1, page 59, to only the second operator, so that: 

 01 1
. 5

2

1 1
5.

0 2

1 5

2

5

2

xy e
D D

D

D

x

    
    
   
 


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2.1.2 When Q is a polynomial in x 

When F(D) = xn, the particular integral has the form: 

 1
.

( )
ny x

f D


We expand 
1

( )f D
 in a series of ascending powers of D by the ordinary methods of algebra. 

Then, since more than n differentiations of xn gives zero,  1
.

( )
nx

f D
 can be found. This 

method can be extended to any polynomial in x. 

EXAMPLE 3 

Solve  
3

3
3

d y dy
x

dxdx
 

SOLUTION 

We write this in terms of D-operators as   3 3D D y x 

The C.F. is found from the equation:  3

2

( ) 0

( 1) 0

D D y

D D y

 

 

 

The roots are D = 0 and D = i 

so that the C.F. is: 0
1 2 3

1 2 3

cos sin

cos sin

xy c e c x c x

c c x c x

  

  

To find the P.I. we solve 

 
 

   

3
3

3
2

12 3

1
.

1
.

( 1)

1
. 1 .

y x
D D

x
D D

D x
D









 

We can use the binomial theorem to expand ( 2 1(1 )D  as:  

2 1 2 4 6(1 ) 1 ...D D D D        
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  

 

2 4 6 3

3 5 3

1
1 ...

1
...

y D D D x
D

D D D x
D

    

      
 

But  

 
 
 
 

4
3

3 2

2 3

3 3

4 3

1

4

3

6

6

0

x
x

D

D x x

D x x

D x

D x











so that the P.I. is 
4

23 6
4

x
y x  

and the general solution is 
4

2
1 2 3cos sin 3 6

4

x
y c c x c x x       

EXAMPLE 4 

Solve: 
2

2
2

3 2 2
d y dy

y x x
dxdx

   

SOLUTION 

The equation may be written as:   2 23 2 2D D y x x   

The homogenous form of this is   
  

2 3 2 0

2 1 0

D D y

D D y

  

  

 

so that the C.F. is  2
1 2

x xy c e c e   . 

The P.I. is found by solving  2
2

1
2

3 2
y x x

D D
 

 
. 

We divide 1 by D2 + 3D + 2 by ordinary algebraic long division as follows: 

Rearrange divisor: 22 3D D   
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2

2

2

2

2 3

2 3

1 3 7
higher powers

2 4 8
2 3D D 1

3 1
1

2 2
3 1
2 2
3 9 3
2 4 4

7 3
4 4

..........................

D D

D D

D D

D D D

D D

  

 

 

 

  

 

We can stop here because the derivatives of the polynomial in the example becomes 

zero after the second derivative. 

 

   

         

2 2

2 2 2

2

2

2

1 3 7
Thus ... 2

2 4 8
1 3 7 1 3 7

... ... 2
2 4 8 2 4 8
1 3 7 1 3 7

2 2 2 2 0
2 4 8 2 4 8

1 3 7 3

2 2 4 2
1 1 1

2 2 4

y D D x x

D D x D D x

x x x

x x x

x x

      
 
             
   
              

    

  

The general solution is 2 2
1 2

1 1 1

2 2 4
x xy c e c e x x     

Note: Using long division is only applicable when Q is a polynomial in x. 

2.1.3 When Q is an exponential function 

When a xQ ke , the particular integral has the form: 

 1

( )
axy ke

f D
 (2.1) 

We can apply Theorem 1.1, page 59, to this provided that   0f a  . 

If   0f a  , we are not able to use Theorem 1.1 since in that case equation (2.1) would have 

the form    1 1 1

( ) ( ) 0
ax ax axy ke ke ke

f D f a
   . 
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However, if we multiply (2.1) by the factor 1, we do not alter its value and it then becomes 

 1
.1

( )
axy ke

f D


on which we can use Theorem 1.2, page 60, to obtain: 

 1
. 1

( )
axy ke

f D a




If necessary, f(D + a) can then be factorised and Theorem 1.1, page 59, applied to only one 

operator. 

EXAMPLE 5 

Solve  
2

2
2

3 5x xd y
y e e

dx
  

SOLUTION 

The D-operator form of this is   2 21 3 5x xD y e e  

and the C.F. is found from the equation  2 1 0D y 

The roots are D = i 

and the C.F. is 1 2cos siny c x c x 

To find the P.I., we evaluate  

   

2
2

2
2 2

1
3 5

1
1 1

3 5
1 1

x x

x x

y e e
D

e e
D D

 


 
 

We now apply Theorem 1.1, page 59, with a = 1 in the first term and a = 2 in the second: 

2
2 2

2

1 1
(3 ) (5 )

1 1 2 1
3

2

x x

x x

y e e

e e

 
 

 

The general solution is 2
1 2

3
cos sin

2
x xy c x c x e e    . 

EXAMPLE 6 

Solve  
2

2
2

4 4 xd y dy
y e

dxdx
  
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SOLUTION 

The C.F. is found from:  
 

2

2

4 4 0

2 0

2

D D y

D y

D

  

 



 

Thus 2 2
1 2

x xy c e c xe 

To find the P.I., solve:  
 

 2
2

1

2

xy e
D




(2.2) 

On applying Theorem 1.1, page 59, to this we obtain 

 21

0
xy e

which is undefined. So since f(a) = 0, Theorem 1.1 breaks down.  

However, if we multiply equation 2.2 by 1, we do not alter its value and we get: 

 
 2

2

1
.1

2

xy e
D




By Theorem 1.2, page 60, this becomes: 
 

 

 

2
2

2
2

2

2
2

1
1

2 2

1
1

1
.

2

x

x

x

x

y e
D

e
D

e x
D

x
e


 







 

The general solution is therefore 
2

2 2 2
1 2 2

x x xx
y c e c xe e   .

2.1.4 When Q is a trigonometric function 

Remember:  D{sin x} = cos x 

D{tan x} = sec2x 

D2{3 sin x + cos 4x} 

= D(3 cos x  4 sin 4x) 

= 3 sin x  16 cos 4x  
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Furthermore:  (D  3) {sin 2x} 

= D {sin 2x} 3{sin 2x} 

= 2 cos 2x – 3 sin 2x 

and  2

2

(  7  3) {sin 3   2cos3 }

  {sin 3   2cos3 }  7  {sin 3   2cos3 }  3sin 3   6cos3

 {3cos3   6sin 3 } 7 {3cos3   6sin 3 }  3sin 3   6cos3

 9sin 3   18cos3   21cos3   42sin 3   3sin 3  

D D x x

D x x D x x x x

D x x x x x x

x x x x x

  

     
     
        6cos3

 36sin 3   33cos3

x

x x 

The inverse operator 
1

D
 indicates integration with respect to x while the arbitrary constant is 

omitted. 

Thus: 
2

1
{sin5 2cos3 }

1 cos5 2sin 3

5 3

sin5 2cos3

25 9

x x
D

x x

D

x x



   
 

  

Also refer to Theorem 1.3, page 60. 

EXAMPLE 7 

Solve  
2

2
4 sin 3

d y
y x

dx
 

SOLUTION 

The equation   2 4 0D y 

has the roots: 4

2

D

D i

  
 

Thus the complementary function is 1 2cos 2 sin 2y c x c x  . 

The particular integral is determined by the equation: 
2

1
sin 3

4
1

sin 3
9 4

sin 3

5

y x
D

x

x





 



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The general solution is 1 2

sin 3
cos 2 sin 2

5

x
y c x c x   .

EXAMPLE 8 

Solve  
2

2
4 13 2sin 3

d y dy
y x

dxdx
  

SOLUTION 

The complementary function is: 2 4 13 0

4 16 52

2
2 3

D D

D

j

  

 


 

Thus: 2 ( cos3 sin 3 )xy e A x B x   

The particular integral is:  

 

 

 

2

2

1
{2sin 3 }

4 13

1
{2sin 3 }

( 9 4 13)

1
{2sin 3 }

(4 4 )

1 1
{sin 3 }

2 (1 )

1 1
{sin 3 }

2 (1 )

11
{sin 3 }

2 (1 ( 9))

1
sin 3 3cos3

20

y x
D D

x
D

x
D

x
D

D
x

D

D
x

x x


 


  














 

 

Thus the general solution is 2 1
{ cos3 sin 3 } {sin 3 3cos3 }

20
xy e A x B x x x    . 

The case when 2( ) 0F a  :  

We know that cos sinje j      

Therefore cos  is the real part of je  . Let us write it as  .jR e   Likewise it follows that sin 

is the imaginary part of je   and therefore we write  .jI e 
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Let us now do an example where we have to find: 

 2

1
sin 3

9
y x

D




If we use the ordinary method we obtain: 

1
sin 3

0
y x

Therefore we use the following method: 

 
3

3

cos3 sin 3

sin 3  

j x

j x

e x j x

I e x

 


 

3
2

3
2

3 0 }

3 0

3

3

1
Now { .1}

9
1

{1}
( 3 ) 9

1
{

( 6 )

1 1
. .

0 6

1 1
.

6

.
6

1
(cos3 sin 3 )

6

1
sin 3 cos3

6
cos3

6

j x

jx

j x x

jx x

jx

jx

y I e
D

I e
D j

I e e
D D j

I e e
D j

I e
D j

x
I e

j

x
I x j x

j

I x x jx x

x x





 







 
  

 



 

 

 
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2.1.5 When Q is a hyperbolic function 

For the hyperbolic functions coshk ax  and sinhk ax  we make use of the exponential forms. 

In this case we use the identities: 

cosh     
2

sinh    
2

ax ax

ax ax

e e
k ax k

e e
k ax k





 
  

 

 
  

 

Thus:  1
cosh

( )

1

( ) 2

1 1

2 ( ) ( )

ax ax

ax ax

k ax
f D

e e
k

f D

k
e e

f a f a





 
  

 
 

   

and  1
sinh

( )

1

( ) 2

1 1

2 ( ) ( )

ax ax

ax ax

k ax
f D

e e
k

f D

k
e e

f a f a





 
  

 
 

   

EXAMPLE 9 

Solve  
2

2
4 4 cosh 3

d y dy
y x

dxdx
  

SOLUTION 

The C.F. is the general solution of the equation:  2

2

4 4 0

( 2) 0

D D y

D y

  

 

 

The C.F. is given by 2 2
1 2

x xy c e c xe   . 
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 

 

 

2

3 3

2

3 3
2 2

3 3
2 2

3 3

3 3

1
We find the P.I. by solving   cosh 3

( 2)

1

22

1 1 1

2 ( 2)2

1 1 1

2 (3 2) ( 3 2)

1 1

2 25

1 1

50 2

x x

x x

x x

x x

x x

y x
D

e e

D

e e
DD

e e

e e

e e














 
  

  

 
  
  
 

     
   
 

 

The general solution is therefore 2 2 3 3
1 2

1 1

50 2
x x x xy c e c xe e e     

For the hyperbolic functions we can also use the following theorem: 

THEOREM 2.1 

2 2sinh sinh
( ) ( )

cosh cosh

ax ax
F D F a

ax ax

   
   

   

EXAMPLE 10 

Solve  
2

2
4 4 cosh 3

d y dy
y x

dxdx
  

SOLUTION 

The C.F.: 2

2 2
1 2

( 2) 0
x x

D y

y c e c xe 

 

  

The P.I.: 

 

2

2

1
cosh 3

4 4
1

cosh 3
4 13
4 13

cosh 3
16 169

y x
D D

x
D
D

x
D


 







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 4 13
cosh 3

25
12sinh 3 13cosh 3

25

D
x

x x










The general solution: 2 2
1 2

12sinh 3 13cos 3

25
x x x x

y c e c xe  
  



(As an exercise show that this is the same answer as obtained in example 9.) 

2.1.6 When Q is a product of functions 

When Q is the product of two or more functions, the method of evaluating  1

( )
Q

f D

depends, of course, on the types of function in question. For example, if Q has the form 

 axk e f x , then the particular integral is found by evaluating:  

 1
. ( )

( )
axy ke f x

f D


On applying Theorem 1.2, page 60, we obtain 

 1
( )

( )
axy ke f x

f D a




which is then solved in the usual way. 

EXAMPLE 11 

Solve  
2

2
sinx xd y dy

y xe e x
dxdx

   

SOLUTION 

The equation D2 + D + 1 = 0 cannot be solved by factorising, so we use the quadratic formula 

to obtain: 

1 1 4

2

1 3

2 2

D

i

  


  

The C.F. is therefore 2
1 2

3 3
cos sin

2 2

x

y e c x c x
  

   
 

. 
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To determine the P.I. we evaluate: 

 

 

2

2

1
sin

1
1

( sin )
1

x x

x

y xe e x
D D

e x x
D D

 
 

 
 

By Theorem 1.2, page 60, this becomes: 

 

 

 

   

2

2

2

2 2

1
sin

( 1) ( 1) 1

1
sin

2 1 1 1
1

sin
3 3
1 1

sin
3 3 3 3

x

x

x

x

y e x x
D D

e x x
D D D

e x x
D D

e x x
D D D D

 
   

 
    

 
 

       

For convenience, we shall evaluate each of the two terms in brackets separately. 

Let   
2

1

3 3
A x

D D


 
 

and   2

1
sin

3 3
B x

D D


 

so that ( )xy e A B   (*) 

To find A we first divide 1 by D2 + 3D + 3 as follows: 

2

2

2

2 3

1 1
higher powers

3 3

3 3 1

1
1

3
1
3

1
3

D

D D

D D

D D

D D D

 

 

 

 

  

We can stop here because we do not need higher powers than D since 

   21,  0D x D x  . 
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Thus:   1 1

3 3

1 1

3 3

A D x

x

   
 

 

To evaluate B:  

 

   

2

2

1
sin

3 3
1

sin
3 2
3 2

sin
9 4

1
(3cos 2sin )

13

B x
D D

x
D
D

x
D

x x


 








  

We insert the values for A and B in equation (*), so that the P.I. is 

1 1 1
(3cos 2sin

3 3 13

( 1) (3cos 2sin )
3 13

x

x x

y e x x x

e e
x x x

      

   

and the general solution is 

2
1 2

3 3
cos sin ( 1) (3cos 2sin )

2 2 3 13

x x xe e
y e c x c x x x x

  
       

 
. 
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2.2 POST-TEST: MODULE 2 (LEARNING UNIT 2) 

 (Solutions on myUnisa under additional resources) 

Time: 120 minutes 

Solve the following differential equations using D-operator methods: 

1. 
3 2

3 2
5

d y d y dy
y

dxdx dx
    (7)

2. 
2

2
2 4 3

d y dy
y x

dxdx
   (8)

3. 
2

3
2

4 3
d y dy

y x
dxdx

   (10)

4.  2 24 4D D y x   (6)

5.   2 2 22 3 2 3D D D D y x x      (10)

6.      23 2 22 1 4 9 0D D D D y     (9)

7. 
2

2
2 2 sin 2

d y dy
y x

dxdx
   (10)

8. 
2

2
2 xd y dy

y e
dxdx

   (10)

9. 
2

2
6 9 sinxd y dy

y e x
dxdx

   (10)

10. 
2

2
3cos

d y
y x

dx
  (10)

[90]
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You should now be able to solve second-order differential equations of the form 
2

2

d y dy
a b cy Q

dxdx
   , using D-operator methods when Q = 

 a constant
 a polynomial in x
 a trigonometric function
 a hyperbolic function
 a product of functions

We can now move on to the next learning unit and use D-operator methods to solve 

simultaneous differential equations. 
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MODULE 3 

DIFFERENTIAL OPERATORS 

LEARNING UNIT 3 

SIMULTANEOUS DIFFERENTIAL EQUATIONS 

OUTCOMES 

At the end of this learning unit you should be able to solve simultaneous differential 
equations using D-operator methods by 
 elimination
 determinants and Cramer’s rule

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

 CONTENTS PAGE 

3.1 INTRODUCTION 82 

3.2 BASIC PROCEDURES TO BE FOLLOWED TO  

 OBTAIN A SOLUTION 82 

3.3 THE USE OF DETERMINANTS TO OBTAIN A  

 SOLUTION 84 

3.4 POST-TEST 88 
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3.1 INTRODUCTION 

We consider equations with more than two variables, but only one of the variables is 

independent. Furthermore the equations are linear with constant coefficients. An example of 

such a system of equations is: 

2 6

3 0

tdx dy
x y e

dt dt
dx

x y
dt

   

  

If we write D for 
d

dt
, we can also express the above equations as follows:

   
 

2 3 1

3 0

tD x D y e

D x y

   

  

We want to solve the system of equations for x and y where both are functions of t. 

Second example: 1

2 1

2 0

dx dy
y

dt dt
dx dz

x z
dt dt
dy dz

y z
dt dt

  

   

   

or 

 
   
   

1 1

2 1 1

1 2 0

Dx D y

D x D z

D y D z

  

   

   

We want to solve this system of equations for x, y and z where all are functions of t. 

3.2 BASIC PROCEDURES TO BE FOLLOWED TO OBTAIN A 

SOLUTION 

Consider the following simultaneous equations: 

 

 

0 3.1

5 3 0 3.2

dx dy
x y

dt dt
dy

x y
dt

   

  
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We write the equations in a D-operator form: 

   
 

1 1 0 (3.3)

5 3 0 (3.4)

D x D y

x D y

   

  

Now eliminate x between these two equations (regard D as an algebraic multiplier). 

Multiply (3.3) by 5 and (3.4) by (D + 1): 

   
    

5 1 5 1 0

5 1 1 3 0

D x D y

D x D D y

   

    

The right-hand side remains zero as we multiply 0 by 5 and by (D + 1), respectively. 

Now subtract these equations to eliminate x and proceed to find y: 

     
 
 
   

2

2

5 1 1 3 0

2 0

2 0

2 1 0

2 1

D y D D y

D D y

D D y

D D

D or D

    

   

  

   

  

Thus    2t ty Ae Be  (3.5) 

Substitute (3.5) in (3.4) to obtain x:  

  2

2 2

5 3 0

5 2 3 3 0

t t

t t t t

x D Ae Be

x Ae Be Ae Be



 

   

    

Thus:  21
5 2

5
t tx Ae Be   (3.6) 

This method is known as elimination. 

Let us do another example:  

Consider the system: 

 

 

2 6 3.7

3 0 3.8

tdx dy
x y e

dt dt
dx

x y
dt

   

  

We can write this system as: 

   2 3 1 tD x D y e    (3.9) 

 3 0D x y    (3.10) 
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Eliminate y: Multiply (3.10) by  1D  : 

   
    

2 3 1

1 3 1 0

tD x D y e

D D x D y

   

    

Subtract these equations: 

      
 
 

2

2

2 3 1 3

3

3

t

t

t

D D D x e

D x e

D x e

    

  

  

(3.11) 

The complementary function of the differential equation (3.11) is: 

cos 3 sin 3x A t B t 

For the particular integral: 

 2

1

3

4

t

t

x e
D

e

 


 

Thus the general solution is cos 3 sin 3
4

te
x A t B t   . 

Substitute (as you are used to do) this value of x in (3.10) to obtain: 

 

   

3 cos 3 sin 3
4

3
3 sin 3 3 cos 3 3 cos 3 3 sin 3

4 4

3 3 sin 3 3 3 cos 3

t

t t

t

e
y D A t B t

e e
A t B t A t B t

A B t B A t e

 
     

 

     

    

3.3 THE USE OF DETERMINANTS TO OBTAIN A SOLUTION 

Consider the system: 

   
 

2 2 1

3 0

tD x D y e

D x y

   

  

Use Cramer’s rule for two variables:  and yxx y


 
 

Rewrite as:  .  and .x yx y     
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The solution of the above system for x expressed in terms of determinants is: 

 2 2 1 1
.

0 13 1

tD D e D
x

D

  




Thus      

 
 

 
 

2

2

2

2

2 2 1 3 0

2 4 2 3

2 4 2 3

1

1

t

t

t

t

t

D D D x e

D D D x e

D D D x e

D x e

D x e

       
      

    

  

  

Solving for x by using the usual methods we obtain 

1 2

1
cos sin

2
tx c t c t e  

and the solution of the above system for y expressed in terms of determinants is: 

   2 2 1 2 2
.

3 1 3 0

tD D D e
y

D D

  


 

Thus       

   
 

2

2

2 2 1 3 3 0

1 3

1 4

t

t t

t

D D D y D e

D y e e

D y e

         

    

 

Solving for y by using the usual methods we obtain: 

3 4cos sin 2 ty c t c t e  

We can also solve for y by substituting the solution for x in one of the given equations. 

EXAMPLE 1 

Solve the following system: 

 
 

2 2

2

2 3

2 0

tD x y e

D y x

  

  

Also find a particular solution if x = y = 1, Dx = Dy = 0 if t = 0. 
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SOLUTION 

2 2

2 2

2 3 3
.

1 2 0 2

tD e
x

D D

  


 

Thus   4 21 6 tD x e  .

Complementary function: 

   
4

2

1 0

1 1 1 0

D

D D D

 

   

Thus  - cos sint tx Ae Be C t E t        . 

Particular function: 

2
4

2

2

1
6.

1

6

15
2

5

t

t

t

x e
D

e

e








The general solution for x is thus: 

22
cos sin

5
t t tx Ae Be C t E t e    

Substitute for x in the first equation: 

 
 

   

2 2

2 2 2

2 2 2

2

1
( 2)

3
1 2

2 cos sin
3 5
1 8 4

cos sin 2 2 2 cos 2 sin
3 5 5

1 1
cos sin

3 15

t

t t t t

t t t t t t t

t t t

y D x e

D Ae Be C t E t e e

Ae Be C t E t e Ae Be C t E t e e

Ae Be C t E t e



 



  

          
  

            
 

     

If t = 0, then: 
2

1
5
4

and 0
5

x A B C

Dx A B E

    

    

while  

 

1 1
1

3 15
1 2

and 0
3 15

y A B C

Dy A B E

     

     
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You can now solve for A, B, C and E to obtain: 

3 7 19 1
, ,  and

4 4 10 5
A B C E    

Thus the required particular solution is: 

   

   

2

2

1 1 2
3 7 19 cos 2 sin

4 10 5

1 1 1
3 7 19 cos 2 sin

12 10 15

t t t

t t t

x e e t t e

y e e t t e





    

     
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3.4 POST-TEST: MODULE 3 (LEARNING UNIT 3) 

 (Solutions on myUnisa under additional resources) 

Time: 90 minutes 

Solve the following simultaneous differential equations: 

1. 
2

( 1)

( 1)

t

t

Dx D y e

x D y e

   

  

(10)

2.    
    2

1 3 1

2 1

t

t

D x D y e

D x D y e t

    

    

(12)

3. 

2

2 3

3 2 t

dx
x y t

dt
dy

x y e
dx

  

  

(11)

4.    
   
   

1 2 1

2 1 2

1 1 3

t

t

t

D x D y e

D y D z e

D x D z e

    

    

    

(21)

[54] 

You should now be able to solve simultaneous differential equations using D-operator 
methods by elimination and by determinants and Cramer’s rule. 

We can now move to the next learning unit and solve practical problems resulting in 

differential equations by using D-operator methods. 
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MODULE 3 

DIFFERENTIAL OPERATORS 

LEARNING UNIT 4 

PRACTICAL APPLICATIONS 

OUTCOMES 

At the end of this learning unit you should be able to solve problems using D-operator 
methods relating to 
 electric circuits
 vibrating systems
 beams

Refer to Tutorial letter 101 for the reference to the pages you must study from your 

prescribed book. 

 CONTENTS PAGE 

4.1 APPLICATION TO ELECTRIC CIRCUIT PROBLEMS 90 

4.2 APPLICATION TO VIBRATING SYSTEM PROBLEMS 94 

4.3 APPLICATION TO BEAM PROBLEMS  99 

4.4 POST-TEST 104 
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4.1 APPLICATION TO ELECTRIC CIRCUIT PROBLEMS 

Differential equations are indispensable in nearly every branch of engineering. In electrical 

engineering, for instance, second-order linear differential equations are used to describe the 

flow of electricity in a circuit. A simple electric circuit can consist of the following elements 

in series with a switch: 

 a battery or a generator supplying an electromotive force E (volts)

 a resistor having resistance R ohms ()

 an inductor having inductance L (henrys)

 a capacitor having capacitance C (farads)

Figure 4.1 

When the switch is closed, a charge Q (coulombs) will flow to the capacitor plates. The time 

rate of flow of charge, that is 
dQ

I
dt

 , is called the current and is measured in amperes when 

t is in seconds. Kirchhoff’s second law states that the algebraic sum of the voltage drops 

around a closed loop is equal to zero, so for the circuit shown above we have 

2

2

1d O dQ
L R Q E

dt Cdt
   (4.1) 

where 

2

2

d Q dI
L L

dtdt
  is the voltage drop across the inductor 

dQ
R RI

dt
 the voltage drop across the resistor 

1
Q

C
the voltage drop across the capacitor 

 E the voltage drop across the generator 

E

R 

L

C 
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Solving this equation (4.1) will give us the charge Q(t) after time t, from which we can 

determine the current 
dQ

I
dt

 . 

Equation (4.1) is a second-order linear differential equation with constant coefficients which 

can be solved using the D-operator methods studied in learning units 2 and 3. Note, however, 

that in this case Q and t are the dependent and independent variables, respectively, instead of 

y and x to which we have been accustomed. 

The operator 
d

dt
, that is the time rate of change of a function, frequently crops up in practical 

applications and is often denoted by a dot over the variable. 

For example 

2

2

dx
x

dt
dy

y
dt

d x d dx d
x x

dt dt dtdt





    
 





 

We found it convenient to use the letter D for the differential operator 
d

dx
. Since D has no 

numerical value of its own and merely indicates the process of differentiation of the function 

to which it is attached, we can also use D in place of 
d

dt
so that 

dx

dt
 can be written Dx. 

EXAMPLE 1 

An inductor of 1 henry, a resistor of 6  and a capacitor of 0.1 F are connected in series with 

an electromotive force of 20sin2t volts. At t = 0 charges on the capacitor and the current in 

the circuit are zero. Find the charge and current at any time t > 0. 

SOLUTION 

Let Q be the instantaneous charge at time t. Then by Kirchhoff`s laws: 

2

2

1
6 20sin 2

0.1

d Q dQ
Q t

dtdt
  
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or
2

2
6 10 20sin 2

d Q dQ
Q t

dtdt
  

On using the operator 
d

D
dt

 , this equation becomes: 

 2 6 10 20sin 2D D Q t  

To find the complementary function (C.F.), we solve 

 2 6 10 0D D Q  

which has the roots 

2

6 36 40

2

4
3

2
3

D

i

i

  


  

  

The C.F. is thus  3
1 2cos sinty e c t c t 

The given equation can be written as 

2

1
20sin 2

6 10
Q t

D D


 

from which we evaluate the particular integral (P.I.): 

 
 

 

2

2

1
20sin 2

6 10
1

20 sin 2
6 6

110 1
sin 2

3 1 1

110
sin 2

3 1
10 1

( 1)sin 2
3 5
2

(2 cos 2 sin 2 )
3

2 4
sin 2 cos 2

3 3

Q t
D D

t
D

D
t

D D

D
t

D

D t

t t

t t


 





 

 






  


  

 

The general solution is  

3 3
1 2

4 2
cos sin cos 2 sin 2

3 3
t tQ c e t c e t t t     (4.2) 
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Since initial conditions are given, we can find the values of the constants c1 and c2, and thus a 

particular solution. Remember that c1 and c2 cannot be found from the C.F., but only from the 

general solution.  

At t = 0, Q = 0 and I = 0
dQ

dt
 . 

We insert the given values for t and Q into (4.2) to obtain: 

         

0 0
1 2

1 2

4 2
0 cos 0 sin 0 cos 0 sin 0

3 3
4 2

0 1 1 1 0 1 0
3 3

c e c e

c c

   

   

1

1

4
0

3
4

3

c

c

 



Differentiation of (4.2) yields: 

3 3 3 3
1 1 2 2

8 4
3 cos sin 3 sin cos sin 2 cos 2

3 3
t t t tdQ

c e t c e t c e t c e t t t
dt

         

We now substitute for t, 
dQ

dt
 and c1, so that 

2

2

3 3

4 4
0 3

3 3
8

3
4 8 4 2

( ) cos sin cos 2 sin 2
3 3 3 3

t t

c

c

Q t e t e t t t 

    

 

    

and 

3 34 28 8 4
cos sin sin 2 cos 2

3 3 3 3
t tdQ

I e t e t t t
dt

      

As t increases, 3te  tends to zero very rapidly so that for large t the terms containing 3te  are 

negligible. These are called transient terms or the transient part of the solution, while the 

remaining terms, usually of the form cos sinA at B at , are known as the steady-state terms 

or steady-state solution. 
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4.2 APPLICATION TO VIBRATING SYSTEM PROBLEMS 

In this section we shall study the motion of a mass m which is fastened to the lower end of a 

vertical coiled spring, the upper end of which is rigidly secured. 

Figure 4.2 

We assume that the tension in the spring is proportional to the extension (i.e. we assume that 

Hooke’s law holds), so that if a tension P produces an extension s, we have P = ks, where k is 

known as the spring constant.  

When a mass m is attached to the spring, then P = mg so that for equilibrium 

mg = ks 

and  2( 9.81 m/s )
mg

k g
s

    

Suppose now that the mass is given a small vertical displacement and then released. It will 

undergo vibrations along a vertical line. Let y be the distance of the mass from the 

equilibrium position at any instant.  
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By Newton’s second law the equation of motion is 
2

2

d y
m ky

dt
  (4.3) 

where ky is the restoring force exerted by the spring on the mass. The acceleration 
2

2

d y

dt
 is 

upwards and hence positive, while the displacement y is negative because it is downwards. 

EXAMPLE 2 

A spring is stretched 98.1 mm by a body of mass 4 kg. Let a body of mass 16 kg be attached 

to the spring and released 250 mm below the point of equilibrium with an initial velocity of 

1 m/s directed downwards. Describe the motion of the body (g = 9.81 m/s2). 

SOLUTION 

From the given information we can find the spring constant k.  

We have m = 4 kg and s = 98.1 mm = 0.0981 m so that: 

4 9.81

0.0981
400

k






We now substitute in equation (4.3) to get: 

2

2
16 400

d y
y

dt
 

or  
2

2
25 0

d y
y

dt
 

This second-order linear differential equation is then solved in the usual way.  

The D-operator equation 2( 25) 0D y   has the roots 5i, so that the general solution is 

1 2cos5 sin 5y c t c t  . 

The initial conditions enable us to evaluate c1 and c2.  

At t = 0, 1
4

250 mm  my     . We work in m since the mass is in kg and g = 9.81 m/s2. 

   

1 2

1 2

1

1
cos 0 sin 0

4
1

1 0
4

1

4

c c

c c

c

  

  

  
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Differentiation of the solution yields 1 25 sin 5 5 cos5
dy

c t c t
dt

   . 

We are given that at t = 0, 1
dt

dt
  . (The initial velocity is directed downwards at 1 m/s.) 

1 2

2

2

2

5 sin 5 5 cos5

1
1 5 sin 0 5 cos 0

4

1 5

1

5

dy
c t c t

dt

c

c

c

  

      
 

  

 

The general solution of the system is given by 
1 1

cos5 sin 5
4 5

y t t   . 

The amplitude of the motion is 2 2
1 1

1 1

16 25

41

20

a c c 

 



and its period is 2

16
2

400
2

5

m
T

k
 

 




So far the only force which we have taken into account is the restoring force which is 

proportional to the displacement. When this is the only force acting, the vibrations are said to 

be free. However, it often happens that there is also a resistance known as a damping force 

which is proportional to the velocity 
dy

dt
 and oppositely directed. When this force is present, 

equation (4.3) becomes 

2

2

d y dy
m ky c

dt dt
  

or
2

2
0

d y dy
m c ky

dtdt
   (4.4) 

where c is called the damping constant. This equation gives the motion of a system 

performing damped vibrations. 
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EXAMPLE 3 

A system vibrates according to the equation 

2

2
2 4 0

d y dy
y

dtdt
  

where y is the displacement and t the time. Determine y in terms of t given that when t = 0, 

y = 0 and 2 3
dy

dt
 . Discuss the motion of the system as t  . 

SOLUTION 

The auxiliary equation 

2 2 4 0m m    

has the roots 

2

2 4 16

2

12
1

2

1 3

m

i

i

  


  

  

so that the general solution is  1 2cos 3 sin 3ty e c t c t  (4.5) 

The initial conditions tell us that when t = 0, y = 0 and 2 3
dy

dt
 , so we substitute for t and y 

in (4.5) to find that 1 0c  . 

Differentiation of equation (4.5) gives 

1 1 2 2cos 3 3 sin 3 sin 3 3 cos 3t t t tdy
c e t c e t c e t c e t

dt
       

and we substitute for t, c1 and 
dy

dt
 in this to obtain 

2

2

2 3 3

2

c

c


 

So 2 sin 3ty e t  and as t  , y  0. 

Frequently, in addition to the forces already discussed, there may also be a variable external 

force  f t  acting vertically on the mass. In this case it is said to undergo forced vibrations. 
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The motion of a body undergoing damped forced vibrations is described by the differential 

equation: 

2

2
( )

d y dt
m c ky f t

dtdt
  

The most common form of  f t in practical application is 

1 2( ) cos   sinf t c at c at 

EXAMPLE 4 

The equation of motion of a body performing damped forced vibrations is 

2

2
5 6 cos

d y dy
y t

dtdt
  

Solve this equation given that y = 0.1 and 0
dy

dt
  when t = 0. 

SOLUTION 

The C.F. is found from the auxiliary equation: 

 2 5 6 0m m  

  3 2 0m m    

Thus 2 3
1 2

t ty c e c e    

To find the P.I. we assume the general form 

 

 

 

 

 

2

2

1
cos

5 6
1

cos
5 5

11 1
cos

5 1 1
11

cos
5 1

1
1 cos

10
1

sin cos
10

1
sin cos

10

y t
D D

t
D

D
t

D D
D

t
D

D t

t t

t t


 





 

 





  

   

 

and the general solution is 2 3
1 2

1 1
cos sin

10 10
t ty c e c e t t     . 
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We are now able to find a particular solution from the given initial conditions. 

When t = 0, y = 0.1: 2 3
1 2

0 0
1 2

1 2

1 2

1 1
cos sin

10 10

0.1 0.1cos0 0.1sin 0

0.1 0,1

t ty c e c e t t

c e c e

c c

c c

    

   
  

  

Substituting for t = 0 and 0
dy

dt
 : 

2 3
1 2

1 2

1 2

1 2

2 3 0.1sin 0.1cos

0 2 3 0,1

but 

0.1 and 0.1

t tdy
c e c e t t

dt
c c

c c

c c

     

   
 

   

The required particular solution is therefore 

3 20.1( cos sin )t ty e e t t    

4.3 APPLICATION TO BEAM PROBLEMS 

The force of gravity causes a beam which is supported at both ends to sag in the middle and a 

beam rigidly fixed at one end to sag only at the free end. In each case the beam is said to be 

deflected and the shape into which its axis is bent is called the curve of deflection or elastic 

curve. An important problem in mechanical engineering is to find the equation of this curve. 

Let x be a point on a transversely loaded beam. The bending moment at x is given by  

( )
EI

M x
R

 (4.6) 

where E is the modulus of elasticity for the beam, 

I the moment of inertia of a small cross-section at x and 

R the radius of curvature of the curve of deflection at x. 

Since the curvature is very small, 
2

2

1 d y

R dx
  and equation (4.6) becomes:  

2

2

d y
M EI

dx
 (4.7) 
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This is called the bending equation for a transversely loaded beam. The exact form of M 

depends on the manner in which the beam is supported. When we know this, we are able to 

substitute for M in equation (4.7) and hence solve the equation to find the curve of deflection. 

EXAMPLE 5 

For a simply supported beam, that is one supported at both ends, the bending moment is 

given by ( )
2

kx
M x b   

(4.8) 

where b is the length of the beam and 

k its uniform load per unit length. 

Find the equation of the curve of deflection and its maximum deflection. 

Figure 4.3 

SOLUTION 

Combining equations (4.7) and (4.8) we get: 

2 2

2

1

2 2

d y kx kbx

dx EI

 
  

 

We integrate this equation to obtain: 

3 2

12 3 2

dy k x bx
c

dx EI

 
   

 
(4.9) 
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At the midpoint of the beam, that is where 
2

b
x  , the curve levels out and the beam is

horizontal, so that 0
dy

dx
 . In order to evaluate c1, we substitute these values in equation 

(4.9): 

3 3

1

3

1

3

1

0
2 24 8

2 12

2 12

k b b
c

EI

k b
c

EI

k b
c

EI

 
   

 
 

   
 

 

Equation (4.9) now becomes: 

3 2 3

2 3 2 12

dy k x bx b

dx EI

 
   

 

Integrating again we get: 

4 3 3

22 12 6 12

k x bx b x
y c

EI

 
    

 

At the two ends of the beam, that is at x = 0 and x = b, we have y = 0.  

Substitution of these values yields c2 = 0 

The equation of the curve of deflection of the given beam therefore is: 

 4 3 32
24

k
y x bx b x

EI
  

The maximum deflection of the beam occurs at the midpoint, that is at 
2

b
x  .

At this point: 
4 4 4

4

4

24 16 4 2

5

24 16

5

384

k b b b
y

EI

k b

EI

kb

EI

 
   

 

 


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EXAMPLE 6 

A beam that has one end built in horizontally and the other end free to move is called a 

cantilever beam. For this type of beam the bending moment is given by 

2( )
2

k
M b x  (4.10) 

where  b is the length of the beam and 

k its uniform load per unit length. 

Calculate the maximum deflection of the beam. 

Figure 4.4 

SOLUTION 

In order to calculate the maximum deflection of the beam, we must first find the equation of 

the curve of deflection.  

We combine equations (4.9) and (4.10) to get: 

 

 

2
2

2

2 2

2

2
2

d y k
b x

EIdx
k

b bx x
EI

 

  

Integration yields  
3

2 2
12 3

dy k x
b x bx c

dx EI

 
    

 
(4.11) 

At the attached end of the beam, that is at x = 0, the beam is horizontal and so 0
dy

dx
 .  

On substituting these values in (4.11) we find that c1 = 0.  
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Integrating again we get 
2 2 3 4

22 2 3 12

k b x bx x
y c

EI

 
    

 
. 

At x = 0, y = 0 and substitution of these gives c2 = 0, 

so that the curve of deflection of the beam is given by the equation: 

 4 3 2 24 6
24

k
y x bx b x

EI
  

The maximum deflection occurs at the free end, that is at x = b. 

At that point:    4 4 4

4

4 6
24

8

k
y b b b

EI

kb

EI

  


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4.4 POST-TEST: MODULE 3 (LEARNING UNIT 4) 

(Solutions on myUnisa under additional resources) 

Time: 84 minutes 

1. An inductor of 1 H, a resistor of 4  and a capacitor of 0.2 F are connected in series

with an electromotive force of 8 cos t V. At t = 0, the charge on the capacitor and the

current in the circuit are zero. Find the current at any time > 0 and discuss the solution

as t  . (21)

2. A body of mass 5 kg attached to the end of a spring is released 60 mm above the point

of equilibrium with an initial velocity of 480 mm/s directed downwards. Describe the

motion of the body and find the amplitude and period of the motion. The differential

equation is 
2

2
180

d y
m y

dt
  . (14)

3. A system vibrates according to the equation

2

2
8 4 sin 2cos

d y dy
y t t

dtdt
   

where y is the displacement and t the time. Determine y in terms of t. (12)

4. A cantilever beam, built in at x = 0 and free at x = b, carries a concentrated load k0 at

its free end. If the bending moment of the beam is given by

2

2

d y
M EI

dx


find the deflection of its free end. (9) 

[56] 

You should now be able to solve problems using D-operator methods relating to electric 
circuits, vibrating systems and beams.  

This is the end of study guide 1. In study guide 2, module 4, learning unit 1, we will start to 

explore another method of solving differential equations by using Laplace transforms. 
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