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ORIENTATION

Introduction

Welcome to STA3702. This module follows from STA2601 (Applied Statistics), STA2602 (Statistical

Inference) and STA2603 (Distribution Theory ) and introduces you to some of the principles which

underlie the statistical methods that you have become acquainted with at first and second-year level.

For this reason, a prerequisite for a proper understanding of these principles is that you have a good

mathematical background, a sound working knowledge of basic probability and distribution theory

and that you are competent in applied statistics and statistical inference at the respective levels of

STA2601 and STA2602. If you find that your mathematical toolbox is stocked inadequately, then

please work at it. No statistician can ever know too much mathematics.

It is important that you do the self-assessment exercises as you come to them. Each self-assessment

exercise is designed to test your understanding of the work immediately preceding it. If you cannot

do a particular self-assessment exercise, you probably do not understand the relevant section of the

work. In this case, do not move on to the next section immediately. Rather revise the preceding

section of the current study unit and then try the exercise again.

The exercises at the end of each study unit are usually more challenging than the self-assessment

exercises. They are designed to be more general, and test if you have grasped the subject matter.

They also often contain further elaboration of material in the main body of the text. You should

attempt all the exercises. The solutions to some of these exercises appear in Addendum B.

Please bring any errors, misprints etc. to the attention of your lecturer. By correcting them promptly

we can make life easier for other students.

Learning objectives

You will find the learning outcomes for each study unit on the first page of the relevant study unit.

These outcomes are very important. You should constantly refer back to the learning outcomes when

studying a particular study unit to make sure that you understand the meaning of each outcome.

Reference Book

Although there is no prescribed text book for this module, below is a list of the text books that I have

used in preparing these notes. Feel free to read any of them if you are experiencing problems in

understanding this study guide.
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Recommended text books (in no order of preference):

1. John A. Rice (2006 3rd edition) Mathematical Statistics and Data Analysis. ISBN 0534399428,

Duxbury Press. Note that his is a prescribed textbook for STA2603 (Distribution Theory) and it is

possible that you still have a copy of this textbook.

2. Paul H. Garthwaite, Ian T. Jolliffe and Byron Jones (2002 2nd edition) Statistical Inference,

Oxford Science Publications.

3. George Casella and Roger L. Berger (2002 2nd edition) Statistical Inference, Duxbury.

4. Nits Mukhopadhyay (2006) Introductory Statistical Inference, Chapman & Hall.

5. Robert V. Hogg, Joseph W. Mckean and Allen T Craig (2005 6th or latest edition) Introduction to

Mathematical Statistics.

Reference books can provide you with additional examples and there are many more exercises. The

reference books are also well written although the notation might not be too familiar to you.
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Study Unit 1

1. Importance of Statistical Inference

Aim

To explain what is statistical inference and to describe and discuss the inferential process by means

of examples.

Learning objectives

By the end of this unit you should be able to

– understand the meaning of statistical inference

– describe the inferential process in your own words

Mathematical Background

You should have a firm understanding of calculus, mainly differentiating and integrating functions.

Your mathematical knowledge should also extend to functions and set theory. Some important

mathematical topics are discussed in Addendum A. You might also feel the need to increase your

mathematical background. Please do so if this arises.

Statistical Background

This module builds on knowledge that you should have gained from its prerequisites. As you

work through this guide, you will notice that you require knowledge of other modules, for example,

STA2601 (Applied Mathematics), STA2602 (Statistical Inference) and STA2603 (Distribution Theory

). You are expected to know the contents in chapters 1–7 of Rice. These are the respective syllabis

for STA2601 (Applied Statistics), STA2602 (Statistical Inference) and STA2603 (Distribution Theory

). I use STA2603 as an example. It is important to know all the relevant distributions covered in

chapters 1–7 as well as their properties, for example the formula for the distribution, mean, variance

and moment generating function. In some cases it is also wise to know the general expectation

formula for these distributions as they can simplify some of the problems encountered later. I will

demonstrate this point in the study units that follow. Also, you should have knowledge of conditional

distributions and limit theorems, for example, the central limit theorem. Some important statistical

topics are discussed in Addendum A, which I consider rather difficult and often these are easily

forgotten by our students.

Prior to starting with Study unit 1, I recommend that you study Addendum A. Once you are

comfortable with the material presented in the appendix, you may then continue with Study unit

1.
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1.1 Wat Is Statistical Inference?

“Inference is the act or process of drawing a conclusion based solely on what one already knows.

Suppose you see rain on your window - you can infer from that, quite trivially, that the sky is grey.

Looking out the window would have yielded the same fact.” In terms of statistics, inference is then

the process of drawing conclusions about something we do not know from a collection of data that

has been observed.

Statistical inference is not new to you. You have encountered it in all statistical modules thus far.

The distributions with which you are familiar, from STA2603 (Distribution Theory ), have at least

one unknown parameter. The Poisson distribution has one unknown parameter, λ, while the normal

distribution has two unknown parameters, µ and σ 2. One of the tasks of statistical inference is to

estimate these unknown parameters from observed data. In this module, we will find the “best”

estimate for an unknown parameter. The question which now arises is: “What is best?”. Best here

means that the statistic which estimates the parameter is unbiased and it has minimum variance.

However, inference is not all about estimating parameters. Inference allows one to fit distributions

to observed data through parameter estimation, it allows one to say with a degree of confidence in

which interval the unknown parameter lies, it allows one to hypothesize the value of the unknown

parameter and test the hypothesis.

1.2 The Inferential Process

A statistical investigation is usually conducted in at least three stages, (A) the planning or design

stage, (B) model control and (C) inference. This is regarded as the inferential process. We discuss

each of these in turn.

(A) The planning or design stage

Here the objective is to formulate the problem in statistical terms. This includes determining what

data should be collected, and how it should be collected (i.e. what experimental design to use).

Some aspects of this question are dealt with in STA2601 and STA2602. This stage also includes

postulating alternative families of probability distributions from which the data may be assumed to

have been generated, and the definition of appropriate parameters. The design stage produces a

tentative statistical model (ε, χ, 2, P) , where

ε describes the experiment to be conducted,

χ describes the conceivable outcomes or data that could be produced when ε is performed,

2 is the parameter space and

P = {p ( ·| θ) : θ ∈ 2} is the class of probability distributions.

The results of the investigation will be stated and interpreted in terms of this model. This stage

requires a good understanding of the experiment which is being modelled as well as experience in

the statistical design of experiments and building statistical models.
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Example 1.2.1

Suppose we have a coin with an unknown probability, θ, of showing “heads” when it is tossed. In

order to estimate θ we decide to toss the coin 100 times and observe how many times a “head”

occurs – this is our experiment.

The sample space χ = {0, 1, . . . , 100} since the number of heads (X) observed can take on any

integer value from 0 to 100. The parameter space 2 = {θ : 0 ≤ θ ≤ 1} since θ is a probability and

must lie between 0 and 1.

From our knowledge of such situations we know that the experiment can be modelled with a binomial

distribution with parameters n = 100 and θ, so that the probability mass function for X = number of

heads is

p ( x | θ) =

{ (
100
x

)
θ x (1− θ)100−x for x = 0, 1, . . . , 100

0 otherwise.
.

(B) Model control

Here the objective is to check whether the data agrees with the assumptions underlying the model

(ε, χ,2,P) which was postulated at the design stage. For example, we may have formulated our

problem in terms of a regression model

xi = α + βti + εi for i = 1, ..., n,

where x is the dependent variable and t is the independent variable, and where the assumption is

that the εi ’s are independent and normally distributed with mean 0 and constant variance σ 2. Upon

plotting the data, we find the following:

Figure 1.1: Scatterplot of coin experiment
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From this graph it is clear that the assumption of constant variance seems untenable and we would

accordingly be led to reformulate the model. In this case, an assumption such as var(εi ) = γ · ti may

be more appropriate.

As another example, suppose we formulated our problem in terms of a normal distribution with

unknown mean θ and known variance (σ 2 = 1, say) and on drawing a histogram of the data we find:

Figure 1.2: Histogram of the data

The high peakedness and heavy tails of the histogram may then lead us to reformulate our problem

in terms of a distribution which is more highly peaked than the normal.

It may turn out that the experiment has not been performed according to plan, or that some of the

data has been lost. We then have to decide to what extent the deviation from design may bias (or

even invalidate) our eventual conclusions.

After completing the model control stage to our own satisfaction, we are left with a “verified” statistical

model which, in order to avoid too many additional symbols, we also denote by (ε, χ,2,P). This

brings us to the stage which is the subject of this module.

(C) Statistical Inference

Our assumption is that the observed data x ∈ χ originates from a specific (but unknown) member of

P, say p(·|θ) , where θ is a specific element of 2.

Statistical Inference involves trying to make “informative” statements regarding the member of P
which is at work, or, in other words, about the “true” θ .
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In many cases we require an estimate of θ or of some function of θ . In other cases we may want to

test hypotheses about θ or some function of θ . In all cases we are required to provide a measure of

the reliability of our statements, e.g. in the form of a confidence interval.

Before I proceed with some examples, let me give you the formal definition of a statistic.

Definition 1.2.1 (Statistic)

Any observable real or vector valued function T ≡ T (X1, X2, ..., Xn) of the random variables

(X1, X2, ..., Xn) is called a statistic.

Some examples of statistics are X̄ , X1 (X2 − Xn) ,
n∑

i=1

X i , S2, and so on.

Examples

The following examples, with varying complexity, illustrate the use of inference in practice.

Example 1.2.2 (Measuring with known precision)

Problem statement

A technician wishes to determine the mass of a substance by weighing it on his chemical balance.

The instrument is only of medium precision, a very high precision instrument being too expensive

for his general purposes. The manufacturer of the instrument has provided him with a “calibration”

of its measurement error, namely that it is normally distributed with mean zero and known standard

deviation σ = 0.1 mg. This means that if the “true” mass of the substance is µ milligrams then the

reading given by his instrument will be x = µ+ e, where e has a N (0; 0.01) distribution.

Planning or design stage

The technician weighs the substance nine times on his balance and obtains the following readings:

20.21 19.85 19.95 20.10 19.93 19.89 19.93 19.96 20.05

What should he pronounce the mass to be and what is the “margin of error”?

Inference

If e is distributed as N (0; 0.01) then x is distributed as N (µ; 0.01) and so we want to estimate the

mean of a normal distribution with known variance and give a confidence interval for our estimate. In
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STA2601 (Applied Statistics) we show that the required interval is

x̄ ± z α
2
· σ/
√

n

In this case, x̄ = 19.986 and for α = 0.05, z α
2
= z0.025 = 1.96 so

x̄ ± z α
2
· σ/
√

n = 19.986± 1.96 · 0.1/
√

9 = 19.986± 0.0652

So we can quote the mean as 19.986 and say that we are 95% confident that the true mean lies in

the range 19.921 to 20.051. The model control is dealt with in Exercise 1.5.1.

Example 1.2.3 (Measuring the lifetime of a component)

Problem statement

A manufacturer of electric light bulbs is experimenting with a new type of bulb which he feels is

superior to his existing product. He is interested in determining some of the characteristics of the

distribution of the lifetimes of the new bulbs and accordingly carries out an experiment.

Planning or design stage

Fifty of the bulbs are inserted into specially prepared electric sockets, each attached to a meter which

registers the number of hours that the bulb burns. As soon as a bulb becomes defective its meter

locks and stops registering. After 56 days (56 · 24 = 1 344 hours) 38 of the bulbs had already become

defective, their lifetimes being (in increasing order of magnitude)

1025 1038 1076 1080 1137 1146 1156 1157 1167 1168

1171 1188 1191 1207 1212 1226 1226 1229 1235 1243

1247 1255 1256 1262 1262 1282 1298 1302 1304 1311

1331 1332 1333 1337 1338 1338 1340 1342

During the fifty-seventh day a short circuit caused the remaining twelve bulbs to fail simultaneously.

For these twelve bulbs the manufacturer knows only that the “natural” lifetime of each was at least

1 344 hours. This is a good example of an experiment that did not turn out quite as planned. The

data is said to be “censored” at the value 1 344. Assuming lifetimes are normally distributed with

mean µ and variance σ 2, how does one obtain estimates of µ and σ from a censored sample of

lifetimes and how does one compute the distributions of the estimates?

We return to this example in Exercise.1.5.2.
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Example 1.2.4 (Estimating bacterial densities)

Problem statement

A pathologist is presented with 10 ml of a saline solution which is known to contain bacteria of a

certain type and is asked to determine the bacterial density, i.e. the number of bacteria per millilitre.

Planning or design stage

Since the difficulty of counting is related directly to the density of the bacteria, the pathologist carries

out the following series of dilution experiments. Five samples of 1 ml each are drawn and the number

of bacteria in each is determined. The remaining 5 ml is then diluted with an equal volume of a non-

bacterial saline solution. From the resulting 10 ml, in which the density of bacteria is now only half

the original density, five samples of 1 ml each are drawn and a count made for each. This dilution

process is then repeated twice more. The data obtained is as follows (in terms of the number of

bacteria per ml):
Dilution (as fraction of original sample)

1 1
2

1
4

1
8

54 28 11 3

Number 59 21 12 8

of 45 19 15 4

bacteria 40 34 18 9

48 27 5 5

Mean 49.2 25.8 12.2 5.8
Variance 44.6 28.6 19.0 5.4

[Note that in this case the variance was calculated using the biased estimate
1

n

n∑
i=1

(xi − x)2 rather

than
1

n − 1

n∑
i=1

(xi − x)2 .]

How do we estimate the bacterial density in the original sample of 10 ml? It seems a reasonable

assumption that the number of bacteria per ml has a Poisson distribution.

Model control

We can do a rough check on this assumption by using the well-known fact that the expectation of

a Poisson random variable equals its variance. A plot of the four pairs of observed means and

variances shows that they lie fairly close to the line y = x (figure 1.3).



10

Figure 1.3: Plot of mean vs variance for dilution data

Inference

Assuming then that the bacteria in the original sample have a Poisson distribution with density λ

(bacteria per ml), those in the dilution fraction
1

2i
, i = 0, 1, 2, 3 will be Poisson with density

λ

2i
. If

we denote the four observed sample means by x0, x1, x2 and x3, then we have four independent

unbiased estimates of λ, viz., x0, 2x1, 4x2 and 8x3. In order to get a single estimate of λ we could

think of taking
∑
wi · 2i · x i where wi is a “weight” which is proportional to the variance of 2i · x i .(∑

wi = 1
)
.

We return to this example in Exercise 1.5.3.

1.3 Expectation versus observation

Before the data is collected, i.e. at the planning or design stage of a statistical investigation, we must

of necessity be concerned with what could be expected to occur because no data is available at this

stage. The choice between two competing designs or procedures will be based on their expected

performance characteristics, the expectation being calculated with reference to all outcomes which

we consider possible. Having decided upon a particular design or procedure we would therefore

base our measure of reliability or precision on its expected performance characteristics.

Once the experiment has been performed and the data collected, however, we should be more

concerned with what did in fact occur rather than with what was expected to occur.
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The following example illustrates this.

Example 1.3.1

A box contains ten tickets numbered θ + 1, θ + 2, . . . , θ + 10 where θ is an unknown (to you and

me) positive integer. You and I are competing for a contract of one million rand which will be awarded

to the one who obtains the estimate of θ which lies closest to the true value (which is known by the

person awarding the contract). We are both able to buy information on the following basis: At ten

thousand rand a time, we may ask for a ticket to be drawn from the box, with the number on it being

revealed to the buyer before the ticket is returned to the box. As you have forty thousand rands to

spend and I have only ten thousand, you are quite justified in expecting your estimate to be better

than mine. This much seems obvious.

Suppose that upon drawing your numbers they turn out to be 4, 5, 7 and 9, which means you know

for certain that θ must be either 1, 2 or 3 (make sure you understand why this is so). Suppose that

my number is 2 which means that I know for certain that θ must be 1. Before the draws were made

your expectation of winning the contract was greater than mine. After the draws this is reversed. You

have to guess 1 out of 3 correctly but I don’t have to guess at all!

1.4 Robustness

The analyses that was conducted in section 1.3 were all based on a statistical model for the

distribution of random variables. In each case, the observed data was assumed to be a particular

realization generated from the model concerned. Because the model is intended merely to

approximate reality and as it is almost certain that the model is not exactly correct, it becomes

important to know to what extent our conclusions are affected when slight changes are made in

the formulation of the model. Roughly speaking, an inference procedure is robust with respect to

moderate changes in the underlying model if such changes do not affect our conclusions to any

marked extent.

Also, the data obtained from any statistical experiment is itself subject to errors of various kinds, such

as measurement error in observing continuous data. An inference procedure is robust with respect to

measurement error if moderate perturbations of the observed data do not lead to significant changes

in our conclusions. Robustness of statistical procedures is a very important topic, but because of its

specialized nature is beyond the scope of this module.
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1.5 Exercises

Exercise 1.5.1 Consider Example 1.2.2

(a) Check whether it is reasonable to assume that the data comes from a normal distribution.

(b) Obtain an estimate of µ and calculate its standard error.

(c) How would you interpret the standard error calculated in (b)?

Exercise 1.5.2 Consider Example 1.2.3

(a) Using only the thirty-eight uncensored values, check whether it is reasonable to assume that the

lifetimes of the electric light bulbs come from a normal distribution.

(b) Obtain rough estimates of the mean and the variance of the lifetime distribution. [Hint: See the

section on the use of normal probability paper in your STA2601 (Applied Statistics) study guide.]

Exercise 1.5.3 Consider Example 1.2.4

(a) Find an estimate of the bacterial density λ. Also find an estimate of its standard error.

(b) The count of 5 obtained for the fifth subsample of the 1
4

dilution looks suspiciously low compared

to the other four values. Delete this observation from the data and then repeat the calculation of

the λ-estimate and its standard error. Are your answers substantially different from those obtained

in (a)?
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Study Unit 2

2. The Likelihood Function

Aims

To define the concept of “likelihood” and to examine a number of concepts associated with likelihood.

To introduce the information principle and see how this allows us to summarize the information a data

set contains about an unknown parameter.

Learning objectives

By the end of this unit you should be able to

- write down, understand and apply the definitions, theorems and propositions which are given

- determine a likelihood function, the log-likelihood function, the likelihood ratio and the relative

likelihood function associated with a statistical model

- determine the maximum likelihood estimator (MLE) and the method of moments estimator (MME)

of an unknown parameter or functions of the unknown parameter

- determine the standard error of the MLE and MME

- determine the observed information, the skewness and the kurtosis of a log-likelihood function

- approximate the relative likelihood function by using one to four summary measures

- determine the expected (Fisher) information

- compare the reliability of the estimators

2.1 Likelihood for the Discrete and Continuous Distributions

Before an experiment is performed we can speculate about the results that could occur. At this

stage, neither the parameter θ nor the data x is known. Given the form of our probability model,

we can calculate the probability of obtaining data x for any particular value θ ∈ 2. We can use this

information as an aid in designing the experiment and to determine how to estimate the unknown

parameter θ .

After the experiment has been performed and has yielded data x , the data is now fixed (i.e. it is

known) and we can now speculate only about the merits of the various θ ’s which could have produced

x . Suppose θ0 and θ1 are two points in the parameter space and that p ( x | θ1) /p ( x | θ0) = 100. This

means that the probability that the model indexed by θ1 will produce data x is 100 times greater than

the probability that the model indexed by θ0 will produce data x , data x is 100 times more likely to be

produced by the model with θ = θ1 than by the model with θ = θ0. If one is asked to guess which of

θ0 and θ1 was more likely to have produced x , one would therefore say θ1.
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2.1.1 Discrete Distributions

For the discrete case, note that p ( x | θ) = f ( x | θ), i.e. the values for the probability mass function,

are in fact the probability values.

Example 2.1.1 (Binomial distribution)

A coin (with unknown probability θ of giving heads) is tossed 20 times, producing x = 4 heads. What

value of θ is most likely to have produced this result?

We have

p ( x = 4| θ) = P ( X = 4| θ) =

(
20

4

)
· θ4 · (1− θ)16 , 0 < θ < 1 .

We tabulate p ( x = 4| θ) for various values of θ and display this information graphically in

θ 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.22

p ( x = 4| θ) 0.013 0.052 0.090 0.149 0.182 0.213 0.218 0.213

θ 0.25 0.27 0.30 0.32 0.35 0.37 0.40 0.43

p ( x = 4| θ) 0.190 0.167 0.130 0.106 0.074 0.056 0.035 0.021

The value θ = 0.2 is most likely to have produced this data. In fact, from the table we see that a

coin with θ = 0.2 would be expected to produce the observed data roughly 22 times out of 100,

whereas a coin with θ = 0.1 would tend to produce it only 9 times out of 100. Thus θ = 0.2 provides

a much better explanation of the observed data than does θ = 0.1. On the other hand, both θ = 0.15

and θ = 0.25 would produce the observed data roughly 19 times out of 100, which is not much less

than the 22 out of 100 for θ = 0.2. This reflects the uncertainty that must be associated with any

conclusions we reach regarding the true value of θ .
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Figure 2.1: Graph of p (x = 4|θ) vs θ

2.1.2 Continuous distributions

Suppose we have found it convenient to formulate our model in terms of a continuous variate X with

density function f ( x | θ).

For the continuous case, note that p ( x | θ) 6= f ( x | θ), i.e. the values for the probability density

function are not the same as the probability values. The probability values are the area under the

curve of the probability density function. However, we know that the area of a rectangle is base

× height. Consider, for some small δ > 0, P(x − δ < X < x + δ). This is the area under f ( x | θ)

between x − δ and x + δ. This probability (area) will be approximately the area of the rectangle with

height f ( x | θ) and base 2δ. Since δ is small, the probability (area) will be approximately proportional

to the height f ( x | θ). Hence, we can say:

p ( x | θ1)

p ( x | θ0)
≈

f ( x | θ1)

f ( x | θ0)
(2.1)

In order to choose between θ1 and θ0 we therefore simply compare the densities at x .
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Note that in the continuous case, the measurements are recorded to a certain degree of accuracy,

know as the “unit of measurement”. Hence the unit of measurement = 2δ, which means that

δ = 1
2
(unit of measurement).

To illustrate the above concept, consider the following example.

Example 2.1.2 (Measuring with known precision: Example 1.2.2 continued)

Suppose that the instrument in Example 1.2.2 is accurate to within 0.01 mg, so that, for example, a

reading of 20.21 represents a true value between 20.21− 0.005 = 20.205 and 20.21+ 0.005 = 20.215.

Note that δ = 1
2
(unit of measurement) = 0.005. In general then, for a reading x ,

p ( x |µ) = P
[
N (µ; 0.01) variate lies between x − 0.005 and x + 0.005

]
= P

[
N (0; 1) variate lies between (x − µ− 0.005) /0.1 and (x − µ+ 0.005) /0.1

]
= 8

(
x − µ+ 0.005

0.1

)
−8

(
x − µ− 0.005

0.1

)
where 8(·) denotes the N (0; 1) distribution function, and

f ( x |µ) =
1

√
2 · π · 0.01

· exp

[
−

1

2

(
x − µ

0.1

)2
]

=
1

0 · 1
×

1
√

2π
· exp

[
−

1

2
z2

]
= 10 · φ

[
(x − µ) /0.1

]
where z =

x − µ

0.1
is a N (0; 1) variate,

where φ denotes the N (0; 1) density function.

We tabulate p ( x |µ) and f ( x |µ) · 2 · 0.005 = 0.01 · f ( x |µ) for µ = 19.9 and µ = 20 for the nine data

values in Example 1.2.2. Note that here we are using area of a rectangle is base × height with base

= 2 · 0.005 = 0.01 and height = f ( x |µ). Hence we expect p ( x |µ) = 0.01 · f ( x |µ).

The heading ui represents
p ( xi | 20)

p ( xi | 19.9)
and the heading vi represents

f ( xi | 20)

f ( xi | 19.9)
.

In this example we also verify Equation 2.1 by showing ui ≈ vi .

(xi − µ) /0.1 p ( xi |µ) 0.01 · f ( xi |µ)
xi µ = 19.9 µ = 20 µ = 19.9 µ = 20 µ = 19.9 µ = 20 ui vi

20.21 3.1 2.1 0.003 0.0044 0.003 0.0044 14.6667 14.6667

19.85 −0.5 −1.5 0.0352 0.0129 0.0352 0.0130 0.3665 0.3697

19.95 0.5 −0.5 0.0352 0.0352 0.0352 0.0352 1.0000 1.0000

20.10 2.0 1.0 0.0054 0.0242 0.0054 0.0242 4.4815 4.4815

19.93 0.3 −0.7 0.0381 0.0312 0.0381 0.0312 0.8189 0.8189

19.89 −0.1 −1.1 0.0397 0.0218 0.0397 0.0218 0.5491 0.5491

19.93 0.3 −0.7 0.0381 0.0312 0.0381 0.0312 0.8189 0.8189

19.96 0.6 −0.4 0.0334 0.0368 0.0333 0.0368 1.1018 1.1051

20.05 1.5 0.5 0.0129 0.0352 0.0130 0.0352 2.7287 2.7077
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Note that

p (x| 20)

p (x| 19.9)
=

p ( x1, . . . , x9| 20)

p ( x1, . . . , x9| 19.9)
=

9∏
i=1

p ( xi | 20)

p ( xi | 19.9)
=

9∏
i=1

ui = 26.6687

and

f (x| 20)

f (x|19.9)
=

9∏
i=1

f ( xi | 20)

f ( xi | 19.9)
=

9∏
i=1

vi = 26.7745 .

We have shown that

9∏
i=1

p ( xi | 20)

p ( xi | 19.9)
≈

9∏
i=1

f ( xi | 20)

f ( xi | 19.9)
.

2.2 Likelihood Functions and Likelihood Ratios

The demonstration in section 2.1: Example 2.1 is extremely important as it leads to the definition

of likelihood functions and likelihood ratios irrespective of the density function being discrete or

continuous.

Definition 2.2.1 (Likelihood function)

Suppose an experiment produces data x = (x1, x2, . . . , xn). The joint density function of

X1, X2, . . . , Xn evaluated at x1, x2, . . . , xn, say f (x1, x2, . . . , xn|θ), is called the likelihood function.

The likelihood function is denoted as L(θ |x).

L(θ |x) = L(θ |x1, x2, . . . , xn)

= f (x1, x2, . . . , xn|θ) = f (x1|θ) f (x2|θ) · · · f (xn|θ) =
n∏

i=1

f (xi |θ) (2.2)

f (x1, x2, . . . , xn|θ) = f (x1|θ) f (x2|θ) · · · f (xn|θ) if the random variables X i are independent. In the

case of discrete distributions with probability mass function p (x |θ) , f (·|θ) in (2.2) is replaced by

p (·|θ).

Note that, having observed X i = xi , i = 1, 2, . . . , n, L(θ |x) is constant with respect to the data set.

Hence we can remove terms which are not functions of θ (function only of x and constants) from the

likelihood function. This modified function will also be the likelihood function. By this, the likelihood

function is not unique. Hence

L(θ |x) = K (x1, x2, . . . , xn) · f (x1, x2, . . . , xn; θ) = K (x) ·
n∏

i=1

f (xi ; θ) . (2.3)

Note also that K (x) is NOT a function of the unknown parameter θ .
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Remark 2.2.1

J If the model is discrete, then L (θ | x) = K (x) · f (x| θ) since p (x| θ) = f (x| θ).

J If the model is continuous and the measurement error is negligible so that (to good approximation)

p (x| θ) ≈ f (x| θ) · 2δ, then L (θ | x) = K (x) · f (x| θ) · 2δ ≈ K (x) · p (x| θ) and the right-hand side

then approximates a likelihood function for θ .

J For the rest of this module I have dropped the qualification “approximate” except when it is

important to stress the approximate nature of the likelihood in the continuous case.

Definition 2.2.2 (Likelihood ratio)

Suppose an experiment produces data x = (x1, x2, . . . , xn). For every pair θ0; θ1 ∈ 2, the likelihood

ratio of θ1 to θ0 on the data x is the number

r (θ1; θ0| x) =
p (x| θ1)

p (x| θ0)
≈

f (x| θ1)

f (x| θ0)
. (2.4)

In Example 2.1.2, we determined the likelihood ratio of µ1 = 20 to µ2 = 19.9.

Remark 2.2.2

J If the model is discrete, then p (x| θ) = f ( x | θ1) and so

r (θ1; θ0| x) =
f (x| θ1)

f (x| θ0)
.

J If the model is continuous and the measurement error δ is negligible, then p (x| θ) ≈ f (x| θ) · 2δ

and so to a good approximation

r (θ1; θ0| x) =
f (x| θ1)

f (x| θ0)
.

J If we think in terms of a large number of repetitions of an experiment, r (θ1; θ0| x) is the ratio of

the numbers of times that the models indexed by θ1 and θ0 would produce the observed data x.



19 STA3702/001

Example 2.2.1 (Binomial distribution: Example 2.1.1 continued)

Suppose that instead of observing just the number of heads (x = 4) in Example 2.1.1, we observed

the outcome of each of the twenty tosses (H indicates “heads” and T “tails”):

y = (T T T H T T T T T H T T T T T H T T T H) .

Hence, heads occurred at the fourth, tenth, sixteenth and twentieth toss. Does this additional

information tell us anything more about the parameter θ?

The probability of observing this data is

p ( y| θ) = P (T ) · P (T ) · P (T ) · P (H) . . . P (H)

= (1− θ) · (1− θ) · (1− θ) · θ . . . θ

= θ4 · (1− θ)6

and

p (x = 4|θ) =

(
20

4

)
θ4 (1− θ)16 .

Hence, for every pair θ0, θ1 ∈ 2 = (0, 1) we have

p (y| θ1)

p (y| θ0)
=
[
θ1/θ0

]4
·
[
(1− θ1) / (1− θ0)

]16
=

p ( x = 4| θ1)

p ( x = 4| θ0)

so that the data sets y and x, which are different, lead to exactly the same likelihood ratios:

r (θ1; θ0| y) = r (θ1; θ0| x) for all θ1; θ0 ∈ 2 .

In other words, as long as x and y refer to the same performance of this experiment, they contain

the same amount of information about θ . The “extra” information in y (i.e. which four of the twenty

tosses yielded the heads) does not give us any extra information about θ .

Further, note that

p ( x = 4| θ) =

(
20

4

)
· p (y| θ) for all θ ∈ 2 .

Because the factor

(
20

4

)
does not involve θ , it cannot tell us anything about θ . All it does is inform

us that the experimental designs were different (all outcomes observed in one case whereas just the

number of heads observed in the other). It seems that everything x has to tell us about θ is contained

in the factor p (y| θ). Thus we can conclude that x and y are telling us exactly the same things about

θ .

Continuing along these lines, let us suppose that instead of tossing the coin twenty times and

counting the number of heads, the data is obtained by tossing the coin until the fourth head appears,

whereupon the experiment is terminated. Call this data z, the number of tosses required to produce

exactly four heads. In the case being discussed we have z = 20, since the fourth head occurs at
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precisely the twentieth toss. The probability of this is (from the negative binomial distribution)

p ( z = 20| θ) =

(
19

3

)
· θ4 · (1− θ)16

and we have

r (θ1; θ0| z = 20) = r (θ1; θ0| y) = r (θ1; θ0| x = 4) for all θ1; θ0 ∈ 2 .

The three data sets, obtained in different ways, lead to identical likelihood ratios.

Again, we have p ( z = 20| θ) =

(
19

3

)
· p (y| θ) and the factor

(
19

3

)
merely informs us that the data z

and y were obtained by different methods. As before, we could conclude that x , y and z are telling

us exactly the same things about θ .

For this particular set of outcomes of 20 tosses of the coin, x , y and z are equally informative about

θ . In fact, x and y are equally informative about θ for as long as they refer to the same sequence of

20 tosses.

z need, however, not be equally informative, e.g. if

y = (H H H H T T T H H H T T H H T H T H T H)

then

p (y| θ) = θ12 · (1− θ)8 .

Since x = 12, we have

p ( x | θ) =

(
20

12

)
θ12 · (1− θ)8 .

But z = 4 and thus p ( z| θ) = θ4 .

(According to our experimental design, we stop the experiment once we have observed four heads

and the rest of the information in x and y would not even be collected.)

In Example 2.2.1 we had a situation in which it could be argued that each of the different data sets

was “equally informative” about a parameter θ . The most important discovery in this example was

that in each case the likelihood ratios were identical. Let us go a little further with this example.

Example 2.2.2 (Binomial distribution: Example 2.1.1 continued)

Suppose we have a coin with unknown probability θ of falling heads when tossed and that we have

the desire to increase our state of knowledge about θ by performing an experiment. Someone

suggests that we toss an unbiased die once and note which of the numbers 1, 2, . . . , 6 shows.

Clearly, such an experiment is totally uninformative about θ since the probabilities of the various

possible outcomes do not depend on θ . (The coin does not affect outcomes of the die.) We have
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p ( i | θ) =
1

6
for all i and all θ , so that r (θ1; θ0| i) = 1 for all i and all θ0; θ1 ∈ 2. The data does not

lead to any discrimination between different values of θ .

On the other hand, if I toss the coin 20 times and obtain x = 4 heads while you toss it 40 times and

obtain u = 8 heads, which one of us has the more informative data? We feel intuitively that 8 heads

in 40 tosses is better information than 4 heads in 20 tosses. We tabulate p (u = 8| θ) for selected

values of θ .

θ 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.22

p (u = 8| θ) 0.001 0.009 0.026 0.073 0.109 0.148 0.156 0.149

θ 0.25 0.27 0.30 0.32 0.35 0.37 0.40 0.43

p (u = 8| θ) 0.118 0.092 0.056 0.037 0.018 0.010 0.004 0.001

From this table, the corresponding one in Example 2.1.1 and some assistance from a pocket

calculator, we find that 8 heads in 40 tosses provides a greater degree of discrimination between

values of θ than that provided by 4 heads in 20 tosses.

For instance,

r (0.2; 0.15| x = 4) = 1.2 but r (0.2; 0.15| u = 8) = 1.43

and

r (0.2; 0.1| x = 4) = 2.42 but r (0.2; 0.1| u = 8) = 6.0 .

Can you interpret this?

The comparison may be made clearer as follows: Notice that for both data sets, θ = 0.2 is the most

likely value of θ . Using this as a fixed reference point in 2 we define the relative likelihood functions

r (θ | x = 4) = r (θ; 0.2| x = 4)

and

r (θ | u = 8) = r (θ; 0.2| u = 8) on 2

and note that, for all θ1, θ0 ∈ 2

r (θ1; θ0| x = 4) = r (θ1| x = 4) /r (θ0| x = 4)

and

r (θ1; θ0| u = 8) = r (θ1| u = 8) /r (θ0| u = 8) .
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Figure 2.2: Comparing relative likelihood for x = 4 and

u = 8

Figure 2.2 contains graphs of these relative likelihood functions and we see that the one based on

u = 8 is more concentrated around θ = 0.2 than the one based on x = 4. The following table gives

r (θ | x = 4) and r (θ | u = 8) for selected values of θ .

θ 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.22

r (θ | x = 4) 0.060 0.239 0.413 0.683 0.835 0.977 1.000 0.977

r (θ | u = 8) 0.006 0.058 0.167 0.468 0.699 0.949 1.000 0.955

θ 0.25 0.27 0.30 0.32 0.35 0.37 0.40 0.43

r (θ | x = 4) 0.872 0.766 0.596 0.486 0.339 0.257 0.161 0.096

r (θ | u = 8) 0.756 0.590 0.359 0.237 0.115 0.064 0.026 0.006

In Example 2.2.2 we have tried to justify the idea that “the information in the data x concerning a

parameter θ ” is reflected in the ability of the likelihood ratios to discriminate between values of θ .
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Self–assessment exercise 2.2.1

A single observation y, from the geometric distribution with parameter θ , has probability function

p ( y| θ) = (1− θ)y · θ, y = 0, 1, 2, . . .

(If we are tossing a θ -coin we can think of y as the number of tails observed before the first head

appears.) Suppose that we have n observations, y1, y2, . . . , yn, from this distribution.

(a) Determine the likelihood of θ on the data (y1, y2, . . . , yn).

(b) Obtain the likelihood ratio of θ1 to θ0 = 0.5 on this data.

(c) Repeat (a) and (b) for the specific data set (5; 0; 7; 3; 2), i.e. n = 5, y1 = 5, . . . , y5 = 2.

2.3 Relative Likelihood Function

Recall, we mentioned earlier that the likelihood function is not unique by taking K (x) to be any

function but not a function of the unknown parameter θ . This knowledge is very useful. It follows

that every data set x generates a whole class of likelihood functions which are all equivalent in the

sense that they each determine the same set of likelihood ratios. (For instance, if K1 (x) and K2 (x)

are any functions of x, then K1 (x) · f ( x | θ) and K2 (x) · f (x| θ) are members of the same class.)

In what follows, when we speak of the likelihood function we mean any convenient member of this

class. We are at liberty to choose a member having K (x) in a form which leads to simplifications,

from both a conceptual and a computational point of view. For instance, if p ( x | θ) is of the form

K1 (x) · g (θ; t (x)) we may choose K (x) = 1/K1 (x) so that L (θ | x) = g (θ; t (x)). This point is

illustrated further in Example 2.3.1

Example 2.3.1 (Binomial distribution: Example 2.1.1 continued)

Suppose that a coin, with unknown probability θ of falling heads, is to be tossed in order to gain some

information regarding θ . The coin is tossed until the total number of tails obtained first exceeds three

times the number of heads obtained. We are informed that 21 tosses were needed to accomplish

this. From this we can deduce that 5 heads and 16 tails were obtained. The data of the experiment

is n, the number of tosses required for the the number of tails to exceed three times the number of

heads for the first time. Can you compute p (n = 21| θ)?

Notice that the event (n = 21) is just the union of a number of elementary events A1, . . . , Am where

each Ai specifies a definite order in which 5 heads and 16 tails occurred, subject to the constraint

that n = 21, e.g.

A1 = H H H H H T T T T T T T T T T T T T T T T,

A2 = H T H H H H T T T T T T T T T T T T T T T,

etc.
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Clearly,
p ( A1| θ) = p ( A2| θ) = · · · = p ( Am | θ)

= θ5 · (1− θ)21−5

= θ5 · (1− θ)16 ,
so that

p (n = 21| θ) = m · θ5 · (1− θ)16 .

This is the easy part. The difficult part is to find the value of m. However, we can find a likelihood

function of θ without having to agonize over how to compute m. Simply choose K = 1/m to get

L (θ | n) =
1

m
· m · θ5 · (1− θ)16 = θ5 · (1− θ)16 .

Sometimes a convenient choice of K (x) is

K (x) =
[

sup
θ∈2

p (x| θ)
]−1

(2.5)

and the likelihood function with this K (x) is called the relative likelihood function. It has come to

attain a position of pre-eminence among likelihood functions and for this reason we denote it by a

special symbol, viz. r (θ | x).

Definition 2.3.1 (Relative likelihood function)

The relative likelihood function is the likelihood function

r (θ | x) =
p (x| θ)

sup
θ∈2

p (x| θ)
. (2.6)

Since L (θ | n) = K (x) · p (x| θ) we have

sup
θ∈2

L (θ | x) = K (x) · sup
θ∈2

p (x| θ)

so that it is also true that

r (x| θ) =
L (θ | x)

sup
θ∈2

L (θ | x)
. (2.7)

The only problem that could possibly arise in connection with Equation 2.5–2.7 occurs is if

sup
θ∈2

p (x| θ) = 0. But this means that p (x| θ) = 0 for all θ ∈ 2, i.e. the data x cannot possibly have

been produced by any of the model functions. Therefore, if you find that p (x| θ) = 0 for all θ ∈ 2,

then your model functions are incorrectly specified! Note also that the definition of relative likelihood

is exactly the same as that defined in Example 2.3.1 because in that example sup
θ∈2

p (x| θ) = 0.2.
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Example 2.3.2 (Measuring with known precision: Example 1.2.2 continued]

For the mass determinations made by the technician we had a model which specified nine

independent observations from a normal distribution with unknown mean θ and known variance

σ 2 = 0.01 mg2.

Thus

f ( xi | θ) = (2π · 0.01)−
1
2 · exp

[
− (xi − θ)

2 / (2 · 0.01)
]

and

L (θ | x) = K (x) ·
9∏

i=1

(2π · 0.01)−
1
2 · exp

[
− (xi − θ)

2 / (2 · 0.01)
]

= K (x) · exp

[
−50 ·

9∑
i=1

(xi − θ)
2

]

= K (x) · exp

[
−50 ·

9∑
i=1

(xi − x)2 − 450 · (x − θ)2
]

= K (x) · exp
[
−450 · (x − θ)2

]
.

Since (x − θ)2 is minimized at θ = x it follows that exp
[
−450 · (x − θ)2

]
is maximized at θ = x (why?),

and hence

sup
θ∈2

L (θ | x) = K (x) · sup
θ∈2

exp
[
−450 · (x − θ)2

]
= K (x) .

Thus an approximate relative likelihood function is

r (θ | x) =
K (x) · exp

[
−450 · (x − θ)2

]
K (x)

= exp
[
−450 · (x − θ)2

]
= exp

[
−450 · (19.99− θ)2

]
. (2.8)
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Example 2.3.3 (Lifetime testing: Example 1.2.3 continued)

Let us assume that the lifetimes in Example 1.2.3 are normally distributed with mean µ and variance

1002. We suppose that the bulbs are numbered 1, 2, . . . , 50 and that their lifetimes (rounded to the

nearest hour – unit of measurement = 1) are t1, t2, . . . , t50. Now, for a N
(
µ; 1002

)
random variable

T ,

p (T > 1344) = 1−8

(
1344− µ

100

)
and

p

(
ti −

1

2
< T < ti +

1

2

)
≈

1

100
· φ

(
ti − µ

100

)
(since 2δ = 1) .

Thus, the probability that 12 of the lifetimes will be larger than 1344 and that the remaining 38 will

correspond to those observed, is(
50

12

)[
1−8

(
1344− µ

100

)]12

· 38! ·
38∏

i=1

1

100
· φ

(
ti − µ

100

)

= K · exp

(
−

38∑
i=1

[
t(i) − µ

]2
2× 1002

)
·

[
1−8

(
1344− µ

100

)]12

(2.9)

where t(1) ≤ · · · ≤ t(38) denote the 38 observed lifetimes arranged in increasing order of magnitude,

φ denotes the density function for the normal distribution and 8 denotes the distribution function for

the normal distribution.

Since
38∑

i=1

(
t(i) − µ

)2
=

38∑
i=1

(
t(i) − t

)2
+ 38 ·

(
t − µ

)2
where

t =
1

38

38∑
i=1

t(i) = 1230.2

and since

38∑
i=1

(
t(i) − t

)2
does not involve µ, we can write the probability as

K (data) · exp

[
−
(1230.2− µ)2

526.32

]
·

[
1−8

(
1344− µ

100

)]12

= L (µ| data) . (2.10)

It can be shown numerically that the left-hand side of Equation 2.10 reaches a maximum at µ = 1271.

(The techniques for showing this do not form part of the requirements of this module.) Thus, the

relative likelihood function of µ is

r (µ| data) =
L (µ| data)

L (µ = 1271| data)
.
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We now give a table of values for this relative likelihood function and present it graphically in figure

2.3.
µ 1235 1240 1245 1250 1255 1260 1265 1270 1275

r (µ| data) 0.042 0.095 0.188 0.331 0.519 0.722 0.893 0.980 0.956

µ 1280 1285 1290 1295 1300 1305 1310 1315

r (µ| data) 0.830 0.640 0.439 0.268 0.145 0.070 0.030 0.012

Figure 2.3: Relative likelihood function for Lifetime testing data

Example 2.3.4 (Estimating bacterial densities: Example 1.2.4 continued)

The pathologist in Example 1.2.4 wants to estimate the density of bacteria in some liquid medium

and has, for his purpose, a sample of 4 ml of the liquid available. There are at least two methods

available to him, viz.

(a) The direct method: Draw off three sub-samples of 1 ml each of the liquid and count the number

of bacteria present in each of the sub-samples. (As a result of some wastage in the drawing off

process he cannot obtain four sub-samples.)
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(b) The dilution method: Draw off two sub-samples of 1 ml each and count the number of bacteria in

each. Dilute the remaining 2 ml with an equal volume of non-bacterial medium and repeat. Do

this, say, three times (and assume no wastage).

We now determine which of the methods gives the more precise estimate.

In an experiment involving two separate portions of 4ml of the liquid, the following results were

obtained:

Direct method: counts of 46, 65 and 45

Dilution method: counts of 54 and 59 at full density

counts of 28 and 21 at 1/2 density

counts of 11 and 12 at 1/4 density

counts of 3 and 8 at 1/8 density

We assume that the number of bacteria per ml has a Poisson distribution with mean λ.

(a) The DIRECT METHOD gives three independent observations from this distribution and the

likelihood function is thus

λ46 · e−λ · λ65 · e−λ · λ45 · e−λ = λ156 · e−3λ .

Differentiating this equating the derivative to zero, and solving the equation for λ, we find that the

maximum is reached at λ =
156

3
= 52. Thus, the relative likelihood function is

rDIRECT (λ) = (λ/52)156 · exp (−3λ+ 156) , λ > 0 .

We tabulate rDIRECT (λ) for various values of λ :

λ 43 44 45 46 47 48 49 50 51 52

rDIRECT (λ) 0.071 0.127 0.211 0.324 0.463 0.615 0.763 0.888 0.971 1.000

λ 53 54 55 56 57 58 59 60 61 62

rDIRECT (λ) 0.972 0.894 0.779 0.645 0.508 0.381 0.273 0.187 0.123 0.077

(b) For the DILUTION METHOD we have four series of independent observations, two at mean λ,

two at λ/2, two at λ/4 and two at λ/8. The likelihood function is therefore

λ54+59 · e−2λ · λ28+21 · e−λ · λ11+12 · e−λ/2 · λ3+8 · e−λ/4 = λ196 · e−15λ/4 .

Differentiating this, we find that in this case the maximum is achieved at λ = 4 × 196/15 = 52.27

and the relative likelihood function is

rDILUTION (λ) = (λ/52.27)196 · exp ((−15λ/4)+ 196) , λ > 0 .
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We tabulate rDILUTION (λ) for various values of λ :

λ 43 44 45 46 47 48 49 50 51 52

rDILUTION (λ) 0.030 0.064 0.124 0.216 0.344 0.501 0.671 0.827 0.943 0.998

λ 53 54 55 56 57 58 59 60 61 62

rDILUTION (λ) 0.981 0.900 0.772 0.620 0.469 0.333 0.223 0.142 0.085 0.048

Graphs of the two relative likelihood functions are displayed in figure 2.4. Clearly, the dilution

method seems to be slightly more informative than the direct method in this particular case.

(Why?)

Figure 2.4: Relative likelihood function for estimating bacterial densities

data using the direct method and the dilution method

2.4 Likelihood Equivalence

We discussed in the previous sections (sections 2.2 and 2.3) that for any data set x , the likelihood

function contains all the information in the data about θ . The question which follows naturally from

this is: “What happens when two different data sets produce the same likelihood function?” In terms

of our desire to estimate the value of the parameter θ , the two data sets are equally informative and

in this sense they are said to be equivalent.



30

Definition 2.4.1 (Likelihood equivalence)

Let x and y be two different data sets for a particular statistical model.

(i) The data sets are said to be likelihood equivalent, written x
lik
∼ y, if they determine identical

likelihood ratios, i.e. if

r (θ1; θ0| x) = r (θ1; θ0| y) for all θ0, θ1 ∈ 2 . (2.12)

(ii) Let L1 ( ·| x) and L2 ( ·| y) be likelihood functions for θ which are generated by x and y respectively.

These likelihood functions are said to be equivalent written L1 ( ·| x) ∼ L2 ( ·| y), if for every θ ∈ 2

their ratio depends only on x and y, and not on θ , i.e.

L1 (θ | x)
L2 (θ | y)

= K (x; y) for all θ ∈ 2 . (2.13)

Proposition 2.4.1

Two data sets are likelihood equivalent if, and only if, they generate equivalent likelihood functions.

Proof:

Suppose that x
lik
∼ y. Let L1 ( ·| x) and L2 ( ·| y) be likelihood functions generated by them and let

θ0 ∈ 2 be arbitrary but fixed. Then, by the definition of likelihood equivalence,

r (θ; θ0| x) = r (θ; θ0| y) for all θ ∈ 2 .

Taking

K (x; y) =
L1 (θ0| x)
L2 (θ0| y)

,

the equation above becomes

L1 (θ | x) = K (x; y) · L2 (θ | y) ,

showing that x and y generate equivalent likelihood functions.

The proof of the converse is self-assessment Exercise 2.4.1.

We will return to this section on Likelihood Equivalence when we discuss sufficiency in a future study

unit. In that study unit we will provide examples and exercises on this section.

Self–assessment exercise 2.4.1

Prove that if two data sets x and y generate equivalent likelihood functions then they are likelihood

equivalent.
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2.5 Log-likelihood Function

We often find derivatives (first, second or higher order) with respect to θ of the likelihood function,

mainly to determine the value of θ that maximizes the likelihood function. Usually it is easier to

work with the natural logarithm of the likelihood function than with the likelihood function itself. This

is because the multiplicative constant K (x) in the formula for L (θ | x) does not fall away when we

differentiate with respect to θ . If we take the natural logarithm of the likelihood function, however, the

multiplicative constant K (x) becomes an additive constant ln K (x) which does fall away when we

differentiate with respect to θ .

Definition 2.5.1 (Log-likelihood function)

The natural logarithm of the likelihood function L (θ | x) is denoted by ` (θ | x) and is called the log-

likelihood function, i.e.

` (θ | x) = ln L (θ | x) .

Since the function t → ln t , (t > 0) is continuous and strictly increasing (monotonically increasing)

with t , it follows that the value of θ which maximizes L (θ | x) will also maximize ` (θ | x), and

conversely. Note also that we could very well define the log-likelihood function as ` (θ | x) =

log L (θ | x).

As a demonstration, refer to the data in Example 2.1.1. figure 2.5, is a plot of the likelihood function

and the log-likelihood function. Note for this data that the likelihood function is given by

L(θ |data) = p ( x = 4| θ) =

(
20

4

)
· θ4 · (1− θ)16

and the log-likelihood function is given by

`(θ |data) = ln p ( x = 4| θ) = ln

[(
20

4

)
· θ4 · (1− θ)16

]
= ln

[(
20

4

)]
+ 4 ln(θ)+ 16 ln(1− θ) = 4 ln(θ)+ 16 ln(1− θ) .

As you can see, all three graphs have a maximum at θ = 0.2. Also it is noticeable that ln L(θ |x) and

log L(θ |x) are identical in shape and with regard to the θ axis. They only differ with regard to the

vertical axis.

Figure 2.5: Graph of p (x = 4|θ) vs θ on the left, ln p (x = 4|θ) vs θ in the middle,

and log p (x = 4|θ) vs θ on the right
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2.6 Maximum Likelihood Estimators (MLE)

One of the main purposes of inference is to estimate the unknown parameter θ . With this in mind,

the method of maximum likelihood is, by far, the most popular technique for deriving estimators. For

this reason some may argue that this section should be appropriately discussed in the study unit

that follows on Point Estimation. However, I felt it necessary to discuss it here as it concerns the

likelihood function and it gives meaning to section 2.3 on the Relative Likelihood.

Definition 2.6.1 (Maximum Likelihood Estimator (MLE))

Suppose that the likelihood function attains its maximum at a point θ̂ ≡ θ̂ (x) in 2, i.e. θ̂ ∈ 2 and

L

(
θ̂
∣∣∣ x) ≥ L (θ | x) for all θ ∈ 2. Then θ̂ (X) is called a maximum likelihood estimator (MLE) of θ and

θ̂ (x) is the maximum likelihood estimate.

.

There is a second definition of the maximum likelihood estimate (MLE):

Definition 2.6.2 (Maximum Likelihood Estimator (MLE))

The maximum likelihood estimator of θ is the value θ̂ ≡ θ̂ (x) for which L(θ̂ |x) = sup
θ∈2

L (θ | x). The

maximum likelihood estimator (MLE) of θ is denoted by θ̂ (X).

By Definition 2.6.2, Definition 2.3.1 concerning the relative likelihood function makes sense. You can

now see that the relative likelihood is the ratio of the likelihood to the maximum likelihood estimated

by the MLE, i.e. the MLE substituted into the likelihood function.

r (θ | x) =
p (x| θ)

sup
θ∈2

p (x| θ)
=

L (θ | x)
sup
θ∈2

L (θ | x)
=

L (θ | x)

L

(
θ̂
∣∣∣ x) .

The MLE is the “most plausible” estimate of the true (but unknown) θ in the sense that the model

function indexed by θ = θ̂ assigns a higher probability to the observed data x than does a model

function indexed by any other θ , i.e.

f

(
x| θ̂

)
≥ f (x| θ) for all θ ∈ 2 .

Often the MLE can be found by differentiating the likelihood function with respect to θ , setting the

derivative equal to zero and solving for θ . Usually it is easier to work with the logarithm of the

likelihood function than with the likelihood function itself. Note that the MLE CANNOT ALWAYS be

found through differentiating. Sometimes it can be found by simply observing the likelihood function

(will demonstrate this later) and sometimes it can only be found through iterative numerically analysis

(out of scope of this module).
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To determine the MLE through differentiation, if possible:

· Determine the likelihood function.

· Find the first derivative of the likelihood function (or log-likelihood function) with respect to the

unknown parameter, say θ .

· Set this equation (first derivative) equal to zero.

· Replace θ by θ̂ .

· Then solve for the unknown θ̂ .

Mathematically, the above is equivalent to

d

dθ
L(θ |x)

∣∣∣∣
θ=θ̂
= 0 for θ̂

or
d

dθ
l(θ |x)

∣∣∣∣
θ=θ̂
= 0 for θ.

This gives us the value for the parameter that maximizes the likelihood function.

If there is more than one parameter, to determine the MLE through differentiation, if possible:

· Determine the likelihood function.

· Find the first derivative of the likelihood function (or log-likelihood function) with respect to each of

the unknown parameters, say θ i , i = 1, 2, . . . , k.

· Set these equations (first derivatives) equal to zero.

· Replace θ i by θ̂ i .

· Then solve for the unknown θ̂ i simultaneously.

Mathematically, the above is equivalent to

d

dθ i

L(θ1, θ2, . . . , θk |x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
θ1 = θ̂1

...

θk = θ̂k

= 0
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or

d

dθ i

l(θ1, θ2, . . . , θk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
θ1 = θ̂1

...

θk = θ̂k

= 0

Note that the MLE is a statistic, in other words, a function (X1, X2, . . . , Xn) and is denoted as θ̂ for

an unknown parameter θ , that is,

θ̂ ≡ θ̂ (X) .

Example 2.6.1 (One parameter case)

Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution, X i ∼ POI(θ), with

probability mass function

f (xi |θ) =
e−θθ xi

xi !
, xi > 0 .

Then the likelihood function is:

L(θ |x) =
n∏

i=1

e−θθ xi

xi !
=

e−nθθ
∑

xi∏n
i=1 xi !

⇒ ln L(θ |x) = −nθ +
n∑

i=1

xi ln θ − ln

(
n∏

i=1

xi !

)

⇒
∂

∂θ
ln L(θ |x) = −n +

1

θ

n∑
i=1

xi .

Setting
∂

∂θ
ln L(θ |x)

]
θ=θ̂
= 0 gives − n +

1

θ̂

n∑
i=1

xi = 0. Hence θ̂ =
1

n

n∑
i=1

X i = X is the MLE of

θ.

Example 2.6.2 (Binomial distribution: Example 2.1.1 continued)

In Example 2.1.1 the experiment consisted of 20 tosses of a coin with a probability θ of obtaining a

head at each toss. In the particular experiment, x = 4 heads were obtained. Since

p ( x = 4| θ) =

(
20

4

)
· θ4 · (1− θ)16

the likelihood function is

L (θ | x = 4) = K · θ4 · (1− θ)16
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and

ln L (θ | x = 4) = K + 4 log θ + 16 ln (1− θ) .

Differentiating with respect to θ gives

∂

∂θ
ln L (θ | x = 4) =

4

θ
−

16

1− θ
.

Setting
∂

∂θ
ln L(θ |x)

]
θ=θ̂
= 0 gives

4

θ̂
−

16

1− θ̂
= 0 i.e.

4

θ̂
=

16(
1− θ̂

) or θ̂ =
4

20
=

0.2 is the maximum likelihood estimate of θ.

Example 2.6.3 (Two parameter case)

Let X1, X2, . . . , Xn denote a random sample from a Normal distribution, X i ∼ N(µ, θ), with density

function:

f (xi |µ; θ) =
1
√

2πθ
exp

[
−

1

2θ
(xi − µ)

2

]
, xi ∈ R .

Then the likelihood function is

L(µ, θ |x) =
n∏

i=1

(2πθ)−
1
2 exp

[
−
(xi − µ)2

2θ

]
= (2πθ)−

n
2 exp

[
−

n∑
i=1

(xi − µ)2

2θ

]

⇒ ln L(µ, θ |x) = −
n

2
ln 2π −

n

2
ln θ −

1

2θ

n∑
i=1

(xi − µ)
2

⇒
∂

∂µ
ln L(µ, θ |x) =

2

n∑
i=1

(xi − µ)

2θ
and

∂

∂θ
ln L(µ, θ |x) = −

n

2θ
+

n∑
i=1

(xi − µ)2

2θ2
.

Setting
∂

∂µ
ln L (µ, θ |x) µ = µ̂

θ = θ̂

= 0 gives

n∑
i=1

(
X i − µ̂

)
θ̂

= 0. Hence µ̂ =
1

n

n∑
i=1

X i = X̄ is

the MLE of µ.

Setting
∂

∂θ
ln L(µ, θ |x)

]
µ = µ̂
θ = θ̂

= 0 gives −
n

2
θ̂ +

n∑
i=1

(X i − µ̂)2

2θ̂
= 0. Hence i.e. θ̂ =

1

n

n∑
i=1

(X i − X)2 is the MLE of θ.
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Example 2.6.4 (MLE found NOT through differentiating L(θ |x))

Let
f (xi |θ) =

1
θ , 0 < xi ≤ θ, 0 < θ <∞,

= 0, elsewhere,

and let X1, X1, . . . , Xn denote a random sample from this distribution.

Note that

f (xi |θ) =
1

θ
, 0 < xi ≤ θ

=
1

θ
· I[0,θ ](xi ) .

where I[0,θ ] (xi ) = 1 if 0 < xi ≤ θ and 0 otherwise.

Then the likelihood function is

L(θ |x) =
n∏

i=1

1

θ
· I[0,θ ](xi ) =

1

θn
·

n∏
i=1

I[0,θ ](xi ) =
1

θn
· I[0,θ ](x(n))

where x(n) = max(xi ). In this case L(θ |x) is an ever-decreasing function of θ . The maximum of

such functions cannot be found by differentiation but by selecting θ as small as possible. This often

occurs when the range of xi depends on the unknown parameter θ as in this case: 0 < xi ≤ θ . Now

θ ≥ each xi ; in particular, then, θ ≥ max(xi ). Thus L(θ |x) can be made no larger than

1

[max(xi )]n
=

1

x(n)

and the unique maximum likelihood statistic θ̂ for θ in this example is the nth order statistic X(n). Thus

θ̂ = X(n).

Example 2.6.5 (MLE not unique)

Let
f (xi |θ) = 1, θ − 1

2
≤ xi ≤ θ +

1
2
, −∞ < θ <∞,

= 0, elsewhere

and let X1, X2, . . . , Xn denote a random sample from this distribution.

Note that

f (xi |θ) = 1, θ −
1

2
≤ xi ≤ θ +

1

2

= 1 · I
[θ− 1

2
,θ+ 1

2
]
(xi ) .
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Then the likelihood function is

L(θ |x) =
n∏

i=1

1 · I
[θ− 1

2
,θ+ 1

2
]
(xi ) = 1n ·

n∏
i=1

I
[θ− 1

2
,θ+ 1

2
]
(xi ) = I[θ− 1

2
,θ+ 1

2
]
(x(1)) · I[θ− 1

2
,θ+ 1

2
]
(x(n))

where x(1) = min(xi ) and x(n) = max(xi ). In this case L(θ |x) attains its maximum provided

θ −
1

2
≤ x(1) and x(n) ≤ θ +

1

2
,

or when

θ ≤ x(1) +
1

2
and x(n) −

1

2
≤ θ .

So every statistic θ̂ (X) such that

X(n) −
1

2
≤ θ̂ (X) ≤ X(1) +

1

2

is a maximum likelihood estimator for θ . The length of the random interval [X(n) −
1
2
, X(1) +

1
2
] is

X(1) +
1

2
−

[
X(n) −

1

2

]
= 1+ X(1) − X(n) .

For each b, 0 ≤ b ≤ 1,

X(n) −
1

2
+ b

[
1+ X(1) − X(n)

]
= bX(1) + (1− b)X(n) + b −

1

2

is in the interval X(n) −
1
2
, X(1) +

1
2
. Thus for each b, 0 ≤ b ≤ 1,

θ̂ = bX(1) + (1− b)X(n) + b −
1

2

is a maximum likelihood statistic for the parameter θ . One such statistic is when b = 1
2
, then

θ̂ = [X(1) + X(n)]/2. Thus the uniqueness is not in general a property of a maximum likelihood

estimator for a parameter. Note also that when b = 0, θ̂ = X(n) and when b = 1, θ̂ = X(1).

A useful property of maximum likelihood estimators is what has come to be known as the invariance

property of maximum likelihood estimators. Suppose that a distribution is indexed by a parameter

θ , but the interest is in finding the MLE for some function of θ , say τ(θ). Informally speaking, the

invariance property of MLEs says that if θ̂ is the MLE of θ , then τ(θ̂) is the MLE of τ(θ). For example,

if θ̂ = X is the MLE of θ in the Poisson distribution, then sin(θ̂) = sin(X) is the MLE of sin(θ).

Theorem 2.6.1 (Invariance property of MLE(s))

If θ̂ is the MLE of θ, then for any function τ (θ) , the MLE of τ (θ) is τ
(
θ̂
)
.
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Example 2.6.6 (Invariance property of MLE’s)

Let X1, X2, . . . , Xn denote a random sample from an Exponential distribution, X i ∼ EXP(λ), with

probability density function:

f (xi |λ) = λ
e−λxi

, xi > 0.

In this problem you will see that it is helpful to recall results derived in STA2603 (Distribution Theory),

for example: If X ∼ EXP(λ) then

E(X) =
1

λ
var(X) =

1

λ2
F(x) = P(X ≤ x) = 1− e−λx .

Now, the likelihood function is

L(λ|x) =
n∏

i=1

λe−λxi = λne−λ
∑

xi

⇒ ln L(λ|x) = n ln λ− λ
n∑

i=1

xi

⇒
∂

∂λ
ln L(λ|x) =

n

λ
−

n∑
i=1

xi .

Setting
∂

∂λ
ln L(λ|x)

]
λ=λ̂
= 0 gives

n

λ
−

n∑
i=1

xi = 0. Hence λ̂ =
1

n

n∑
i=1

X i = X is the MLE of λ.

From Theorem 2.6.1

· the MLE of E(X) = 1

λ̂
= 1

X
.

· the MLE of var(X) = 1

λ̂
2 =

1

X
2 .

· the MLE of P(X > 1) = 1− P(X ≤ 1) = e−λ̂ = e−X .

· the MLE of the 100αth percentile xα, such that F(xα) = α, i.e. 1− e−λxα = α, is

x̂α = −
1

λ̂
ln(1− α) = − 1

X
ln(1− α).
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2.7 Method of Moments Estimators (MME)

Again, like the MLE, the method of moments estimators (MME) should be appropriately discussed

in the study unit that follows on Point Estimation. However, this time, although the MME has nothing

to do with the likelihood function, I felt it necessary to discuss it here, as a second type of point

estimation of the unknown parameter θ and comparing the MME to the MLE.

The method of moments is, perhaps, the oldest method of finding point estimators, dating back at

least to Karl Pearson in the late 1800s. It has the virtue of being quite simple to obtain and almost

always yields some sort of estimate. In many cases, unfortunately, this method yield estimators that

may be improved upon. However, it is a good place to start when other methods prove intractable.

Let X1, X2, . . . , Xn be a set of random variables with density function given by f (xi |θ1, θ2, . . . , θk).

Recall from STA2603 (Distribution Theory ), the j th moment about the origin was defined as

µ j = E(X j ) .

The corresponding j th sample moment, µ̃ j , based on the random sample X1, X2, . . . , Xn is defined

as

µ̃ j =
1

n

n∑
i=1

X
j

i .

We can view µ̃ j as an estimate of µ j . The MMEs are found by equating µ j to µ̃ j , i.e. equating E(X j )

to
1

n

n∑
i=1

X
j

i , beginning with j = 1, and continuing until there are enough equations to provide unique

solutions for θ1, θ2, . . . , θk . Denote these solutions by θ̃1, θ̃2, . . . , θ̃k , found from the equations

µ̃ j = µ j .

Suppose, for example, that we wish to estimate two parameters, θ1 and θ2. If θ1 and θ2 can be

expressed in terms of the first two moments as

θ1 = f1(µ1, µ2) and θ2 = f2(µ1, µ2)

then the method of moments estimates of θ1 and θ2 are

θ̃1 = f1(µ̃1, µ̃2) and θ̃2 = f2(µ̃1, µ̃2)

respectively.

The construction of a method of moments estimate involves three basic steps:

1. Calculate low order moments, finding expressions for the moments in terms of the parameters.

Typically, the number of low order moments needed will be the same as the number of parameters.

2. Invert the expressions found in the preceding step, finding new expressions for the parameters in

terms of the moments.



40

3. Insert the sample moments into the expressions obtained in the second step, thus obtaining

estimates of the parameters in terms of the sample moments.

Example 2.7.1 (One parameter case)

Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution, X i ∼ POI(θ), with

probability mass function

f (xi |θ) =
e−θθ xi

xi !
, xi > 0 .

From STA2603 (Distribution Theory ), we know that E(X i ) = θ and var(X i ) = θ . Since there is only

one unknown parameter θ , we will have just one equation. The first sample moment is

µ̃1 = X =
1

n

n∑
i=1

X i

which is, therefore, the method of moments estimate of θ , i.e. θ̃ = X . Note that in this case the MLE

(see Example 2.6.1) and the MME resulted in the same statistic as a point estimate of θ . This will

not always be the case.

Example 2.7.2 (Two parameter case)

Let X1, X2, . . . , Xn denote a random sample from a Normal distribution, X i ∼ N(µ, θ), with density

function

f (xi |µ; θ) =
1
√

2πθ
exp

[
−

1

2θ
(xi − µ)

2

]
, xi ∈ R .

From STA2603 (Distribution Theory ), we know that E(X i ) = µ and var(X i ) = σ 2. Since there are

two unknown parameters µ and σ 2, we will have two equations. The first and second moments for

the normal distribution are

µ1 = E(X i ) = µ and

µ2 = E(X2
i ) = var(X i )+ [E(X i )]

2 = σ 2 + µ2 .

The first and second sample moments are

µ̃1 = X =
1

n

n∑
i=1

X i and

µ̃2 =
1

n

n∑
i=1

X2
i .
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Equating the j th moment to the j th sample moment, we have

µ̃ = X

σ̃ 2 + µ̃2 =
1

n

n∑
i=1

X2
i .

From these two equations, we arrive at

µ̃ = X

σ̃ 2 =
1

n

n∑
i=1

X2
i − µ̃

2 =
1

n

n∑
i=1

X2
i − X

2
=

1

n

n∑
i=1

(X i − X)2

which are, therefore, the method of moments estimate of µ and σ 2, i.e. µ̃ = X and µ̃ =
1

n

n∑
i=1

(X i − X)2. Note that in this case the MLE (see Example 2.6.3) and the MME resulted in the

same statistic as the point estimates of µ and σ 2.

Example 2.7.3 (One parameter case)

Let X1, X2, . . . , Xn denote a random sample with the density function

f (xi |θ) = θx
θ−1
i , 0 < x < 1 .

Note that we need E(X i ) to determine the MME for θ .

E(X i ) =

∫ 1

0

x θ xθ−1 dx = θ

∫ 1

0

xθ dx =
θ

θ + 1
xθ+1

]1

0

=
θ

θ + 1
.

Since there is only one unknown parameter θ , we will have just one equation. The first sample

moment is

µ̃1 = X =
1

n

n∑
i=1

X i .

So, from the above, we need to set E(X i ) = X , that is,

X =
θ̃

θ̃ + 1
∴ X(θ̃ + 1) = θ̃ ∴ X = θ̃ − θ̃X = θ̃ (1− X)

∴ θ̃ =
X

1− X
is the MME of θ.

Let us now work out the MLE of θ .

L(θ |x) =
n∏

i=1

θ x
θ−1
i = θn

n∏
i=1

x
θ−1
i



42

∴ ln L(θ |x) = n ln θ + (θ − 1)
n∑

i=1

ln xi

d

dθ
ln L(θ |x) =

n

θ
+

n∑
i=1

ln xi .

Set
d

dθ
ln L(θ |x) = 0 with θ = θ̂

⇒
n

θ̂
= −

n∑
i=1

ln X i ⇒ θ̂ = −
n∑n

i=1 ln X i

is the MLE of θ.

This example clearly shows the different statistics obtained as estimators for θ using the MME and

MLE.

2.8 Higher Order Derivatives of the Likelihood Function

The MLE serves as a rough measure of the position of the likelihood function on the θ -scale. We

can also determine how fast the values of L (θ | x) decrease as θ moves away from θ̂ . This rate of

decrease may be measured by the squared geometrical curvature of the log-likelihood curve at θ̂ .

The formula for the squared geometrical curvature of ` (θ | x) is given by∣∣ ῭ (θ | x)∣∣[
1+

{
˙̀ (θ | x)

}2
]3
.

Note that we have used the notation:

˙̀ =
d

dθ
ln L(θ |x)

῭ =
d2

dθ2
ln L(θ |x)

...
` =

d3

dθ3
ln L(θ |x) .

For θ = θ̂ , the squared geometrical curvature reduces to − ῭
(
θ̂
∣∣∣ x) because ˙̀

(
θ̂
∣∣∣ x) = 0 (since in

order to find the MLE we set this equation to zero) and ῭
(
θ̂
∣∣∣ x) is negative.

At this stage, you are probably wondering why we have used the notation ˙̀,
··
` and

···
` instead of

using ˙̀′, `′′ and `′′′ with which you are more familiar. The reason is that each of these equations are

functions of both θ and x. Hence we can also find the derivatives of each of them with respect to x ,

for example, d
dx

ln L(θ |x). We reserve the “prime” notation for derivatives with respect to x , i.e.,

`′ =
d

dx
ln L(θ |x) `′′ =

d2

dx2
ln L(θ |x) `′′′ =

d3

dx3
ln L(θ |x) .
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2.8.1 Observed information

Definition 2.8.1 (Observed information)

The observed information, I (x), is given by the square of the geometrical curvature of the log-

likelihood function at θ = θ̂ , i.e.

I (x) = − ῭
(
θ̂
∣∣∣ x) . (2.15)

Example 2.8.1 (Binomial distribution: Example 2.2.2 continued)

Refer back to figure 2.2 in Example 2.2.2 and the discussion about it. A series of 20 coin tosses

yielded x = 4 heads whereas a series of 40 tosses yielded u = 8 heads. The log-likelihood functions

are

` (θ | x = 4) = K + 4 ln θ + 16 ln (1− θ) (2.16)

and

` (θ | u = 8) = K + 8 ln θ + 32 ln (1− θ) (2.17)

respectively. Satisfy yourself that the MLE is θ̂ = 0.2 in both cases but that I (x) = 125 whereas

I (u) = 2 · I (x) = 250. The observed information in the data u is thus larger (and thus better) than

that in x .

Example 2.8.2 (Estimating bacteria densities: Example 2.3.4 continued)

In Example 2.3.4 the log-likelihood functions for the two methods of estimating bacterial densities

are given by

(a) `DI RECT (λ) ≡ `1 (λ) = K + 156 ln λ− 3λ, λ > 0

and

(b) `DI LUT I O N (λ) ≡ `2 (λ) = K + 196 ln λ− 3.75λ, λ > 0 .
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It follows that

˙̀
1 (λ) =

156

λ− 3
and ˙̀

2 (λ) =
196

λ− 3.75

῭
1 (λ) =

−156

λ2
and ῭

2 (λ) =
−196

λ2

and we obtain
λ̂1 = 52 and λ̂2 = 52.27;

− ῭1
(
λ̂1

)
= 0.0577 and − ῭2

(
λ̂2

)
= 0.0717 .

Thus, although the two methods give approximately the same estimate of the bacterial density, the

observed information for the dilution method is about 1.24 times larger than that for the direct method

and is thus the better method.

2.8.2 Degree of asymmetry

A third important characteristic of the likelihood function is the degree of symmetry around θ̂

for values of θ close to θ̂ . (The log-likelihood is symmetric in the vicinity of θ̂ if `
(
θ̂ +1

∣∣∣ x) =
`
(
θ̂ −1

∣∣∣ x) for small values of 1.)

Definition 2.8.2 (Degree of symmetry)

The degree of symmetry may be measured in terms of quantity

J (x) =
...
`
(
θ̂
∣∣∣ x) . (2.18)

Remark 2.8.1

J J (x) is analogous to the third moment of a distribution, which is a measure of skewness.

2.8.3 Peakedness/Kurtosis

Definition 2.8.3 (Peakedness/Kurtosis)

Finally, we could also consider the peakedness or kurtosis of the log-likelihood function, which is

measured in terms of the quantity

M (x) = −
....
`
(
θ̂
∣∣∣ x) . (2.19)



45 STA3702/001

2.9 Approximating the Likelihood Function

Given the four quantities θ̂ (x), I (x) , J (x) and M (x), we would like to know to what extent they

provide an adequately condensed description of the likelihood function. That is, to what extent is it

possible to reconstruct an observed likelihood function or relative likelihood function if we know just

the values of these four quantities?

Consider a Taylor expansion to k + 1 terms (k = 2, 3, 4) around θ̂ :

` (θ | x)− `
(
θ̂
∣∣∣ x) = k∑

r=2

1

r !
·
(
θ − θ̂

)r

·
∂

∂θr
`r
(
θ̂
∣∣∣ x)+ Rk+1 . (2.20)

The remainder term Rk+1 is the order of
(
θ − θ̂

)k+1

and can therefore be expected to be negligible

for θ “close” to θ̂ . Since the relative likelihood function is given by

r (θ | x) = L (θ | x) /L

(
θ̂
∣∣∣ x) = exp

[
` (θ | x)− `

(
θ̂
∣∣∣ x)] (2.21)

we have the following approximations to the first, second and third orders:

r (θ | x) ≈ exp

[
−

1

2
·
(
θ − θ̂

)2

· I (x)
]

(2.22)

r (θ | x) ≈ exp

[
−

1

2
·
(
θ − θ̂

)2

· I (x)+
1

6
·
(
θ − θ̂

)3

· J (x)
]

(2.23)

r (θ | x) ≈ exp

[
−

1

2
·
(
θ − θ̂

)2

· I (x)+
1

6
·
(
θ − θ̂

)3

· J (x)−
1

24
·
(
θ − θ̂

)4

· M (x)
]
. (2.24)

The following examples serve to illustrate the use of these approximations.

Example 2.9.1 (Estimating bacteria densities: Example 2.3.4 continued)

In this example let us compare the exact relative likelihood function for the direct method with the

first- and second-order approximations given by Equation 2.22 and Equation 2.23. For the data at

hand we have

λ̂ = 52; I (x) = − ῭
(
λ̂
∣∣∣ x) = 0.0577

and

J (x) =
...
`
(
λ̂
∣∣∣ x) = 0.002219 .

The first-order approximation to the relative likelihood is

exp
[
−0.02885 · (λ− 52)2

]
and the second-order approximation is

exp
[
−0.02885 · (λ− 52)2 + 0.00037 · (λ− 52)3

]
.

The exact (relative) likelihood (E) and the first- and second-order approximations (O1 and O2) are

given in the following table. Plots of the exact likelihood and its first-order approximation are given in
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figure 2.6.

λ 43 44 45 46 47 48 49 50 51 52

E 0.071 0.127 0.211 0.324 0.463 0.615 0.763 0.888 0.971 1.000

O1 0.097 0.158 0.243 0.354 0.486 0.630 0.771 0.891 0.972 1.000

O2 0.074 0.131 0.214 0.327 0.464 0.616 0.764 0.888 0.971 1.000

λ 53 54 55 56 57 58 59 60 61 62

E 0.972 0.894 0.779 0.645 0.508 0.381 0.273 0.187 0.123 0.077

O1 0.972 0.891 0.771 0.630 0.486 0.354 0.243 0.158 0.097 0.056

O2 0.972 0.894 0.779 0.645 0.509 0.383 0.276 0.191 0.127 0.081

Figure 2.6: Exact and first-order approximation of the relative likelihood

function
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Note that the second-order approximation is virtually indistinguishable from the exact likelihood. Even

the first-order approximation is remarkably close, particularly near λ̂. So in this case the information

in the data may be summarized succinctly by quoting just the values of λ̂ and I (x) .

Knowing these two values, one can reconstruct the likelihood function almost exactly using the first-

order approximation

exp

[
−

1

2
·
(
λ− λ̂

)2

· I (x)
]
.

One does not need to know the original data, nor what model we used to represent the data, nor

how the experiment was carried out.

Example 2.9.2 (Binomial distribution: Example continued)

Consider once again the experiment which yielded four heads in twenty tosses of a θ -coin. In this

case we have
θ̂ = 0.2; I (x) = 125;
J (x) = 937.5 and M (x) = 15 234.384 .

We tabulate the exact relative likelihood (E) together with the first-, second- and third-order

approximations (O1, O2, O3). The exact likelihood and the first- and second-order approximations

are plotted in figure 2.7.

θ 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.22

E 0.060 0.239 0.413 0.683 0.835 0.977 1.000 0.977

O1 0.245 0.407 0.535 0.736 0.855 0.975 1.000 0.975

O2 0.145 0.310 0.458 0.698 0.839 0.974 1.000 0.977

O3 0.105 0.272 0.430 0.687 0.835 0.974 1.000 0.999

θ 0.25 0.27 0.30 0.32 0.35 0.37 0.40 0.43

E 0.872 0.766 0.596 0.486 0.339 0.257 0.161 0.096

O1 0.855 0.736 0.535 0.407 0.245 0.164 0.082 0.037

O2 0.872 0.777 0.626 0.533 0.415 0.354 0.287 0.245

O3 0.869 0.765 0.587 0.467 0.301 0.208 0.104 0.042
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Figure 2.7: Exact, first– and second–order approximation of

the relative likelihood function.

The first-order approximation is inadequate, especially in the tails of the likelihood, particularly in the

left tail. The second-order approximation improves the situation in the left tail but overcompensates

in the right tail. It is only at the third order that the approximation seems to be adequate. In this

example it seems that an adequate condensed description of the likelihood function requires at least

four quantities be specified, viz. θ̂ , I (x), J (x) and M (x)

2.10 The Expected (or Fisher) Information

The log-likelihood ` (θ | x) and the MLE θ̂ (x) are random variables because they depend on the

outcome x of the experiment. Hence we can find the mean and variances of the log-likelihood

function and the MLE.

Note also that for an identically independently distributed (i.i.d.) sample of size n, the log-likelihood

is

` (θ | x) = ln

[
n∏

i=1

f (xi |θ)

]
=

n∑
i=1

ln
[

f (xi |θ)
]
.

We now define the expected (or Fisher) information.
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Definition 2.10.1 (Expected (or Fisher) Information)

The expected (or Fisher) information, or simply information about θ , contained in a single observation

x is:

I(θ) = Eθ

[{
d

dθ
ln f (X |θ)

}2
]

and by the lemma below it is also defined as

I(θ) = −Eθ

[
d2

dθ2
ln f (X |θ)

]
.

Note that the above definition is for a sample of size 1, i.e. n = 1. For a random sample of size n,

drawn from a density function f (x |θ), the expected (or Fisher) information is defined below.

Definition 2.10.2 (Expected (or Fisher) Information)

The expected (or Fisher) information, or simply information about θ , contained in a single observation

x is:

I(θ) = In(θ) =
n∑

i=1

Eθ

[{
d

dθ
ln f (X i |θ)

}2
]
= Eθ

[{
d

dθ
`(θ)

}2
]
= Eθ

[{
˙̀(θ)

}2
]

and by the lemma below it is also defined as

I(θ) = In(θ) = −
n∑

i=1

Eθ

[
d2

dθ2
ln f (X i |θ)

]
= −Eθ

[
d2

dθ2
`(θ)

]
= −Eθ

[
῭(θ)

]
.

Note that

In(θ) = n · I(θ) .

Lemma 2.10.1

Under appropriate smoothness conditions on f (x |θ) ,

Eθ

[{
d

dθ
ln f (X |θ)

}2
]
= −Eθ

[
d2

dθ2
ln f (X |θ)

]
.
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If θ0 is the true value of θ , it can also be shown that

var
(
θ̂
)
≈

1

In (θ0)
(2.25)

which can be estimated by replacing θ0 by the MLE or MME estimates.

2.11 Comparing the MLE and the MME

We can judge how good an estimator is of the unknown parameter. One of the ways is to look at the

variance as defined in Equation 2.25. A small variance implies that the estimate is reliable. Hence,

in order to compare the MLE and the MME, we can work out var
(̂
θ
)

and var
(̃
θ
)
, respectively, and the

estimate with in smaller variance is a better estimate. When we replace θ0 in Equation 2.25 by θ̂ or

θ̃ and find the square root of the result, this is known as the standard error of the estimate.

Definition 2.11.1 (Approximate standard error of the estimate)

An approximate standard error of the maximum likelihood estimate is defined as:

se
(̂
θ
)
≈

1√
In
(
θ̂
) ≈ 1
√

I (X)
=

1√
··
l

(
θ̂ |X

) (2.26)

and an approximate standard error of the method of moments estimate is defined as:

se
(̃
θ
)
≈

1√
In
(̃
θ
) ≈ 1√

··
l
(̃
θ |X

) . (2.27)

The choice in using the equation with E

[{
˙̀(̃θ)

}2
]

or E
[{
῭(̃θ)

}]
is left entirely up to you. You will have

to determine which is easier for a particular problem.

Example 2.11.1 (Comparing MLE and MME estimators)

Suppose that X is a discrete random variable with P(X = 1) = θ and P(X = 2) = 1 − θ . Three

independent observations of X are made: x1 = 1, x2 = 2, x3 = 2.

(a) Find the method of moments estimate of θ .

(b) What is the likelihood function?

(c) What is the maximum likelihood estimate of θ?

(d) Compare the MLE and MME estimators by determining approximate standard errors of each of

the estimates.
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Solution:

(a) We have to first determine E(X i ).

E(X i ) =
∑

x

x · f (x |θ) = 1× θ + 2× (1− θ) = θ + 2− 2θ = 2− θ .

Since there is only one unknown parameter θ , we will have just one equation. The first sample

moment is

µ̃1 = X =
1

n

n∑
i=1

X i =
1

3
(1+ 2+ 2) =

5

3
.

Hence to find the MME, we equate the above two, i.e.

2− θ̃ =
5

3
⇒ 6− 3̃θ = 5 ⇒ 3̃θ = 6− 53 ⇒ θ̃ =

1

3
.

The method of moments estimate of θ is θ̃ = 1
3

.

(b) L(θ |x) =
∏3

i=1 f (xi |θ) = θ × (1− θ)× (1− θ) = θ · (1− θ)2 .

(c) ˙̀(θ |x) = d
dθ ln L(θ |x) = d

dθ [ln θ + 2 ln(1− θ)] = 1
θ −

2
1−θ .

To find the MLE, we set ˙̀(θ |x) = 0 with θ = θ̂ :

1

θ̂
−

2

1− θ̂
= 0 ⇒ 1− θ̂ − 2θ̂ = 0 ⇒ 3θ̂ = 1 ⇒ θ̂ =

1

3
.

(d) To determine the approximate standard errors for the MLE and MME, it is easier to work out

῭(θ |x) .

῭(θ |x) =
d2

dθ2
ln L(θ |x) =

d

dθ
˙̀(θ |x) =

d

dθ

[
1

θ
−

2

1− θ

]
= −

1

θ2
+

2

(1− θ)2
(−1) = −

1

θ2
−

2

(1− θ)2
.

Hence ῭
(
θ =

1

3

∣∣∣∣ x) = −
1

(1
3
)2
−

2

(1− (1
3
))2
= −

18

4
− 9 = −13.5 .

Hence var(θ̂) ≈ −
1

E

[{
῭(θ̂)

}] = − 1

−13.5
=

1

13.5
= 0.074 = var(θ̃) .

Hence s.e. (θ̂) ≈
√

0.074 = 0.272 ≈ s.e.(θ̃) .

Hence the MLE and MME are equally reliable in estimating θ .
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2.12 Exercises

Exercise 2.12.1

Let X1, X2, . . . , Xn be a random sample from a distribution with pdf

f (x; θ) =

{
1
θ , 0 < x < θ
0 , elsewhere

(a) Determine the likelihood of θ on the data (x1, x2, . . . , xn).

(b) Obtain the likelihood ratio of θ1 to θ0 = 4 on this data.

(c) determine the MLE of θ .

(d) determine the MLE of θ2 + ln θ .

(e) determine the MME of θ . Note that we cannot determine Fisher information for this problem as

the likelihood function is discontinuous at the MLE.

Exercise 2.12.2

Suppose that in Exercise 2.12.1 the specific data set is

(4.6; 0.3; 4.2; 4.9; 1.2; 4.2; 1.7; 0.9; 2.2; 0.8), i.e. n = 10, x1 = 4.6, . . . , x10 = 0.8. For this data

set,

(a) determine the likelihood of θ .

(b) draw the likelihood of θ .

(c) use the graph the likelihood in part (b) to then obtain the relative likelihood of θ .

(d) draw the relative likelihood of θ .

(e) determine the MLE of θ .

(f) determine the MME of θ .

Exercise 2.12.3

A single observation x , from the geometric distribution with parameter θ , has probability function

f ( x | θ) = (1− θ)x · θ , x = 0, 1, 2, . . .

(If we are tossing a θ -coin we can think of x as the number of tails observed before the first head

appears.) Suppose that we have n observations, x1, x2, . . . , xn, from this distribution.

(a) Determine the likelihood of θ on the data (x1, x2, . . . , xn).

(b) Obtain the likelihood ratio of θ1 to θ0 = 0.5 on this data.

(c) Determine the MLE of θ .

(d) Determine the MLE of P(X ≤ c).
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(e) Determine the MME of θ .

(f) Determine the observed information I (x).

Exercise 2.12.4

Suppose that in Exercise the specific data set is (5; 0; 7; 3; 2), i.e. n = 5, x1 = 5, . . . , x5 = 2. For

this data set,

(a) determine the likelihood of θ .

(b) draw the likelihood of θ .

(c) use the graph the likelihood in part (b) to then obtain the relative likelihood of θ .

(d) draw the relative likelihood of θ .

(e) determine the MLE of θ .

(f) determine the MLE of P(X ≤ 1).

(g) determine the MME of θ .

(h) determine In(θ̂).

(i) determine In(θ̃).

(j) determine the approximate standard error of the MLE.

(k) determine the approximate standard error of the MME.

(l) compare the MLE and MME for the results you obtained in (j) and (k).

(m) approximate the relative likelihood function using the first-, second- and third-order approximation.

(n) draw the exact and first-order approximation of the relative likelihood function on the same graph.

Exercise 2.12.5

Let the random variable X have cdf (cumulative distribution function) given by

F(x; θ1, θ2) =

 1−

(
θ1

x

)θ2

, θ1 ≤ x

0 , elsewhere
where θ1, θ2 > 0 .

If X1, . . . , Xn is a random sample from this distribution, determine

(a) the likelihood function.

(b) the MLEs of θ1 and θ2.

(c) the MLE of the 100pth percentile x p, hence give the MLE of the median of the distribution.
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Exercise 2.12.6

Consider any data set x producing a likelihood function of the form

L (θ | x) = K (x) · θ t(x) · e−u(x)·θ , θ > 0 (∗)

where t (x) and u (x) are two statistics.

(a) Show that θ̂ (x) = t (x)
/

u (x) ,

I (x) = [u (x)]2
/

t (x)

and J (x) = 2 [u (x)]3
/

[t (x)]2 .

(b) Show that if the reparameterization θ → ϕ (θ) = θ
1
3 is introduced, then the likelihood function may

be written as

L∗ (ϕ| x) = K (x) · ϕ3·t(x) · e−u(x)·ϕ3

.

(c) Show that, in terms of this new parameterization, ϕ̂ =
[
t (x) /u (x)

]1
3 ,

I (x) = 9 · [u (x)]
2
3 · [t (x)]

1
3

and J (x) = 0 .

(d) Conclude that even though the first-order approximation to the likelihood in terms of θ may be

poor, the first-order approximation in terms of the new parameter ϕ will probably be excellent.

Exercise 2.12.7

Three independent observations, x1 = 5, x2 = 10 and x3 = 7 were obtained from a Poisson

distribution with unknown mean θ .

(a) Show that the resulting likelihood function is a special case of that given in (∗) in Exercise 2.12.6

with t (x) = x1 + x2 + x3 = 22 and u (x) = 3 .

(b) Draw graphs of the relative likelihood function r (θ | x) and its first-order approximation on the same

set of axes. Do you think that the first-order approximation is adequate?

Exercise 2.12.8

Consider any data set x producing a likelihood function of the form:

L (θ | x) = K (x) · θ t(x) · (1− θ)u(x) , 0 < θ < 1 (**)

where t (x) and u (x) are two statistics.

Show that θ̂ (x) = t (x)
/

[t (x)+ u (x)] ,

I (x) = t (x)
/[
θ̂ (x)2 ·

(
1− θ̂ (x)

)]
and J (x) = 2 · t (x) ·

(
1− 2 · θ̂ (x)

)/[
θ̂ (x)3 ·

(
1− θ̂ (x)

)2
]
.
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Exercise 2.12.9

A coin with P (Heads) = θ was tossed ten times. Heads occurred just once.

(a) Show that the resulting likelihood function for θ is a special case of (∗∗) in Exercise 2.12.8 with

t (x) = 1 and u (x) = 9.

(b) Tabulate and plot the exact relative likelihood function and its first-order approximation on the

same set of axes.
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Study unit 3

3. Point Estimation of Parameters

Aims

To point estimate or unknown parameters (or functions of the unknown parameters). Also to define

appropriate criteria for comparing estimators and to find the “best” estimate of a parameter in

certain circumstances, where “best” is in the sense of being a minimum variance unbiased estimator

(MVUE).

Learning objectives

By the end of this unit you should be able to

- write down, understand and apply the definitions, theorems and propositions which are given

- determine if an estimator is unbiased or biased

- determine the mean square error (MSE) of an estimator

- determine the Cramer-Rao lower bound (CRLB) of an estimator by using the four different forms

of the CRLB

- determine the minimum variance unbiased estimator with the use of the CRLB

- determine if an estimator is efficient or relative efficient

3.1 Estimation

A statistic T = U (X1, . . . , Xn), that is used to estimate θ is called an estimator, while an observed

value of the statistic t = U (x1, . . . , xn) is called a point estimate of θ . In other words, by a “point

estimate of θ ” we mean a statistic, t , which represents our “best guess” of the true value of the

parameter. More generally, we may want to estimate some function g (θ) of θ rather than θ itself. You

have already come across examples of point estimators, such as the method of moments estimator

and the method of maximum likelihood estimator.

Since there are more than one estimators for a parameter (or for a function of a parameter), the next

question is “Which is the best estimator for the parameter?”. To answer this question we have to first

set out certain desirable properties when considering an estimator θ̂ for a parameter θ . One of these

properties is that of unbiasedness.
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3.2 Unbiasedness, Bias and Mean Squared Error

Definition 3.2.1 (Unbiased estimator)

An real valued statistic T ≡ U (X1, . . . , Xn) is called an unbiased estimator of g (θ) if and only if, for

all θ ∈ 2,

Eθ (T ) = g (θ) . (3.1)

A statistic T ≡ U (X1, . . . , Xn) is called a biased estimator of g(θ) if and only if T is not unbiased for

g(θ).

Definition 3.2.2 (Bias)

For a real valued estimator T of g(θ), the amount of bias or simply the bias is given by

biasθ (T ) = Eθ (T )− g (θ) , θ ∈ 2 . (3.2)

It should be intuitive from definition 3.2 that for an unbiased estimator of g(θ), the bias will be zero.

Let us first demonstrate via an example that there are more than one unbiased estimators.

Example 3.2.1

Let X i , i = 1, 2, 3, 4 be a random sample from a N(µ, σ 2) distribution, where µ is unknown and σ is

known. We can define several estimators for µ as follows:

T1 = X1 + X4 T2 =
1
2
(X1 + X3) T3 = X

T4 =
1
3
(X1 + X3) T5 = X1 + T2 − X4 T6 =

1
10

4∑
i=1

i X i
(3.3)

Based on X1, . . . , X4 one can certainly form many other estimators for µ. Now, Eµ(T1) = 2µ,

Eµ(T2) = µ, Eµ(T3) = µ, Eµ(T4) =
2
3
µ, Eµ(T5) = µ and Eµ(T6) = µ. Thus T1 and T4 are both

biased estimators for µ, but T2, T3, T5 and T6 are unbiased estimators of µ.
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We will return to this problem later, since the next related question we would like to address is

“From the four unbiased estimators, which is the best unbiased estimator?”. First, let us get more

acquainted with the method of finding unbiased estimators.

Example 3.2.2

Let X1, X2, . . . , Xn be a random sample from a population with mean µ and variance σ 2. Show that

X is an unbiased estimator of µ and that S2 = 1
n−1

∑n
i=1(X i − X)2 is an unbiased estimator of σ 2.

Solution:

E(X) = E

(
1

n

n∑
i=1

X i

)
=

1

n
E

(
n∑

i=1

X i

)
=

1

n
nE (X i ) =

1

n
nµ = µ .

Hence X is an unbiased estimator of µ.

To show that S2 is an unbiased estimator of σ 2, we will first show that E(X) = µ and var(X) = σ 2

n
.

E(X) = E

(
1

n

n∑
i=1

X i

)
=

1

n

n∑
i=1

E(X i ) =
1

n

n∑
i=1

µ =
1

n
nµ = µ .

var(X) = var

(
1

n

n∑
i=1

X i

)
=

1

n2
var

(
n∑

i=1

X i

)
=

1

n2
nvar (X i ) =

1

n2
nσ 2 =

σ 2

n
.

Recall that var(X) = E(X2)− [E(X)]2, so that E(X2) =var(X)+ [E(X)]2. Similarly, E(X
2
) =var(X)+

[E(X)]2. So

E(S2) = E

[
1

n − 1

n∑
i=1

(X i − X)2

]
= E

[
1

n − 1

(
n∑

i=1

X2
i − nX

2

)]

=
1

n − 1

[
n∑

i=1

E(X2
i )− nE(X

2
)

]

=
1

n − 1

[
n∑

i=1

(
var(X i )+ [E(X i )]

2
)
− n

(
var(X)+ [E(X)]2

)]

=
1

n − 1

[
n∑

i=1

(
σ 2 + µ2

)
− n

(
σ 2

n
+ µ2

)]

=
1

n − 1

[
nσ 2 + nµ2 − σ 2 − nµ2

]
=

1

n − 1

[
(n − 1)σ 2

]
= σ 2 .

Hence S2 is an unbiased estimator of σ 2.

From example 3.2.2 it is clear that the MLE for σ 2, namely, σ̂ 2 = 1
n

∑n
i=1(X i − X)2 is not an unbiased

estimator of σ 2. Note that σ̂ 2 = 1
n

∑n
i=1(X i − X)2 = n−1

n
S2. Hence, E

(
σ̂ 2
)
= n−1

n
E(S2) = n−1

n
σ 2.

So although σ̂ 2 is the MLE for σ 2 it is biased estimator of σ 2, while S2 was shown to be an unbiased

estimator of σ 2.
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Example 3.2.3

Let f (x |θ) = 1
θ , 0 < x < θ, 0 < θ < ∞. Let X1, X2, . . . , Xn be a random sample from a distribution

with this probability density function. Show that

(a) θ̂ = X(n) is the MLE for θ .

(b) θ̂ = X(n) is a biased estimator of θ . Find an unbiased estimator of θ .

Solution:

(a) I leave this as an exercise for you to do.

(b) To examine this we must evaluate E(X(n)). Now the probability density function of X(n) is

g(x(n)) = n[F(x(n))]
n−1 f (x(n)) , 0 < x(n) ≤ θ

= n

( x(n)

θ

)n−1

·
1

θ
=

n

θn
x

n−1
(n) , 0 < x(n) ≤ θ

where F (x) is the cummulative distriubtion function of X.

Thus

E(X(n)) =

∫ ∞
−∞

x(n)g(x(n)) dx(n) =

∫ θ

0

x(n)
n

θn
x

n−1
(n) dx(n) =

∫ θ

0

x
n

θn
xn−1 dx =

n

θn

xn+1

n + 1

]θ
0

=
nθ

n + 1
6= θ.

So θ̂ = X(n) is biased estimator of θ . However, n+1
n

X(n) is an unbiased estimator of θ .

Self–assessment exercise 3.2.1

Show that θ̂ = X(n) is the MLE for θ in example 3.2.3.

Definition 3.2.3 (Mean Squared Error (MSE))

Let T ≡ U (X1, . . . , Xn) be an estimator of g(θ). The mean squared error (MSE) of T is given by

MSE(T ) = Eθ

[
(T − g(θ))2

]
. (3.4)

If T is an unbiased estimator of g(θ), then the MSE or T is the variance of T .

Note that when T is an unbiased estimator for g(θ), then E(T ) = g(θ). Hence MSE(T ) =

E
[
(T − g(θ))2

]
= E

[
(T − E(T ))2

]
=var(T ).

Let us now return to Example 3.2.1.
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Example 3.2.4

In example 3.2.1 we have shown that T2, T3, T5 and T6 are unbiased estimators of µ. Hence, for each

of these the MSE will equal the variance.

MSE(T2) = var(T2) = var

[
1

2
(X1 + X3)

]
=

1

4
[var(X1)+ var(X3)] =

1

4
(σ 2 + σ 2) =

1

2
σ 2 .

MSE(T3) = var(T3) = var

[
1

4
(X1 + · · · + X4)

]
=

1

16
[var(X1)+ · · · + var(X4)] =

1

16
(4σ 2) =

1

4
σ 2 .

MSE(T5) = var(T5) = var

(
3

2
X1

)
+ var

(
1

2
X3

)
+ var (X4) =

[
9

4
+

1

4
+ 1

]
σ 2 =

7

2
σ 2 .

MSE(T6) = var(T6) =
1

100

4∑
i=1

var (i X i ) =
1

100
σ 2

4∑
i=1

i2 =
3

16
σ 2 .

Since T3 = X has the smallest MSE, T3 = X is the best unbiased estimator among the 4 unbiased

estimators considered above. The next question is “How do we estimate the MSE for the biased

estimators T1 and T4?”. We need the following result.

Theorem 3.2.1 (Mean Squared Error)

The MSE associated with T is:

MSE(T ) = Eθ

[
(T − g(θ))2

]
= var(T )+

[
Eθ (T )− g(θ)

]2
. (3.5)

That is, the MSE of T is the variance of T plus the square of the bias of T .

Proof:

MSE(T ) = Eθ

[
(T − g(θ))2

]
= Eθ

[
({T − Eθ (T )} + {Eθ (T )− g(θ)})2

]
= Eθ

[
(T − Eθ (T ))

2
]
+ Eθ

[
(Eθ (T )− g(θ))2

]
+ 2Eθ

[
{T − Eθ (T )} {Eθ (T )− g(θ)}

]
= Eθ

[
(T − Eθ (T ))

2
]
+ (Eθ (T )− g(θ))2 + 2(Eθ (T )− g(θ))Eθ [{T − Eθ (T )}]

= var(T )+
[
Eθ (T )− g(θ)

]2
+ 2(Eθ (T )− g(θ)) [{Eθ (T )− Eθ (T )}]

= var(T )+
[
Eθ (T )− g(θ)

]2
= var(T )+ [Bias(T )]2 .
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Example 3.2.5

In example 3.2.1 we have shown that T1 and T4 are unbiased estimators of µ. Determine the

MSE(T1).

MSE(T1) = var(T1)+
[
Eµ(T1)− µ

]2
= var(X1 + X4)+

[
Eµ(X1 + X4)− µ

]2
= var(X1)+ var(X4)+

[
Eµ(X1)+ Eµ(X4)− µ

]2
= σ 2 + σ 2 + [µ+ µ− µ]2 = 2σ 2 + µ2 .

Self–assessment exercise 3.2.2

Show that MSE(T4) =
1
9
(µ2 + 2σ 2) in example 3.2.1.

Sometimes it is possible to have T1 to be a biased estimator of g(θ) and T2 to be an unbiased

estimator of g(θ), but MSE(T1) < MSE(T2). The next example illustrates this.

Example 3.2.6

Suppose X1, X2, . . . , Xn are iid N(µ, σ 2) where µ, σ 2 are unknown, θ = (µ, σ 2),−∞ < µ < ∞, 0 <

σ < ∞, n ≥ 2. The objective is to estimate g(θ) = σ 2, the population variance. Recall that the

sample variance S2 = 1
n−1

∑n
i=1(X i − X)2 is an unbiased estimator for σ 2 (see Example 3.2.2).

Recall from STA2603 that (n−1)S2

σ 2 has a χ2
n−1 distribution. Also recall from STA2603, the variance for

a χ2
k distribution is 2k. Hence

[
(n−1)S2

σ 2

]
= 2(n − 1). From this, var(S2) = 2(n−1)(σ 2)2

(n−1)2
= 2σ 4

n−1
. Since S2

is an unbiased estimator of σ 2 this implies that var(S2) = 2σ 4

n−1
. Now consider another estimator,

T = (n + 1)−1
n∑

i=1

(X i − X)2

which can be written as (n − 1)(n + 1)−1S2. Hence

Eθ (T ) = (n − 1)(n + 1)−1σ 2 6= σ 2

so that T is a biased estimator of σ 2. Now

var(T ) =
(n − 1)2

(n + 1)2
var(S2) =

(n − 1)2

(n + 1)2
×

2σ 4

n − 1
=

2σ 4(n − 1)

(n + 1)2
.
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Hence

MSE(T ) = var(T )+ [E(T )− σ 2]2 =
2σ 4(n − 1)

(n + 1)2
+

[
n − 1

n + 1
σ 2 − σ 2

]2

= σ 4

[
2(n − 1)

(n + 1)2
+

(
n − 1

n + 1
− 1

)2
]
= σ 4

[
2(n − 1)

(n + 1)2
+

(
−2

n + 1

)2
]

= σ 4

[
2(n + 1)

(n + 1)2

]
=

2σ 4

n + 1
.

Clearly, for n ≥ 2,MSE(T ) < MSE(S2). That is S2 is unbiased for σ 2, T is biased for σ 2, butMSE(T ) is

smaller than MSE(S2) for all θ . Hence in order to find the ‘best’ estimator for an unknown parameter,

we restrict our attention to just those that are unbiased.

3.3 Cramer Rao Lower Bound

As discussed earlier, we compare the performance of two unbiased estimators of g(θ) by obtaining

the variances for each of the unbiased estimators. If T1 and T2 are unbiased estimators of g(θ),

then T1 is preferable to (or is better than) T2 if var(T1) ≤var(T2) for all θ ∈ 2. Ideally, if we can

find an unbiased estimator that has the lowest variance, that unbiased estimator is said to be the

‘best’ estimator of the parameter. The next theorem is useful for determining the lower bound of the

variance of an unbiased estimator.

Theorem 3.3.1 (Cramer–Rao Lower Bound)

Let X1, X2, . . . , Xn denote a random sample from a distribution with probability density function

(p.d.f.) f (x |θ), θ ∈ 2 = {θ; γ < θ < δ}, where γ and δ are known, and where the domain of

X , namely {x : f (x |θ) > 0} does not depend on θ . Let T = U (X1, X2, . . . , Xn) be an unbiased

estimator of some function of θ , say g(θ), where g(θ) is differentiable with respect to θ . Then under

the conditions that the interchange of the operations of differentiation and integration is permissible,

var(T ) ≥

[
g′ 〈θ〉

]2
E

[{
∂ ln L(x|θ)

∂θ

}2
] = −

[
g′ 〈θ〉

]2
E

[
∂2 ln L(x|θ)

∂θ2

] , (3.6)

where L̂(θ |x) is the joint probability density function.

Proof:

The joint probability density function of X1, X2, . . . , Xn is

f (x|θ) =
n∏

i=1

f (xi |θ) (3.7)
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and
∫
· · ·
∫

f (x|θ) dx1dx2 · · · dxn = 1, write
∫

R(n)
f (θ |x) dx = 1, where dx , dx1dx2 · · · dxn.

Differentiating both sides of the equation w.r.t. θ (assuming the interchange of the operations ∂
∂θ and∫

).

0 =

∫
R(n)

∂ f (x|θ)
∂θ

dx =
∫

R(n)

{
1

f (x|θ)
∂ f (x|θ)
∂θ

}
f (x|θ) dx , (3.8)

which can also be written as∫
R(n)

{
1

f (x|θ)
∂ f (x|θ)
∂θ

}
f (x|θ) dx = E

{
1

f (x|θ)
∂ f (x|θ)
∂θ

}
= E

{
∂

∂θ
ln f (x|θ)

}
= 0 . (3.9)

Note that in equation 3.9 we used the property

∂

∂y
ln h(y) =

h′(y)

h(y)

Since T = U (X1, X2, . . . , Xn) is an unbiased estimator of g(θ)

g(θ) = E(T ) =

∫
R(n)

t · f (x|θ) dx . (3.10)

Differentiate both sides w.r.t. θ .

g′(θ) =

∫
R(n)

t ·
∂

∂θ
f (x|θ) dx

=

∫
R(n)

t

{
∂

∂θ
ln f (x|θ)

}
f (x|θ) dx

= E

{
T
∂

∂θ
ln f (x|θ)

}
= E

{
[T − g(θ)]

∂

∂θ
ln f (x|θ)

}
(3.11)

since E
{
g(θ) ∂∂θ ln f (x|θ)

}
= g(θ)E

{
∂
∂θ ln f (x|θ)

}
= 0 from equation 3.9.

By the Schwarz inequality, [E(XY )]2 ≤ E(X2) · E(Y 2),[
g′ (θ)

]2
=

[
E

{
[T − g(θ)]

∂

∂θ
ln f (x|θ)

}]2

≤ E {[T − g(θ)]}2 E

{
∂

∂θ
ln f (x|θ)

}2

= var(T ) · E

{
∂

∂θ
ln f (x|θ)

}2

. (3.12)

Thus

var(T ) ≥

[
g′ (θ)

]2
E

[{
∂ ln f (x|θ)

∂θ

}2
] . (3.13)

From equation 3.9 we have

E

{
∂

∂θ
ln f (x|θ)

}
=

∫
R(n)

{
∂

∂θ
ln f (x|θ)

}
f (x|θ) dx = 0 . (3.14)
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Differentiate both sides w.r.t. θ ,∫
R(n)

[{
∂2

∂θ2
ln f (x|θ)

}
f (x|θ)+

{
∂

∂θ
ln f (x|θ)

}{
∂

∂θ
f (x|θ)

}]
dx = 0 .

∴
∫

R(n)

∂2

∂θ2
ln f (x|θ) f (x|θ) dx+

∫
R(n)

{
∂

∂θ
ln f (x|θ)

}2

f (x|θ) dx = 0 .

E

{
∂2

∂θ2
ln f (x|θ)

}
= −E

[{
∂

∂θ
ln f (x|θ)

}2
]
. (3.15)

Thus

var(T ) ≥

[
g′ (θ)

]2
E

[{
∂ ln f (x|θ)

∂θ

}2
] = −

[
g′ (θ)

]2
E

[
∂2 ln f (x|θ)

∂θ2

] . (3.16)

It is evident from equation 3.15 that the CRLB can be found using either the first or second derivative

of the joint probability density function. The result that follows shows that this is not the only two ways

to determine the CRLB.

Note that f (x|θ) =
∏n

i=1 f (xi |θ).

Thus ln f (x|θ) =
∑n

i=1 ln f (xi |θ). Now

E

[{
∂

∂θ
ln f (x|θ)

}2
]
= E

{ n∑
i=1

∂

∂θ
ln f (xi |θ)

}2
 , let Ui =

∂

∂θ
ln f (xi |θ)

= E

[
n∑

i=1

Ui

]2

= E

[
n∑

i=1

Ui

n∑
j=1

U j

]

=
n∑

i=1

E(Ui )
2 +

∑∑
i 6= j

E(UiU j )

since X1, . . . , Xn are independent rv’s and E

[
∂

∂θ
ln f (xi |θ)

]
= 0

=
n∑

i=1

E

[{
∂

∂θ
ln f (xi |θ)

}2
]
=

n∑
i=1

E

[{
∂

∂θ
ln f (xi |θ)

}2
]

= nE

[{
∂

∂θ
ln f (x |θ)

}2
]
.

Thus the Cramer-Rao lower bound can also be written as

var(T ) ≥

[
g′ (θ)

]2
nE

{
∂
∂θ ln f (x |θ)

}2
. (3.17)

Self–assessment exercise 3.3.1

(a) Show that E
[
∂
∂θ ln f (x |θ)

]
= 0. Hint: This is similar to when we showed E

[
∂
∂θ ln f (x|θ)

]
= 0 in the

proof of theorem 3.3.1.
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(b) Show that

E

{
∂2

∂θ2
ln f (x |θ)

}
= −E

[{
∂

∂θ
ln f (x |θ)

}2
]
.

Hint: This is similar to when we showed

E

{
∂2

∂θ2
ln f (x|θ)

}
= −E

[{
∂

∂θ
ln f (x|θ)

}2
]

in the proof of theorem 3.3.1.

From the above self assessment exercise, the Cramer-Rao lower bound can also be written as

var(T ) ≥

[
g′ (θ)

]2
nE

{
∂
∂θ ln f (x |θ)

}2
=

−
[
g′ (θ)

]2
nE

{
∂2

∂θ2 ln f (x |θ)
} . (3.18)

As a consequence of the CRLB, if T is an unbiased estimator for θ then g(θ) = θ and g′(θ) = 1, and

the CRLB becomes

var(T ) ≥
1

nE
{
∂
∂θ ln f (x |θ)

}2
=

−1

nE

{
∂2

∂θ2 ln f (x |θ)
} . (3.19)

Another rather useful result is that the equality for the CRLB is attained iff ∂
∂θ ln f (x|θ) ∝ T − g(θ) i.e.

iff
∂

∂θ
ln f (x|θ) = A(θ){T − g(θ)} , ∀θ ∈ 2 , (3.20)

where A(θ) is a constant that only depends on θ and not the sample values.

An estimator T of g(θ) which attains the Cramer-Rao lower bound is called a minimum variance

bound estimator (MVBE) of g(θ).

The reason why this is useful, is that if we multiply equation 3.20 by (T − g(θ)) and take expectations

on both sides, we get

(T − g(θ))
∂ ln f (x|θ)

∂θ
= A(θ){T − g(θ)}2

E

[
(T − g(θ))

∂ ln f (x|θ)
∂θ

]
= A(θ)E{T − g(θ)}2

∴ g′(θ) = A(θ)var(T ) from equation (3.11) and T is an unbiased estimator of g (θ)

∴ var (T ) =
g′ (θ)

A (θ)

and if g(θ) = θ , then var(T ) =
1

A(θ)
.

Note that since T is an unbiased estimator for g(θ), T has the minimum variance among all unbiased

estimators and is therefore said to be the minimum variance unbiased estimator (MVUE) of g(θ).

Furthermore, if we can write the first derivative of the ln f (x|θ) or log-likelihood ln L (θ |x) in the form

given by equation 3.20, we can then easily find the var(T ) as well T as the MVUE of θ .
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Note: mathematically L (θ |x) = f (x|θ) , hence as from here and in the subsequent units of this

study guide L (θ |x) and f (x|θ) will be used interchangeably.

Example 3.3.1.

Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution with parameter λ. Then

L(λ|x) =
n∏

i=1

e−λλxi

xi !
=

e−nλλnx∏n
i=1 xi !

,
n∑

i=1

xi = nx .

Thus

ln L(λ|x) = −nλ+ nx ln λ−
n∑

i=1

xi ! .

∴ ∂

∂λ
ln L(λ|x) = −n +

nx

λ
=

n

λ
(x − λ) .

Thus A(λ) = n
λ , g(λ) = λ and t = x .

Thus T = X is a minimum variance unbiased estimator of λ and

var(X) =
1

A(λ)
=
λ

n
.

Definition 3.3.1 (Relative Efficiency)

The relative efficiency of an unbiased estimator T of g(θ) with respect to another unbiased estimator

T ∗ of g(θ) is

re(T, T ∗) =
var(T ∗)

var(T )
. (3.21)

Definition 3.3.2 (Efficient Estimator)

If T is an unbiased estimator of θ then T is called an efficient estimator of θ iff the variance of T

attains the Cramer-Rao lower bound.
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Definition 3.3.3 (Efficiency)

In cases in which we can differentiate with respect to a parameter under an integral or summation

symbol, the ratio of the CRLB to the actual variance of any unbiased estimator is called the efficiency

of the estimator, that is,

e(T ) =
CRLB
var(T )

. (3.22)

Example 3.3.2

In Example 3.3.1, X is an efficient estimator for λ because the variance of X attains the CRLB. Note

that if we can write the first derivative of the log-likelihood in the form in Equation 3.20, then it will

always be the case that T is an efficient estimator of g(θ).

Example 3.3.3

Consider a random sample X1, X2, . . . , Xn from a N(µ, σ 2) distribution. Determine the efficiency of

the estimator S2 = 1
n−1

∑n
i=1(X i − X)2 of σ 2.

Solution:

We know that (n−1)S2

σ 2 ∼ χ2
(n−1), hence we have

var
(
(n−1)S2

σ 2

)
= 2(n − 1), that is, var(S2) = 2σ 4

n−1
.

We now find the CRLB for the unbiased estimators of σ 2.

f (x |σ 2) = (2πσ 2)−
1
2 exp

[
−

1

2

(
x − µ

σ

)2
]

⇒ ln f (x |σ 2) = − ln(2π)− ln σ 2 −
(x − µ)2

σ 2
.

Let σ 2 = θ . ⇒ ln f (x |θ) = −1
2

ln(2π)− 1
2

ln θ − 1
2
(x−µ)2

θ

⇒ ln f (x |θ) = −
1

2θ
+
(x − µ)2

2θ2
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⇒
∂2

∂θ2
ln f (x |θ) = −

(x − µ)2

θ3

∴ −E

[
∂2

∂θ2
ln f (x |θ)

]
=

E(X − µ)2

θ3
−

1

2θ2
=

var (X)

θ3
−

1

2θ2
=
θ

θ3
−

1

2θ2
=

1

θ2
−

1

2θ2
=

1

2θ2

Since g(θ) = θ ⇒ g′(θ) = 1 the CRLB is[
g′(θ)

]2
−nE

[
∂2

∂θ2 ln f (x |θ)
] = 1

n/[2θ2]
=

2θ2

n
.

Hence the CRLB for an unbiased estimator of σ 2 is
2σ 4

n
.

Thus the efficiency of S2 is

e(S2) =
CRLB

var(S2)
=

2σ 4

n

/
2σ 4

n − 1
=

n − 1

n
= 1−

1

n
.

Note that lim
n→∞

e(S2) = lim
n→∞

(
1− 1

n

)
= 1. Thus S2 is asymptotically efficient for σ 2.

3.4 Minimum Variance Unbiased Estimation

Your first encounter at finding the minimum variance unbiased estimator (MVUE) was in

Example 3.3.1. However, let us now formalize the MVUE.

Definition 3.4.1 (Minimum variance unbiased estimator (MVUE))

Let X1, X2, . . . , Xn be a random sample from a distribution with f (x |θ). An estimator T ∗ of g(θ) is

called a minimum variance unbiased estimator (MVUE) of g(θ) if

1. T ∗ is unbiased for g(θ), that is, E(T ∗) = g(θ).

2. for any other unbiased estimator T of g(θ), var(T ∗) ≤var(T ) for all θ ∈ 2.

Note that the CRLB helps us to determine the lowest possible variance for an unbiased estimator. If

the estimator is unbiased and has attained the CRLB then that estimator will be the MVUE for the

unknown parameter.

Thus far I have shown you two ways in obtaining the MVUE for g(θ). The first is to try to write the

first derivative of the log-likelihood function in the form of Equation 3.20. Although this method is

quick and easy it does not work for all problems. The second method is to determine an unbiased

estimator of g(θ). If this unbiased estimator attains the CRLB [CRLB(T ) = var(T )] then the estimator

will be the MVUE. This method is long and can be difficult. We could also have the situation that the
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estimator is unbiased but its variance does not attain the CRLB. In this case we are not sure if there

is another unbiased estimator whose variance does attain the CRLB, so we are not sure if we have

found the MVUE or not. We therefore seek other ways in determining the MVUE, so depending on

the problem you can choose which to use. I will defer further discussions about the MVUE until study

unit 6.

3.5 Exercises

Exercise 3.5.1

Let X1, . . . , Xn be a random sample of size n from a normal distribution, X i ∼ N (µ, σ 2), and define

U =
∑n

i=1 X i and W =
∑n

i=1 X2
i .

(a) Find a statistic that is a function of U and W, and unbiased for the parameter θ = 2µ− 5σ 2.

(b) Find a statistic that is unbiased for σ 2 + µ2.

Exercise 3.5.2

Let X1, . . . , Xn denote a random sample from a Bernoulli distribution, X i ∼ BIN(1, p), with p.m.f.

given by

f (x |p) = px (1− p)1−x , x = 0, 1

(a) Find a MVUE for p.

(b) Determine the variance of the MVUE.

(c) Find the CRLB for an unbiased estimator of q = 1− p.

Exercise 3.5.3

Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f.

f (x |θ) =

{
e−(x−θ) , x > θ
0 , elsewhere

(a) Determine the MLE and MME for θ .

(b) Determine the MSE’s (Mean Square Errors) for each of these 2 estimators.

(c) Which of the 2 estimators has a smaller MSE?

(d) Can you find an estimator of θ that has an even smaller MSE than the MLE and MME estimators

that you found in (a)? If so, what will it be?
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Exercise 3.5.4

Let X1, . . . , Xn denote a random sample from a N(0, θ) distribution with p.d.f.

f (x |θ) =
1
√

2πθ
exp

[
−

x2

2θ

]
, x ∈ R

(a) Is the MLE, θ̂ an unbiased estimator of θ?

(b) Find the MVUE of θ .

(c) What is the variance of θ̂?

(d) Determine the CRLB for an unbiased estimator of θ .
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Study unit 4

4. Sufficiency

Aims

To show how the information contained in a data set can be summarized in terms of a sufficient or

minimal sufficient statistic. To investigate some of the properties of sufficient and minimal sufficient

statistics.

Learning objectives

By the end of this unit you should be able to

- write down, understand and apply the definitions, theorems and propositions which are given

- determine whether a statistic is sufficient for a parameter using the conditional distribution

approach and using the factorization theorem approach

- determine whether a sufficient statistic is minimal sufficient

This study unit introduces the concept of sufficiency. Although at first it might seem that sufficiency

is very unrelated to the previous study unit, it is useful in determining the MVUE.

Suppose that X1, X2, . . . , Xn is a sample from a probability distribution with the density or frequency

function f (x |θ). The concept of sufficiency arises as an attempt to answer the following question: “Is

there a statistic T = U (X1, . . . , Xn), that contains all the information in the sample about θ?”. Any

additional information in the sample, besides the value of the sufficient statistic, does not contain any

more information about θ .

4.1 The Conditional Distribution Approach

Definition 4.1.1 (Sufficient Statistic)

A statistic T = U (X1, X2, . . . , Xn) is said to be sufficient for θ if the conditional distribution of

X1, X2, . . . , Xn, given T = t , does not depend on θ for any value of θ .

We can use the above definition to show that T is a sufficient statistic for θ .
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Example 4.1.1

Let X1, X2, . . . , Xn denote a random sample from a Bernoulli distribution with probability mass

function (p.m.f.)

f (x |θ) = θ x (1− θ)1−x , x = 0, 1 .

The joint p.m.f. of X1, X2, . . . , Xn is

P(X1 = x1, X2 = x2, . . . , Xn = xn) =
n∏

i=1

f (xi |θ) = θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi .

Let Y =
∑n

i=1 X i , that is, the number of successes in n independent trials. Thus, Y ∼ BIN(n, θ).

Now

P(X1 = x1, X2 = x2, . . . , Xn = xn|Y = y) =
P(X1 = x1, X2 = x2, . . . , Xn = xn, Y = y)

P(Y = y)

=
P(X1 = x1, X2 = x2, . . . , Xn = xn)

P(Y = y)
(since Y does not provide any additional

information to what X1, X2, . . . , Xn provides)

Hence

P(X1 = x1, X2 = x2, . . . , Xn = xn|Y = y) =
θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi

θ y(1− θ)n−y

=
θ y(1− θ)n−y

θ y(1− θ)n−y
since y =

n∑
i=1

xi

=
1(
n

y

) ,

which does not depend on θ . So Y =
∑n

i=1 X i is a sufficient statistic for θ .

Definition 4.1.2 (Sufficient Statistic)

Let X1, X2, . . . , Xn denote a random sample of size n from a distribution that has a p.d.f. f (x |θ), θ ∈

2. Let T = U (X1, X2, . . . , Xn) be a statistic with p.d.f. g(t |θ). Then T is a sufficient statistic for θ if

and only if
f (x1|θ) f (x2|θ) · · · f (xn|θ)

g(t |θ)
= h(x1, x2, . . . , xn) , (4.1)

where h(x1, x2, . . . , xn) does not depend on θ ∈ 2 for every fixed value of t = U (x1, x2, . . . , xn).
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This may also be written in the form

L(θ |x)
g(t |θ)

= h(x1, x2, . . . , xn) , (4.2)

or

L(θ |x) = g(t |θ)h(x1, x2, . . . , xn) , (4.3)

where L(θ |x) =
∏n

i=1 f (xi |θ) is the likelihood function.

Example 4.1.2

Let X(1) < X(2) < · · · < X(n) denote the order statistic of a random sample X1, X2, . . . , Xn from a

distribution that has p.d.f.

f (x |θ) =

{
e−(x−θ) , x > θ
0 , elsewhere

The c.d.f. is

F(x) =

∫ x

θ
e−(t−θ) dt =

[
e−(t−θ)

]x

θ
= 1− e−(x−θ) , θ < x <∞

The p.d.f. of Y = X(1) = min(X1, X2, . . . , Xn) is

g(y|θ) = n[1− F(y)]n−1 f (y|θ) , θ < y <∞

= n

[
e−(y−θ)

]n−1

e−(y−θ)

= ne−n(y−θ) , θ < y <∞ .

Thus we have
L(θ |x)

g(y|θ)
=

e−(x1−θ)e−(x2−θ) · · · e−(xn−θ)

ne−n(y−θ)
=

e−
∑n

i=1 xi

ne−ny
,

which is free of θ for each fixed y = min(x1, x2, . . . , xn) since y ≤ xi ; i = 1, 2, . . . , n. Neither the

formula nor the domain of the ratio depends upon θ , hence Y = X(1) = min(X1, X2, . . . , Xn) is a

sufficient statistic for θ .

4.2 The Factorization Theorem Approach

The next theorem is very useful in finding a sufficient statistic.

Theorem 4.2.1 (Factorization Theorem)

Let f (x1, . . . , xn|θ) denote the joint p.d.f. or p.m.f. of a random sample X1, . . . , Xn. A statistic

T = U (X1, . . . , Xn) is a sufficient statistic for θ if and only if there exist functions g(t |θ) and

h(x1, . . . , xn) such that, for all sample points x1, . . . , xn and all parameter points θ ,

f(x1, . . . , xn|θ) = g(Ut = (x1, . . . , xn)|θ)h(x1, . . . , xn) . (4.4)
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Proof:

We give the proof only for the discrete distributions. The proof for the continuous distributions is very

similar.

Suppose T = U (X1, . . . , Xn) is a sufficient statistic. Let t = U (x1, . . . , xn). Choose g(t |θ) = Pθ (T = t)

and h(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn|T = t). Because T = U (X1, . . . , Xn) is sufficient, the

conditional probability defining h(x1, . . . , xn) does not depend on θ . Thus this choice of h(x1, . . . , xn)

and g(t |θ) is legitimate, and for this choice we have

f (x1, . . . , xn|θ) = Pθ (X1 = x1, . . . , Xn = xn)

= Pθ (X1 = x1, . . . , Xn = xn and T = t)

= Pθ (T = t)P(X1 = x1, . . . , Xn = xn|T = t) (sufficiency)

= g(t |θ)h(x1, . . . , xn) .

So factorization (4.4) has been exhibited. We also see from the last two lines above that Pθ (T = t) =

g(t |θ), so g(t |θ) is the p.m.f. of T .

Now assume the factorization (4.4) exists. Let q(t |θ) be the p.m.f. of T . To show that T =

U (X1, . . . , Xn) is sufficient we examine the ratio f (x1, . . . , xn|θ)/q(t |θ).

Define AU (x1,...,xn) = {y1, . . . , yn : U (y1, . . . , yn) = U (x1, . . . , xn)}. Then

f (x1, . . . , xn|θ)

q(t |θ)
=

g(t |θ)h(x1, . . . , xn)

q(t |θ)
since (??) is satisfied

=
g(t |θ)h(x1, . . . , xn)∑

AU (x1,...,xn )
g(U (y1, . . . , yn|θ))h(y1, . . . , yn)

definition of the p.m.f. of T

=
g(t |θ)h(x1, . . . , xn)

g(t |θ))
∑

AU (x1,...,xn )
h(y1, . . . , yn)

since T is constant on AU (x1,...,xn)

=
h(x1, . . . , xn)∑

AT (x1,...,xn )
h(y1, . . . , yn)

.

Since the ratio does not depend on θ , by the definition of sufficiency, T = U (X1, . . . , Xn) is a sufficient

statistic for θ .

NOTE:

1. In Theorem 4.2.1, we do not demand that g(t |θ) is a p.m.f. or p.d.f. of T = U (X1, . . . , Xn). It is

essential, however, that h(x1, . . . , xn) must be free from θ .

2. A sufficient statistic is not unique. In fact, any 1-1 transformation of a sufficient statistic is also

sufficient. Hence this brings us to the definition of minimal sufficiency.

3. In Theorem 4.2.1, X1, . . . , Xn need not be independent. If, however, X1, . . . , Xn are independent

then f (x1, . . . , xn|θ) =
∏n

i=1 f (xi |θ) = L(θ |x). So in this case, to find the sufficient statistic, we

must rewrite the likelihood function as a product of g(t |θ) and h(x1, . . . , xn).
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Example 4.2.1

Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f.

f (x |θ) =

{
θxθ−1 , 0 < x < 1, θ > 0

0 , elsewhere

Find a sufficient statistic for θ .

Solution:

L(θ |x) =
n∏

i=1

f (xi |θ) = θ
n(x1x2 · · · xn)

θ−1

= θn(x1x2 · · · xn)
θ︸ ︷︷ ︸

g(t |θ) where t=
∏

xi

1

x1x2 · · · xn︸ ︷︷ ︸
h(x1,...,xn)

Since h(x1, . . . xn) does not depend on θ , T =
∏n

i=1 X i is a sufficient statistic for θ .

Example 4.2.2 (Use of indicator functions)
∏

Consider a random sample from a uniform distribution, X i ∼ UNIF(0, θ) where θ is known.

The likelihood function is given by

L(θ |x) =
n∏

i=1

f (xi |θ) =
1

θn
, 0 < x(1) < · · · < x(n) < θ

where x(i) is the i th order statistic.

Define the indicator function of a set A as follows:

IA(x) =

{
1 , if x ∈ A

0 , if x ∈ A ./

Thus if X i ∼ UNIF(0, θ), the p.d.f. may be written as

f (x |θ) =
1

θ
I(0,θ)(x)

so that

L(θ |x) =
1

θn

n∏
i=1

I(0,θ)(xi )

or

L(θ |x) =
1

θn
I(0,θ)(x(n))︸ ︷︷ ︸

g(t |θ) where t=x(n)

I(0,∞)(x(1))︸ ︷︷ ︸
h(x1,...,xn)

Note that I could have simply written it as

L(θ |x) =
1

θn
I(0,θ)(x(n))︸ ︷︷ ︸

g(t |θ) where t=x(n)

1︸ ︷︷ ︸
h(x1,...,xn)

where 1 is a function of x1, . . . , xn because 1 = (x1x2 · · · xn)
0.

In either case, X(n) is sufficient for θ .
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The next example illustrates that a sufficient data reduction is not unique.

Example 4.2.3 (Measuring with known precision: Example 1.2.2 and 2.3.2)

Consider the data in Example 1.2.2. We presume this came from a normal distribution with unknown

mean θ and known variance σ 2 = 0.01 mg2. In Example 2.3.2 we saw that the likelihood function is

L (θ | x) = K (x)︸ ︷︷ ︸
h(x1,...,xn)

· exp
[
−450 · (θ − x)2

]
︸ ︷︷ ︸

g(t |θ) where t=x

,

where x = (x1 + · · · + x9) /9 is a sufficient statistic for µ.

Each one of the following three data reductions is sufficient:

(i) x→ (x1, x2, x3 + · · · + x9)

(ii) x→ (x1 + x2, x3 + · · · + x9)

(iii) x→ x1 + · · · + x9

For example, knowing x1, x2 and x3 + · · · + x9, we can obtain x1 + · · · + x9 and hence x and we can

thus calculate L (θ | x). Case (iii) reduces the data to a greater extent than either (i) or (ii). If we know

only x1 + · · · + x9 then, for example, we do not know x1, x2, x1 + x2 or x2 + · · · + x9. In fact, (iii) gives

the greatest possible degree of reduction while still enabling us to calculate the likelihood reduction

(iv) x→ x3 + · · · + x9

is insufficient, because if we know only the value x3 + · · · + x9, we cannot determine x and hence

cannot calculate the likelihood function.

We have illustrated that there are many different sufficient data reductions but that some of these

reduce the data to a greater extent than others.

If a data reduction x→ U (x) is sufficient, we must be able to identify the set in the likelihood partition

to which x belongs by looking only at the value of t = U (x). This means that we are able to calculate

the likelihood function from a knowledge of t = U (x) alone. This leads to the definition of minimal

sufficiency. However, before discussing minimal sufficiency, let us first look at sufficiency in the case

of several parameters.
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4.3 Sufficiency: The Case of Several Parameters

Definition 4.3.1 (Jointly Sufficient)

A vector valued statistic T ≡ (T1, T2, . . . , Tk) with Ti = Ui (X1, X2, . . . , Xn) , i = 1, 2, . . . , k, is called

jointly sufficient for the vector of unknown parameter θ if and only if the conditional distribution of

X ≡ (X1, X2, . . . , Xn) given T = t does not involve θ, for all t ∈ Rk .

To understand the above, lets suppose a p.d.f. depends on 2 parameters say θ1 and θ2, where

(θ1, θ2) ∈ �.

Let X1, X2, . . . , Xn denote a random sample from a distribution that has p.d.f. f (x |θ1, θ2), where

(θ1, θ2) ∈ �. Let T1 = U1(X1, X2, . . . , Xn) and T2 = U2(X1, X2, . . . , Xn) be two statistics whose joint

p.d.f. is g(t1, t2|θ1, θ2). The statistics T1 and T2 are called jointly sufficient statistics for θ1 and θ2 if

and only if
f (x1|θ1, θ2) f (x2|θ1, θ2) · · · f (xn|θ1, θ2)

g(t1, t2|θ1, θ2)
= h(x1, x2, . . . , hn)

where h(x1, x2, . . . , hn) does not depend on θ1 or θ2.

The factorization theorem can also be extended to jointly sufficient statistics.

Theorem 4.3.1

A vector valued statistic T = (T1, T2, . . . , Tk) is jointly sufficient for θ = (θ1, θ2, . . . , θq) if and only if

L(θ |x) = g(t|θ) h(x1, x2, . . . , xn) (4.5)

with g(·|θ) and h(·) nonnegative, g(·|θ) depending upon x only through t, and h(·) is free on θ.

To understand the above, lets suppose a p.d.f. depends on 2 parameters say θ1 and θ2, where

(θ1, θ2) ∈ �.

The statistics T1 = U1(X1, X2, . . . , Xn) and T2 = U2(X1, X2, . . . , Xn) are jointly sufficient statistics for

θ1 and θ2 if and only if we can find two non-negative functions g(·) and h(·) such that

f (x1|θ1, θ2) f (x2|θ1, θ2) · · · f (xn|θ1, θ2) = g(t1, t2|θ1, θ2) h(x1, x2, . . . , xn)

where h(x1, x2, . . . , xn) does not depend on both θ1 and θ2.
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Remarks:

J If T is a (jointly) sufficient statistic for θ, then any statistic V which is a one-to-one function of T is

(jointly) sufficient for θ.

J Let T be a sufficient statistic for θ. Consider a statistic T′, a function of T. Then, T′ is not

necessarily sufficient for θ.

J From joint sufficiency of a statistic T = (T1, T2, . . . , Tk) for θ = (θ1, θ2, . . . , θk), one should NOT

claim that Ti is sufficient for θ i , i = 1, 2, . . . , k. Note that T and θ may not even have the same

dimension!

Example 4.3.1

Consider a random sample X i ∼ N(µ, σ 2), where −∞ < µ < ∞ and σ > 0 are both unknown

parameters. The likelihood function is

L(µ, σ 2|x) = (2πσ 2)−
n
2 exp

[
−

1

2σ 2

n∑
i=1

(xi − µ)
2

]
.

Now
∑n

i=1(xi − µ)2 =
∑n

i=1 x2
i − 2µ

∑n
i=1 xi + nµ2. Let t1 =

∑n
i=1 xi and t2 =

∑n
i=1 x2

i , then

L(µ, σ 2|x) = (2πσ 2)−
n
2 exp

[
−

1

2σ 2

(
t2 − 2µt1 + nµ2

)]
· 1

= g(t1, t2|µ, σ
2) · h(x1, x2, . . . , xn) .

Thus T1 =
∑n

i=1 X i and T2 =
∑n

i=1 X2
i are jointly sufficient for µ and σ 2.

Note that X = 1
n

∑n
i=1 X i and S2 = 1

n−1

[∑n
i=1 X2

i −
1
n

(∑n
i=1 X i

)2]
. The transformation from

T =
[∑n

i=1 X i ,
(∑n

i=1 X i

)2]
to U = (X , S2) is one-to-one. So, we can claim that (X , S2) is jointly

sufficient for (µ, σ 2).

4.4 Minimal Sufficiency

In any problem there are, in fact, many sufficient statistics. It is always true that the entire (or

complete) sample, X, is a sufficient statistic. We can factor the p.d.f. or p.m.f. of X as f (x|θ) =

f (U (x)|θ) h(x), where U (x) = x and h(x) = 1. for all x. By the Factorization Theorem, T = U (X) = X

is a sufficient statistic.

Also, it follows that any one-to-one function of a sufficient statistic is a sufficient statistic. Suppose

that T = U (X) is a sufficient statistic and define U∗(x) = r(U (x)) for all x, where r is a one-to-one

function of U (x). Then U∗(X) is a sufficient statistic.
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Because of the numerous sufficient statistics in a problem, we might ask whether one sufficient

statistic is any better than another. Recall that the purpose of a sufficient statistic is to achieve

data reduction without loss of information about the parameter θ ; thus, a statistic that achieves the

most data reduction while still retaining all information about θ might be considered preferable. The

definition of such a statistic is now formalized.

Definition 4.4.1 (Minimal Sufficient)

A sufficient statistic T = U (X1, X2, . . . , Xn) is said to be minimal sufficient if it can be expressed as

a function of every other sufficient statistic.

Remarks:

J From Definition 4.4.1, to say that U (x) is a function of every other sufficient statistic, say U∗(x),

simply means that if U∗(x) = U∗(y), then U (x) = U (y).

J Joint minimal sufficient statistics can be developed in a similar way to joint sufficient statistics and

will not be repeated here.

J If T is a (jointly) minimal sufficient statistic for θ , then any statistic V which is a one-to-one function

of T is (jointly) minimal sufficient for θ .

J A minimal sufficient statistic is not unique. However, in a certain sense it is unique. If T and T ∗ are

two minimal sufficient statistics for θ , then there is a one-to-one functional relationship between T

and T ∗.

J From joint minimal sufficiency of a statistic T = (T1, T2, . . . , Tk) forOθ = (θ1, θ2, . . . , θk), one should

NOT claim that Ti is minimal sufficient for θ i , i = 1, 2, . . . , k. Note that T and θ may not even

have the same dimension!

Theorem 4.4.1 (Minimal Sufficient Statistic)

Suppose that there is a statistic T = U (X1, X2, . . . , Xn) such that the following holds:

With arbitrary data points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), both from random samples

from the same distribution, the likelihood ratio function r(θ |x, y) = L(θ |x)
L(θ |y) does not involve θ if and

only if T (x) = T (y).

Then, T is an minimal sufficient statistic for θ .
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Hence to show T is a minimal sufficient statistic:

· Show T is a sufficient statistic.

· Assume the likelihood ratio function r(θ |x, y) = L(θ |x)
L(θ |y) does not involve θ and show that T (x) =

T (y) for arbitrary data points x and y from random samples from the same distribution.

Example 4.4.1

Let X = (X1, . . . , Xn) be a random sample from a Poisson distribution with mean λ. The probability

function is

p (x| λ) =
n∏

i=1

λxi

xi !
e−λ =

(
n∏

i=1

1

xi !

)
·
(
λ
∑

xi · e−nλ
)

so that a likelihood function for λ is

L (λ| x) = K (x) · λ
∑

xi · e−nλ .

By the factorization theorem, with t (x) =
n∑

i=1

xi and g (t |λ) = λte−nλ, we see that
n∑

i=1

X i is sufficient

for λ. But is it minimal sufficient?

We use Theorem 4.4.1:

Let x and y be any likelihood equivalent data sets, i.e. the ratio

L (λ| x)
L (λ| y)

=
K (x) · λ

∑
xi · e−nλ

K (y) · λ
∑

yi · e−nλ
= K ′ (x; y) λ(

∑
xi−

∑
yi)

must not depend on λ, i.e. we must have

λ(
∑

xi−
∑

yi) = K (x; y) for all λ .

Differentiating this with respect to λ yields(
n∑

i=1

xi −
n∑

i=1

yi

)
· λ(

∑
xi−

∑
yi)−1 = 0

Since λ 6= 0 we can divide both sides by

λ(
∑

xi−
∑

yi)−1

and so we have
n∑

i=1

xi −
n∑

i=1

yi = 0, i.e.
n∑

i=1

xi =
n∑

i=1

yi .

Thus we have shown that r(θ |x, y) = L(θ |x)
L(θ |y) does not involve θ implies U (x) = U (y), which means

that T = U (X) =
n∑

i=1

X i is minimal sufficient.
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4.5 Exercises

Exercise 4.5.1

Let X1, . . . , Xn be a random sample from GAM(2, β) distribution, and consider Y =
∑n

i=1 X i .

(a) Use the conditional approach to show that Y is sufficient for β.

(b) Use the factorization theorem to show that Y is sufficient for β.

Exercise 4.5.2

Let Y1 < Y2 < · · · < Yn denote the order statistics of a random sample of size n from the distribution

with p.d.f.

f (x |θ) = e−(x−θ) , x > θ .

Find a sufficient statistic for θ .

Exercise 4.5.3

Consider a random sample X1, . . . , Xn of observations from a distribution with density function

f ( x | θ) =
θ

1− exp (−θ)
· exp (−θ · x) , 0 < x < 1 and θ > 0.

Show that the sample mean X is sufficient for θ .

Exercise 4.5.4

Let X = (X1, . . . , Xn) be a random sample from a negative binomial distribution. The p.d.f. of X i is

p ( xi | θ) =

(
xi − 1

m − 1

)
· θm · (1− θ)xi−m , xi = m, m + 1, . . . ; i = 1, . . . , n .

(a) Determine L (θ | x).

(b) Show that
n∑

i=1

X i is a minimal sufficient statistic for θ .

(c) Is X minimal sufficient statistic for θ?

Exercise 4.5.5

Let X = (X1, . . . , Xn) be a random sample from a beta distribution with shape parameters α and β.

The p.d.f. of X i is

f ( xi |α; β) =
(α + β + 1)!

α! · β!
· xαi · (1− xi )

β , 0 < xi < 1, α; β > −1; i = 1, . . . , n .

(a) Determine L (α; β| x).

(b) Show that

(
n∏

i=1

X i ;
n∏

i=1

(1− X i )

)
is a minimal sufficient statistic for (α; β).
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Exercise 4.5.6

Suppose that X = (X1, . . . , Xk) is a random sample from a BIN (n; p) distribution with known n and

unknown p.

(a) Show that the conditional density of X given
∑

xi = a is

p (x| a) =


k∏

i=1

(
n
xi

)
·
(
nk
a

)−1
if
∑

xi = a

0 otherwise .

(b) Show that
k∑

i=1

X i is sufficient for p.

Exercise 4.5.7

Let X = (X1, . . . , Xn) be a random sample from a normal distribution with mean µ > 0 and variance

µ2. Show that

(
n∑

i=1

X i ;
n∑

i=1

X2
i

)
is a minimal sufficient statistic for µ.
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Study unit 5

5. Exponential Family and Completeness

Aims

To define an exponential family and to investigate some of its properties. Define completeness and

investigate some of its properties.

Learning objectives

After studying this unit you should be able to

- write down, understand and apply the definitions, theorems and propositions which are given

- write a member of an exponential family in canonical form

- determine whether a p.d.f./p.m.f. belongs to an exponential family or not

- determine whether a statistic is complete (in elementary cases)

- understand the relationship between an exponential family and sufficiency (and minimal

sufficiency)

- understand the relationship between an exponential family and a complete minimal sufficient

statistic

5.1 Exponential Family

What are exponential families and why do we study them? First of all, an exponential family has

certain very interesting properties. Although this study unit initially seems to digress from our topics

on point estimation, sufficiency and obtaining MVUE, it will become clear later how the properties

of the exponential family is related to the above mentioned topics. Secondly, many of the well-

known discrete and continuous distributions, such as the binomial, Poisson, exponential and normal

distributions are members of an exponential family. If we can prove that a specific distribution is a

member of an exponential family, then all the properties of an exponential family also apply to the

specific distribution. We now define an exponential family:

Definition 5.1.1 (k-parameter Exponential Family)

A family of pdfs or pmfs is said to form a k-parameter exponential family if it can be expressed as

f ( x |θ) = g (x) · exp

{
k∑

i=1

θ i · ti (x)− ψ (θ)

}
(5.1)

where t1(x), t2(x), . . . , tk(x) are real-valued independent functions of the observation x .
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Remarks:

J We refer to (5.1) as the canonical parameterization of the exponential family.

J According to various dictionaries, “canonical” is synonymous with regular, lawful, accepted,

approved, authoritative and standard.

J θ is a vector of k components, i.e. θ = (θ1, θ2, . . . , θk).

J If the ti ’s in (5.1) are dependent, the parameter θ is “statistically meaningless”, hence we require

ti (x) to be independent of each other.

J ψ (θ) is any non-trivial function (i.e. ψ (θ) is not a constant) of θ = (θ1, θ2, . . . , θk).

J The parametric space should be an open subset in Rk .

J Transformation of the original parameters to obtain the form (5.1) must be one-to-one.

J t1(x), t2(x), . . . , tk(x) and g(x) are dependent only on x and not on θ, while ψ(θ) is dependent

only on θ and not on x .

Example 5.1.1

The Poisson distribution belong to the one-parameter exponential family since we can write

p ( x | θ) =
θ x

x!
exp (−θ)

=
1

x!
· exp (x · ln θ − θ)

=
1

x!
· exp

(
xξ − eξ

)
= p ( x | ξ) ,

because θ ↔ ln θ = ξ is one-to-one from (0, ∞) onto R and R is an open subset of R. In this case

k = 1, g (x) = 1/x!, t1 (x) = x, θ1 = ξ and ψ (ξ) = eξ .
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Example 5.1.2

The normal distributions with µ and σ 2 belongs to the two-parameter exponential family because

f

(
x |µ; σ 2

)
=

(
1

2πσ 2

)1
2

exp

{
−
(x − µ)2

2σ 2

}

= (2π)−
1
2 exp

{
−

x2

2σ 2
+
µx

σ 2
−
µ2

2σ 2
+

[
ln
(
σ 2
)1

2

]}

= (2π)−
1
2 exp

{
µx

σ 2
−

x2

2σ 2
−
µ2

2σ 2
+ 1

2
ln σ 2

}
= (2π)−

1
2 exp

{
x · θ1 −

x2

2
· θ2 −

[
θ2

1

2θ2

− 1
2

ln θ2

]}
= f ( x | θ1; θ2) ,

[t1 (x) = x, t2 (x) = −
1
2
x2 and ψ (θ) = 1

2
θ2

1θ
−1
2 −

1
2

ln θ2] with the correspondence
(
µ; σ 2

)
↔(

µ
σ 2 ;

1

σ 2

)
= (θ1; θ2) being one-to-one from R× (0; ∞) onto itself. To prove that the correspondence

is one-to-one, suppose that 2∗ =
{(
µ; σ 2

)
∈ R× (0; ∞)

}
and 2 = {(θ1; θ2) ∈ R× (0; ∞)} . Any

(a; b) ∈ 2∗ is mapped uniquely to (ab; b) ∈ 2. Conversely, any (u; v) in 2 is mapped to a unique

member (u/v; v) of 2∗.

Also note that t1 and t2 are independent.

The parameter space R× (0; ∞) is an open subset of R2.

Self–assessment 5.1.1

Show that the family of binomial distributions

p ( x | θ) =

(
n

x

)
· θ x · (1− θ)n−x , 0 < θ < 1, x = 0, 1, 2, . . . , n,

belongs to the exponential family.

Hints:

1. Make the transformation γ = ln
θ

1− θ
where 0 < θ < 1.

2. You may assume that θ ↔ γ is a one-to-one correspondence from (0; 1) onto R.

5.2 Properties of the Exponential Family

When a distribution can be written in canonical exponential form it is a relatively straightforward task

to get it into this form. Proving that a distribution is not a member of an exponential family is more

difficult. Proposition 5.2.1 sometimes makes this proof easier.
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Proposition 5.2.1

In an exponential family the sets {x : f ( x | θ) > 0} , θ ∈ 2, do not depend on θ.

Proof:

We always have exp

{
k∑

i=1

θ i · ti (x)− ψ (θ)

}
> 0 because the θ ’s, t ’s and ψ in (5.1) are all finite. So

f ( x | θ) > 0 if, and only if g (x) > 0. Thus {x : f ( x | θ) > 0} = {x : g (x) > 0}, which is independent of

θ .

Remark:

J It follows from proposition 5.2.1 that if the sets {x : f ( x | θ) > 0} depend on θ then the distribution

is not a member of an exponential family.

Example 5.2.1

As an application of this result we see that the uniform distribution

f ( x | θ) =
1

θ
· I[0, θ](x)

do not form an exponential family. This is because

{x : f ( x | θ) > 0} = {x : 0 ≤ x ≤ θ} = [0; θ ]

and this depends on θ .

The next result is extremely important for various computations but its proof is beyond the scope of

this module.

Theorem 5.2.1

Let f (x |θ) be a member of the exponential family with canonical parameterization (5.1) and let ϕ

be a function of x such that h (θ) =
∫
χ
ϕ (x) · f ( x | θ) dx is finite for all θ ∈ 2. Then the function

θ → h (θ) has derivatives of all orders and these can be obtained by differentiating under the sign of

integration above.
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The next theorem is an important application of Theorem 5.2.1.

Theorem 5.2.2

In a k-parameter exponential family (5.1) the statistic T = (T1, . . . , Tk) has mean vector(
∂ψ

∂θ1

, . . . ,
∂ψ

∂θk

)
and covariance matrix

{
∂2ψ

∂θ i∂θ j

}
, i; j = 1, 2, . . . , k.

Proof:

Consider the identity 1 =
∫
χ

f ( x |θ) dx .

Differentiating both sides with respect to θ i and using Theorem 5.2.1 gives

0 =
∂

∂θ i

∫
χ

f ( x |θ) dx

=

∫
χ

∂

∂θ i

f ( x |θ) dx .

Application of the chain rule to (5.1) gives

∂

∂θ i

f ( x |θ) =

(
ti (x)−

∂ψ

∂θ i

)
· f ( x |θ) . (5.2)

Therefore

0 =

∫
χ

ti (x) · f ( x |θ) dx −
∂ψ

∂θ i

∫
χ

f ( x |θ) dx

= E (Ti |θ)−
∂ψ

∂θ i

 since

∫
χ

f ( x |θ) dx = 1

 .

So E (Ti | θ) =
∂ψ

∂θ i

.

Differentiating this in turn with respect to θ j and using (5.2) gives

∂2ψ

∂θ j∂θ i

=

∫
χ

ti (x) ·

(
t j (x)−

∂ψ

∂θ j

)
· f ( x | θ) dx

=

∫
χ

ti (x) · t j (x) · f ( x |θ) dx − E (Ti |θ) · E
(
T j

∣∣θ)
= cov

(
Ti ; T j

∣∣θ) .
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Theorem 5.2.3

Let X be a random vector whose identities form an exponential family with canonical representation

(5.1). Let X1, . . . , Xn denote n independent observations on X.

The joint distributions of (X1, . . . , Xn) form an exponential family with canonical representation

f ( x1, . . . , xn|θ) =

(
n∏

j=1

g
(
x j

))
· exp

{
k∑

i=1

θ i ·

(
n∑

j=1

ti
(
x j

))
− n · ψ (θ)

}
.

Proof:

Because of the independence, the joint density of (X1, . . . , Xn) is given by

f ( x1, . . . , xn|θ) =
n∏

j=1

f
(
x j

∣∣θ)
=

n∏
j=1

{
g
(
x j

)
· exp

(
k∑

i=1

θ i · ti
(
x j

)
− ψ (θ)

)}

=

(
n∏

j=1

g
(
x j

))
· exp

{
k∑

i=1

θ i ·

(
n∑

j=1

ti
(
x j

))
− n · ψ (θ)

}
.

The next result shows a simple way to find sufficient statistics when a p.m.f. or a p.d.f. belongs to

an exponential family. It also shows the importance of discussing the exponential family in this study

unit.

Theorem 5.2.4 (Sufficiency in an Exponential Family)

Let X1, X2, . . . , Xn be a random sample with a common p.m.f. or p.d.f.

f ( x |θ) = g (x) · exp

{
k∑

i=1

θ i · ti (x)− ψ (θ)

}
belonging to a k-parameter exponential family defined by (5.1). Denote the statistic Ui =∑n

j=1 ti (X j ) , i = 1, 2, . . . , k. Then, U = (U1,U2, . . . ,Uk) is jointly sufficient for θ.

Proof:

By Theorem 5.2.3 and the factorization theorem, we can write:

L(θ|x) =

(
n∏

j=1

g
(
x j

))
︸ ︷︷ ︸

h(x1,...,xn)

· exp

{
k∑

i=1

θ i ·

(
n∑

j=1

ti
(
x j

))
− n · ψ (θ)

}
︸ ︷︷ ︸

g(u,θ) where ui=
n∑

j=1

ti (x j )

Hence if Ui =
n∑

j=1

ti (X j ), then U = (U1,U2, . . . ,Uk) is jointly sufficient for θ.
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5.3 Completeness

Definition 5.3.1 (Complete Statistic)

Suppose the statistic T has probability density function f ( t | θ). If, for every statistic s which is a

function of t only (i.e. which can be written as s (t)), E [s (T )] = 0 for all θ ∈ 2 implies s (t) = 0, then

T is said to be a complete statistic.

Note:

Proving that a statistic is complete usually involves more mathematics than is required for this

module. So, except in some simple cases, you will not be required to determine whether or not

a statistic is complete. When necessary you may assume a statistic is complete unless you are told

otherwise.

Definition 5.3.2 (Complete Sufficient Statistic)

A statistic T is called complete sufficient statistic for an unknown parameter θ if and only if (i) T is

sufficient for θ and (ii) T is complete.

Remark:

J A sufficient or minimal sufficient statistic T for an unknown parameter θ may not necessarily be

complete.

J A complete sufficient statistic T for an unknown parameter θ is also minimal sufficient and is

therefore referred to as a complete minimal sufficient statistic for θ .

The main implication of the above two definitions is given by the following lemma.

Lemma 5.3.1

If T is a complete statistic for g(θ), then there is at most one function of T which is an unbiased

estimator for g(θ), that is, if we find a function h(T ) for which E[h(T )] = g(θ), then h(T ) is unique.
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Proof:

Suppose that h1(T ) and h2(T ) are two such functions. Then

E[h1(T )− h2(T )] = g(θ)− g(θ) = 0 , ∀ θ; .

Hence by the definition of completeness, h1(T )−h2(T ) ≡ 0 almost everywhere, that is, h1(T ) ≡ h2(T )

almost everywhere.

In particular, Lemma 5.3.1 says that if T is a minimal sufficient statistic and T is complete, then only

one member of the class of statistics which are functions of the minimal sufficient statistic can be

unbiased for g(θ), i.e. in this case there is a unique function of the minimal sufficient statistic which

is unbiased. This actually helps us in determining the MVUE for g(θ) as you will see in study unit 6,

because, if h(T ) is an unbiased estimator for g(θ), where T is a complete minimal sufficient statistic

for g(θ), then h(T ) is a MVUE for g(θ).

Theorem 5.3.1

Suppose that a statistic T is complete. Let U be another statistic with U = g(T ), where g(·) is any

one-to-one function of T . Then U is complete.

Example 5.3.1

Let X1, X2, . . . , Xn be a random sample with X i ∼ POI(µ). Then

L(µ|x) =
e−nµ µ

n∑
i=1

xi

n∏
i=1

(xi !)

, for xi = 0, 1, . . . .

By the factorization theorem Y =
∑n

i=1 X i is sufficient for µ. Furthermore, Y ∼ POI(nµ), hence

P(Y = y) =
enµ(nµ)y

y!
, for y = 0, 1, 2, . . . .

Let θ = nµ, and consider the family { fY (y|θ); θ > 0} of p.m.f’s. Suppose that h(Y ) is such that

E[h(Y )] = 0 for every θ > 0. We shall show that this requires h(y) = 0 at every point y = 0, 1, 2, . . .,

i.e. E[h(Y )] = 0 implies that h(0) = h(1) = h(2) = · · · = 0. We have for all θ that

0 = E[h(Y )] =
∞∑

y=0

h(y)
e−θθ y

y!
= e−θ

[
h(0)+ h(1)

θ

1!
+ h(2)

θ2

2!
+ · · ·

]
.

Since e−θ 6= 0, for the series to converge to zero for all θ > 0, each of the coefficients must equal

zero, i.e. h(0) = h(1) = h(2) = · · · = 0. Thus the family { fY (u|θ), θ > 0} is unique.

By the completeness X = 1
n

∑n
i=1 X i =

Y
n

is the unique unbiased function of Y , which estimates the

unknown parameter µ. Note: this implies that X is a MVUE of µ.
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Example 5.3.2

Let X1, X2, . . . , Xn be a random sample from a BIN(1, p), 0 < p < 1. Then, T =
∑n

i=1 X i is

sufficient for p. We verify that T is complete. The p.m.f. induced by T is

g(t |p) =

(
n

t

)
pt (1− p)n−t , for t = 0, 1, . . . , n, 0 < p < 1 .

Consider a real valued function h(t) such that E[h(T )] = 0 for every 0 < p < 1. Now with

γ = p(1− p)−1, we write:

E[h(T )] =
n∑

t=0

h(t)

(
n

t

)
pt (1− p)n−t = (1− p)n

n∑
t=0

(
n

t

)
h(t)γ t .

Observe that E[h(t)] has been expressed as a polynomial of the nth degree in γ ∈ (0,∞). An nth

degree polynomial in γ may be equal to zero for at most n values of γ ∈ (0,∞). If we assume:

E[h(T )] = 0 for all p ∈ (0, 1) .

then
∑n

t=0

(
n
t

)
h(t)γ t ≡ 0 for all γ ∈ (0, 1), that is

(
n
t

)
h(t)γ t ≡ 0 for all t = 0, 1, . . . , n. Hence, h(t) ≡ 0

for all t = 0, 1, . . . , n, proving completeness of the sufficient statistic T .

Recall, I stated earlier that it is often fairly difficult to show that a statistic is complete. Now, we state

a remarkably general result in the case of an exponential family of distributions to avoid having to

show that the statistic is complete.

Theorem 5.3.2 (Completeness of Minimal Sufficient Statistic in an Exponential Family)

Let X1, X2, . . . , Xn be a random sample with a common p.m.f. or p.d.f.

f ( x |θ) = g (x) · exp

{
k∑

i=1

θ i · ti (x)− ψ (θ)

}
belonging to a k-parameter exponential family defined by (5.1). Denote the statistic Ui =∑n

j=1 ti (X j ) , i = 1, 2, . . . , k. Then, the (jointly) minimal sufficient statistic U = (U1,U2, . . . ,Uk)

for θ is complete.
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Example 5.3.3

Let X1, X2, . . . , Xn be a random sample from a N(µ, σ 2) distribution, where µ, σ 2 are both unknown.

The common p.d.f. belongs to a two-parameter exponential family. So, the minimal sufficient statistic

is T = (T1(X), T2(X)) with T1(X) =
∑n

i=1 X i (or X ) and T2(X) =
∑n

i=1 X2
i (or S2). In view of

Theorem 5.3.2, (X , S2) is complete.

Note that Theorem 5.3.2 covers a lot of ground by helping to prove the completeness property of

sufficient statistics. But it fails to reach out to non-exponential families. The next example illustrates

this and how it can be solved.

Example 5.3.4

Let X1, X2, . . . , Xn be a random sample from a UNIF(0, θ) distribution, where θ > 0 is unknown. Then

T (X) = X(n) is a minimal sufficient statistic for θ (show this) and its p.d.f. is g(t |θ) = ntn−1θ−n I(0,θ)(t)

(show this as well). This does not belong to an exponential family (why?) with k = 1. But, one

may show directly that T is compete. Let h(t), t > 0 be an arbitrary real valued function such that

E[h(T )] = 0 for all θ > 0 and write:

0 ≡
d

dθ
E[h(T )] =

d

dθ

∫ θ

0

h(t)ntn−1θ−n dt = nθ−1h(θ)

by using the fundamental theorem of calculus, which proves that h(θ) ≡ 0 for all θ > 0. Hence, T is

complete.

Please take some time to write out the solution to Example 5.3.4 in detail, by filling in the missing

information.

5.4 Exercises

Exercise 5.4.1

For each of the parameterized probabilities below, decide whether or not the density forms an

exponential family. If the density does form an exponential family, write it in canonical form.

(a) f ( x | θ) = θ x · (1− θ)1−x , 0 < θ < 1, x = 0 or 1

(b) f ( x | θ) = exp (−x + θ) · I (x ≥ θ) , θ ∈ R

(c) f ( x | θ) =
1

2
· exp (− |x − θ |) , x; θ ∈ R

(d) f ( x | θ) = K · exp
(
− (x − θ)4

)
, x; θ ∈ R.
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Exercise 5.4.2

Consider the densities of the gamma distributions with shape index β and scale parameter a:

f ( x | a; β) =
aβ

0 (β)
· xβ−1 · e−ax , β; a; x > 0.

(a) Show that if β is considered to be fixed and is not regarded as a parameter, then the family

f ( x | a) ≡ f ( x | a; β) belongs to the one-parameter exponential family.

(b) Show that if both β and a are considered as parameters then f ( x | a; β) belongs to the

exponential family.

Exercise 5.4.3

Consider a lifetime testing experiment such as that described in Example 1.2.3. Suppose that n bulbs

were tested, with the experiment being terminated after x0 hours. At this point k bulbs had already

burned out and their lifetimes, in increasing order of magnitude, were

x(1) < x(2) < · · · < x(k) .

It can be shown (you do not have to know how) that the joint density function of x =
(
x(1), . . . , x(k)

)
at

a point u = (u1, . . . , uk) is given by

f (u) =


n!

(n − k)!
·

[
k∏

i=1

1

σ
· φ

(
ui − µ

σ

)]
·

[
1−8

(
x0 − µ

σ

)]n−k

for u1 < · · · < uk < x0

0 otherwise

if we assume that the lifetimes have independent N
(
µ; σ 2

)
distributions, where φ represents the

density function and 8 the distribution function of the standard normal distribution.

Show that these densities belong to the two-parameter exponential family with canonical functions

t (x) =

(
−

1

2

k∑
i=1

x2
(i);

k∑
i=1

x(i)

)
, θ = (θ1; θ2) =

(
1

σ 2
;
µ

σ 2

)
and

ψ (θ1; θ2) =
k

2
· θ2

2/θ1 −
k

2
· ln (θ1)− (n − k) · ln

{
1−8

(
θ

1
2
1 x0 − θ2/θ

1
2
1

)}
.

Exercise 5.4.4

Show that the guaranteed exponential distributions

f ( xi | θ) = exp [−(xi − θ)] , −∞ < θ <∞ , xi ≥ θ

do not belong to an exponential family.
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Exercise 5.4.5

Consider the family of geometric distributions with density

f (x |p) = p(1− p)x−1 , x = 1, 2, 3, . . . 0 < p < 1

(a) Show that the densities belong to the one-parameter exponential family and write it in canonical

form.

(b) Use Theorem 5.2.2 to obtain E(X |p) and var(X |p).

Exercise 5.4.6

If ax2 + bx + c = 0 for more than two values of x, then we must have a = b = c = 0. Use this fact to

show that if a statistic T has a binomial distribution with parameters θ and n = 2, then T is complete.

Exercise 5.4.7

Suppose the statistic T has probability function

f ( t | θ) =
1

2θ
, −θ < t < θ .

Show that T is not complete by finding at least one non-zero function s (t) such that E [s (T )] = 0 for

all θ > 0. Do the same for the case where T has a N (0; θ) distribution.
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Study Unit 6

6. Minimum Variance unbiased estimation

Aims

To present various ways in determining the minimum variance unbiased estimator (MVUE).

Learning objectives

By the end of this unit you should be able to

- write down, understand and apply the definitions, theorems and propositions which are given

- find the MVUE using the Rao-Blackwell theorem

- find the MVUE using the Lehmann-Scheffé theorem

- find the MVUE which has a particular form

- find the MVUE in certain cases by inspection

6.1 Rao-Blackwell Theorem

The Rao-Blackwell theorem stated below helps us to determine a MVUE for a function of an unknown

parameter g(θ).

Theorem 6.1.1 (Rao-Blackwell Theorem)

Let X1, . . . , Xn have joint p.d.f. f (x1, . . . , xn|θ) and let Y be a sufficient statistic for θ . If T =

U (X1, . . . , Xn) is any unbiased estimator of g(θ) and if T ∗ = E(T |Y ) = φ(Y ), then

(i) T ∗ is an unbiased estimator of g(θ).

(ii) T ∗ is a function of Y , and

(iii) var(T ∗) ≤ var(T ) for every θ ∈ 2, and var(T ∗) < var(T ) for some θ ∈ 2 unless T ∗ = T with

probability 1.
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Proof:

Recall some preliminary results:

(I) E[E(Y |X)] = E(Y ).

(II) var(Y ) = varX [E(Y |X)]+ EX [var(Y |X)].

(ii) Since Y is sufficient for θ , the conditional pdf of T given Y fT |Y (t) does not involve θ. Thus the

function φ(T ) = E(T |Y ) =
∫∞
−∞ fT |Y (t) dt , does not depend on θ . Hence T ∗ = E(T |Y ) = φ(Y ) is

a function of Y .

(i) From (I) above,

E(T ∗) = E[E(T |Y )] = E(T ) = g(θ) .

Hence T ∗ is unbiased for g(θ).

(iii) From (II) above

var(T ) = vary [E (T |Y )]+ vary[E(T |Y )]

≥ var

= var(T ∗) ,

with equality iff E[var(T |Y )] = 0, which occurs iff var(T |Y ) = 0 with probability 1. But var(T |Y ) =

E{[T − E(T |Y )]2|Y } which means T = E(T |Y ) = T ∗ if var(T |Y ) = 0.

The Rao-Blackwell theorem can be used in the search for a minimum variance unbiased estimator

of a parameter.

If a sufficient statistic, say Y , exits for θ , then we can limit our search for MVUE of θ to functions of Y ,

because given another unbiased estimator, say T , we can always find a better estimator based on

Y , that is unbiased and has smaller variance.

Example 6.1.1

Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution with mean µ. Use the Rao-

Blackwell theorem to find the MVUE of P(X i = 0) = e−µ.

Solution:

Firstly, Y =
∑n

i=1 X i is sufficient for µ and Y ∼ POI(nµ).
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Let T = 1 if X1 = 0 and T = 0 otherwise. Then

E(T ) =
1∑

t=0

t P(T = t) = 0 · P(T = 0)+ 1 · P(T = 1) = P(T = 1) = P(X1 = 0) = e−µ .

So T is unbiased for e−µ.

The conditional expectation of T given Y is

E(T |Y ) =
1∑

t=0

t P(T = t |Y ) = 1 · P(T = 1|Y )+ 0 · P(T = 0|Y ) = P(T = 1|Y ) .

Now

P(T = 1|Y = y) =
P(T = 1, Y = y)

P(Y = y)

=
P
(
X1 = 0,

∑n
i=2 X i = y

)
P(Y = y)

(since the event T = 1 ≡ X1 = 0)

=
e−µe−(n−1)µ[(n − 1)µ]y/y!

e−nµ(nµ)y/y!
(since X1 and

n∑
i=2

X i ∼ POI ((n − 1) µ) are independent)

=

(
n − 1

n

)y

=

(
1−

1

n

)y

.

Hence

E(T |Y ) =

(
1−

1

n

)Y

.

Furthermore, E[E(T |Y )] = E

[(
1− 1

n

)Y
]
= e−µ, since E[E(T |Y )] = E(T ) = e−µ.

Hence
(
1− 1

n

)Y

=
(
1− 1

n

) n∑
i=1

X i

is the MVUE for e−µ.

The next two theorems ties the ideas of sufficiency and completeness with the Rao-Blackwell

theorem in finding the MVUE of g(θ).

Theorem 6.1.2 (Theorem Lehmann-Scheffé Theorem I)

Suppose that T is an unbiased estimator of g(θ). Let Y be a complete (jointly) sufficient statistic

for θ . Define φ(y) ≡ E[T |Y = y]. Then, the statistic T ∗ = φ(Y ) is a unique MVUE of g(θ) with

probability 1.
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Proof:

The difference between the Rao-Balckwell and this theorem is that now Y is also assumed complete.

The Rao-Blackwell theorem assures us that in order to search for the best unbiased estimator of

g(θ), we need to fucus on unbiased estimators which are functions of Y alone. We already know that

(i) T ∗ is a function of Y , and (ii) T ∗ is an unbiased estimator of g(θ). Suppose that there is another

unbiased estimator T ∗∗ of g(θ) where T ∗∗ is also a function of Y . Define h(Y ) = T ∗ − T ∗∗ and then

we have:

E[h(Y )] = E[T ∗ − T ∗∗] = g(θ)− g(θ) = 0 , ∀θ ∈ 2 . (6.1)

Now, using Definition 5.3.1 of completeness of a statistic, since Y is a complete statistic, it follows

from Equation 5.3.1 that h(Y ) = 0 with probability 1. So T ∗ = T ∗∗ with probability 1.

Remark:

J In our quest for finding the MVUE of g(θ), we may not always go through conditioning with respect

to a complete sufficient statistic Y . The following result may be directly applied.

Theorem 6.1.3 (Lehmann-Scheffé Theorem II)

Suppose that Y is a complete (jointly) sufficient statistic for θ . Also, suppose that a statistic T = φ(Y )

is an unbiased estimator of g(θ). Then, T is a unique MVUE of g(θ) with probability 1.

Remark:

J As we explained in study unit 5, showing completeness can be very mathematical. Fortunately,

we can use Theorem 5.3.2, which requires us to write the p.d.f. or p.m.f. in canonical form then

U = (U1, . . . ,Uk), where Ui =
∑n

j=1 ti (X j ) is a (jointly) minimal sufficient statistic for θ and will be

complete for θ . Our task of finding the MVUE is greatly reduced if we can show that the p.d.f. or

p.m.f. belongs to the exponential family.

Example 6.1.2

Consider X ∼ BIN(1, p). In the self assessment exercise 5.1.1, you were asked to show that the

BIN(n, p) belongs to the exponential family. You should have obtained t (xi ) = xi . Hence from

Theorem 5.1.1, T =
∑n

i=1 X i is a complete minimal sufficient statistic for p.

Now, notice that E(X) = p, hence E(X) = 1
n

∑n
i=1 E(X i ) =

1
n

∑n
i=1 p = p. Hence X is an unbiased

estimator of p and furthermore, X is a function of the complete minimal sufficient statistic T , hence

by Theorem 6.1.3, X is a MVUE of p.
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Suppose we now want to find a MVUE for the var(X) = p(1 − p). Note that the MVUE is NOT

X(1− X). However, it is often a good starting point. So consider X(1− X). Now

E[X(1− X)] = E(X)− E

(
X

2
)

= p − {[E(X)]2 + var(X)} · · · since var(X) = E

(
X

2
)
−
[
E(X)

]2
= p − p2 − p(1− p)/n = p(1− p)(1− 1/n) 6= p (1− p) .

Note that I used

var(X) = var

(
1

n

n∑
i=1

X i

)
=

1

n2

n∑
i=1

var(X i ) =
1

n2

n∑
i=1

p(1− p) = p(1− p)/n .

From the above you can see that X(1−X) is NOT an unbiased estimator for p(1− p) and will therefore

NOT be a MVUE of p(1− p). However, E[nX(1− X)/(n−1)] = p(1− p) and therefore is an unbiased

estimator of var(X) = p(1− p). Also nX(1− X)/(n − 1) is a function of T =
∑n

i=1 X i the complete

minimal sufficient statistic, hence nX(1− X)/(n − 1) will be a MVUE of var(X) = p(1− p).

If we can find a MVUE without having to explicitly show sufficiency, minimal sufficiency and

completeness, then why do we have to study these sections. There are two reasons. First, we

will not be able to understand the theorems leading to Lehmann-Scheffé’s theorem and we will

not understand why Lehmann-Scheffé’s theorem requires that the statistic be complete minimal

sufficient. Second, not all the problems can be solved by showing that the p.d.f. or p.m.f. belongs to

the exponential family. What happens when the p.d.f. or p.m.f. does not belong to the exponential

family. In this case we have to show minimal sufficiency, completeness and find an unbiased

estimator which is a function of the complete minimal sufficient statistic.

Please note that in the tutorials and examinations marks will be deducted if you do not explain the

details of what you are doing in order to arrive at a MVUE for an unknown parameter.

Example 6.1.3

Suppose that X1, . . . , Xn form a random sample from the uniform distribution UNIF(0, θ). Find a

MVUE of θ .

Solution:

Note that this p.d.f does not belong to the exponential family. Show this!

In solving this problem, we have to show that:

(i) X(n) is a sufficient statistic for θ — please do this

(ii) X(n) is a minimal sufficient statistic for θ — please do this
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Hint: When you take the likelihood ratio for the two data sets, you will arrive at:

L(θ |x)
L(θ |y)

= K ′(x, y)
I[0,θ ](x(n))

I[0,θ ](y(n))
= K ′′(x, y)

Now let a(θ) =
I[0,θ ](x(n))
I[0,θ ](y(n))

. Then a(θ) will become free of θ iff x(n) = y(n).

(iii) The p.d.f of X(n) is

f (x |θ) =

{
nxn−1

θn , 0 ≤ x ≤ θ ,
0 , elswhere.

please do this!

(iv) X(n) is a complete statistic:

Consider a function h[X(n)] such that

h[X(n)] = 0 =

∫ θ

0

h(x)
nxn−1

θn
dx .

Differentiating this equation with respect to θ and applying the Fundamental Theorem of Calculus

gives:

h(θ)
nθn−1

θn
=

n

θ
h(θ) = 0 .

Since n 6= 0 and θ > 0, we must have h(θ) = 0 for all θ . So X(n) is a complete statistic for θ .

(v) (n + 1)X(n)/n is an unbiased estimator for θ — please show this!

(vi) (n + 1)X(n)/n is a MVUE for θ :

Since (n + 1)X(n)/n is an unbiased estimator for θ and (n + 1)X(n)/n is a function of a complete

minimal sufficient statistic, namely X(n), by the Lehmann-Scheffé Theorem (Theorem 6.1.3),

(n + 1)X(n)/n is a MVUE for θ .

6.2 Some Easily Found MVUE

(The American Statistician, Feb. 1978, Vol. 32, No. 1).

Let X1, X2, . . . , Xn be a random sample from a distribution with density function f (x |θ), a ≤ x ≤

b, θ1 ≤ θ ≤ θ2. We want to find a MVUE of a function of θ , say h(θ). Firstly, we find a sufficient

statistic say Y with density function g(y|θ). Then, we find a function of Y , say u(Y ) such that

E[u(Y )] = h(θ).

Theorem 6.2.1 (MVUE: Case A)

Let X1, . . . , Xn denote a random sample from a distribution with continuous p.d.f. of the form

f (x |θ) = Q(θ)M(x) a < x < θ

Let Y1, . . . , Yn denote the order statistics. Show that
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(i) Yn is sufficient for θ .

(ii) u(Yn) = h(Yn)+
h′(Yn)

nQ(Yn)M(Yn)
is the MVUE of h(θ), where h(θ) is some function of θ .

Proof:

f (x |θ) = Q(θ) · M(x), a < x < θ (6.2)

(i) We want to show that Yn is a sufficient statistic for θ . Now

1 =

∞∫
−∞

f (x |θ)dx =

θ∫
a

Q(θ)M(x)dx ∴
∫ θ

a

M(x)dx =
1

Q(θ)
(6.3)

and
F(y) = P(X ≤ y) =

∫ y

a

Q(θ)M(x)dx = Q(θ)

∫ y

a

M(x)dx =
Q(θ)

Q(y)
.

Thus the p.d.f. of Yn is

gn(y) = n[F(y)]n−1 f (y) = n

[
Q(θ)

Q(y)

]n−1

Q(θ)M(y) =
n [Q(θ)]n M(y)

[Q(y)]n−1
, a < y < θ .

Now
f (x1|θ) f (x2|θ) · · · f (xn|θ)

gn(yn)
=

[Q(θ)]n M(x1)M(x2) · · ·M(xn)

n[Q(θ)]n M(yn)/[Q(yn)]n−1
=

M(x1)M(x2) · · ·M(xn)

nM(yn)/[Q(yn)]n−1

which is free of θ and hence Yn is a sufficient statistic for θ .

(ii) Suppose u(Yn) is an unbiased estimator for h(θ) i.e.

E[u(Yn)] =

∫ θ

a

u(yn)nM(yn)[Q(θ ]n)

[Q(yn)]n−1
dyn = h(θ)

i.e.

θ∫
a

u(yn)M(yn)

[Q(yn)]n−1
dyn =

h(θ)

n[Q(θ)]n

and differentiate w.r.t. θ .

Fundamental Theorem of Calculus :

d

dx

x∫
a

f (t)dt = f (x)

Thus u(θ)M(θ)

[Q(θ)]n−1
=

h′(θ)

n[Q(θ)]n
−

h(θ)Q′(θ)

[Q(θ)]n+1
,

i.e.
u(θ) =

h′(θ)

nM(θ) · Q(θ)
−

h(θ)Q′(θ)

[Q(θ)]2M(θ)
Differentiating (6.3) w.r.t. θ i.e.

∂

∂θ

∫ θ

a

M(x)dx =
1

Q(θ)
⇒ M(θ) =

−Q′(θ)

[Q(θ)]2
so that

u(θ) =
h′(θ)

nM(θ) · Q(θ)
+

h(θ)M(θ)

M(θ)
= h(θ)+

h′(θ)

nM(θ)Q(θ)
which completes the result. Thus

u(Yn) = h(Yn)+
h′(Yn)

nM(Yn)Q(Yn)

is the MVUE for h(θ).

Self–assessment Exercise 6.2.1

Refer to Example 6.1.3. Use Theorem 6.2.1 to show that (n + 1)X(n)/n is a MVUE for θ .
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Example 6.2.1

Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f.

f (x |θ) =

{
1
θ , 0 < x < θ
0 , elsewhere

(a) Find a MVUE for θr .

(b) Find a MVUE for P(X ≤ c).

Solution:

(a) From Theorem 6.2.1, Yn is sufficient for θ . Q(θ) = 1
θ and M(x) = 1.

If h(θ) = θr then h′ (θ) = rθr−1 and

u(yn) = h(yn)+
h′(yn)

nM(yn)Q(yn)

= yr
n +

r yr−1
n

n(1)(1/yn)
= yr

n +
r

n
yr

n = yr
n

(
1−

r

n

)
.

Hence u(Yn) = Y r
n

(
1− r

n

)
is a MVUE of θr .

(b) P(X ≤ c) =

c∫
0

1

θ
dx =

1

θ
x

]c

0

=
c

θ
.

Using Theorem 6.2.1, where h(θ) = c
θ , hence h′(θ) = − c

θ2 and

the MVUE for P(X ≤ c) is:
c

Yn
+ −c/Y 2

n

n[1/Yn]
= c

Yn
− c

nYn
= c

Yn

(
1− 1

n

)
= c

X(n)

(
1− 1

n

)
.

Theorem 6.2.2 (MVUE: Case B)

Let X1, . . . , Xn denote a random sample from a distribution with continuous p.d.f. of the form

f (x |θ) = Q(θ)M(x) , θ < x < b

Let Y1, . . . , Yn denote the order statistics. Show that

(i) Y1 is sufficient for θ .

(ii) u(Y1) = h(Y1)−
h′(Y1)

nQ(Y1)M(Y1)
is the MVUE of h(θ), where h(θ) is some function of θ .

Proof: See Exercise 6.4.1
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6.3 MVUE Solution by Inspection

For some h(θ) we can solve
∫

u(y)g(y|θ) dy = h(θ) by inspection. To do this, we use the

completeness property and the fact that a density when integrated or summed over all the values is

equal to one. Write the above integral as
∫

u(y)[g(y|θ)/h(θ)] dy = 1.

If this integral can be written as ∫
u(y)v(y)g∗(y; θ∗) dy = 1

where g∗(y; θ∗) is another density of the same form as g(y|θ) but with possibly a different parameter

θ∗ then [u(y)v(y)− 1] = 0 for all θ∗ so that u(y) = 1
v(y) .

Note that the parameter space of θ∗ should be the same as θ .

Example 6.3.1

Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with mean θ , that is,

f (x |θ) =
e−θθ x

x!
, x = 0, 1, 2, . . .

Y =
∑n

i=1 X i is sufficient for θ and Y is Poisson with mean nθ . (Show this)

Find the minimum variance unbiased estimator for e−kθθr , r a non-negative integer and k < n.

Solution:

Now
∞∑

y=0

u(y)

[
e−nθ (nθ)y

y!

]
= e−kθθr .

This can be written as
∞∑

y=r

[
u(y)(y − r)!ny

(n − k)y−r y!

]
e−(n−k)θ [θ(n − k)]y−r

(y − r)!
= 1 ,

if we take u(y) = 0 for y < r .

Now let w = y − r. Then in what is summed in the last equation is of the form g∗(w; θ∗) – the pmf of

a Poisson with parameter θ(n − k),

u(y) =
1

v(y)
=

y!

(y − r)!

(n − k)y−r

ny
, y ≥ r

u(y) =

{
y!

(y−r)!

(
1
n

)r (
1− k

n

)y−r
, y ≥ r

0 , y < r

Hence u(Y ) is a MVUE of e−kθθr .

If h(θ) = θr , that is k = 0 then

u(Y ) =
Y !

(Y − r)!

(
1

n

)r

is a MVUE for θr .

If h(θ) = e−θ , that is k = 1, r = 0 then

u(Y ) =

(
1−

1

n

)Y

is a MVUE for e−θ . This is also what we arrived at using the Rao-Blackwell theorem in Example 6.1.1.
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Example 6.3.2

Let X1, X2, . . . , Xn be a random sample from a discrete Uniform distribution, that is,

P(X = x) =
1

θ
, x = 1, 2, . . . , θ and zero otherwise.

Consider Y = X(n). Now

FY (y) = P(Y ≤ y) = P(max(X i ) ≤ y)

=
n∏

i=1

P(X i ≤ y) =
( y

θ

)n

because P(X i ≤ y) =
∑y

x=1
1
θ =

y

θ . Thus

P(Y = y) = P(Y ≤ y)− P(Y ≤ y − 1)

=
( y

θ

)n

−

(
y − 1

θ

)n

Note that Yn is sufficient for θ because

f (x1|θ) f (x2|θ) · · · f (xn|θ)

P(Y = y)
=

θn

θn[yn − (y − 1)n]
=

1

yn − (y − 1)n
,

which is free of θ .

We want to find the minimum variance unbiased estimator for h(θ) = θr , r > −n an integer. Thus

θ∑
y=1

u(y)

[( y

θ

)n

−

(
y − 1

θ

)n]
= θr

⇒
θ∑

y=1

u(y)
1

θr

[( y

θ

)n

−

(
y − 1

θ

)n]
= 1

⇒
θ∑

y=1

u(y)

[
yn − (y − 1)n

yn+r − (y − 1)n+r

][( y

θ

)n+r

−

(
y − 1

θ

)n+r
]
= 1

The latter bracket being a p.m.f. g∗(y; θ∗), with n replaced by n + r .

∴ u(y) =
1

v(y)
=

yn+r − (y − 1)n+r

yn − (y − 1)n
.

Hence u(Y ) = Y n+r−(Y−1)n+r

Y n−(Y−1)n is a MVUE of θr .
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6.4 Exercises

Exercise 6.4.1

Prove Theorem 6.2.2.

Exercise 6.4.2

Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f.

f (x |θ) =

{
e−(x−θ) , x > θ
0 , elsewhere

(a) Find a MVUE for θ .

(b) Find a MVUE for θr .

(c) Find a MVUE for P(X ≤ c).

Exercise 6.4.3

Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f.

f (x |θ) =
2

θ
xe−x2/θ , x > 0 .

(a) Use the Factorization Theorem to find a sufficient statistic for θ .

(b) Show that the above p.d.f. belongs to the exponential family.

(c) From part (b), find the complete minimal sufficient statistic for θ .

(d) Find a MVUE for θ .
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Study Unit 7

7. Confidence Intervals

Aims

To study the distributional properties of likelihood functions and maximum likelihood estimates. To

derive confidence intervals for maximum likelihood estimates.

Learning objectives

By the end of this unit you should be able to

- write down, understand and apply the definitions, theorems and propositions which are given

- approximate the distribution of a maximum likelihood estimate and a likelihood function

- determine confidence intervals for maximum likelihood estimates

7.1 Distributional Properties of the Observed Information

In study unit 1 we assume we have a particular data set x available and we use this data to estimate

the “true” parameter θ in our model. In this unit we study how the MLE varies across different data

sets generated by a particular model (i.e. for a given parameter θ ). This will enable us to state

how confident we are that the MLE in a particular case is close to the “true” parameter. We start by

investigating how each individual component of x affects the likelihood function.

Note that the likelihood L, the log-likelihood ` (θ | x) and the MLE θ̂ (x) are random variables because

they depend on the outcome x in the experiment. In this section we wish to find the probability

distributions of these random variables.

Proposition 7.1.1

Eθ
{
˙̀ (θ | xi )

}
= 0 and varθ

{
˙̀ (θ | xi )

}
= I(θ) .

Proposition 7.1.2

If the data is generated by the model function indexed by θ, and if the sample size, n, is large, then
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(i) θ̂ (x) ≈ θ,

(ii)
1

n
· ῭ (θ | x) =

1

n
·

n∑
i=1

῭ (θ | xi ) ≈ −I(θ) and

(iii) I(θ) ≈ I(θ̂(x)) ≈ I (x) /n.

Theorem 7.1.1

If the data is generated by the model function indexed by θ and if the sample size, n, is large, then

(i) the distribution of θ̂ (x) is approximately that of a normal random variable with mean θ and

variance
1

I (x)
, i.e. θ̂ ∼ N

(
θ;

1

I (x)

)
or I (x)

1
2 ·
(
θ̂ − θ

)
∼ N (0; 1) and

(ii) the distribution of −2 · ln r (θ | x) = 2 ·
[
`
(
θ̂
∣∣∣ x)− ` (θ | x)] is approximately that of a chi-square

random variable with one degree of freedom.

Remarks:

J Part (i) of Theorem 7.1.1 usually gives poor estimates if n is not large.

J The convergence in part (ii) of the theorem is much faster than that in part (i).

7.2 Deriving Confidence Intervals

One of the purposes of inference is to identify the probability mechanism which generated the data.

As we are working in terms of a parameterized class of probability distributions { f ( ·| θ) : θ ∈ 2} ,

the inference problem becomes one of identifying the particular value of θ that is at work. The

MLE provides a “point estimate” of θ and our justification for its use has been simply that θ̂ is the

parameter value under which the observed data is most likely to have occurred. Of course, other

points estimates of θ are also available (for e.g. MME and MLE) and may be justified in terms of a

wide variety of criteria, such as unbiasedness or minimum variance. However, for the present we

confine our attention to the MLE.

Associated with any point estimate is some degree of uncertainty. For instance, if we say that the

MLE of θ is 2.4 we do not mean to state that the true value of θ is, in fact, equal to 2.4. We simply

mean that 2.4 is our “best guess” as to the true value of θ and that if the true value is not exactly 2.4

it probably lies somewhere in the vicinity of 2.4.
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One way of giving expression to our feelings of uncertainty regarding the true value of θ is to construct

a confidence interval (or system of confidence intervals) for θ .

Definition 7.2.1 (Confidence Interval)

If a (x) and b (x) are two functions of the data such that a (x) < b (x) for all x ∈ χ , then (a (x) ; b (x))

is said to be a 100β% confidence interval for θ if Pθ {θ ∈ (a (x) ; b (x))} = β, where Pθ denotes the

probability calculated under the assumption that the true value of the parameter is θ .

Remark:

J Recall the operational interpretation of a probability statement such as that used in the definition

above: If the experiment is repeated a large number, M, of times, yielding data x(1), . . . , x(M)

and if the corresponding intervals
(
a
(
x(1)

)
; b

(
x(1)

))
, . . . ,

(
a
(
x(M)

)
; b

(
x(M)

))
are calculated for

these data sets, then one would find that approximately β · M of these intervals would contain

the true value θ while the other (1− β) · M would not contain it. On the basis of this property, we

feel 100β% “confident” that the interval calculated from the actual data realized by the experiment

contains the true value θ .

In principle the above is very close to obtain confidence intervals for θ directly from the likelihood

function by using part (ii) of the Theorem 7.1.1. Let χ2
1;β denote the upper 100β% point of the chi-

square distribution with one degree of freedom, i.e. the area under the density curve to the left of the

point χ2
1;β is β. Then

Pθ

{
r (x| θ) > exp

(
−1

2
χ2

1;β

)}
= Pθ

{
−2 · ln r (θ | x) < χ2

1;β

}
≈ β . (7.1)

Now, in view of our assumption about the shape of the likelihood function, it is clear that the set of

θ -values for which the relative likelihood r (θ | x) is larger than exp
(
−1

2
χ2

1;β

)
is actually an interval,

say (a (x) ; b (x)), as in figure 7.1.

By Equation 7.1,

Pθ {θ ∈ (a (x) ; b (x))} = Pθ

{
r (θ | x) > exp

(
−1

2
χ2

1;β

)}
≈ β . (7.2)

So, in order to calculate the interval (a (x) ; b (x)) corresponding to any given data set we have to

(a) prepare a graph of the relative likelihood function,

(b) draw a horizontal like across this graph at a height exp
(
−1

2
χ2

1;β

)
above the θ -axis and

(c) project the two points of intersection of this line with the relative likelihood function onto the θ -axis.
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The confidence interval then consists of all values of θ lying between these two points.

Figure 7.1: Obtaining confidence intervals from relative likelihood function

Example 7.2.1 (Lifetime testing: Example 1.2.3 & 2.3.3 continued)

To find a 90% confidence interval for the mean lifetime in Example 2.3.3 we first look up χ2
1;0.9 = 2.706

in a chi-square table. Then we draw a horizontal line across the likelihood graph in figure 2.3 at a

height of exp (−2.706/2) = 0.258 above the θ -axis on the likelihood scale (see figure 7.2). Projecting

the two points of intersection onto the θ -axis we obtain

(1247.5; 1295.5)

as our 90% confidence interval.
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Figure 7.2: 90% confidence interval for Lifetime testing data

We note that confidence intervals obtained from the likelihood function by the method described

above have the following properties:

Properties of likelihood confidence intervals

(a) For any confidence level β, the MLE always lies inside the confidence interval.

(b) Any point inside the confidence interval has a higher likelihood value than any point outside the

interval.

Example 7.2.2

Suppose x1, . . . , xn are independent observations from a normal distribution with mean θ and known

variance σ 2 > 0. Then you should know that(
x − 1.96 ·

σ
√

n
; x + 1.96 ·

σ
√

n

)
(7.3)

is a 95% confidence interval for θ . Let us look at what the likelihood method gives in this case.

Since the relative likelihood is

r (θ | x) = exp
(
−n · (x − θ)2 /2σ 2

)
(7.4)
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we see that the inequality r (θ | x) > exp (−3.841/2) is equivalent to the inequality
√

n·|x − θ | /σ < 1.96

and this, in turn, is equivalent to

x − 1.96 · σ/
√

n < θ < x + 1.96 · σ/
√

n .

Thus the confidence interval obtained from the likelihood function is exactly (7.3)

.

One may also obtain confidence intervals for θ by using part (i) of Theorem 7.1.1. In fact, if zβ is the

upper 100 (1+ β) /2% point of the standard normal distribution, then

Pθ

{
θ̂ (x)− zβ/

√
I (x) < θ < θ̂ (x)+ zβ/

√
I (x)

}
= Pθ

{∣∣∣(θ̂ (x)− θ) ·√I (x)
∣∣∣ < zβ

}
≈ β . (7.5)

so that (
θ̂ (x)− zβ/

√
I (x); θ̂ (x)+ zβ/

√
I (x)

)
. (7.6)

is an approximate 100β% confidence interval for θ . The form of this confidence interval is explicit,

whereas the likelihood intervals calculated using (7.5) are in most cases not expressible in closed

form.

However, one should be careful in using Equation 7.6.

We argued in study unit 4 that the likelihood function reflects all the information present in the data.

Thus it is natural that one should use the likelihood function as a sort of criterion by which to judge

the validity, or otherwise, of any method of data summarization. Now if we base our inferences on

part (i) of Theorem 7.1.1, for instance by using Equation 7.6 as a confidence interval for θ , we are in

fact reducing the full data set x to just two quantities, viz. θ̂ (x) and I (x), and we are claiming that the

information content of the full data set x is approximately equivalent to that of a single observation

(viz. θ̂ (x)) from a normal distribution with mean θ and variance 1/I (x). In other words, we are

claiming that the relative likelihood function

exp

[
−
(
θ̂ (x)− θ

)2

· I (x) /2
]
, (7.7)

reflects almost the same state of information as does the relative likelihood function r (θ | x) obtained

from the full data set. Now Equation 7.7 is just the first-order approximation to r (θ | x), as discussed

in study unit 2.

Therefore, and this is important, before we decide to base our inferences on part (i) of Theorem 7.1.1,

we should check that the first-order approximation to r (θ | x) is indeed adequate.

Example 7.2.3 (Estimating bacterial densities: Example 2.3.4 & 2.9.1 continued)

By drawing a horizontal line at the height exp
(
−1

2
χ2

1;0.9

)
= 0.258 in figure 2.4 and looking at

where it intersects the likelihood function produced by the direct method, we obtain (46; 59) as
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an approximate 90% confidence interval for the bacterial density λ. On the other hand, using the

first-order approximation, the confidence interval given in Equation 7.6 is(
52− 1.645/

√
0.0577; 52+ 1.645/

√
0.0577

)
≈ (45; 59)

assuming λ is an integer. The close correspondence between the two intervals is a consequence

of the fact that the first-order approximation to the likelihood function is quite satisfactory (cf.

Example 2.9.1). Thus, the information in the data yielded by the direct method may be summarized

by saying that the MLE λ̂ = 52 should be considered as a single observation from a normal

distribution with mean λ and variance
1

0.0577
= 17.33.

Example 7.2.4 (Binomial distribution: Example 2.9.2 continued)

Here the exact likelihood curve in figure 2.7 gives (0.08; 0.375) as a 90% confidence interval for θ ,

while the first-order approximation gives(
0.2− 1.645/

√
125; 0.2+ 1.645/

√
125;

)
= (0.053; 0.347) .

This interval is shifted to the left of the exact likelihood interval by about 0.028 (which is probably not

too serious for most purposes).

7.3 Exercises

Exercise 7.3.1

Consider Exercise 2.12.4.

(a) Use Theorem 7.1.1 (i) and your answers in Exercise 2.12.4 to determine a 95% confidence interval

for θ .

(b) Use Theorem 7.1.1 (ii) and your answers in Exercise 2.12.4 to determine a 95% confidence

interval for θ .

(c) Comment on the confidence intervals derived in (a) and (b).

(d) Use Theorem 7.1.1 (ii) and your answers in Exercise 2.12.4 on the first order approximation to the

relative likelihood function, to determine a 95% confidence interval for θ .

(e) Comment on the confidence intervals derived in (d) and (b).
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Study Unit 8

8. Hypothesis Testing

Aims

To study some theories of statistical tests of hypotheses - in particular how to find best and uniformly

most powerful tests.

Learning objectives

By the end of this unit you should be able to:

- write down and apply the definitions and theorem in this unit; and

- find critical or rejection regions of the best and the uniformly most powerful tests.

8.1 Definitions

Let X1, X2, ..., Xn be a random sample from a distribution with probability density or mass function

f (x |θ) where θ is unknown. It is desired to test the null hypothesis

H0 : θ = θ0 (θ0 specified)

against the alternative hypothesis H1 which maybe one of

H1 : θ = θ1 (θ1 specified), H1 : θ > θ0, H1 : θ < θ0 and H1 : θ 6= θ0.

Each of the hypotheses H0 : θ = θ0 and H1 : θ = θ1 specify one value of θ and hence the

hypotheses are called simple hypotheses. The other alternative hypotheses specify more than one

value of θ and hence are called composite hypotheses. Note that a null hypothesis can also be

composite. For example,

H0 : θ ≤ θ0

in which case the alternative hypothesis is

H1 : θ > θ0.

A statistical test is a procedure or rule which uses sample data to decide whether or not the null

hypothesis should be rejected in favour of the alternative hypothesis. Let X = (X1, X2, ..., Xn) and

x = (x1, x2, ..., xn) be the value of X (i.e. x is the vector of sample data).
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Definition 8.1.1

A test statistic is a function ϕ(X) of the random sample whose value ϕ(x) is used to decide whether

or not the null hypothesis H0 should be rejected in favour of the alternative hypothesis H1.

Example 8.1.1

Let X1, X2, ..., Xn be a random sample from a N (θ, σ 2) distribution where θ is unknown and σ 2 is

known. It is desired to test the null hypothesis

H0 : θ = θ0 (θ0 specified) against H1 : θ > θ0.

We show that the usual test statistic Z =

√
n(X̄ − θ0)

σ
∼ N (0, 1) is a reasonable test statistic for the

hypotheses in the sense that its value can discriminate between H0 and H1.

We can use what we have learnt so far to show that X̄ is both the M L E and the MVU E of θ, and

that V ar [X̄ ] =
σ 2

n
. Now if H0 is true we expect

X̄ ≈ θ0 H⇒ X̄ − θ0 ≈ 0 H⇒ Z =

√
n(X̄ − θ0)

σ
≈ 0.

Hence small absolute values of Z (values of Z in the neighbourhood of zero) support H0. On the

other hand, if H1 is true we expect

X̄ > θ0 H⇒ X̄ − θ0 > 0 H⇒ Z =

√
n(X̄ − θ0)

σ
> 0.

Hence large positive values of Z support H1.

Remark:

In example 8.1.1, how small is small and how large is large? The answer to this question will be

given later in this section.

Exercise 8.1.1 Refer to Example 8.1.1.

(a) Which values of Z support the alternative hypothesis H1 : θ < θ0? Justify your

answer.
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(b) Suppose that θ = 0, and that it is desired to test the null hypothesis H0 σ
2 = σ 2

0 against

the alternative hypothesis H1 : σ 2 > σ 2
0 using the test statistic

χ2 =
nS2

σ 2
0

where S2 =
1

n

n∑
i=1

X2
i

is the unbiased estimator of σ 2.

(i) Which values of χ2 support H0? Justify your answer.

(ii) Which values of χ2 support H1? Justify your answer.

Definition 8.1.2

The set C of values of the test statistic ϕ(X) that support the alternative hypothesis H1 (equivalently,

lead to the rejection of H0) is called the critical region or rejection region of the test.

The decision rule of a test is a rule which specifies when H0 should to be rejected. For example,

given the rejection region C, the decision rule of the test of H0 against H1 using the test statistic ϕ(X)

is:

Reject H0 if ϕ(x) ∈ C otherwise fail to reject H0 (i.e. fail to reject H0 if ϕ(x) ∈ C̄

where C̄ is the complement of C called the acceptance region).

The test statistic ϕ(X) is a random variable hence it is possible that its value ϕ(x) can lead to the

rejection of H0 (ϕ(x) ∈ C) when in actual fact H0 is true or failing to reject H0 (ϕ(x) ∈ C̄) when in

actual fact H0 is false.

Definition 8.1.3

When testing H0 against H1 using test statistic ϕ(X) and critical region C , a type I error is committed

if H0 is rejected (ϕ(x) ∈ C) when in actual fact H0 is true and a type II error is committed if H0 is not

rejected (ϕ(x) ∈ C) when in actual fact H0 is false.

The probability of committing a type I error is called the size of the critical region C or the level of

significance of the test. This probability (level of significance) is given by:

α = P(Reject H0|H0 is true)

= P(ϕ(X) ∈ C |H0 is true) (1)
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Note that ”|” in the above equation is read ”given that". Furthermore, note that the level of significance

α is calculated assuming that H0 is true. Fortunately in applied statistics α is not calculated but pre-

chosen prior to calculating the value ϕ(x) of the test statistic ϕ(X). In this context the pre-chosen

α is use to determine the critical region C by solving equation (1) for C to get the solution Cα.

The subscript α on C emphasizes the dependence of the critical region on the pre-chosen level of

significance α.

The probability of committing a type II error is given by:

β = P(Fail to reject H0|H1 is true)

= P(ϕ(X) ∈ C̄ |H1 is true) (2)

Remark:

An ideal test is one for which α = β = 0. However, such a test does not exist because α and β are

inversely related. That is, β increases with decreasing α.

The power of test of H0 against H1 using test statistic ϕ(X) and critical region C is the probability of

rejecting H0 when H0 is false (probability of not committing the type II error). This probability is given

by:

Power = 1− β (3)

where β is calculated using equation (2). An ideal test is one for which the power of the test is one

(β = 0). The problem with such a test is that the level of significance (probability of the type I error)

of such a test is one.

Example 8.1.2

It is known that the random variable X has a probability density function

f (x |θ) =

{
1
θ exp

{
− x
θ

}
if x > 0,

0 otherwise.

It is desired to test the null hypothesis H0 : θ = 2 against the alternative hypothesis H1 : θ = 4. A

random sample X1 of size n = 1 is to be used. The test to be used rejects H0 if X1 > 4.5. We wish to

calculate the level of significance and the power of this test.

Calculations:

The level of significance of the test is

α = P(X1 > 4.5|θ = 2) = 1− P(X1 ≤ 4.5|θ = 2)

= 1−

∫ 4.5

0

1

2
e−x/2dx

= 1−
[
−e−x/2

]4.5

0
= 0.1054.
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The probability of the type II error is

β = P(X ≤ 4.5|θ = 4) =

∫ 4.5

0

1

4
e−x/4dx

=
[
−e−x/4

]4.5

0
= 0.6753.

Hence the power of the test is

Power = 1− β = 0.3247.

Example 8.1.3

A binomial experiment consisting of n = 5 trials is conducted to test the null hypothesis H0 : θ = 0.5

against H1 : θ = 0.6 where θ is the constant unknown probability of success in each trial. The

decision rule of the test is to reject the null hypothesis H0 if the number of successes X ∈ C =

{0, 1, 4, 5}. We wish to calculate the level of significance and the power of this test.

Calculations:

The probability mass function of X is

p(x |θ) =

{
5!

(5−x)!x!
θ x (1− θ)5−x if x = 0, 1, 2, 3, 4, 5;

0 otherwise.

Note that the acceptance region is C̄ = {2, 3}.

The level of significance of the test is

α = P(X ∈ C |θ = 0.5) = 1− P(X ∈ C̄ |θ = 0.5)

= 1− p(2|0.5)− p(3|0.5)

= 1− .3125− .3125 = 0.375.

The probability of the type II error is

β = P(X ∈ C̄ |θ = 0.6)

= p(2|0.6)+ p(3|0.6) = 0.2304+ 0.3456 = 0.576.

Hence the power of the test is

Power = 1− β = 0.424.
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Exercise 8.1.2

Let X1, X2, ..., X10 be a random sample from a distribution with probability density function

f (x |θ) =

{
θxθ−1 if 0 < x < 1, θ > 0;

0 otherwise.

It is desired to test the null hypothesis H0 : θ = 1 against H1 : θ = 0.5 using

Y = max{X1, X2, ..., X10}

as the test statistic. The test to be used should reject H0 if 0 < Y ≤ 0.5.

(a) Find the probability density of Y.

Hint: The cumulative distribution function of Y is

G(y|θ) = P(Y ≤ y)

= P(X1 ≤ y, X2 ≤ y, ..., X10 ≤ y) =
10∏

i=1

P(X i ≤ y) =
[
P(X ≤ y)

]10
.

(b) Calculate the level of significance and the power of the test.

(c) What is the decision rule of the test if the level of significance is α = 0.05?

Hint: Solve for C0.05 in the probability equation

0.05 = P(0 < Y ≤ C0.05|θ = 1).

8.2 Some optimal tests

As in section 8.1, let X1, X2, ..., Xn be a random sample from a distribution with probability density or

mass function f (x |θ) where θ is unknown. It is desired to test the null hypothesis

H0 : θ = θ0 (θ0 specified)

against the alternative hypothesis H1 which maybe one of

H1 : θ = θ1 (θ1 specified), H1 : θ > θ0 and H1 : θ < θ0.

Let L(θ |x) =
∏n

i=1 f (xi |θ) be the likelihood function of θ (see Section 2.2) and

r(θ0, θ |x) =
L(θ0|x)
L(θ |x)

(4)

be the likelihood ratio of L(θ0|x) to L(θ |x).

8.1.1 Best tests

In this section we show how to find best tests for testing simple null hypotheses

H0 : θ = θ0 (specified)
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against simple alternative hypotheses

H1 : θ = θ1 (specified)

at the pre-chosen α level of significance. The best tests are found using Neyman-Pearson

Theorem whose simplified version is stated (in the context of this unit) below.

Theorem 8.2.1

The best test for testing the simple H0 : θ = θ0 against simple H1 : θ = θ1 at the α level of

significance rejects H0 if

r(θ0, θ1|x) =
L(θ0|x)
L(θ1|x)

≤ kα

where kα is a positive number which satisfies the probability equation

α = P (r(θ0, θ1|X) ≤ kα|θ = θ0) .

Heuristic proof

The proof of the theorem is beyond the scope of the module. However, note that if H0 is false then

L(θ0|x) ≤ L(θ1|x) H⇒ r(θ0, θ1|x) =
L(θ0|x)
L(θ1|x)

≤ 1 H⇒

values of r(θ0, θ1|x) smaller than or equal to one support H1. For the level of significance to be α,

values of r(θ0, θ1|x) should be smaller than or equal to kα ∈ (0, 1] if H0 is true. Hence, kα should

solve the probability equation

α = P (r(θ0, θ1|X) ≤ kα|θ = θ0) .

Remark:

If there is no kα which solves the above probability equation, then the best test does not exist.

The distribution of r(θ0, θ1|X)|θ = θ0 is usually difficult to derive which in turn means that it is

difficult to obtain the critical value kα through solving probability equation in the Neyman-Pearson

theorem. These difficulties are circumvented by restating the decision rule in the theorem in terms

of a simpler test statistic (usually sufficient statistics) with known or easier to derive distribution. This

is demonstrated in the examples which follow.
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Example 8.2.1

Refer to example 8.1.1. Suppose that H1 : θ = θ1 (specified and greater than θ0). We find the best

test for testing the hypotheses at the 0.05 level of significance.

The likelihood function of θ is

L(θ |x) = (2πσ 2)−n/2 exp

{
−

1

2σ 2

n∑
i=1

(xi − θ)
2

}
.

Hence,

r(θ0, θ1|x) =
exp

{
− 1

2σ 2

∑n
i=1(xi − θ0)

2
}

exp
{
− 1

2σ 2

∑n
i=1(xi − θ1)2

}
= exp

{
θ0

σ 2

n∑
i=1

xi −
θ1

σ 2

n∑
i=1

xi −
nθ2

0

2σ 2
+

nθ2
1

2σ 2

}

= exp

{
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2

}
According to the Neyman-Pearson theorem, the best test of the hypotheses rejects H0 if

r(θ0, θ1|x) = exp

{
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2

}
≤ k0.05 ∈ (0, 1]

≡ if
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2
≤ ln k0.05 (which is negative since k0.05 ∈ (0, 1])

≡ if
n(θ0 − θ1)

σ 2
x̄ ≤ ln k0.05 −

n(θ2
1 − θ

2
0)

2σ 2
= k∗0.05 (which is negative since θ1 > θ0)

≡ if x̄ ≥
k∗0.05σ

2

n(θ0 − θ1)
= k∗∗0.05 (which is positive since θ1 > θ0)

where k∗∗0.05 solves the probability equation

0.05 = P(X̄ ≥ k∗∗0.05|θ = θ0)

= P

(
Z =

√
n(X̄ − θ0)

σ
≥

√
n(k∗∗0.05 − θ0)

σ
= 1.645

)
.

The critical value 1.645 is obtained from the standard normal tables because Z ∼ N (0, 1). This

means the equivalent decision rule of the best test in this example is to reject H0 if

z =

√
n(x̄ − θ0)

σ
≥ 1.645.

Note that k∗∗0.05 = θ0 +
1.645σ
√

n
.
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Exercise 8.2.1

Refer to example 8.1.1. Suppose that H1 : θ = θ1 (specified and less than θ0)

(a) Find the best test (in terms of x̄) for testing the hypotheses at the 0.05 level of

significance.

(b) Show that the best test rejects H0 if z =
√

n(x̄−θ0)
σ ≤ −1.645.

Exercise 8.2.2

Suppose that X1, X2, ..., Xn is a random sample from a distribution with probability mass function

(pm f ):

f (x |θ) =

{
θ x (1− θ)1−x if x = 0, 1,

0 otherwise.

It is desired to test

H0 : θ =
1

2
against H1 : θ =

1

3
at the 0.1 level of significance. Show that the best test (assuming it exists) rejects H0 if

∑n
i=1 xi ≤ c0.1

where c0.1 solves the probability equation

0.1 = P

(
n∑

i=1

X i ≤ c0.1|θ =
1

2

)
.

8.2.2 Uniformly most powerful tests

In this section we show how to find best tests for testing simple null hypotheses

H0 : θ = θ0 (specified)

against composite alternative hypothesis

H1 : θ > θ0 or H1 : θ < θ0

at the pre-chosen α level of significance. These best tests are called uniformly most powerful

tests. The uniformly most powerful tests are found using Neyman-Pearson Theorem as discussed

below.

In the case of the composite alternative H1 : θ > θ0 let θ1 represent any value of θ greater than

θ0. Then according to the Neyman-Pearson theorem, the uniformly most powerful test for testing the

simple H0 : θ = θ0 against composite H1 : θ > θ0 at the α level of significance rejects H0 if
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r(θ0, θ1|x) =
L(θ0|x)
L(θ1|x)

≤ kα

where kα is a positive number which satisfies the probability equation

α = P (r(θ0, θ1|X) ≤ kα|θ = θ0) .

Remark: If there is no kα which solves the probability equation, then the uniformly most powerful

test does not exist.

Example 8.2.2

Refer to example 8.2.1. Suppose that H1 : θ > θ0. We find the uniformly most powerful test for

testing the hypotheses at the 0.05 level of significance by first letting θ1 be any value θ greater than

θ0. Then all the steps in example 8.2.1 are exactly followed. This leads to the same decision rule for

the uniformly most powerful test for the hypotheses in this example.

In the case of the composite alternative H1 : θ < θ0 let θ1 represent any value of θ less than θ0.

Again according to the Neyman-Pearson theorem, the uniformly most powerful test for testing the

simple H0 : θ = θ0 against composite H1 : θ < θ0 at the α level of significance rejects H0 if

r(θ0, θ1|x) =
L(θ0|x)
L(θ1|x)

≤ kα

where kα is a positive number which satisfies the probability equation

α = P (r(θ0, θ1|X) ≤ kα|θ = θ0) .

Remark: If there is no kα which solves the probability equation, then the uniformly most powerful

test does not exist.

Exercise 8.2.3

Refer to exercise 8.2.1. Suppose that H1 : θ < θ0. Show that the decision rule of the uniformly most

powerful test of the hypotheses in this exercise is the same as that in exercise 8.2.1.
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Exercise 8.2.4

Refer to exercise 8.2.2. It is desired to test

H0 : θ =
1

2
against H1 : θ >

1

2

at the 0.1 level of significance. Show that the uniformly most powerful test (assuming it exists) rejects

H0 if
∑n

i=1 xi ≥ c0.1 where c0.1 solves the probability equation

0.1 = P

(
n∑

i=1

X i ≥ c0.1|θ =
1

2

)
.

8.3 Solutions to Exercises

Solution to Exercise 8.1.1

(a) If H1 is true we expect

X̄ < θ0 H⇒ X̄ − θ0 < 0 H⇒ Z =

√
n(X̄ − θ0)

σ
< 0.

Hence large negative values of Z support H1.

(b) (i) If H0 is true we expect

S2 ≈ σ 2
0 H⇒

S2

σ 2
0

≈ 1 H⇒
nS2

σ 2
0

≈ n.

Hence values of χ2 close to n support H0.

(ii) If H1 is true we expect

S2 > σ 2
0 H⇒

S2

σ 2
0

> 1 H⇒
nS2

σ 2
0

> n.

Hence values of χ2 greater than n support H1.

Solution to Exercise 8.1.2

(a) P(X ≤ y) =

∫ y

0

f (x |θ)dx =

∫ y

0

θxθ−1dx =
[
xθ
]y

0
= yθ for 0 < y < 1 and zero

otherwise. The cumulative distribution function of Y is

G(y|θ) =
[
P(X ≤ y)

]10
= y10θ .

Hence the probability density function of Y is

g(y|θ) =
∂G(y|θ)

∂y
=

{
10θ y10θ−1 if 0 < y < 1,

0 otherwise.
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(b) The level of significance is

α = P(0 < Y ≤ 0.5|θ = 1)

=

∫ 0.5

0

g(y|1)dy

=

∫ 0.5

0

10y9dy = G(0.5|1) = (0.5)10 = 0.00098.

The probability of the type II error is

β = P(0.5 < Y ≤ 1|θ = 0.5)

= 1− P(0 < Y ≤ 0.5|θ = 0.5)

= 1−

∫ 0.5

0

g(y|0.5)dy

= 1−

∫ 0.5

0

5y4dy = 1− G(0.5|0.5) = 1− (0.5)5 = 0.96875.

Hence the power of the test is

Power = 1− β = 0.03125.

(c) 0.05 = P(0 < Y ≤ C0.05|θ = 1) = G(C05|1) = [C0.05]10 H⇒ C0.05 = (0.05)1/10 = 0.9330.

Hence the test should reject H0 if 0 < Y ≤ 0.9330.

Solution to Exercise 8.2.1

(a) The likelihood function of θ is

L(θ |x) = (2πσ 2)−n/2 exp

{
−

1

2σ 2

n∑
i=1

(xi − θ)
2

}
.

Hence,

r(θ0, θ1|x) =
exp

{
− 1

2σ 2

∑n
i=1(xi − θ0)

2
}

exp
{
− 1

2σ 2

∑n
i=1(xi − θ1)2

}
= exp

{
θ0

σ 2

n∑
i=1

xi −
θ1

σ 2

n∑
i=1

xi −
nθ2

0

2σ 2
+

nθ2
1

2σ 2

}

= exp

{
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2

}
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According to the Neyman-Pearson theorem, the best test of the hypotheses rejects H0 if

r(θ0, θ1|x) = exp

{
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2

}
≤ k0.05 ∈ (0, 1]

≡ if
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2
≤ ln k0.05

≡ if
n(θ0 − θ1)

σ 2
x̄ ≤ ln k0.05 −

n(θ2
1 − θ

2
0)

2σ 2
= k∗0.05

≡ if x̄ ≤
k∗0.05σ

2

n(θ0 − θ1)
= k∗∗0.05 (since θ1 < θ0)

where k∗∗0.05 solves the probability equation

0.05 = P(X̄ ≤ k∗∗0.05|θ = θ0).

(b)

0.05 = P(X̄ ≤ k∗∗0.05|θ = θ0)

= P

(
Z =

√
n(X̄ − θ0)

σ
≤

√
n(k∗∗0.05 − θ0)

σ
= −1.645

)
.

The critical value -1.645 is obtained from the standard normal tables because Z ∼ N (0, 1).

This means the equivalent decision rule of the best test is to reject H0 if

z =

√
n(x̄ − θ0)

σ
≤ −1.645.

Solution to Exercise 8.2.2

The likelihood function of θ is

L(θ |x) =
n∏

i=1

f (xi |θ) = θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi .

Hence,

r(2−1, 3−1|x) =
L(2−1|x)
L(3−1|x)

=
2−

∑n
i=1 xi (2)−n+

∑n
i=1 xi

3−
∑n

i=1 xi (2/3)n−
∑n

i=1 xi

=
2−n

3−
∑n

i=1 xi 2n−
∑n

i=1 xi 3−n+
∑n

i=1 xi

=
2−n

2n−
∑n

i=1 xi 3−n

=

(
3

4

)n

2
∑n

i=1 xi = (0.75)n2
∑n

i=1 xi
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According to the Neyman-Pearson theorem, the best test of the hypotheses rejects H0 if

r(2−1, 3−1|x) = (0.75)n2
∑n

i=1 xi ≤ k0.1 ∈ (0, 1]

≡ if n ln(0.75)+
n∑

i=1

xi ln 2 ≤ ln k0.1

≡ if

n∑
i=1

xi ln 2 ≤ ln k0.1 − n ln(0.75) = k∗0.1

≡ if

n∑
i=1

xi ≤
k∗0.1

ln 2
= c0.1

where c0.1 solves the probability equation

0.1 = P

(
n∑

i=1

X i ≤ c0.1|θ =
1

2

)
.

Solution to Exercise 8.2.3

Since the alternative hypothesis is H1 : θ < θ0, let θ1 represent any value of θ less than θ0. Then

r(θ0, θ1|x) =
exp

{
− 1

2σ 2

∑n
i=1(xi − θ0)

2
}

exp
{
− 1

2σ 2

∑n
i=1(xi − θ1)2

}
= exp

{
θ0

σ 2

n∑
i=1

xi −
θ1

σ 2

n∑
i=1

xi −
nθ2

0

2σ 2
+

nθ2
1

2σ 2

}

= exp

{
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2

}
According to the Neyman-Pearson theorem, the uniformly most powerful test of the hypotheses

rejects H0 if

r(θ0, θ1|x) = exp

{
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2

}
≤ k0.05 ∈ (0, 1]

≡ if
n(θ0 − θ1)

σ 2
x̄ +

n(θ2
1 − θ

2
0)

2σ 2
≤ ln k0.05

≡ if
n(θ0 − θ1)

σ 2
x̄ ≤ ln k0.05 −

n(θ2
1 − θ

2
0)

2σ 2
= k∗0.05

≡ if x̄ ≤
k∗0.05σ

2

n(θ0 − θ1)
= k∗∗0.05 (since θ1 < θ0)

where k∗∗0.05 solves the probability equation

0.05 = P(X̄ ≤ k∗∗0.05|θ = θ0).
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Solution to Exercise 8.2.4

Since the alternative hypothesis is H1 : θ > 1
2
, let θ1 represent any value of θ greater than 1

2
. Then

r(2−1, θ1|x) =
L(2−1|x)
L(θ1|x)

=
2−

∑n
i=1 xi (2)−n+

∑n
i=1 xi

θ
∑n

i=1 xi

1 (1− θ1)
n−
∑n

i=1 xi

=
2−n

θ
∑n

i=1 xi

1 (1− θ1)
n−
∑n

i=1 xi

=
1

2(1− θ1)

(
1− θ1

θ1

)∑n
i=1 xi

Note that if θ1 >
1
2

then θ1 > (1− θ1) H⇒
1−θ1

θ1
< 1 H⇒ ln

(
1−θ1

θ1

)
< 0.

According to the Neyman-Pearson theorem, the uniformly most powerful test (if it exists) rejects H0 if

r(2−1, θ1|x) =
1

2(1− θ1)

(
1− θ1

θ1

)∑n
i=1 xi

≤ k0.1 ∈ (0, 1]

≡ if

(
1− θ1

θ1

)∑n
i=1 xi

≤ 2(1− θ1)k0.1 = k∗0.1

≡ if

n∑
i=1

xi ln

(
1− θ1

θ1

)
≤ ln k∗0.1

≡ if

n∑
i=1

xi ≥

[
ln

(
1− θ1

θ1

)]−1

ln k∗0.1 = c0.1

where c0.1 solves the probability equation

0.1 = P

(
n∑

i=1

X i ≥ c0.1|θ =
1

2

)
.
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ADDENDUM A: Toolbox

A.1 Mathematical Background

A.1.1 Functions

I assume that you know the basic idea of a function and the inverse of a function. There are three

important definitions regarding functions that will be used in this module.

Definition A1.1 (Indicator Function)

Let A be any subset of a universal set S and let x ∈ S. The indicator function of the set A, denoted

by IA(x) is defined as

IA(x) = I (x ∈ A) =

{
1, if x ∈ A

0, if x /∈ A
(A.1)

i.e. the indicator function takes on the value 1 if x ∈ A is true and the value 0 if x ∈ A is not true (i.e.

if x /∈ A).

See 2.1.1 of Rice for the definition of the indicator function and its similarity to the Bernoulli random

variable.

Example A1.1

Suppose that we have a function f which takes on the value 0 if x < 0 and is equal to 1− ex if x ≥ 0.

Instead of writing

f (x) =

{
1− e−x for x ≥ 0

0 for x < 0,
we can write

f (x) = I[0,∞)(x) ·
(
1− e−x

)
,

with the two definitions of f being equivalent.
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Definition A.1.2 (One-to-one function)

A function f is a one-to-one function if, for all a1, a2 in the domain of f ,

f (a1) = f (a2) implies a1 = a2 .

In other words, f is one-to-one if no two distinct points have the same image. In this case f −1, i.e.

the inverse of f exits.

Definition A.1.3 (Affinely dependent and independent)

A set of k functions, f1, f2, . . . , fk defined on a common domain A is said to be affinely dependent

if there exist real numbers u0, u1, . . . , uk, not all of which are zero, such that

u0 + u1 f1 (a)+ · · · + uk fk (a) = 0 (A.2)

for all a ∈ A and affinely independent if the only real number for which Equation (A.2) holds is

u0 = u1 = · · · = uk = 0 .

Example A.1.2

(a) The functions f1 (x) = x and f2 (x) = 1+ 3x are affinely dependent because 1+ 3x − (1+ 3x) = 0

for all x, i.e. 1+ 3 f1 (x)− f2 (x) = 0 for all x .

(b) The functions f1 (x) = x and f2 (x) = x2 are affinely independent since the quadratic equation

u0 + u1x + u2x2 = 0 has at most two real solutions in x when at least one of u0, u1 and u2 is

non-zero. The only way to get u0 + u1x + u2x2 = 0 for all x is to set u0 = u1 = u2 = 0.

(c) The functions f1 (x) = x2, f2 (x) = cos2 x, f3 (x) = 2
(
x + sin2 x

)
, f4 (x) = (x − 1)2 and f5 (x) = ex

are affinely dependent because −3 − x2 + 2 cos2 x + 2x + 2 sin2 x + x2 − 2x + 1 = 0 for all x, i.e.

−3− f1 (x)+ 2 f2 (x)+ f3 (x)+ f4 (x) = 0 for all x . Here u5 = 0, but u0, u1, . . . , u4 are non-zero.
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Self-assessment exercise A1.1

Verify that the functions f4 (x) and f5 (x) in Example A1.2(c) are affinely independent.

A.1.2 Taylor expansions

Theorem A1.1 (Taylor’s theorem)

Let f be a function having a finite m-th derivative f (m) everywhere in the open interval (a; b) and let

f (m−1) be continuous on the closed interval [a; b]. Let x0 ∈ [a; b] and x ∈ [a; b] , with x 6= x0. Then

there exists a point x1 interior to the interval joining x0 and x such that

f (x) = f (x0)+
m−1∑
k=1

(x − x0)
k f (k) (x0) /k!+ (x − x0)

m f (m) (x1) /m! . (A.3)

If we set

a0 = f (x0) and ak = f (k) (x0) /k! for k = 1, 2, . . . , m − 1 (A.4)

in Equation (A.3) then we can write it in the form

f (x) = a0 + a1 (x − x0)+ · · · + am−1 (x − x0)
m−1 + Rm (A.5)

where Rm is the “remainder” term

Rm = (x − x0)
m f (m) (x1) /m! . (A.6)

In our applications Rm will usually be negligible, so that Equation (A.5) says that it is possible to

approximate the function f closely by an (m − 1)-th degree polynomial in the immediate vicinity of

the point x0.

Example A.1.3

To see the theorem at work, suppose we want to determine
√

1.14 but do not have a calculator with

a square root function handy. We use Taylor’s theorem with

f (u) = u
1
2 , (u ≥ 0) .

Let x0 = 1 and x = 1.14 and choose any 0 < a < 1 and b > 1.14. Now

d

du
f (u) = f (1) (u) = 1

/(
2u

1
2

)
so that a1 =

1

2
( since x0 = 1),

d2

du2
f (u) = f (2) (u) = −1

/(
4u

3
2

)
so that a2 = −

1

8
,

d3

du3
f (u) = f (3) (u) = 3

/(
8u

5
2

)
so that a3 =

1

16
, etc.
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Then we get the following approximations of
√

1.14 :

a0 + a1 (x − x0) = 1+
1

2
· (0.14) = 1.07

a0 + a1 (x − x0)+ a2 (x − x0)
2 = 1.07−

1

8
· (0.14)2 = 1.06755

a0 + a1 (x − x0)+ a2 (x − x0)
2 + a3 (x − x0)

3 = 1.06755+
1

16
· (0.14)3 = 1.0677215 .

The correct value of
√

1.14 to decimal 7 places is 1.6077078 and
√

1.14 is thus closely approximated

by a third degree polynomial in the vicinity of x0 = 1.

Note: It is clear that the remainder term diminishes:

R2 = −0.002292, R3 = −0.0001578 and R4 = −0.0000137 .

A.2 Statistical Background

You are expected to know the contents of chapters 1 to 7 of Rice. This has been done in STA2603

(Distribution Theory ). It is important to know all the relevant distributions covered in these chapters

as well as their properties, for example, the formula for the distribution, mean, variance and moment

generating function. In some cases it is also wise to know the general expectation formula for these

distributions as they can simplify some of the problems encountered later. I will demonstrate this

later. Also, you should have knowledge of conditional distributions and limit theorems, for example

the central limit theorem. Here I merely highlight some important statistical topics, which I consider

rather difficult and often these are easily forgotten by our students.

A.2.1 Extreme and order statistics

Although extreme and order statistics have been covered in STA2603 (Distribution Theory ), I will

repeat it here because it is used often in STA3702. Please see Section 3.7 of Rice for more details.

Theorem A.2.1

Let X1, X2, . . . , Xn be n independent random variables with a common cumulative distribution

function (cdf) F and density (pdf) f . Let U denote the maximum of the X i and V the minimum,

namely, U = max{X1, X2, . . . , Xn} and V = min{X1, X2, . . . , Xn}. Then the pdf of U is

fU (u) = n f (u)[F(u)]n−1 (A.7)

and the pdf of V is

fV (v) = n f (v)[1− F(v)]n−1 . (A.8)
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Proof:

Note that U ≤ u if and only if X i ≤ u for all i . Thus

FU (u) = P(U ≤ u) = P(X i ≤ u, for all i)

= P(X1 ≤ u, X2 ≤ u, . . . , Xn ≤ u)

= P(X1 ≤ u) · P(X2 ≤ u) · · · P(Xn ≤ u) · · · since X i ’s are independent

= [F(u)]n · · · from the definition of F .

The pdf of U is then obtained by differentiating the cdf of U

fU (u) =
d

du
FU (u) =

d

du
[F(u)]n = n f (u)[F(u)]n−1 .

Note that V ≥ v if and only if X i ≥ v for all i . Thus

1− FV (v) = P(V ≥ v) = P(X i ≥ v, for all i)

= P(X1 ≥ v, X2 ≥ v, . . . , Xn ≥ v)

= P(X1 ≥ v) · P(X2 ≥ v) · · · P(Xn ≥ v) · · · since X i ’s are independent

= [1− P(X1 ≤ v)] · [1− P(X2 ≤ v)] · · · [1− P(Xn ≤ v)]

· · · since P(X i ≥ x) = 1− P(X i ≤ x)

= [1− F(v)]n · · · from the definition of F .

Hence
FV (v) = 1− [1− F(v)]n .

The pdf of V is then obtained by differentiating the cdf of V

fV (v) =
d

dv
FV (v) =

d

dv
{1− [1− F(v)]n}

= −n[− f (v)][1− F(v)]n−1 = n f (v)[1− F(v)]n−1 .

You should now be able to understand Examples A and B in Rice (Section 3.7). The solution that

Rice presents is rather short and you should extend this by completing all the details. For example,

show that F(t) = 1− e−λt .

I will now explain the order statistics. Let X1, X2, . . . , Xn be n independent continuous random

variables with density f (x). If we arrange these random variables in increasing order as X(1) ≤

X(2) ≤ · · · ≤ X(n) then X(1), X(2), . . . , X(n) are called the order statistics. Note that X1 is not

necessarily equal to X(1). Thus X(n) is the maximum, and X(1) is the minimum. This means that

X(n) = U in Theorem A.2.1 and X(1) = V in Theorem A.2.1. Hence using Theorem A.2.1 we can

easily find the pdf of X(1) and X(n). However, we can also use the following theorem to determine the

pdfs of X(1) and X(n) or any other order statistic.
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Theorem A.2.2

Let X1, X2, . . . , Xn be n independent random variables with a common cumulative distribution

function (cdf) F and density (pdf) f . The pdf of X(k), the kth-order statistic is

fk(x) =
n!

(k − 1)!(n − k)!
f (x)Fk−1(x)[1− F(x)]n−k . (A.9)

A.2.2 Important statistical results

There are some very important statistical results necessary for STA3702 which you have come

across in other modules. I list some of them, mainly those that I feel students often tend to forget.

Proposition B, Chapter 2, Section 2.3 of Rice is very useful for transforming variables. Often students

forget to multiply by the Jacobian, namely, |J | =

∣∣∣∣ d

dx
g−1(y)

∣∣∣∣ .
Theorem A.2.3

Let Z = F(X), then Z has a uniform distribution on [0, 1].

Proof:

FZ (z) = P(Z ≤ z) = P(F(X) ≤ z) = P(X ≤ F−1(z)) = F(F−1(z)) = z .

This is the cdf of the uniform distribution and since the cdf of any density function is unique, Z ∼

UNIF[0, 1].

Theorem A.2.4

Let U be uniform on [0, 1], and let X = F−1(U ). Then the cdf of X is F .

Proof:

FX (x) = P(X ≤ x) = P(F−1(U ) ≤ x) = P(U ≤ F(x)) = F(x)

The last equation holds since U ∼ UNIF[0, 1], i.e., FU (u) = P(U ≤ u) = u. Hence the cdf of X is F.

Theorem A2.4 is very useful because if one wants to simulate observations from a random variable

with distribution function F , where F is continuous and strictly increasing, one merely takes

observations x from a UNIF(0, 1) distribution and finds y = F−1(x). For instance, if we want to

simulate an exponential distribution with mean β
(
i.e. with pdf f (y) = 1

β e
− y
β

)
, the appropriate F is

given by

F(y) = 1− e
− y
β , y > 0 .

Then if X ∼ UNIF(0, 1), Y = F−1(X) is exponential with mean β.
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Theorem A.2.5

If Z ∼ N(0, 1), then Z2 ∼ χ2(1) .

Theorem A.2.6

Let X and Y denote two random variables. Then

EX (X) = EY [EX (X |Y )] . (A.10)

Proof:

Let X and Y have joint density function f (x, y) and marginal densities fX (x) and fY (y) respectively.

Then

EX (X) =

∫ ∞
−∞

x fX (x) dx =

∫ ∞
−∞

∫ ∞
−∞

x f (x, y) dy dx . . . since fX (x) =

∫ ∞
−∞

f (x, y) dy

=

∫ ∞
−∞

(∫ ∞
−∞

x fX |Y (x |y) fY (y) dx

)
dy . . . since fX |Y (x |y) =

f (x, y)

fY (y)

=

∫ ∞
−∞

(∫ ∞
−∞

x fX |Y (x |y) dx

)
fY (y) dy

=

∫ ∞
−∞

EX (X |Y = y) fY (y) dy = EY [EX (X |Y )] .

Theorem A.2.6 has also been proved in Chapter 4, Section 4.4 of Rice (Theorem A) but for the

discrete case, and note the interchange of the variables X and Y .

Theorem A.2.7

Let X and Y denote two random variables. Then

var(Y ) = EX [var(X |Y )]+ varX [E(Y |X)] . (A.11)
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Proof:

Let X and Y have joint density function f (x, y) and marginal densities fX (x) and fY (y) respectively.

Then

EX [var(X |Y )] = EX {E(Y
2|X)− [E(Y |X)]2} . . . by the definition of variance

= {E(Y 2)− EX [E(Y |X)]2} . . . taking expectation inside & from Theorem A.2.6

=
{

E

(
Y 2
)
− [E (Y )]2

}
−
{

EX [E (Y |X)]2 − [E (Y )]2
}

. . . add & subtract [E(Y )]2

= var (Y )− varX [E (Y |X)] .

Hence

var(Y ) = EX [var(X |Y )]+ varX [E(Y |X)] . (A.12)

Theorem A.2.7 has also been proved in Chapter 4, Section 4.4 of Rice (Theorem B). For the results

below see Addendum C on page 167. There I give the two different ways authors tend to write the

Exponential distribution (see Equations C.1 and C.2) and the Gamma distribution (see Equations C.3

and C.4). Avoid mixing them up. If you are using the equation as defined by Equation C.1, then use

Equations C.1 and C.3 throughout. If you are using the equation as defined by Equation C.2, then

use Equations C.2 and C.4 throughout. In other words be consistent and note that Equations C.1

and C.3 go together and Equations C.2 and C.4 go together. Then choose the result below that goes

accordingly with the equations you are using.

Theorem A.2.8

If X ∼ EXP(λ) (according to Equation C.1) then

X ∼ GAM (1, λ) , (according to Equation C.3). (A.13)

If X ∼ EXP(λ) (according to Equation C.2) then

X ∼ GAM (1, λ) , (according to Equation C.4). (A.14)

Theorem A.2.9

If X ∼ UNIF (0, 1) then

Y = −2 ln X ∼ χ2(2) = EXP(2) , (according to Equation C.1). (A.15)

If X ∼ UNIF (0, 1) then

Y = −2 ln X ∼ χ2(2) = EXP
(

1
2

)
, (according to Equation C.2). (A.16)
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Theorem A.2.10

If X ∼ GAM(α, λ) (according to Equation C.3) then

Y =
2X

λ
∼ χ2(2α) . (A.17)

If X ∼ GAM(α, λ) (according to Equation C.4) then

Y = 2λX ∼ χ2(2α) . (A.18)

Theorem A.2.11

If X i ∼ χ2(ri ) then

X i ∼ GAM
(ri

2
, 2
)
, (according to Equation C.3). (A.19)

If X i ∼ χ2(ri ) then

X i ∼ GAM

(
ri

2
,

1

2

)
, (according to Equation C.4). (A.20)

Theorem A.2.12

If X ∼ N(µ, σ 2) then

Y = eX ∼ LOGN(µ, σ 2) , (A.21)

i.e. Y has a lognormal distribution.
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Theorem A.2.13

Let X i , i = 1, 2, . . . , n be independent N(µi , σ
2
i ) variables. Then

Y =
n∑

i=1

ai X i ∼ N

(
n∑

i=1

aiµi ,
n∑

i=1

a2
i σ

2
i

)
. (A.22)

Theorem A.2.14

Let X i , i = 1, 2, . . . , n be independently distributed with X i ∼ GAM(αi , λ)

(according to Equation C.3). Then

Y =
n∑

i=1

X i ∼ GAM

(
n∑

i=1

αi , λ

)
, (according to Equation C.3). (A.23)

Let X i , i = 1, 2, . . . , n be independently distributed with X i ∼ GAM(αi , λ)

(according to Equation C.4). Then

Y =
n∑

i=1

X i ∼ GAM

(
n∑

i=1

αi , λ

)
, (according to Equation C.4). (A.24)

Theorem A.2.15

Let X i , i = 1, 2, . . . , n be independently distributed with X i ∼ χ2(ri ). Then

Y =
n∑

i=1

X i ∼ χ
2

(
n∑

i=1

ri

)
. (A.25)
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Theorem A.2.16

Let X i , i = 1, 2, . . . , n be independent EXP(λ) (according to Equation C.1) random variables.

Then

Y =
n∑

i=1

X i ∼ GAM(n, λ) , (according to Equation C.3). (A.26)

Let X i , i = 1, 2, . . . , n be independent EXP(λ) (according to Equation C.2) random variables.

Then

Y =
n∑

i=1

X i ∼ GAM(n, λ) , (according to Equation C.3). (A.27)

Theorem A.2.17

Let X i , i = 1, 2, . . . , n be independent POI(λi ) random variables. Then

Y =
n∑

i=1

X i ∼ POI

(
n∑

i=1

λi

)
. (A.28)

Theorem A.2.18

Let X i , i = 1, 2, . . . , n be independent GEO(p) random variables. Then

Y =
n∑

i=1

X i ∼ NB(r, p) . (A.29)

Theorem A.2.19

Let Z ∼N(0, 1) random variable. Then

Z2 ∼ χ2(1) . (A.30)
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Theorem A.2.20

Let Z ∼N(0, 1) and V ∼ χ2(r) be two independent random variables. Then

T =
Z
√

V/r
∼ t(r) . (A.31)

Theorem A.2.21

Let U ∼ χ2(m) and V ∼ χ2(n) be two independent random variables. Then

F =
U/m

V/n
∼ f(m, n) . (A.32)

Theorem A.2.22

Let Y ∼ χ2(v) be a random variable. Then

E(Y r ) =
2r0

(
v
2
+ r

)
0
(
v
2

) , r = 0, ±1,±2, . . . . (A.33)

Theorem A.2.23

Let Y ∼ GAM(α, λ) (according to Equation C.3) be a random variable. Then

E(Y r ) =
0(α + r)λr

0(α)
, r = 0, ±1,±2, . . . , (according to Equation C.3). (A.34)

Let Y ∼ GAM(α, λ) (according to Equation C.4) be a random variable. Then

E(Y r ) =
0(α + r)

0(α)λr
, r = 0, ±1,±2, . . . , (according to Equation C.4). (A.35)
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ADDENDUM B: Solutions to Exercises

B.1 Importance of Inference

Solutions to this chapter are not provided. I trust that you will be able to do them on your own.

B.2 The Likelihood Function

Solution to Exercise 2.12.1

f ( x | θ) =
1

θ
, 0 < x < θ

=
1

θ
· I(0,θ) (xi ) .

(a) A likelihood function is

L (θ | x) =
n∏

i=1

1
θ · I(0,θ) (xi ) =

1
θn ·

n∏
i=1

I(0,θ) (xi )

= 1
θn · I(0,θ)

(
x(n)

)
.

Note that I(0,θ) (xi ) are values that are either 0 or 1. Hence
n∏

i=1

I(0,θ) (xi ) will also be a value that is

either 0 or 1. It will be 0 if at least one xi lie outside the interval (0, θ) and will be 1 only when all

the xi lie inside this interval. This means that 0 < x(1) ≤ x(2) ≤ · · · ≤ x(n) < θ where the x(i) are

order statistics. Now if x(n) < θ , then all xi < θ . Hence
n∏

i=1

I(0,θ) (xi ) = I(0,θ)
(
x(n)

)
.

(b) To obtain the likelihood ratio when θ0 = 4:

L (θ1| x) =
1

θn
1

· I(0,θ1)

(
x(n)

)
.

L (θ0 = 4| x) =
1

4n
· I(0,4)

(
x(n)

)
.

Hence r(θ1, θ0 = 4|x) =
L (θ1| x)

L (θ0 = 4| x)
=
θ−n

1 · I(0,θ1)

(
x(n)

)
4−n · I(0,4)

(
x(n)

)
=

(
4

θ1

)n

· I(0,θ1)

(
x(n)

)
· I(0,4)

(
x(n)

)
=

(
4

θ1

)n

· I(0,θmin)

(
x(n)

)
.

where θmin = min{θ1; 4}.
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(c) To determine the MLE of θ :

Note that we cannot find the MLE for θ by differentiating the likelihood function because the range

of x depends on the unknown parameter θ (0 < x < θ).

Since L is an decreasing function of θ and will be maximized when θ is as small as possible. But

θ > xi ∀xi and in particular θ > max{xi } = x(n). So the MLE of θ is θ̂ = max{X i } = X(n).

(d) To determine the MLE of θ2+ ln θ , we use the invariance property of the MLE. The MLE of θ2+ ln θ

is

θ̂
2
+ ln θ̂ = X2

(n) + ln X(n) .

(e) To determine the MME of θ , we need E(X). From STA2603 (Distribution Theory ), you have shown

that for the Uniform distribution, E(X) = a+b
2
= θ

2
. Since there is only one unknown parameter θ ,

we will have just one equation. The first sample moment is

µ̃1 = X =
1

n

n∑
i=1

X i .

Hence the method of moments estimate of θ can be found by equating

θ̃

2
= X

i.e. θ̃ = 2X .

Solution to Exercise 2.12.2

f ( x | θ) =
1

θ
, 0 < x < θ

=
1

θ
· I(0,θ) (xi ) .

The specific data set is (4.6; 0.3; 4.2; 4.9; 1.2; 4.2; 1.7; 0.9; 2.2; 0.8), i.e. n = 10,

x1 = 4.6, . . . , x10 = 0.8. For this data set,

(a) A likelihood function is

L (θ | x) =
10∏

i=1

1
θ · I(0,θ) (xi ) =

1

θ10 ·
n∏

i=1

I(0,θ) (xi )

= 1

θ10 · I(0,θ) (4.9) .



142

(b) The graph of the likelihood function appears below:

Figure B.1: Likelihood function: L (θ | x) = 1

θ10 · I(0,θ) (4.9)

(c) It seems from the graph (Figure B.1) that the value that maximizes the likelihood function is

θ = 4.9. To obtain the relative likelihood function:

r(θ |x) =
L (θ | x)

L (θ = 4.9| x)
=

θ−10
1 · I(0,θ) (4.9)

4.9−10 · I(0,4.9) (4.9)

=

(
4.9

θ

)10

· I(0,θ) (4.9) · I(0,4.9) (4.9) =
(

4.9

θ

)10

· I(0,θmin) (4.9) .

where θmin = min{θ; 4.9}.
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(d) The graph of the relative likelihood function appears below.

Figure B.2: Relative likelihood function: r (θ | x) =
(

4.9
θ

)10

· I(0,θmin) (4.9)

(e) To determine the MLE of θ :

Note that we cannot find the MLE for θ by differentiating the likelihood function because the range

of x depends on the unknown parameter θ (0 < x < θ).

Since L is an decreasing function of θ and will be maximized when θ is as small as possible. But

θ > xi ∀xi and in particular θ > max{xi } = 4.9. So the MLE of θ is θ̂ = max{X i } = 4.9.

(f) To determine the MME of θ , we need E(X). From STA2603 (Distribution Theory ), you have shown

that for the Uniform distribution, E(X) = a+b
2
= θ

2
. Since there is only one unknown parameter θ ,
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we will have just one equation. The first sample moment is

µ̃1 = X =
1

n

n∑
i=1

X i =
25

10
= 2.5 .

Hence the method of moments estimate of θ can be found by equating

θ̃

2
= 2.5

i.e. θ̃ = 5.

Solution to Exercise 2.12.3

f ( x | θ) = (1− θ)x · θ , x = 0, 1, 2, . . .

(a) A likelihood function is

L (θ | x) =
n∏

i=1

(1− θ)xi · θ

= θn · (1− θ)
∑

xi .

(b) To obtain the likelihood ratio when θ0 = 0.5:

L (θ1| x) = θn
1 · (1− θ1)

∑
xi .

L (θ0 = 0.5| x) = 0.5n · (1− 0.5)
∑

xi .

Hence r(θ1, θ0 = 0.5|x) =
L (θ1| x)

L (θ0 = 0.5| x)
=

θn
1 · (1− θ1)

∑
xi

0.5n · (1− 0.5)
∑

xi

= (2θ1)
n [2(1− θ1)]

∑
xi .

(c) To determine the MLE of θ :

`(θ |x) = ln L(θ |x) = ln θn · (1− θ)
∑

xi = n ln θ +

(
n∑

i=1

xi

)
ln(1− θ) .

˙̀(θ |x) =
n

θ
−

∑n
i=1 xi

1− θ
.
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Set ˙̀(θ |x)
∣∣
θ=θ̂ = 0 :

⇒
n

θ̂
−

n∑
i=1

X i

1− θ̂
= 0

⇒ n(1− θ̂ )− θ̂
n∑

i=1

X i = 0

⇒ n − nθ̂ − θ̂
n∑

i=1

X i = 0

⇒ θ̂ =
n

n +
n∑

i=1

X i

=
1

1+ X
.

(d) To determine the MLE of P(X ≤ c), we have to first find P(X ≤ c):

P(X ≤ c) = 1− P(X > c) = 1−
∞∑

x=c+1

θ(1− θ)x let x − c − 1 = y ⇒ x = y + c + 1

= 1−
∞∑

y=0

θ(1− θ)y+c+1 = 1− θ(1− θ)c+1
∞∑

y=0

(1− θ)y = 1− θ(1− θ)c+1 1

1− (1− θ)

= 1− (1− θ)c+1 .

Hence by the invariance property of the MLE, the MLE of P(X ≤ c) is

1− (1− θ̂ )c+1 = 1−

[
1−

1

1+ X

]c+1

= 1−

[
X

1+ X

]c+1

.

(e) To determine the MME of θ , we need E(X). From STA3703 (Distribution Theory ), you have shown

that for the Geometric distribution, E(X) = 1
θ . Since there is only one unknown parameter θ , we

will have just one equation. The first sample moment is

µ̃1 = X =
1

n

n∑
i=1

X i .

Hence the method of moments estimate of θ can be found by equating

1

θ̃
= X

i.e. θ̃ = 1

X
.



146

(f) The observed information I (x) = − ῭
(
θ̂
∣∣ x).

˙̀(θ |x) =
n

θ
−

n∑
i=1

xi

1− θ

῭(θ |x) = −
n

θ2
+

n∑
i=1

xi

(1− θ)2
(−1) = −

n

θ2
−

n∑
i=1

xi

(1− θ)2

− ῭(θ |x) =
n

θ2
+

n∑
i=1

xi

(1− θ)2
=

n

θ2
+

nx

(1− θ)2
.

Note that θ̂ = 1

1+X
so 1− θ̂ = 1− 1

1+X
= X

1+X
.

Hence ˙̀(θ̂ |x) =
n(
1

1+X

)2
+

nX(
X

1+X

)2

= n(1+ X)2 +
nX(1+ X)2

X
2

= n(1+ X)2 +
n(1+ X)2

X

=
nX(1+ X)2 + n(1+ X)2

X
=

n(1+ X)2(X + 1)

X
=

n

X
(1+ X)3 .

Solution to Exercise 2.12.4

f ( x | θ) = (1− θ)x · θ , x = 0, 1, 2, . . .

The specific data set is (5; 0; 7; 3; 2), i.e. n = 5, x1 = 5, . . . , x5 = 2. For this data set,

(a) a likelihood function is

L (θ | x) =
5∏

i=1

(1− θ)xi · θ

= θ5 · (1− θ)17 .
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(b) The graph of the likelihood function appears below:

Figure B.3: Likelihood function: L (θ | x) = θ5 · (1− θ)17

(c) It seems from the graph (Figure B.3) that the value that maximizes the likelihood function is

θ ≈ 0.25. To obtain the relative likelihood function:

r(θ |x) ≈
L (θ | x)

L (θ = 0.25| x)
=

θ5 · (1− θ)17

(0.25)5 · (1− 0.25)17

= (4θ)5
[

4
3
(1− θ)

]17

.

Note that this is the approximate relative likelihood function. To get the exact relatively likelihood

function you must first determine the MLE for the data. Our guess at the MLE is approximately

0.25.

(d) The graph of the relative likelihood function appears below. You will notice that the graph goes

slightly beyond 1 on the y-axis. The reason is that the exact MLE was not used.
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This also indicates that the true MLE value will be slightly less than 0.25.

Figure B.4: Relative likelihood function: r (θ | x) = (4θ)5
[

4
3
(1− θ)

]17

(e) To determine the MLE of θ :

`(θ |x) = ln L(θ |x) = ln θ5 · (1− θ)17 = 5 ln θ + 17 ln(1− θ) .

˙̀(θ |x) =
5

θ
−

17

1− θ
.

Set ˙̀(θ |x)
∣∣
θ=θ̂ = 0 :

⇒
5

θ̂
−

17

1− θ̂
= 0

⇒ 5(1− θ̂ )− 17θ̂ = 0

⇒ 5− 5θ̂ − 17θ̂ = 0

⇒ θ̂ =
5

5+ 17
=

5

22
≈ 0.23 .
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Note we can in fact use the result in Example 2.12.3(c) and substitute x = 17
5

to get the MLE for

our data set. Try it. Also you can see that the MLE derived here is approximately the value we

obtain from Figure B.3 and confirms the note in part (d).

(f) Here, I am going to simply use the result in Example 2.12.3(d). The MLE of P(X ≤ 1) is

1−

(
1−

5

22

)1+1

= 0.4 .

(g) To determine the MME of θ , we need E(X). From STA3703 (Distribution Theory ), you have shown

that for the Geometric distribution, E(X) = 1
θ . Since there is only one unknown parameter θ , we

will have just one equation. The first sample moment is

µ̃1 = X =
1

n

n∑
i=1

X i =
17

5
.

Hence the method of moments estimate of θ can be found by equating

1

θ̃
=

17

5

i.e. θ̃ = 5
17

.

Again we could have simply used the results from Exercise 2.12.3(e) where we have shown

θ̃ = 1

X
= 5

17
.

(h) The observed Fisher information In(θ̂) = − ῭ (θ | x).

˙̀(θ |x) =
5

θ
−

17

1− θ

῭(θ |x) = −
5

θ2
+

17

(1− θ)2
(−1) = −

5

θ2
−

17

(1− θ)2

− ῭(θ |x) =
5

θ2
+

17

(1− θ)2
.

Note that θ̂ = 1

1+X
= 5

22
.

Hence the observed Fisher information at θ̂ = 5
22

is

E

[
− ˙̀

(
θ̂
∣∣∣ x)] = 5

θ̂
2
+

17

(1− θ̂ )2
=

5(
5
22

)2
+

17(
1− 5

22

)2
= 125.27 .
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(i) The observed Fisher information at θ̃ = 1

X
= 5

17
is

E

[
− ˙̀

(
θ̃
∣∣∣ x)] = 5

θ̃
2
+

17

(1− θ̃ )2
=

5(
5
17

)2
+

17(
1− 5

17

)2
= 91.92 .

Fisher information is 1.36 larger for the MLE than for the MME.

(j) To determine the approximate standard error for the MLE, it is easier to work with ῭(θ |x) . Using

the results in (h),

var(θ̂) ≈
1

−E

[{
῭(θ̂)

}] = 1

125.27
= 0.008 .

Hence s.e.(θ̂) ≈
√

125.27 = 0.089 .

(k) To determine the approximate standard error for the MME, it is easier to work with ῭(θ |x) . Using

the results in (i),

var(θ̃) ≈
1

−E

[{
῭(θ̃)

}] = 1

91.92
= 0.011 .

Hence s.e.(θ̂) ≈
√

0.011 = 0.104 .

(l) Since the standard error for the MLE is slightly smaller than the standard error for the MME, the

MLE in this example is more reliable and is considered a better estimator for θ .

(m) For the data, we have the following:

θ̂ =
5

22

I (x) = − ῭
(
θ̂ = 5

22

∣∣∣ x) = n

θ̂
2
+

n∑
i=1

xi

(1− θ̂ )2
=

5(
5
22

)2
+

17(
1− 5

22

)2
= 125.27

J (x) =
...
`
(
θ̂ = 5

22

∣∣∣ x) = 2n

θ̂
3
+

2
n∑

i=1

xi

(1− θ̂ )3
=

2× 5(
5
22

)3
+

2× 17(
1− 5

22

)3
= 925.53

M (x) = −
....
`
(
θ̂ = 5

22

∣∣∣ x) = 6n

θ̂
4
+

6
n∑

i=1

xi

(1− θ̂ )4
=

6× 5(
5
22

)4
+

6× 17(
1− 5

22

)4
= 11530.37 .
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The first-order approximation to the relative likelihood is

r (θ | x) ≈ exp

[
−

1

2
·
(
θ − θ̂

)2

· I (x)
]

= exp

[
−

1

2
·

(
θ −

5

22

)2

· 125.27

]
= exp

[
−62.635 ·

(
θ −

5

22

)2
]
.

The second-order approximation to the relative likelihood is

r (θ | x) ≈ exp

[
−

1

2
·
(
θ − θ̂

)2

· I (x)+
1

6
·
(
θ − θ̂

)3

· J (x)
]

= exp

[
−

1

2
·

(
θ −

5

22

)2

· 125.27+
1

6
·

(
θ −

5

22

)3

· 925.53

]

= exp

[
−62.635 ·

(
θ −

5

22

)2

· +154.225 ·

(
θ −

5

22

)3
]
.

The third-order approximation to the relative likelihood is

r (θ | x) ≈ exp

[
−

1

2
·
(
θ − θ̂

)2

· I (x)+
1

6
·
(
θ − θ̂

)3

· J (x)−
1

24
·
(
θ − θ̂

)4

· M (x)
]

= exp

[
−

1

2
·

(
θ −

5

22

)2

· 125.27+
1

6
·

(
θ −

5

22

)3

· 925.53−
1

24
·

(
θ −

5

22

)4

· 11530.37

]

= exp

[
−62.635 ·

(
θ −

5

22

)2

· +154.225 ·

(
θ −

5

22

)3

− 480.43 ·

(
θ −

5

22

)4
]
.
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(n) The graph of the exact and first-order approximation of the relative likelihood function is below.

Figure B.5: Exact and first-order approximation of the relative likelihood function

Solution to Exercise 2.12.5

(a) Differentiating the cdf with respect to x gives the pdf:

f (x, θ1, θ2) =
∂
∂x

{
1− (θ1/x)

θ2
}

= θ2θ
θ2

1 x−(θ2+1) , x ≥ θ1, θ1 > 0, θ2 > 0

Hence L (θ1, θ2) = θn
2θ

nθ2

1

[∏n
i=1 x

−(θ2+1)
i

]
.

(b) Note that we cannot find the MLE for θ1 by differentiating the likelihood function because the range

of x depends on the unknown parameter θ1 (x ≥ θ1). We can however find the MLE for θ2 by

differentiating the likelihood function as the range for x is independent of θ2.
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Since L is an increasing function of θ1 and will be maximized when θ1 is as large as possible. But

θ1 ≤ xi ∀xi and in particular θ1 ≤ min{xi } = x(1). So the MLE of θ1 is θ̂1 = min{X i } = X(1).

To find the MLE of θ2, consider

ln L (θ1, θ2) = n ln θ2 + nθ2 ln θ1 − (θ2 + 1) ln

n∏
i=1

xi

and set ∂
∂θ2

ln L

]
θ1=θ̂1
θ2=θ̂2

= 0.

Since ∂
∂θ2

ln L = n
θ2
+ n ln θ1 − ln

(∏n
i=1 xi

)
we have

n

θ̂2

+ n ln θ̂1 − ln

(
n∏

i=1

X i

)
= 0

⇒ n

θ̂2
= ln

(∏n
i=1 X i

)
− n ln θ̂1 = ln

(∏n
i=1 X i

θ̂n
1

)
⇒ θ̂2 =

n

ln

(∏n
i=1

Xi

Xn
(1)

) = n

ln
∏n

i=1 X i−n ln X(1)
= 1

1
n

∑n
i=1 ln X i−ln X(1)

(c) Note that for this problem, we will use the invariance property of the MLE. We will use the MLE

for θ1 and θ2 found above to find the MLE of a function of θ1 and θ2.

p = F
(
x p

)
= 1−

(
θ1

x p

)θ2

⇒
(
θ1

x p

)θ2

= 1− p ⇒ θ1

x p
= (1− p)1/θ2 ⇒ x p =

θ1

(1−p)1/θ2
= θ1

exp[(1/θ2) ln(1−p)]

Hence x̂ p =
θ̂1

exp
[(

1/θ̂2

)
ln(1−p)

] = X(1)

exp
[(

1
n

∑
ln X i−ln X(1)

)
ln(1−p)

]
Hence MLE for median:

x̂0.5 =
X(1)

exp
[(

1
n

∑
ln X i−ln X(1)

)
ln(0.5)

] = X(1)

exp
[(

ln X(1)−
1
n

∑
ln X i

)
ln 2

]

Solution to Exercise 2.12.6

The log likelihood function and its first three derivatives are

` (θ | x) = log K (x)+ t (x) ln θ − u (x) θ

˙̀ (θ | x) = t (x) /θ − u (x)

῭ (θ | x) = −t (x) /θ2

...
` (θ | x) = 2t (x) /θ3
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(a) Since ˙̀
(
θ̂
∣∣∣ x) = 0, we have t (x) /θ̂ − u (x) = 0. Hence θ̂ = t (x) /u (x).

The observed information is I (x) = − ῭
(
θ̂
∣∣∣ x) = −t (x) /θ̂

2
= (u (x))2 /t (x).

The observed skewness is J (x) =
...
`
(
θ̂
∣∣∣ x) = 2t (x) /θ̂

3
= 2 (u (x))3 / (t (x))2.

(b) Set L∗ (ϕ| x) = L (θ | x) when ϕ = θ
1
3 or θ = ϕ3. Then

L∗ (ϕ| x) = L

(
ϕ3
∣∣∣ x) = K (x)

(
ϕ3
)t(x)

e−u(x)ϕ3 = K (x) ϕ3t(x)e−u(x)ϕ3

.

(c) In terms of the new parameterization, the log-likelihood and its first three derivatives are

`∗ (ϕ| x) = ln K (x)+ 3t (x) lnϕ − u (x) ϕ3

˙̀∗ (ϕ| x) = 3t (x) /ϕ − 3u (x) ϕ2

῭∗ (ϕ| x) = −3t (x) /ϕ2 − 6u (x) ϕ
...
` ∗ (ϕ| x) = 6t (x) /ϕ3 − 6u (x) .

Since ˙̀∗ (ϕ) = 0, we have 3t (x) /ϕ̂ − 3u (x) ϕ̂2 = 0.

Hence ϕ̂3 = t (x) /u (x) or ϕ̂ = (t (x) /u (x))
1
3 = θ̂

1
3 .

The observed information is

I∗ (x) = − ῭∗
(
ϕ̂
)

= 3t (x) / (t (x) /u (x))
2
3 + 6u (x) (t (x) /u (x))

1
3

= 3 (u (x))
2
3 (t (x))

1
3 + 6 (u (x))

2
3 (t (x))

1
3

= 9 (u (x))
2
3 (t (x))

1
3 .

The observed skewness is J∗ (x) =
...
`
(
ϕ̂
∣∣ x) = 6t (x) / (t (x) /u (x))− 6u (x) = 0.

(d) Expand ` (θ | x) in a Taylor series around θ̂ and neglect all powers
(
θ − θ̂

)k

with k > 3:

` (θ | x) ≈ `
(
θ̂
∣∣∣ x)+ (θ − θ̂) ˙̀( θ̂ ∣∣∣ x)+ 1

2

(
θ − θ̂

)2
῭
(
θ̂
∣∣∣ x)+ 1

6

(
θ − θ̂

)3 ...
`
(
θ̂
∣∣∣ x)

= `
(
θ̂
∣∣∣ x)− 1

2

(
θ − θ̂

)2

I (x)+
1

6

(
θ − θ̂

)3

J (x) since ˙̀
(
θ̂
∣∣∣ x) = 0 .

Hence

r (θ | x) = exp
{
` (θ | x)− `

(
θ̂
∣∣∣ x)}

≈ exp

{
−

1

2

(
θ − θ̂

)2

I (x)
}
· exp

{
1

6

(
θ − θ̂

)3

J (x)
}

=
(
first-order approximation to r (θ | x)

)
· exp

{
1

6

(
θ − θ̂

)3

J (x)
}
,

so that the first-order approximation to the relative likelihood is off by a factor of approximately
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exp

{
1

6

(
θ − θ̂

)3

J (x)
}
.

This may differ considerably from 1 if J (x) differs considerably from 0. But if we work in terms of

the new parameter ϕ, this factor is exactly 1 since we showed above that J∗ (x) = 0. Then

r∗ (θ | x) ≈
(

first-order approximation to r∗ (θ | x)
)
= exp

{
−

1

2

(
ϕ − ϕ̂

)2
I∗ (x)

}
.

Solution to Exercise 2.12.7

(a) The Poisson distribution has density p ( x | θ) =
θ x

x!
e−θ for x = 0, 1, 2, . . . , θ > 0.

The likelihood corresponding to the observations x1 = 5, x2 = 10 and x3 = 7 is therefore

L (θ | x) =
θ5

5!
e−θ ·

θ10

10!
e−θ ·

θ7

7!
e−θ = (5!7!10!)−1 θ22e−3θ

which is of the form (∗) with K (x) = (5!7!10!)−1 ; t (x) = 22 and u (x) = 3.

(b) From Exercise 2.12.6(a) we find θ̂ = 22/3 = 7.33; I (x) = 9/22 = 0.409.

The first-order approximation to r (θ | x) is therefore given by the expression

exp

{
−

1

2
(θ − 7.33)2 · 0.409

}
= exp

{
−0.205 (θ − 7.33)2

}

r (θ | x) =
L (θ | x)

L

(
θ̂
∣∣∣ x) = (5!7!10!)−1 θ22e−3θ

(5!7!10!)−1
(

22
3

)22

e
−3·

(
22
3

) = (3θ

22

)22

exp(−3θ + 22) .
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The graph of the exact and first-order approximation of the relative likelihood function is below.

Figure B.6: Exact and first-order approximation of the relative likelihood function

Solution to Exercise 2.12.8

Neglecting the irrelevant constant, we have

` (θ | x) = t (x) ln θ + u (x) ln (1− θ)

˙̀ (θ | x) =
t (x)
θ
−

u (x)
1− θ

῭ (θ | x) = −

[
t (x)

θ2
+

u (x)

(1− θ)2

]
...
` (θ | x) =

2t (x)

θ3
−

2u (x)

(1− θ)3
.
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Setting ˙̀
(
θ̂
∣∣∣ x) = 0 gives

t (x)

θ̂
−

u (x)

1− θ̂
= 0, that is, θ̂ =

t (x)
t (x)+ u (x)

. Then

I (x) = − ῭
(
θ̂
∣∣∣ x) = t (x)

θ̂
2
+

u (x)(
1− θ̂

)2

=
t (x)

(
1− θ̂

)2

+ u (x) θ̂
2

θ̂
2
(
1− θ̂

)2

=
t (x) · u2(x)

(t(x)+u(x))2
+ u (x) · t2(x)

(t(x)+u(x))2

θ̂
2
(
1− θ̂

)2

=
t (x) u (x)

[
u(x)

(t(x)+u(x))2
+ t(x)

(t(x)+u(x))2

]
θ̂

2
(
1− θ̂

)2

=

t(x)u(x)
t(x)+u(x)

θ̂
2
(
1− θ̂

)2

=
t (x)

(
1− θ̂

)
θ̂

2
(
1− θ̂

)2
=

t (x)

θ̂
2
(
1− θ̂

) ,
and the expression for J (x) follows similarly.

Solution to Exercise 2.12.9

(a) Let x =

[
1 if Heads occurs

0 if Tails occurs.

]
Then x has a Bernoulli density:

f ( x | θ) = θ x (1− θ)1−x ; x = 0 or 1.

So, for 10 independent tosses with outcomes (x1, . . . , x10) = x
∼

the likelihood function is

L

(
θ | x
∼

)
= θ

∑
xi (1− θ)10−

∑
xi , 0 < θ < 1.

But it is given that
∑

xi = number of heads = 1. Hence

L

(
θ | x
∼

)
= θ (1− θ)9 , 0 < θ < 1 ,

which is of the form (∗∗) with K (x) = 1, t (x) = 1, u (x) = 9.
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(b) From Exercise 2.12.8 (a) we find θ̂ = 1/10 = 0.1; I = 1/ (1/10)2 (1− 1/10) = 1000/9 = 111.11

so that the first-order approximation to the relative likelihood r

(
θ | x
∼

)
is given by the expression

exp

{
−

1

2
(θ − 0.1)2 · 111.11

}
.

r (θ | x) =
L (θ | x)

L

(
θ̂
∣∣∣ x) = θ (1− θ)9

0.1 · (1− 0.1)9
= 10 · θ ·

[
10

9
(1− θ)

]9

.

The graph of the exact and first-order approximation of the relative likelihood function is below.

Figure B.7: Exact and first-order approximation of the relative likelihood function
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B.3 Point Estimation Of Parameters

Solution to Exercise 3.5.1

X i ∼ N (µ; σ 2) U =
∑n

i=1 X i W =
∑n

i=1 X2
i

(a) Note the following:

E(X) = µ ⇒ E

(
1
n

∑n
i=1 X i

)
= µ ⇒ E

(
U
n

)
= µ and

E(S2) = σ 2 ⇒ E

{
1

n−1

[∑n
i=1 X2

i −
1
n

(∑n
i=1 X i

)2]}
= σ 2

⇒ E

[
1

n−1

(
W − U2

n

)]
= σ 2

To find a statistic that is unbiased of θ = 2µ− 5σ 2, try

2
U

n
−

5

n − 1

(
W −

U2

n

)

E

[
2

U

n
−

5

n − 1

(
W −

U 2

n

)]
= 2E

(
U

n

)
−

5

n − 1
E

(
W −

U 2

n

)
= 2µ−

5

n − 1
(n − 1)σ 2 = 2µ− 5σ 2

Hence the statistic 2U
n
− 5

n−1

(
W − U2

n

)
is unbiased of θ = 2µ− 5σ 2.

(b) σ 2 = E(X2
i )− µ

2 ⇒ E(X2
i ) = σ

2 + µ2

⇒ E
(∑n

i=1 X2
i

)
= n

(
σ 2 + µ2

)
⇒ E

(
1
n

∑n
i=1 X2

i

)
= σ 2 + µ2

⇒ E
(

W
n

)
= σ 2 + µ2. Hence the statistic W

n
is unbiased of σ 2 + µ2.

Solution to Exercise 3.5.2

(a) L(p|x) = p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi ⇒ ln L(p|x) =
∑n

i=1 xi ln p −
(
n −

∑n
i=1 xi

)
ln(1− p)

⇒ ∂
∂p

ln L(p|x) =
∑n

i=1 xi

p
−

n−
∑n

i=1 xi

1−p
=

(1−p)
∑n

i=1 xi−np−p
∑n

i=1 xi

p(1−p) =
∑n

i=1 xi−np

p(1−p)

= n
p(1−p)

[
1
n

∑n
i=1 xi − p

]
.

This is written in the form of (3.20) with A(p) = n
p(1−p) and g(p) = p.

Now, since E

(
1
n

∑n
i=1 X i

)
=
(

1
n

∑n
i=1 E(X i )

)
=
(

1
n

∑n
i=1 p

)
= np

n
= p, X = 1

n

∑n
i=1 X i is the

MVUE for p.
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(b) g(p) = p ⇒ g′(p) = 1. Also, from part (a) above, A(p) = n
p(1−p) .

Therefore var(X) = 1
n/[p(1−p)] =

p(1−p)
n

.

(c) Since I did not specify the form of the CRLB to be used, you can use any of the forms. Below are

the solutions using 2 forms which are easy to find the CRLB in this case.

(i) From part (a) above we showed ∂
∂p

ln L(p|x) = n
p(1−p)

[
1
n

∑n
i=1 xi − p

]
.

∴ E

[
∂
∂p

ln L(p|x)
]2

=
[

n
p(1−p)

]2

E
[
X − p

]2
= n2

p2(1−p)2
var(X) since E(X) = p · · · shown in part (a) above

= n2

p2(1−p)2
p(1−p)

p
since var(X) = p(1−p)

p
· · · part (b) above

= n
p(1−p)

For g(p) = 1− p , g′(p) = −1 and [g′(p)]2 = 1. Hence

CRLB =
[g′(p)]2

E

[
∂
∂p

ln L(p|x)
]2
=

1

[n/p(1− p)]
=

p(1− p)

n
.

(ii) f (x |p) = px (1− p)1−x ⇒ ln f (x |p) = x ln p + (1− x) ln(1− p).

∂
∂p

ln f (x |p) = x
p
− 1−x

1−p
= x(1−p)−(1−x)p

p(1−p) = x−xp−p+xp

p(1−p) = x−p

p(1−p) .

∴ E

[
∂
∂p

ln f (x |p)
]2

= E

[
X−p

p(1−p)

]2

=
[

1
p(1−p)

]2

E
[
X − p

]2
= 1

p2(1−p)2
var(X) since E(X) = p · · · X ∼ BIN(1, p)

= n2

p2(1−p)2
p(1− p) since var(X) = p(1− p) · · · X ∼ BIN(1, p)

= 1
p(1−p)

For g(p) = 1− p , g′(p) = −1 and [g′(p)]2 = 1. Hence

CRLB =
[g′(p)]2

nE

[
∂
∂p

ln f (x |p)
]2
=

1

n[1/p(1− p)]
=

p(1− p)

n
.

Solution to Exercise 3.5.3

(a) MLE: L(θ) is an increasing function of θ , thus we must choose θ as large as possible. Let

X(1), . . . , X(n) denote the order statistics. Now θ must be such that θ ≤ xi ∀xi . In particular

θ ≤ x(1). Thus L(θ) is maximized for θ̂ = X(1).Thus θ̂ = X(1) is the MLE for θ .
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MME: Now E(X) =
∞∫
θ

x e−(x−θ)dx . Let y = x − θ , then

E(X) =
∞∫
0

(y + θ)e−ydy = θ
∞∫
0

e−ydy +
∞∫
0

y e−ydy = θ + 1 .

Equate E(X) to X , getting θ̃ + 1 = X , i.e. θ̃ = X − 1 is the MME for θ .

(b) The p.d.f. of X i is f (xi |θ) = e−(xi−θ), xi > θ .

Let Yi = X i − θ , then f (yi |θ) = e−yi , yi > 0, i.e. Yi ∼ EXP(1).

MLE: MSE(̂θ) = MSE(X(1)) = var(X(1))+ [Bias(X(1))]2.

To find E(X(1)) and var(X(1)), since Y(1) = X(1) − θ consider the p.d.f. of Y(1):

fY(1)(y) = n[1− F(y)]n−1 f (y) = n(e−y)n−1e−y = n e−ny , y > 0 .

Thus Y(1) ∼ EXP
(

1
n

)
, i.e. Y(1) ∼ GAM

(
1, 1

n

)
.

Now E(X(1)) = E(Y(1) + θ) = E(Y(1))+ θ =
1
n
+ θ .

Thus θ̂ = X(1) is a biased estimator with bias Bias(̂θ) = Bias(X(1)) = 1
n

and var(X(1)) = var(Y(1) + θ) = var(Y(1)) = 1
(

1
n

)2

= 1

n2 .

Hence MSE(̂θ) = var(̂θ)+ [Bias(̂θ)]2 = var(Y(1))+
(

1
n

)2

= 1

n2 +
1

n2 =
2

n2 .

MME: MSE(θ̃) = MSE(X − 1) = var(X − 1)+ [Bias(X − 1)]2 = var(X)+ [Bias(X − 1)]2.

To find E(X) and var(X), since Y = 1
n

∑n
i=1(X i − θ) =

1
n

∑n
i=1 X i −

nθ
n
= X − θ , consider the p.d.f.

of Y :

MY (t) = E

{
exp

[
t 1

n

∑n
i=1 Yi

]}
=

n∏
i=1

MYi

(
t
n

)
=

n∏
i=1

[
1

1− t
n

]
=
(
1− t

n

)−n since Yi ∼ EXP(1).

Hence Y ∼ GAM
(
n, 1

n

)
. Now Y = X − θ i.e. X = Y + θ so E(X) = E(Y )+ θ = n

n
+ θ = 1+ θ .

Thus E(θ̃) = E(X − 1) = 1+ θ − 1 = θ . So θ̃ is unbiased for θ .

Hence Bias(θ̃) = Bias(X − 1) = 0.

Also var(X) = var(Y + θ) = var(Y ) = n

(
1
n

)2

= 1
n
.

Hence MSE(θ̃) = 1
n
+ 02 = 1

n
.

(c) For n > 2 the MLE has a smaller MSE than the MME since 2

n2 <
1
n
.

(d) Yes. Consider θ∗ = θ̂ − 1
n
= X(1) −

1
n

i.e. an unbiased estimator that is a function of the MLE.

E(θ∗) = θ , which means that Bias(θ∗) = 0, hence MSE = var(θ∗) = var(X(1)) =
1

n2 . Clearly for

n > 2 , 1

n2 <
2

n2 <
1
n
.

Solution to Exercise 3.5.4

(a) L(θ |x) = (2πθ)−
n
2 exp

[
− 1

2θ

∑n
i=1 x2

i

]
⇒ ln L(θ |x) = −n

2
ln 2π − n

2
ln θ − 1

2θ

∑n
i=1 x2

i

⇒
∂

∂θ
ln L(θ |x) = −

n

2θ
+

1

2θ2

n∑
i=1

x2
i



162

Setting ∂
∂θ ln L(θ |x)

]
θ=θ̂ = 0 gives − n

2̂θ
+ 1

2̂θ
2

∑n
i=1 X2

i = 0 i.e.̂θ = 1
n

∑n
i=1 X2

i

E (̂θ) = 1
n

∑n
i=1 E (X i )

2 = 1
n

∑n
i=1 var(X i )︸ ︷︷ ︸

since E(X i )=0

= 1
n

∑n
i=1 θ = θ . Hence θ̂ is an unbiased estimator

for θ .

(b) ∂
∂θ ln L(θ |x) = − n

2θ +
1

2θ2

∑n
i=1 x2

i =
n

2θ2

(
1
n

∑n
i=1 x2

i − θ
)
.

Since θ̂ = 1
n

∑n
i=1 X2

i is an unbiased estimator for θ form part (a), then from Equation 3.20,

T =
1

n

n∑
i=1

X2
i , g(θ) = θ , and A(θ) =

n

2θ2

Hence 1
n

∑n
i=1 X2

i is the MVUE for θ .

(c) From part (b) var(̂θ) = var(T ) = [g′(θ)]2

A(θ) =
1

n/[2θ2]
= 2θ2

n
.

(d) We now find the CRLB for the unbiased estimators of θ .

f (x |θ) = (2πθ)−
1
2 exp

[
− 1

2θ x2
]

⇒ ln f (x |θ) = −1
2

ln(2π)− 1
2

ln θ − 1
2θ x2

⇒ ∂
∂θ ln f (x |θ) = − 1

2θ +
x2

2θ2 ⇒ ∂2

∂θ2 ln f (x |θ) = 1

2θ2 −
x2

θ3

... − E

[
∂2

∂θ2 ln f (X |θ)
]
= E(X2)

θ3 −
1

2θ2 =
var(X)

θ3 − 1

2θ2 =
θ
θ3 −

1

2θ2 =
1

θ2 −
1

2θ2 =
1

2θ2

Since g(θ) = θ ⇒ g′(θ) = 1 the CRLB is
[g′(θ)]2

−nE

[
∂2

∂θ2
ln f (X |θ)

] = 1

n/[2θ2]
= 2θ2

n
.

B.4 Sufficiency

Solution to Exercise 4.5.1

(a) Y =
∑n

i=1 X i

MY (t) = E
(
etY
)
= E

(
et
∑n

i=1 X i

)
= E

[∏n
i=1 et X i

]
=
∏n

i=1 E
[
et X i

]
· · · X i

iid
∼ GAM(2, β)

=
∏n

i=1 MX i
(t) =

∏n
i=1 MX (t) =

∏n
i=1 (1− βt)−2 = (1− βt)−2n

Therefore Y ∼ GAM(2n, β). Hence fY (y|β) =
1

0(2n)β2n y2n−1e−y/β . So

L(β|x)
fY (y|β)

=
1/[β2n]

∏n
i=1 xie

−y/β

1/[0(2n)β2n]y2n−1e−y/β
=
0(2n)

∏n
i=1 xi

y2n−1
which is free of β.

(b) L(β|x) =
∏n

i=1
1

β2 x e−xi/β = 1

β2n

∏n
i=1 xi exp

[
− 1
β

∑n
i=1 xi

]
=

1

β2n
exp

[
−

1

β

n∑
i=1

xi

]
︸ ︷︷ ︸

g(y|β) where y=
n∑

i=1

xi

·
n∏

i=1

xi︸ ︷︷ ︸
h(x1,...,xn)

Hence Y =
∑n

i=1 X i is sufficient for β.
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Solution to Exercise 4.5.2

Note that the p.d.f. can be written as

f (x |θ) = e−(x−θ) I(θ,∞)(x)

Hence the likelihood function is

L(θ |x) =
n∏

i=1

f (xi |θ) = exp

(
n∑

i=1

(xi − θ)

)
n∏

i=1

I(θ,∞)(xi )

= exp

(
n∑

i=1

(xi − θ)

)
I(θ,∞)(x(1))

because when θ < x(1), then θ < xi , for i = 1, 2, . . . , n, and
∏n

i=1 I(θ,∞)(xi ) = I(θ,∞)(x(1)). Now

L(θ |x) = enθ I(θ,∞)(x(1))︸ ︷︷ ︸
g(t |θ) where t=x(1)

exp

(
n∑

i=1

xi

)
︸ ︷︷ ︸

h(x1,...,xn)

.

Hence X(1) is a sufficient statistic for θ .

Solution to Exercise 4.5.3

The likelihood function is

L (θ | x) =
n∏

i=1

(
θ

1− e−θ
· e−θxi

)
= θn

(
1− θ−θ

)n
e−θ

∑
xi︸ ︷︷ ︸

g(t |θ) where t=
∑

xi

· 1︸ ︷︷ ︸
h(x1,...,xn)

By the factorization theorem, T =
∑n

i=1 X i is sufficient for θ .

Since X = 1
n

∑n
i=1 X i is the MLE it follows that X is also sufficient for θ .

Solution to Exercise 4.5.4

(a) The likelihood function is

L (θ | x) =
n∏

i=1

(
xi−1
m−1

)
θm (1− θ)xi−m

=

{
n∏

i=1

(
xi−1
m−1

)}
θmn (1− θ)

∑
xi−mn

= K (x) θmn (1− θ)
∑

xi−mn

(b) Here I apply two different methods to show sufficiency. The second method has not been done

in the study guide but it is also easy to understand. It shows the importance of defining likelihood

equivalence in study unit 2.
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Method 1: Using the Factorization Theorem,

L(θ |x) = K (x)︸ ︷︷ ︸
h(x1,...,xn)

θmn (1− θ)
∑

xi−mn︸ ︷︷ ︸
g(t |θ) where t=

∑
xi

T =
∑n

i=1 X i is a sufficient statistic for θ .

Method 2: Consider two data sets x and y. If under the assumption that T (x) = T (y), we

can show that x and y are likelihood equivalent, then T is a sufficient statistic for θ . As an

example, let x and y be two data sets. If
n∑

i=1

xi =
n∑

i=1

yi then

L (θ | x) = K (x) θmn (1− θ)
∑

xi−mn

= K (x)
K (y) · K (y) θmn (1− θ)

∑
yi−mn

= K (x)
K (y)L (θ | y)

and since K (x)
K (y) does not depend on θ , it follows that x and y are likelihood equivalent. Hence

n∑
i=1

xi is sufficient.

Now, to show minimal sufficiency: Let x and y be two data sets. Assuming x and y are likelihood

equivalent, then

θmn (1− θ)
∑

xi−mn = K (x, y) θmn (1− θ)
∑

yi−mn for all θ ,

that is (1− θ)
∑

xi−
∑

yi = K (x, y) for all θ . Take logs:(
n∑

i=1

xi −
n∑

i=1

yi

)
ln (1− θ) = ln K (x, y) for all θ

and differentiate with respect to θ :
n∑

i=1

xi −
n∑

i=1

yi

1− θ
= 0 for all θ .

Then
n∑

i=1

xi =
n∑

i=1

yi since 0 < θ < 1 .

Hence,
n∑

i=1

X i is minimal sufficient.

(c) Since there is a one-to-one relation between X and
n∑

i=1

X i , X will also be a minimal sufficient

statistic for θ .
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Solution to Exercise 4.5.5

(a) The likelihood function is

L (α, β| x) =
n∏

i=1

(α + β + 1)!

α!β!
xαi (1− xi )

β

=
[
(α+β+1)!
α!β!

]n
(

n∏
i=1

xi

)α ( n∏
i=1

(1− xi )

)β
since a

γ
1 · a

γ
2 . . . a

γ
n = (a1 · a2 . . . an)

γ .

(b) Let

θ = (α; β) ; t (x) =

(
n∏

i=1

xi ,
n∏

i=1

(1− xi )

)
= (t1 (x) , t2 (x))

and set g (t (x) |θ) = L (α, β| x). Then (4.5) holds with K (x) ≡ 1. Therefore, t (x) is sufficient for

θ .

Next, let x and y be likelihood equivalent, that is, let
L (α, β| x)
L (α, β| y)

= K (x, y) for all α, β > 0.

Since
L (α, β| x)
L (α, β| y)

=

[
n∏
1

(
xi

yi

)]α [ n∏
1

(
1− xi

1− yi

)]β
, this means that[

n∏
1

(
xi

yi

)]α [ n∏
1

(
1− xi

1− yi

)]β
= K (x, y) for all α, β > 0.

Take the logarithms:

α log

n∏
i=1

(
xi

yi

)
+ β log

n∏
i=1

(
1− xi

1− yi

)
= log K (x, y) for all α, β > 0.

Differentiate with respect to α to get log

[
n∏

i=1

(
xi

yi

)]
= 0, [remember: K is independent of α and β]

that is

1 =
n∏

i=1

(
xi

yi

)
=

n∏
i=1

xi

n∏
i=1

yi

=
t1 (x)
t1 (y)

.

Therefore, t1 (x) = t1 (y) .

Similarly, differentiating with respect to β we find that t2 (x) = t2 (y). Hence

t (x) = (t1 (x) , t2 (x)) = (t1 (y) , t2 (y)) = t (y) .
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Solution to Exercise 4.5.6

(a) X1, . . . , Xk are independent binomial (n, p) random variables. If
k∑

i=1

xi = a, then the events[
X1 = x1, . . . , Xk = xk,

k∑
i=1

X i = a

]
and [X1 = x1, . . . , Xk = xk] are identical (each implies the

other). Therefore

P

[
X1 = x1, . . . , Xk = xk,

k∑
i=1

X i = a

]
= P [X1 = x1]× · · · × P [Xk = xk]

=
k∏

i=1

(
n
xi

)
pxi (1− p)n−xi

=

[
k∏

i=1

(
n
xi

)]
p
∑

xi (1− p)nk−
∑

xi

=

[
k∏

i=1

(
n
xi

)]
pa (1− p)nk−a if

k∑
i=1

xi = a.

On the other hand, if
k∑

i=1

xi 6= a, then the event[
X1 = x1, . . . , Xk = xk,

k∑
i=1

X i = a

]
is impossible and has probability zero. Therefore, we have

P

[
X1 = x1, . . . , Xk = xk,

k∑
i=1

X i = a

]
=


k∏

i=1

(
n
xi

)
pa (1− p)nk−a if

k∑
i=1

xi = a

0 if
k∑

i=1

xi 6= a.

Next, since
k∑

i=1

X i has a binomial (nk, p) distribution, we have

P

[
k∑

i=1

X i = a

]
=

(
nk

a

)
pa (1− p)nk−a .
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Hence, the conditional density of X1, . . . , Xk given
k∑

i=1

X i = a is

p ( x1, . . . , xk | a) = P

[
X1 = x1, . . . , Xk = xk

∣∣∣∣ k∑
i=1

X i = a

]

=
P

[
X1=x1, ..., Xk=xk ,

k∑
i=1

X i=a

]

P

[
k∑

i=1

X i=a

]

=


k∏

i=1

(
n
xi

)/(
nk
a

)
if

k∑
i=1

xi = a

0 if
k∑

i=1

xi 6= a.

(b) The answer to this question is contained in (a) since the conditional density does not depend on

p. By Definition 4.1.2, therefore
k∑

i=1

X i is sufficient for p.

Solution to Exercise 4.5.7

The density function of xi is

p ( xi |µ) =
1

√
2πµ

exp
{
− (xi − µ)

2 /2µ2
}
; −∞ < xi <∞, µ > 0.

Then a likelihood function is

L (µ| x) =
n∏

i=1

p ( xi |µ) = (2π)−n/2 µ−n exp

{
−

n∑
i=1

(xi − µ)2 /2µ2

}
= (2π)−n/2 µ−n exp

{
−

n∑
i=1

x2
i

2µ2 +
n∑

i=1

2µxi

2µ2
−

n∑
i=1

µ2

2µ

}
=
{
(2π)−n/2 exp

(
−n

2

)}
· µ−n exp

{
−

n∑
i=1

x2
i

2µ2 +
n∑

i=1

xi

µ

}

= K (x) · µ−n exp

{
−

∑
x2

i

2µ2
+

∑
xi

µ

}

= K (x) ·
(

a function of

(
µ,

n∑
i=1

x2
i ,

n∑
i=1

xi

))
.

Hence

(
n∑

i=1

x2
i ,

n∑
i=1

xi

)
is (by the factorization theorem) sufficient.

Notice here that µ is one dimensional whereas T is two dimensional. This supports one of the

remarks made earlier in the notes.
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Now, let x and y be likelihood equivalent, that is

µ−n exp

{
−

n∑
i=1

x2
i

2µ2
+

n∑
i=1

xi

µ

}
= K (x, y) µ−n exp

{
−

n∑
i=1

y2
i

2µ2
+

n∑
i=1

yi

µ

}
for all µ > 0.

Then exp

{ (∑
y2
i
−
∑

x2
i

)
2µ2 + (

∑
xi−

∑
yi)

µ

}
= K (x, y) for all µ > 0.

Take logs and differentiate with respect to µ:∑
y2

i −
∑

x2
i

µ3
+

∑
xi −

∑
yi

µ
= 0 ,

that is (
n∑

i=1

y2
i −

n∑
i=1

x2
i

)
+ µ2

(
n∑

i=1

xi −
n∑

i=1

yi

)
= 0 for all µ > 0 . . . (∗)

Differentiate twice more with respect to µ:

2

(
n∑

i=1

xi −
n∑

i=1

yi

)
= 0, i.e.

n∑
i=1

xi =
n∑

i=1

yi .

Substituting this into (∗) gives
n∑

i=1

x2
i =

n∑
i=1

y2
i .

Hence, if x and y are likelihood equivalent, then
n∑

i=1

x2
i =

n∑
i=1

y2
i and

n∑
i=1

xi =
n∑

i=1

yi . This means that(
n∑

i=1

x2
i ,

n∑
i=1

xi

)
is minimal sufficient for µ.

B.5 Exponential Family and Completeness

Solution to Exercise 5.4.1

(a) f (x |θ) = θ x (1− θ)1−x =

(
θ

1− θ

)x

(1− θ)

= exp

{
x ln

(
θ

1− θ

)
+ ln(1− θ)

}
= exp

{
x ln

(
θ

1− θ

)
− ln(1− θ)−1

}
= exp

{
xθ1 − ln

(
1+ eθ1

)}
,

and this is of the form (5.1) with k = 1, g(x) = 1,

θ1 = ln
θ

1− θ
, t1(x) = x and ψ(θ1) = ln(1− θ)−1.
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Notice that since θ1 = ln

(
θ

1− θ

)
we have that

eθ1 =
θ

1− θ
=
θ − 1+ 1

1− θ
= −1+

1

1− θ
,

so that ψ(θ1) can be expressed as a function of θ1 by

ψ(θ1) = ln(1− θ)−1 = ln(1+ eθ1) .

The transformation θ1 ↔ θ is one-to-one from (0; 1) onto R. Hence 2 = R which is an open

subset of R.

(b) Let A denote the statement “{ f (x |θ) , θ ∈ R1} is an exponential family” and let B denote the

statement “the sets {x : f (x |θ) > 0} do not depend on θ ”.

Proposition 5.2.1 says that if A is true, then B is true. Therefore, if B is false, then A is false.

We now demonstrate that B is false.

{x : f (x |θ) > 0} = {x : x ≥ θ} (since f (x |θ) = 0 for x < θ
while f (x |θ) = e−x+θ > 0 for x ≥ θ )

= [θ,∞)

is an interval in R1 with θ as leftmost endpoint. Clearly, this interval depends on θ so that

statement B is false. It follows that
{

f (x |θ) , θ ∈ R1
}

is not an exponential family.

Remark:

J A graph of f (x |θ) against x , for a fixed value of θ , is shown below. This shows immediately

that

{x : f (x |θ) > 0} = [θ, ∞) .

(c) If
{

f (x |θ) , θ ∈ R1
}

is to be an exponential family, then the representation (5.1) must hold for all

θ and x . We now demonstrate that for any given θ there are infinitely many x for which (5.1)

does not hold.

Let θ be arbitrary and take any x < θ , i.e. x < θ < 0 and hence |x − θ | = θ − x . Then

f (x |θ) =
1

2
ex−θ =

1

2
exp[x · 1− θ ] .

Comparing this with (5.1) we take

k = 1, g(x) =
1

2
, t1(x) = x, θ1 = 1 and ψ(θ1) = θ .
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Figure B.8: Guaranteed Exponential Distribution Function

We must now also express ψ(θ1) explicitly as a function of θ1. But since θ1 = 1, a constant,

while ψ(θ1) = θ , which is arbitrary and hence variable, it follows that ψ(θ1) cannot be expressed

as a function of θ1.

We have shown that for arbitrary θ , the representation (5.1) does not hold whenever x > θ . It

follows that
{

f (x |θ), θ ∈ R1
}

cannot be an exponential family.

Remark:

J Recall the statements A and B formulated in part (ii) above. Proposition 3.2.1 says that if

A is true, then B is true. It does not say, nor does it imply, that if B is true, then so will be

A. In fact, here we have

{x : f (x |θ) > 0} = {x : 1
2
e−|x−θ | > 0} = R1

which obviously does not depend θ . Hence, we cannot apply Proposition 5.1 as we did in (b).

(Note that statement B is true, but statement A is false as we saw earlier.)

(d) Remember that (x − θ)4 = x4 − 4x3θ + 6x2θ2 − 4xθ3 + θ4.

Write K exp
(
−(x − θ)4

)
= [K exp

(
−x4

)
] exp{[4x3θ − 6x2θ2 + 4xθ3]− θ4}

and set g(x) = K exp(−x4), t1(x) = 4x3, t2(x) = −6x2, t3(x) = 4x,

θ1 = θ, θ2 = θ2, θ3 = θ3, ψ(θ1, θ2, θ3) = θ4 = θ4
1.
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Then we see that the family can be parameterised as

f (x |θ1, θ2, θ3) = g(x) exp

{
3∑
1

θ i ti (x)− ψ(θ1, θ2, θ3)

}
,

which looks just like (5.1). Notice, however, that here the new parameter space is

2 = (θ1, θ2, θ3) : θ3 = θ
3
1, θ2 = θ

2
1, θ1 ∈ R1}

which is a curve in R3. As such it is not a one-to-one mapping. Since this is not satisfied we do

not have an exponential family here.

Solution to Exercise 5.4.2

(a) When β is fixed, so that a is the only parameter, we have

f (x |a) =
aβ

0(β)
xβ−1e−ax =

{
xβ−1

0(β)

}
exp {−ax + β ln a}

which has the form of (5.1) with k = 1,

g(x) =
xβ−1

0(β)
,

t1(x) = −x;

θ = a;

ψ(θ) = −β ln a = −β ln θ .

The transformation θ ↔ a is one-to-one onto itself. Hence 2 = (0; ∞) is an open subset of

R. Thus we have a one-parameter exponential family.

Remarks:

J By Theorem 5.2.2 we have

E(−X) =
·
ψ(θ) =

d
dθ
(−β ln θ) = −

β

θ
= −

β

a

and

var(−X) =
··
ψ(θ) =

d
dθ
(−
β

θ
) =

β

θ2
=
β

a2
,

that is

E(X) =
β

a
and var(X) =

β

a2
.
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(b) If both a and β are parameters, we have

f (x |a, β) =
aβ

0(β)
xβ−1e−ax

= exp{−ax + (β − 1) ln x − (ln0(β)− β ln a)}

which has the form of (5.1) with k = 2

g (x) = 1, t1 (x) = −x, t2 (x) = ln x, θ1 = a, θ2 = (β − 1)

and

ψ (θ1, θ2) = ln0 (β)− β ln a = ln0 (θ2 + 1)− (θ2 + 1) ln θ1 .

t1 and t2 are independent. (a, β) ↔ (θ1; θ2) is one-to-one and 2 = R × R which is open in R2.

Thus we have a two-parameter exponential family.

Solution to Exercise 5.4.3

We have

f (u|µ, σ) =
n!

n − k!

[
k∏

i=1

1

σ
φ

(
ui − µ

σ

)][
1−8

(
x0 − µ

σ

)]n−k

=
n!

n − k!

[
k∏

i=1

1
√

2πσ
exp

(
−
(ui − µ)2

2σ 2

)][
1−8

(
x0 − µ

σ

)]n−k

=
n!

n − k!

(
1
√

2π

)k

exp

{
−k ln σ −

1

2σ 2

k∑
1

u2
i +

µ

σ 2

k∑
1

ui −
kµ2

2σ 2
+ (n − k) ·

ln

[
1−8

(
x0 − µ

σ

)]}

=
n!

n − k!

(
1
√

2π

)k

exp

{
1

σ 2

(
−

1

2

k∑
1

u2
i

)
+
µ

σ 2

k∑
1

ui−[
kµ2

2σ 2
+ k ln σ − (n − k) ln

(
1−8

(
x0 − µ

σ

))]}
Now set

g (x) =

 n!

n − k!

(
1
√

2π

)k

if x(1) < · · · < x(k) < x0

0 otherwise,

t1 (x) = −
1

2

k∑
i=1

x2
(i); t2 (x) =

k∑
i=1

x(i);

θ1 =
1

σ 2
; θ2 =

µ

σ 2
and

ψ (θ1, θ2) =
kµ2

2σ 2
+ k ln σ − (n − k) ln

[
1−8

( x0

σ
−
µ

σ

)]

=
k

2
θ2

2/θ1 −
k

2
ln θ1 − (n − k) ln

[
1−8

(√
θ1x0 − θ2/

√
θ1

)]
.
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Then

f

(
x(1), . . . , x(k)

∣∣µ, σ 2
)
= g (x) exp {θ1t1 (x)+ θ2t2 (x)− ψ (θ1, θ2)} .

Note that t1 and t2 are independent. There is a one-to-one correspondence between the parameters

(θ1, θ2) and
(
µ, σ 2

)
. Since

θ1 =
1

σ 2
and θ2 =

µ

σ 2

we have that

σ 2 =
1

θ1

and µ =
θ2

θ1

.

Since σ 2 > 0 and µ ∈ R1 we have θ1 > 0 and θ2 ∈ R. 2 = (0; +∞) × R is an open subset of R2.

Hence, the densities f
(
x(1), . . . , x(k)

∣∣µ, σ 2
)

can be parameterised as a two-parameter exponential

family.

Solution to Exercise 5.4.4

Rewrite the p.d.f. using an indicator function:

f ( xi | θ) = I[θ,∞) (xi ) · exp (−xi + θ) , −∞ < θ <∞ .

So

{x : f ( x | θ) > 0} = {x : x ≥ θ} since f ( x | θ) = 0 for x < 0.
= [θ, ∞), which depends on θ.

Hence by Proposition 5.2.1 the guaranteed exponential distribution is not a member of an exponential

family.

Solution to Exercise 5.4.5

(a) f (x |p) = p(1− p)x−1

= exp
[
x ln(1− p)+ ln

p

1−p

]
= exp

[
x ln(1− p)− ln

1−p

p

]
.

Let γ = ln(1− p) ⇒ eγ = (1− p)
⇒ p = 1− eγ .

Hence f (x |p) = f ∗(x |γ ) = exp
[
xγ − ln eγ

1−eγ

]
= g(x) exp

[
γ t (x)− ψ(γ )

]
.

which is in the form of (5.1) with k = 1; g(x) = 1; t (x) = x and ψ(γ ) = ln
(

eγ

1−eγ

)
.

Note that all the conditions of Definition 5.1.1 are satisfied:

· p↔ γ is one-to-one transformation from (0, 1) onto (−∞, 0).

· The parameter space 2 = (−∞, 0) is open in R.
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(b) From Theorem 5.2.2 we have that

E [t (X)] =
∂

∂γ
ψ(γ ) =

∂

∂γ
ln

(
eγ

1− eγ

)
=

∂

∂γ
[γ − ln(1− eγ )] = 1−

(
−eγ

1− eγ

)
=

1

1− eγ
.

(Alternatively: ∂
∂γ ln

(
eγ

1−eγ

)
= (1−eγ )

eγ
· eγ (1−eγ )+eγ (eγ )

(1−eγ )2
).

∴ E(X |p) = 1
p

(from (a))

var(X |p) =
∂2

∂γ 2
ψ(γ ) =

∂

∂γ

(
1

1− eγ

)
=

eγ

(1− eγ )2
=
(1− p)

p2
(from (a))

Solution to Exercise 5.4.6

The statistic T has a binomial (n = 2; θ) distribution with θ ∈ (0, 1) i.e. the p.d.f. of T is

f ( t | θ) =

(
2

t

)
· θ t · (1− θ)2−t , for t = 0, 1, 2 .

Let s (·) be any function of T with E [s (T )] = 0.

Now

E [s (T )] =
2∑

t=0

(
2
t

)
· θ t · (1− θ)2−t · s (t)

=
(
2
0

)
· s (0) · (1− θ)2 +

(
2
1

)
· s (1) · θ · (1− θ)+

(
2
2

)
· s (2) · θ2

= s (0)+ [2 · s (1)− 2 · s (0)] · θ + [s (0)− 2 · s (1)+ s (2)] · θ2 .
If E [s (T )] = 0 ∀θ ∈ (0; 1) then s (0) = 0 and 2 · s (1) − 2 · s (0) = 0 and s (0) − 2 · s (1) + s (2) = 0

which implies that s (0) = 0 and s (1) = 0 and s (2) = 0 i.e. s (t) ≡ 0, ∀t ∈ {0, 1, 2} and therefore T is

complete.

Solution to Exercise 5.4.7

We have

f ( t | θ) =
1

2θ
, for − θ < t < θ, θ > 0 .

Now E (T ) =
θ∫
−θ

1

2θ
· t dt = 0.

We have found a non-zero function s of t namely s (t) = t, −θ < t < θ such that E (s (T )) = 0 ∀ θ > 0.
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It follows from the definition of completeness that T is not complete.

If T ∼ N (0; θ) then E (T ) = 0 and therefore T is not complete.

B.6 Minimum Variance Unbiased Estimation

Solution to Exercise 6.4.1

f (x |θ) = Q(θ) · M(x) , θ < x < b (B.1)

(i) We want to show that Y1 is a sufficient statistic for θ . Now

1 =

∞∫
−∞

f (x |θ)dx =

b∫
θ

Q(θ)M(x)dx ∴
∫ b

θ
M(x)dx =

1

Q(θ)
(B.2)

and

F(y) =
∫ y

θ Q(θ)M(y)dy = Q(θ)
∫ y

θ M(y)dy = Q(θ)
[∫ b

θ M(y)dy −
∫ b

y
M(y)dy

]
= Q(θ)

[
1

Q(θ) −
1

Q(y)

]
= 1− Q(θ)

Q(y)

Thus the p.d.f. of Y1 is

g1(y) = n[1− F(y)]n−1 f (y) = n

[
Q(θ)

Q(y)

]n−1

Q(θ)M(y) =
n Q(θ)n M(y)

[Q(y)]n−1
, θ < y < b .

Now
f (x1|θ) f (x2|θ) · · · f (xn|θ)

g1(y1|θ)
=

[Q(θ)]n M(x1)M(x2) · · ·M(xn)

n[Q(θ)]n M(y1)/[Q(y1)]n−1
=

M(x1)M(x2) · · ·M(xn)

nM(y1)/[Q(y1)]n−1

which is free of θ and hence Y1 is a sufficient statistic for θ .

(ii) Suppose u(Y1) is an unbiased estimator for h(θ) i.e.

E[u(Y1)] =

∫ b

θ

u(y1)nM(y1)[Q(θ)]
n

Q(y1)n−1
dy1 = h(θ)

i.e.
∫ b

θ
u(y1)M(y1)
[Q(y1)]n−1 dy1 =

h(θ)
n[Q(θ)]n

i.e. −
∫ θ

b
u(y1)M(y1)
[Q(y1)]n−1 dy1 =

h(θ)
n[Q(θ)]n

Fundamental Theorem of Calculus :
d

dx

∫ x

a
f (t)dt = f (x)

differentiate w.r.t. θ . Thus

−u(θ)M(θ)

[Q(θ)]n−1
=

n[Q(θ)]nh′2[Q(θ)]n−1Q′(θ)

n2[Q(θ)]2n

i.e.
−u(θ) =

h′(θ)

nM(θ) · Q(θ)
−

h(θ)Q′(θ)

Q2(θ)M(θ)
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and from (B.2) −
∫ θ

b
M(x)dx = 1

Q(θ) and differentiating w.r.t. θ

⇒ −M(θ) =
−Q′(θ)

(Q(θ))2
i.e. M(θ) =

Q′(θ)

Q(θ)2
Fundamental Theorem of Calculus :

d
dx

∫ x

a
f (t)dt = f (x)

so u(θ) = h(θ)− h′(θ)
nM(θ)Q(θ) which completes the result. Thus

u(Y1) = h(Y1)−
h′(Y1)

nM(Y1)Q(y1)

is the MVUE for h(θ).

Solution to Exercise 6.4.2

(a) f (x |θ) = e−(x−θ) = e−x︸︷︷︸
M(x)

· eθ︸︷︷︸
Q(θ)

. Hence by Theorem 6.2.2 Y1 is a sufficient statistic for θ and the

MVUE for h(θ) = θ where h′(θ) = 1 is:

u(y1) = y1 −
1

ne−y1ey1
= y1 −

1
n
. Hence Y1 −

1
n
= X(1) −

1
n

is a MVUE for θ .

(b) Hence by Theorem 6.2.2 Y1 is a sufficient statistic for θ and the MVUE for h(θ) = θr where h′r−1

is:

u(y1) = yr
1 −

r y
r−1
1

ne−y1ey1
= yr

1 −
r
n

y
r−1
1 . Hence Y r

1 −
r
n
Y

r−1
1 is a MVUE for θr .

(c) Hence by Theorem 6.2.2 Y1 is a sufficient statistic for θ and the MVUE for

h(θ) = P(X ≤ c) =
∫ c

θ e−(x−θ)dx = 1− e−(c−θ) where h′(θ) = e−(c−θ) is:

u(y1) = {1− e−(c−y1)} −
{
− [e−(c−y1)]

ney1e−y1

}
= 1− e−(c−y1)

{
1− 1

n

}
,

So u(Y1) = 1− e−(c−Y1)
{
1− 1

n

}
is the MVUE for P(X ≤ c).

Solution to Exercise 6.4.3

(a) I have not given a detailed solution but you will find that
∑n

i=1 X2
i is a sufficient statistic for θ .

Please write out the full solution.

(b) Again I have not given the details here but you can easily show the p.d.f. belongs to the exponential

family. Please write out the full solution.

(c) Using part (b) and Theorem 5.3.2, you can easily show that
∑n

i=1 X2
i is a complete minimal

sufficient statistic for θ . Please write out the full solution.

(d) Here, we have to find an unbiased estimator for θ which is a function of the complete minimal

sufficient statistic. Notice that

E(X2) =

∫ ∞
0

2

θ
x3e−

1
θ x2

dx =
2

θ

0(2)

2
(

1
θ

) = θ .
Hence

E

[
n∑

i=1

X2
i

]
=

n∑
i=1

E

[
X2

i

]
= nθ .
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Therefore

E

[
1

n

n∑
i=1

X2
i

]
= θ .

Thus X = 1
n

∑n
i=1 X2

i is an unbiased estimator for θ . Also, X = 1
n

∑n
i=1 X2

i is a function of the

complete minimal sufficient statistic
∑n

i=1 X2
i . Hence, by Theorem 6.1.3 X = 1

n

∑n
i=1 X2

i is a

MVUE for θ .

B.7 Confidence Intervals

Solution to Exercise 7.3.1

(a) A 95% confidence interval for θ is

θ̂ ± zβ/
√

I
(̂
θ
)
= (0.23± 1.96/

√
125.27 = (0.055, 0.405) .

(b) χ2
1; 0.95 = 3.841.

∴ exp(−3.841/2) = 0.1465.

From the graph (Figure B.5 or Figure B.4), a 95% confidence interval for θ is (0.09; 0.42).

(c) By comparing the confidence intervals, it follows that the two methods results in a similar

confidence interval. This means that the first order approximation to r(θ |x) is quite satisfactory.

(d) χ2
1; 0.95 = 3.841.

∴ exp(−3.841/2) = 0.1465.

From the graph (Figure B.5), a 95% confidence interval for θ is (0.05; 0.4).

(e) By comparing the confidence intervals, it follows that the first order approximation to r(θ |x) is also

quite satisfactory.
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There is a slight movement to the left in the confidence intervals as can be observed in Figure B.9.

Figure B.9: Obtaining confidence intervals from relative

likelihood function
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ADDENDUM C: Common Distributions

Note that certain text books define the probability density/mass functions differently to others. What

is important is to observe the function that is given and from there you will be able to appropriately

write down the statistics associated with that particular probability function. For example, some text

books write the pdf of an Exponential distribution, i.e. X ∼ EXP(θ) to have pdf

f (x) =
1

θ
exp

(
−

x

θ

)
(C.1)

whereas other text books e.g. Rice defines X ∼ EXP(θ) to have pdf

f (x) = θ exp (−xθ) . (C.2)

This also occurs for the Gamma distribution. For example, some text books write the pdf of an

Gamma distribution, i.e. X ∼ GAM(α, β) to have pdf

f (x) =
1

0(α)βα
xα−1 exp

[
−

x

β

]
(C.3)

whereas other text books e.g. Rice defines X ∼ GAM(α, β) to have pdf

f (x) =
βα

0(α)
xα−1 exp [−xβ] . (C.4)

I am used to using the notation in Equations C.1 and C.3. Below I give the results for both notations

and hope that this is not confusing to you.



180

C1A. If X ∼ GAM(α, β) as defined by Equation C.3 then

(a) f (x) =
1

0(α)β
α xα−1 exp

[
−

x

β

]
, x > 0 (b) MX (t) = (1− βt)−α

(c) E(X) = α β (d) var(X) = α β2

(e) E(Xr ) =
0 (α + r) βr

0 (α)
(f) If α = 1 then X ∼ EXP(β)

(g) Y = 2X
β ∼ χ

2(2α) as defined by Equation C.1

C1B. If X ∼ GAM(α, β) as defined by Equation C.4 then

(a) f (x) =
βα

0(α)
xα−1 exp [−xβ] , x > 0 (b) MX (t) = (1− t/β)−α

(c) E(X) = α/β (d) var(X) = α/β2

(e) E(Xr ) =
0 (α + r)

0 (α) βr
(f) If α = 1 then X ∼ EXP(β)

(g) Y = 2Xβ ∼ χ2(2α) as defined by Equation C.2

C2. If X ∼ χ2
r then

(a) f (x) =
1

2r/20(r/2)
xr/2−1e−x/2 , x > 0 (b) MX (t) = (1− 2t)−r/2

(c) E(X) = r (d) var(X) = 2r

(e) E
(
Y k
)
=

2k0
(

r
2
+ k

)
0
(

r
2

)

C3. If X ∼ N (µ, σ 2) then

(a) f (x) =
1

√
2πσ

exp

[
−

1

2σ 2
(x − µ)2

]
, x ∈ R (b) MX (t) = exp

(
µt + 1

2
σ 2t2

)
(c) E(X) = µ (d) var(X) = σ 2

C4. If X ∼ UNIF(a, b) where a < b then

(a) f (x) =
1

b − a
, a < x < b (b) MX (t) =

ebt − eat

(b − a)t

(c) E(X) =
a + b

2
(d) var(X) =

(b − a)2

12
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C5. If X ∼ NB(r, p) where 0 < p < 1 and q = 1− p then

(a) f (x) =

(
x − 1

r − 1

)
prqx−r , x = r, r + 1, . . . (b) MX (t) =

(
pet

1− qet

)r

(c) E(X) =
r

p
(d) var(X) =

rq

p2
where q = 1− p

(e) If r = 1 then X ∼ GEO(p)

C6. If X ∼ BIN(n, p) where 0 < p < 1 and q = 1− p then

(a) f (x) =

(
n

x

)
pxqn−x , x = 0, 1, . . . , n (b) MX (t) =

(
pet + q

)n
(c) E(X) = np (d) var(X) = npq where q = 1− p

C7. If X ∼ POI(µ) where µ > 0 then

(a) f (x) =
e−µµx

x!
, x = 0, 1, . . . (b) MX (t) = exp

[
µ
(
et − 1

)]
(c) E(X) = µ (d) var(X) = µ
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ADDENDUM D: PROGRAMMING

Although Addendum D is not essential for this course, I present the programs that I used in obtaining

the graphs in this tutorial letter as well as some other information. It can help you to obtain the graphs

in the exercises and assignments.

D.1 Installation of R

The program that I used is called R. R is distributed under the terms of the GNU General Public

License. It is freely available for use and distribution under the terms of this license. The latest

version of R, additional packages and their documentation can be downloaded from CRAN (the

Comprehensive R Archive Network). The master web site is http://cran.rproject. org/ but there are

mirrors all around the world, and users should download the software from the nearest site. The

set-up file for R is around 28Mb. To run the installation simply double-click this file and follow the

instructions. After installation, a shortcut icon of R should appear on the desktop. Right-click this R

icon to change its start-up properties.

R is a statistical package and it is advisable to learn this package since it is extremely powerful with

many libraries that can be downloaded (also free) to perform different statistical procedures. There

are also many documents available free on the internet at the above site which can be used to start

learning the programming language.

D.2 R Programs

The program below was used to draw the graph in Figure 2.1.

theta<-seq(0,.5,by=0.005)

f<-choose(20,4)*theta^4*(1-theta)^16

plot(theta,f,type="l",xlab="theta",ylab="P(X=4|theta)")

Although the program below was not used in the study guide, we can determine the MLE using the

following commands:

# The maximum value of the likelihood function

max(f)

# The index number where the maximum occurs

which(f==max(f))

# The maximum value of the likelihood function again

f[which(f==max(f))]

# The MLE i.e the value of theta where the maximum occurs

theta[which(f==max(f))]



183 STA3702/001

The R output appears below:

> # The maximum value of the likelihood function

> max(f)

[1] 0.2181994

>

> # The index number where the maximum occurs

> which(f==max(f))

[1] 41

>

> # The maximum value of the likelihood function again

> f[which(f==max(f))]

[1] 0.2181994

>

> # The MLE i.e the value of theta where the maximum occurs

> theta[which(f==max(f))]

[1] 0.2

As you can see, the MLE of θ is 0.2.

The program below was used to draw the graph in Figure 2.2.

theta<-seq(0,.5,by=0.01)

lik4<-theta^4*(1-theta)^(20-4) lik8<-theta^8*(1-theta)^(40-8)

lik4k<-.2^4*(1-.2)^(20-4) lik8k<-.2^8*(1-.2)^(40-8) rel4<-lik4/lik4k

rel8<-lik8/lik8k plot(theta,rel4,xlab="Theta",ylab="Relative

likelihood",type="l",col=3,lty=2)

lines(theta,rel8,type="b",lty=1,pch=4,col=6)

nam<-c("r(theta|x=4)","r(theta|u=8)")

legend(.35,1,nam,col=c(3,6),lty=c(2,1),pch=c(-1,4))

The output to determine the MLEs for the two functions are below.

> # The MLE i.e the value of theta where the maximum occurs

> theta[which(lik4==max(lik4))]

[1] 0.2

> # The MLE i.e the value of theta where the maximum occurs

> theta[which(lik8==max(lik8))]

[1] 0.2
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The program below was used to draw the graph in Figure 2.3.

mu<-seq(1220,1320,by=0.5)

lik1<-exp(-(1230.2-mu)^2/526.32)*(1-pnorm(((1344-mu)/100),0,1))^12

lik2<-exp(-(1230.2-1271)^2/526.32)*(1-pnorm(((1344-1271)/100),0,1))^12

rel.lik<-lik1/lik2

plot(mu,rel.lik,type="l",xlab="Life in Hours",ylab="Relative likelihood")

plot(mu,lik1,type="l",xlab="Life in Hours",ylab="Likelihood")

The output to determine the MLE is below.

> # The MLE i.e the value of mu where the maximum occurs

> mu[which(lik1==max(lik1))]

[1] 1271.5

The program below was used to draw the graph in Figure 2.4.

lambda<-seq(40,64,by=0.5)

rel.dir<-(lambda/52)^156*exp(-3*lambda+156)

rel.dil<-(lambda/52.27)^196*exp(-15*lambda/4+196)

plot(lambda,rel.dir,xlab="Lambda",ylab="Relative

likelihood",type="l",col=3,lty=2)

lines(lambda,rel.dil,type="b",lty=1,pch=4,col=6)

nam<-c("Direct Method", "Dilution Method")

legend(55,1,nam,col=c(3,6),lty=c(2,1),pch=c(-1,4))

The output to determine the MLE is below.

> # The MLE i.e the value of lambda where the maximum occurs

> mu[which(rel.dir==max(rel.dir))]

[1] 1232

> # The MLE i.e the value of lambda where the maximum occurs

> mu[which(rel.dil==max(rel.dil))]

[1] 1232.5

The program below was used to draw the graphs in Figure 2.5.

theta<-seq(0,.5,by=0.005)

lnf<-4*log(theta)+16*log(1-theta)

plot(theta,lnf,type="l",xlab="theta",ylab="ln(P(X=4|theta))")

theta<-seq(0,.5,by=0.005)

logf<-4*log10(theta)+16*log10(1-theta)

plot(theta,logf,type="l",xlab="theta",ylab="log(P(X=4|theta))")
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The program below was used to draw the graphs in Figure 2.6.

lambda<-seq(40,64,by=0.5)

rel.dir.exact<-(lambda/52)^156*exp(-3*lambda+156)

rel.dir.app1<-exp(-0.02885*(lambda-52)^2)

plot(lambda,rel.dir.exact,xlab="Lambda",ylab="Relative

likelihood",type="l",col=3,lty=2)

lines(lambda,rel.dir.app1,type="b",lty=1,pch=4,col=6)

nam<-c("Exact", "First order approximation")

legend(46,.15,nam,col=c(3,6),lty=c(2,1),pch=c(-1,4))

The program below was used to draw the graphs in Figure 2.7.

theta<-seq(0,.5,by=0.01)

lik4<-theta^4*(1-theta)^(20-4) lik4k<-.2^4*(1-.2)^(20-4)

rel4.exact<-lik4/lik4k rel4.app1<-exp(-.5*(theta-.2)^2*125)

rel4.app2<-exp(-.5*(theta-.2)^2*125+(1/6)*(theta-.2)^3*937.5)

plot(theta,rel4.exact,xlab="Theta",ylab="Relative

likelihood",type="l",col=3,lty=2)

lines(theta,rel4.app1,type="b",lty=1,pch=4,col=6)

lines(theta,rel4.app2,type="b",lty=3,pch=7,col=4) nam<-c("Exact",

"First order approximation", "Second order approximation")

legend(.07,.18,nam,col=c(3,6,4),lty=c(2,1,3),pch=c(-1,4,7))

Related to the exercises in study unit 2

The program below was used to draw the graphs in Figure B.1.

theta<-seq(4.9,10,by=0.005)

f<-1/theta^10

g<-rep(0,981)

plot(theta,f,type="l",xlab="theta",ylab="L(theta|x)",

xlim=c(0,10))

theta<-seq(0,4.9,by=0.005)

lines(theta,g,type="l")

The output to determine the MLE is below.

> theta<-seq(4.9,10,by=0.005)

> f<-1/theta^10

> # The MLE i.e the value of theta where the maximum occurs

> theta[which(f==max(f))]

[1] 4.9
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The program below was used to draw the graphs in Figure B.2.

theta<-seq(4.9,10,by=0.005)

f<-(4.9/theta)^10

g<-rep(0,981)

plot(theta,f,type="l",xlab="theta",ylab="Relative likelihood",

xlim=c(0,10))

theta<-seq(0,4.9,by=0.005)

lines(theta,g,type="l")

The program below was used to draw the graphs in Figure B.3.

theta<-seq(0,0.6,by=0.005)

f<-theta^5*(1-theta)^17

plot(theta,f,type="l",xlab="theta",ylab="L(theta|x)")

The output to determine the MLE is below.

> # The MLE i.e the value of theta where the maximum occurs

> theta[which(f==max(f))]

[1] 0.225

Note that in the exercise, our estimate for the MLE from the graph was 0.25 but using R we can get

a much more accurate estimate for the MLE from the graph.

The program below was used to draw the graphs in Figure B.4.

theta<-seq(0,0.6,by=0.005)

f<-((4*theta)^5)*((4/3)*(1-theta))^17

plot(theta,f,type="l",xlab="theta",ylab="Relative Likelihood")

The program below was used to draw the graphs in Figure B.5.

theta<-seq(0,0.6,by=0.005) f<-((4*theta)^5)*((4/3)*(1-theta))^17

fapp1<-exp(-62.635*(theta-5/22)^2)

plot(theta,f,xlab="Theta",ylab="Relative likelihood",type="l",

col=3,lty=2)

lines(theta,fapp1,type="b",lty=1,pch=4,col=6)

nam<-c("Exact", "First order approximation")

legend(0.1,.15,nam,col=c(3,6),lty=c(2,1),pch=c(-1,4))

The program below was used to draw the graphs in Figure B.6.

theta<-seq(0,15,by=0.05)

f<-(3*theta/22)^22*exp(-3*theta+22)

fapp1<-exp(-0.205*(theta-7.33)^2)

plot(theta,f,xlab="Theta",ylab="Relative likelihood",type="l",

col=3,lty=2, ylim=c(0,1.25))

lines(theta,fapp1,type="b",lty=1,pch=4,col=6)

nam<-c("Exact", "First order approximation")

legend(3.5,1.25,nam,col=c(3,6),lty=c(2,1),pch=c(-1,4))
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The program below was used to draw the graphs in Figure B.7.

theta<-seq(0,0.6,by=0.005)

f<-10*theta*((10/9)*(1-theta))^9

fapp1<-exp(-(1/2)*((theta-0.1)^2)*111.11)

plot(theta,f,xlab="Theta",ylab="Relative likelihood",type="l",

col=3,lty=2)

lines(theta,fapp1,type="b",lty=1,pch=4,col=6)

nam<-c("Exact", "First order approximation")

legend(0.25,1,nam,col=c(3,6),lty=c(2,1),pch=c(-1,4))


