[bookmark: _GoBack]2017-10
Explain what is meant by the layered approach to the design of an operating system.
In the layered approach to operating system design, the OS is divided into a number of layers (levels), each built on top of lower layers. The bottom layer (layer 0) is the hardware and the highest layer (layer n) is the user interface. A layer uses the functions and services of lower-level layers only.

2017-10
Give one advantage and one disadvantage of the layered approach to operating system design.
The system is easier to debug and modify because changes affect only limited sections of the system rather than touching all sections of the operating system. Information is kept only where it is needed and is accessible only within a defined and restricted area, so any bugs affecting that data must be limited to a specific module or layer. The major difficulty with the layered approach involves appropriately defining the various layers – careful planning is necessary. A final problem with layered implementations is that they tend to be less efficient than other types, adding overhead to system calls.

2017-10
It sometimes difficult to achieve a layered approach if two components of the operating system are dependent on each other. Identify a scenario in which it is unclear how to layer two system components that require tight coupling of their functionalities.
The virtual memory subsystem and the storage subsystem are typically tightly-coupled and requires careful design in a layered system due to the following interactions. Many systems allow files to be mapped into the virtual memory space of an executing process. On the other hand, the virtual memory subsystem typically uses the storage system to provide the backing store for pages that do not currently reside in memory. Also, updates to the filesystem are sometimes buffered in physical memory before it is flushed to disk, thereby requiring careful coordination of the usage of memory between the virtual memory subsystem and the filesystem.

2017-10
State the order of the layers for the following parts of a layered operating system. Assume that the hardware is at the lowest level and the user is at the highest level.
a. Paged memory management
b. CPU scheduling
c. I/O drivers
d. Java Compiler
e. Command line interpreter
b, c, a, d, e (bottom up)

2017-10
How do clustered systems differ from multiprocessor systems?
Clustered systems are typically constructed by combining multiple computers into a single system to perform a computational task distributed across the cluster. Multiprocessor systems on the other hand could be a single physical entity comprising of multiple CPUs. A clustered system is less tightly coupled than a multiprocessor system. Clustered systems communicate using messages, while processors in a multiprocessor system could communicate using shared memory.

2017-10
What is required for two machines belonging to a cluster to cooperate to provide a highly available service?
In order for two machines to provide a highly available service, the state on the two machines should be replicated and should be consistently updated. When one of the machines fail, the other could then take-over the functionality of the failed machine.

2017-10
Explain the difference between a demand-paging system and a paging system with swapping.
A demand-paging system is similar to a paging system with swapping where processes reside in secondary memory. With demand paging, when a process is executed, it is swapped into memory. Rather than swapping the entire process into memory, however, a lazy swapper is used. A lazy swapper never swaps a page into memory unless that page will be needed. Thus, a paging system with swapping manipulates entire processes, whereas a demand pager is concerned with the individual pages of a process.

2017-10
Explain the sequence of events that happens when a page-fault occurs.
Access to a page marked invalid causes a page fault. The paging hardware will notice the invalid bit, causing a trap to the OS. A free frame will be found, and the desired page will be loaded from disk into the frame. The internal table kept with the process and page table are modified to reflect that the page is now in memory. The instruction that was interrupted by the trap is restarted and can now access the page required from memory.

2017-10, 2017-6, 2016-10
Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock free.
Suppose the system is in deadlock situation. This implies that each of the three processes is holding one resources and is waiting for another resource which is held by one of the other two processes. Since there are three processes and four resources, one process must be able to obtain two resources. This process requires no more resources; therefore it will eventually terminate and return its two resources back which can be used by the other two processes to execute and terminate.

2017-6, 2016-10
What are the advantages and disadvantages of using the same system-call interface for manipulating both files and devices?
Each device can be accessed as though it was a file in the filesystem. Since most of the kernel deals with devices through this file interface, it is relatively easy to add a new device driver by implementing the hardware-specific code to support this abstract file interface. Therefore, this benefits the development of both user program code, which can be written to access devices and files in the same manner, and device driver code, which can be written to support a well-defined API.
The disadvantage with using the same interface is that it might be difficult to capture the functionality of certain devices within the context of the file access API, thereby either resulting in a loss of functionality or a loss of performance.

2017-6, 2016-10
Describe the most common way for an attacker outside of the system to gain unauthorised access to the target system?
The stack- or buffer-overflow attack is the most common way for an attacker outside the system to gain unauthorized access to a system. This attack exploits a bug in the software in order to overflow some portion of the program and cause the execution of unauthorized code.
The attacker’s program does the following:
1. Overflow an input field, command-line argument, or input buffer—for example, on a network daemon—until it writes into the stack.
2. Overwrite the current return address on the stack with the address of the exploit code loaded in step 3.
3. Write a simple set of code for the next space in the stack that includes the commands that the attacker wishes to execute—for instance, spawn a shell with privileges.

2017-6, 2016-10
How does a virus differ from a worm?
A worm is structured as a complete, standalone program whereas a virus is a fragment of code embedded in a legitimate program.

2017-6, 2016-10
What are the four necessary conditions for deadlock?
A deadlock situation can arise if the following four conditions hold simultaneously in a system:
1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, only one process at a time can use the resource. If another process requests that resource, the requesting process must be delayed until the resource has been released.
2. Hold and wait. A process must be holding at least one resource and waiting to acquire additional resources that are currently being held by other processes.
3. No pre-emption. Resources cannot be pre-empted; that is, a resource can be released only voluntarily by the process holding it, after that process has completed its task.
4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is waiting for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn is waiting for a resource held by P0.

2017-6, 2016-10
Consider a system consisting of m resources of the same type being shared by n processes. A process can request or release only one resource at a time. Show that the system is deadlock free if the maximum need of each process is between one resource and m resources.
[image: ]
2017-6
A multithreaded web server wishes to keep track of the number of requests it services (known as hits). Consider the following two strategies to prevent a race condition on the variable hits. The first strategy is to use a basic mutex lock when updating hits:
int hits;
mutex_lock hit_lock;
hit_lock acquire();
hits++;
hit_lock release();
A second strategy is to use an atomic integer:
Atomic_t hits;
Atomic_inc(&hits);
Explain which of these two strategies is more efficient.
The use of locks is overkill in this situation. Locking generally requires a system call and possibly putting a process to sleep (and thus requiring a context switch) if the lock is unavailable. (Awakening the process will similarly require another subsequent context switch.) On the other hand, the atomic integer provides an atomic update of the hits variable and ensures no race condition on hits. This can be accomplished with no kernel intervention and therefore the second approach is more efficient.

2017-6
Explain the terms “at most once” and “exactly once” and indicate how they relate to remote procedure calls.
Because a remote procedure call can fail in any number of ways, it is important to be able to handle such errors in the messaging system. The term "at most once" refers to ensuring that the server processes a particular message sent by the client only once and not multiple times. This is implemented by merely checking the timestamp of the message. The term "exactly once" refers to making sure that the message is executed on the server once and only once so that there is a guarantee that the server received and processed the message.

2017-6
Name two differences between user-level threads and kernel-level threads.
User-level threads are supported above the operating system (OS) kernel and are implemented by a thread library at the user level. The library provides the support for thread management (e.g. thread creation, scheduling, etc.) without any support from the kernel. Because there is no kernel support, and hence no kernel intervention, user-level threads are generally fast to create and manage. Hence if speed is a factor then it's better to employ user-level threads. Note, however, that a user thread has to map to a kernel thread and if the kernel is single-threaded then any user-level thread that makes a system call will cause the entire task to wait until such time as the system call returns. Kernel threads are supported directly by the operating system (e.g. creation, scheduling, etc.).

2017-6
Clearly explain the three steps of the Resource-Request Algorithm.
1. If Requesti ≤ Needi, go to step 2. Otherwise, raise an error condition, since the process has exceeded its maximum claim.
2. If Requesti ≤ Availablei, go to step 3. Otherwise, Pi must wait, since the resources are not available.
3. Have the system pretend to have allocated the requested resources to process Pi by modifying the state as follows:
Available = Available–Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;
If the resulting resource-allocation state is safe, the transaction is completed, and process Pi is allocated its resources. However, if the new state is unsafe, then Pi must wait for Requesti, and the old resource-allocation state is restored.

2013-10
What are the five major activities of an operating system with regard to process management?
a. The creation and deletion of both user and system processes.
b. The suspension and resumption of processes.
c. The provision of mechanisms for process synchronization.
d. The provision of mechanisms for process communication.
e. The provision of mechanisms for deadlock handling.
What are the three major activities of an operating system with regard to memory management?
a. Keep track of which parts of memory are currently being used and by whom.
b. Decide which processes are to be loaded into memory when memory space becomes available.
c. Allocate and deallocate memory space as needed.
What are the three major activities of an operating system with regard to secondary-storage management?
a. Free-space management
b. Storage allocation
c. Disk scheduling

2013-10
The services and functions provided by an operating system can be divided into two main categories. Briefly describe the two categories and discuss how they differ.
One class of services provided by an operating system is to enforce protection between different processes running concurrently in the system. Processes are allowed to access only those memory locations that are associated with their address spaces. Also, processes are not allowed to corrupt files associated with other users. A process is also not allowed to access devices directly without operating system intervention.
The second class of services provided by an operating system is to provide new functionality that is not supported directly by the underlying hardware. Virtual memory and file systems are two such examples of new services provided by an operating system.

2013-10
What resources are used when a thread is created? How do they differ from those used when a process is created?
A context must be created, including a register set storage location for storage during context switching, and a local stack to record the procedure call arguments, return values, and return addresses, and thread-local storage. A process creation results in memory being allocated for program instructions and data, as well as thread-like storage. Code may also be loaded into the allocated memory.

2013-10
If the operating system knew that a certain application was going to access file data in a sequential manner, how could it exploit this information to improve performance?
When a block is accessed, the file system could pre fetch the subsequent blocks in anticipation of future requests to these blocks. This pre fetching optimization would reduce the waiting time experienced by the process for future requests.

2013-10
To build a robust distributed system, you must know what kinds of failures can occur. List three possible types of failures in a distributed system.
Network link failure, host failure, storage medium failure.

2013-10
What is the main advantage for an operating-system designer of using virtual-machine architecture? What is the main advantage for a user?
The system is easy to debug, and security problems are easy to solve. Virtual machines also provide a good platform for operating system research since many different operating systems can run on one physical system.

2013-6, 2012-10
Explain the concept of a thread. How does it differ from a traditional process?
A thread is a basic unit of CPU utilization in the same way as an ordinary process. Traditionally processes each had a single thread of control but nowadays a process is often broken up into parts that may execute individually. These parts are called threads and the purpose of this multi-threading is to speed up processing.

2012-10
Explain the differences between symmetric and asymmetric multiprocessing.
Some systems use asymmetric multiprocessing, in which each processor is assigned a specific task. A boss processor controls the system; the other processors either look to the boss for instruction or have predefined tasks. The most common systems use symmetric multiprocessing (SMP), in which each processor performs all tasks within the operating system. SMP means that all processors are peers; no boss–worker relationship exists between processors.

2012-10
Give one example of an operating system that employs symmetric multiprocessing and one which employs asymmetric multiprocessing.
Sun Microsystems’ operating system SunOS Version 4 provided asymmetric multiprocessing. Virtually all modern operating systems—including Windows, Mac OS X, and Linux—now provide support for SMP.

Describe what multiprogramming is and give the main advantage.
Multiprogramming increases CPU utilization by organizing jobs (code and data) so that the CPU always has one to execute. They use RAM and the CPU efficiently.
image1.png
Answer: Using the terminology of Section 7.6.2, we have:
a. Z?:l Max; < m + n
b. Max; > 1foralli

Proof: Need; = Max; — Allocation;
If there exists a deadlock state then:

c. Z?:l Allocation; = m

Usea.toget: ) Need; + Y Allocation; = Yy Max; < m + n
Usec.toget: ). Needi + m < m + n

Rewrite to get: Y, Need; < n

This implies that there exists a process P; such that Need; = 0. Since
Max; > 1itfollows that P; has at least one resource that it can release.
Hence the system cannot be in a deadlock state.




