Chapter 1
[bookmark: _GoBack]
2018 S2 A1
What is the purpose of interrupts? How does an interrupt differ from a trap? Can traps be generated intentionally by a user program? If so, for what purpose?
· An interrupt is a hardware-generated change of flow within the system. An interrupt handler is summoned to deal with the cause of the interrupt; control is then returned to the interrupted context and instruction.
· A trap is a software-generated interrupt. An interrupt can be used to signal the completion of an I/O to obviate the need for device polling. A trap can be used to call operating system routines or to catch arithmetic errors.

2018 S2 A1
Describe some of the challenges of designing operating systems for mobile devices compared with designing operating systems for traditional PCs.
· The greatest challenges in designing mobile operating systems include:
· Less storage capacity means the operating system must manage memory carefully.
· The operating system must also manage power consumption carefully.
· Less processing power plus fewer processors mean the operating system must carefully apportion processors to applications.

2018 S2 A1
Identify several advantages and several disadvantages of open-source operating systems. Include the types of people who would find each aspect to be an advantage or a disadvantage.
· Open source operating systems have the advantages of having many people working on them, many people debugging them, ease of access and distribution, and rapid update cycles.
· Further, for students and programmers, there is certainly an advantage to being able to view and modify the source code.
· Typically open source operating systems are free for some forms of use, usually just requiring payment for support services.
· Commercial operating system companies usually do not like the competition that open source operating systems bring because these features are difficult to compete against.
· Some open source operating systems do not offer paid support programs. Some companies avoid open source projects because they need paid support, so that they have some entity to hold accountable if there is a problem or they need help fixing an issue.
· Finally, some complain that a lack of discipline in the coding of open source operating systems means that backward compatibility is lacking making upgrades difficult, and that the frequent release cycle exacerbates these issues by forcing users to upgrade frequently.

2018 S1 A1
Some early computers protected the operating system by placing it in a memory partition that could not be modified by either the user job or the operating system itself. Describe two difficulties that you think could arise with such a scheme.
The data required by the operating system (passwords, access controls, accounting information, and so on) would have to be stored in or passed through unprotected memory and thus be accessible to unauthorized users.

2018 S1 A1
Distinguish between the client-server and peer-to-peer models of distributed systems.
· The client-server model firmly distinguishes the roles of the client and server. Under this model, the client requests services that are provided by the server.
· The peer-to-peer model doesn’t have such strict roles. In fact, all nodes in the system are considered peers and thus may act as either clients or servers—or both. A node may request a service from another peer, or the node may in fact provide such a service to other peers in the system.
· For example, let’s consider a system of nodes that share cooking recipes. Under the client-server model, all recipes are stored with the server. If a client wishes to access a recipe, it must request the recipe from the specified server. Using the peer-to-peer model, a peer node could ask other peer nodes for the specified recipe. The node (or perhaps nodes) with the requested recipe could provide it to the requesting node. Notice how each peer may act as both a client (it may request recipes) and as a server (it may provide recipes).

2018 S1 A1
In a multiprogramming and time-sharing environment, several users share the system simultaneously. This situation can result in various security problems.
a. What are two such problems?
Stealing or copying one’s programs or data; using system resources (CPU, memory, disk space, peripherals) without proper accounting.
b. Can we ensure the same degree of security in a time-shared machine as in a dedicated machine? Explain your answer.
Probably not, since any protection scheme devised by humans can inevitably be broken by a human, and the more complex the scheme, the more difficult it is to feel confident of its correct implementation.

2017 S2 A1
What role do device controllers and device drivers play in a computer system?
· A device controller provides for an interface between the peripheral(s) that it controls and the operating system.
· It collaborates with the device driver, by means of interrupt, special-purpose registers and when necessary Direct Memory Access (DMA), to transfer data from/to the peripheral(s) to/from the buffer storage.
· A device driver on the other side understands the device controller and hence provides the rest of the operating system with a uniform interface to de device.

2017 S2 A1
Direct memory access is used for high-speed I/O devices in order to avoid increasing the CPU’s execution load.
a. How does the CPU interface with the device to coordinate the transfer
The CPU can initiate a DMA operation by writing values into special registers that can be independently accessed by the device. The device initiates the corresponding operation once it receives a command from the CPU.
b. How does the CPU know when the memory operations are complete?
When the device is finished with its operation, it interrupts the CPU to indicate the completion of the operation. Both the device and the CPU can be accessing memory simultaneously. The memory controller provides access to the memory bus in a fair manner to these two entities.
c. The CPU is allowed to execute other programs while the DMA controller is transferring data. Does this process interfere with the execution of the user programs? If so, describe what forms of interference are caused
A CPU might therefore be unable to issue memory operations at peak speeds since it has to compete with the device in order to obtain access to the memory bus.

Chapter 2

2018 S2 A1
What are the two models of inter-process communication? What are the strengths and weaknesses of the two approaches?
· The two models of inter-process communication are message-passing model and the shared-memory model.
· Message passing is useful for exchanging smaller amounts of data, because no conflicts need be avoided. It is also easier to implement than is shared memory for inter-computer communication.
· Shared memory allows maximum speed and convenience of communication, since it can be done at memory transfer speeds when it takes place within a computer. However, this method compromises on protection and synchronization between the processes sharing memory.

2018 S2 A1
Explain why Java programs running on Android systems do not use the standard Java API and virtual machine.
It is because the standard API and virtual machine are designed for desktop and server systems, not mobile devices. Google developed a separate API and virtual machine for mobile devices.

2018 S1 A1
Why do some systems store the operating system in firmware, while others store it on disk?
For certain devices, such as handheld PDAs and cellular telephones, a disk with a file system may be not be available for the device. In this situation, the operating system must be stored in firmware.

2018 S1 A1
What are the five major activities of an operating system in regard to file management?
1. The creation and deletion of files
2. The creation and deletion of directories
3. The support of primitives for manipulating files and directories
4. The mapping of files onto secondary storage
5. The backup of files on stable (non-volatile) storage media

2017 S2 A1
Describe three general methods used to pass parameters to the operating system during system calls?
1. Pass parameters in registers
2. Registers pass starting addresses of blocks of parameters
3. Parameters can be placed, or pushed, onto the stack by the program, and popped off the stack by the operating system

2017 S2 A1
What is the main advantage of the microkernel approach to system design?
Benefits typically include the following:
a. adding a new service does not require modifying the kernel,
b. it is more secure as more operations are done in user mode than in kernel mode, and
c. a simpler kernel design and functionality typically results in a more reliable operating system.
How do user programs and system services interact in a microkernel architecture?
User programs and system services interact in microkernel architecture by using interprocess communication mechanisms such as messaging. These messages are conveyed by the operating system.
What are the disadvantages of using the microkernel approach?
The primary disadvantages of the microkernel architecture are the overheads associated with interprocess communication and the frequent use of the operating system’s messaging functions in order to enable the user process and the system service to interact with each other.

Chapter 3

2018 S2 A1
Give an example of a situation in which ordinary pipes are more suitable than named pipes and an example of a situation in which named pipes are more suitable than ordinary pipes.
· Simple communication works well with ordinary pipes. For example, assume we have a process that counts characters in a file. An ordinary pipe can be used where the producer writes the file to the pipe and the consumer reads the files and counts the number of characters in the file.
· Next, for an example where named pipes are more suitable, consider the situation where several processes may write messages to a log. When processes wish to write a message to the log, they write it to the named pipe. A server reads the messages from the named pipe and writes them to the log file.

2018 S2 A1
What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.
a. Synchronous and asynchronous communication
A benefit of synchronous communication is that it allows a rendezvous between the sender and receiver. A disadvantage of a blocking send is that a rendezvous may not be required and the message could be delivered asynchronously. As a result, message-passing systems often provide both forms of synchronization.
b. Automatic and explicit buffering
Automatic buffering provides a queue with indefinite length, thus ensuring the sender will never have to block while waiting to copy a message. There are no specifications on how automatic buffering will be provided; one scheme may reserve sufficiently large memory where much of the memory is wasted. Explicit buffering specifies how large the buffer is. In this situation, the sender may be blocked while waiting for available space in the queue. However, it is less likely that memory will be wasted with explicit buffering.
c. Send by copy and send by reference
Send by copy does not allow the receiver to alter the state of the parameter; send by reference does allow it. A benefit of send by reference is that it allows the programmer to write a distributed version of a centralized application. Java’s RMI provides both; however, passing a parameter by reference requires declaring the parameter as a remote object as well.
d. Fixed-sized and variable-sized messages
The implications of this are mostly related to buffering issues; with fixed-size messages, a buffer with a specific size can hold a known number of messages. The number of variable-sized messages that can be held by such a buffer is unknown. Consider how Windows 2000 handles this situation: with fixed-sized messages (anything < 256 bytes), the messages are copied from the address space of the sender to the address space of the receiving process. Larger messages (i.e. variable-sized messages) use shared memory to pass the message.

2018 S1 A1
Original versions of Apple’s mobile iOS operating system provided no means of concurrent processing. Discuss three major complications that concurrent processing adds to an operating system.
· Concurrent Systems:
Concurrent systems are those which support the concept of executing more than one applications or processes at the same time. Here the processes running can be either a duplicate of each other or simply two different processes in all. The main motive behind going for concurrency lies beneath reducing the overall execution time that may be required in executing a series of processes individually.

· Complications with Concurrency:
Concurrency may reduce the overall processing time for some situations, but it has few of its complications as well. Three major complications that concurrency adds to an operating system are as follows:
i. As multiple processes are concurrently running on the system, the operating system requires keeping track of all the storage space addressed on main memory to prevent on process from mixing with another or using the information stored for any other running process.
ii. Context switching between two simultaneous processes requires enough time to locate and maintain register values for program running. A continuous communication between operating system and program control block may overload the system.
iii. Process that requires big data blocks for execution may enter deadlocks in wait of getting resources freed up by other processes.

2018 S1 A1
Describe the differences among short-term, medium-term, and long term scheduling.
· Short-term (CPU scheduler) – selects from jobs in memory those jobs that are ready to execute and allocates the CPU to them.
· Medium-term – used especially with time-sharing systems as an intermediate scheduling level. A swapping scheme is implemented to remove partially run programs from memory and reinstate them later to continue where they left off.
· Long-term (job scheduler) – determines which jobs are brought into memory for processing. The primary difference is in the frequency of their execution. The short term must select a new process quite often. Long-term is used much less often since it handles placing jobs in the system and may wait a while for a job to finish before it admits another one

2017 S2 A1
With respect to the RPC mechanism, consider the “exactly once” semantic. Does the algorithm for implementing this semantic execute correctly even if the ACK message back to the client is lost due to a network problem? Describe the sequence of messages and discuss whether “exactly once” is still preserved.
· If an RPC mechanism cannot support either the “at most once” or “at least once” semantics, then the RPC server cannot guarantee that a remote procedure will not be invoked multiple occurrences.
· Consider if a remote procedure were withdrawing money from a bank account on a system that did not support these semantics. It is possible that a single invocation of the remote procedure might lead to multiple withdrawals on the server. For a system to support either of these semantics generally requires the server maintain some form of client state such as the timestamp described in the text.
· If a system were unable to support either of these semantics, then such a system could only safely provide remote procedures that do not alter data or provide time-sensitive results. Using our bank account as an example, we certainly require “at most once” or “at least once” semantics for performing a withdrawal (or deposit!). However, an inquiry into an account balance or other account information such as name, address, etc. does not require these semantics.

Chapter 4

2018 S2 A1
Can a multithreaded solution using multiple user-level threads achieve better performance on a multiprocessor system than on a single processor system? Explain.
A multithreaded system comprising of multiple user-level threads cannot make use of the different processors in a multiprocessor system simultaneously. The operating system sees only a single process and will not schedule the different threads of the process on separate processors. Consequently, there is no performance benefit associated with executing multiple user-level threads on a multiprocessor system.

2018 S2 A1
In Chapter 3, we discussed Google’s Chrome browser and its practice of opening each new website in a separate process. Would the same benefits have been achieved if instead Chrome had been designed to open each new website in a separate thread? Explain.
No. The primary reason for opening each website in a separate process is that if a web application in one website crashes, only that renderer process is affected, and the browser process, as well as other renderer processes, are unaffected. Because multiple threads all belong to the same process, any thread that crashes would affect the entire process.

2018 S1 A1
Under what circumstances does a multithreaded solution using multiple kernel threads provide better performance than a single-threaded solution on a single-processor system?
· When a kernel thread suffers a page fault, another kernel thread can be switched in to use the interleaving time in a useful manner.
· A single-threaded process, on the other hand, will not be capable of performing useful work when a page fault takes place. Therefore, in scenarios where a program might suffer from frequent page faults or has to wait for other system events, a multithreaded solution would perform better even on a single-processor system.

2018 S1 A1
Which of the following components of program state are shared across threads in a multithreaded process? (a) Register values, (b) heap memory, (c) global variables, (d) stack memory
The threads of a multithreaded process share heap memory and global variables. Each thread has its separate set of register values and a separate stack.
"A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a register set and a stack. It shares with other threads belonging to the same process its code section, data section, and other operating-system resources, such as open files and signals."
Based on this information the answer to this question is as followed:
(a) Register values cannot be shared as each thread required a register set
(b) Heap memory can be shared as it is one of the resources of the process
(c) Global variables can be shared among threads they are data containers
(d) A stack memory cannot be shared as it is required for each thread.
[image:]

2017 S2 A1
Consider a multiprocessor system and a multithreaded program written using the many-to-many (mtm) threading model. Suppose the number of user-level threads in the program is more than the number of processors in the system. Discuss the performance implications of the following scenarios on the system. Justify your claims.
a. The number of kernel threads allocated to the program is less than the number of processors.
If the number of kernel threads is less than the number of processors, then the system is not used optimally, since there will always be one or more processors that are idle. There may be user threads that are ready to run and there may be idle processors ready to be allocated to them, but there are no kernel threads to facilitate the connections.
b. The number of kernel threads allocated to the program is equal to the number of processors.
This is a better design than (a) above, since whenever there is a kernel thread that can be multiplexed to a user thread, there will be an available processor. In essence, therefore, each kernel thread has its own processor. Note that there could still be user threads that are ready to execute but no available kernel threads and, therefore, no processors available to accommodate the user thread.
c. The number of kernel threads allocated to the program is greater than the number of processors but less than the number of user-level threads.
This may be the best design of the three, since it mimics the most common situation, i.e. there are many user threads wanting to execute and there are kernel threads available (often not enough, however) but there may not be enough processors available. Nevertheless, the advantage of this system is that if a particular kernel thread and user thread pair may block, another kernel thread, user thread pair may run on the processor so released.

2017 S2 A1
List the four major categories of the benefits of multithreading programming. Briefly explain each.
1. Responsiveness – Multithreading an interactive application may allow a program to continue running even if part of it is blocked or is performing a lengthy operation, thereby increasing responsiveness to the user. This quality is especially useful in designing user interfaces.
2. Resource sharing – Threads share the memory and the resources of the process to which they belong by default. The benefit of sharing code and data is that it allows an application to have several different threads of activity within the same address space.
3. Economy – It is more economical to create and context-switch threads because they share the resources of the process to which they belong. In general, it is more time consuming to create and manage processes than threads.
4. Scalability – The benefits of multithreading can even be greater in a multiprocessor architecture, where threads may running in parallel on different processing cores. A single-threaded process can run on only one processor, regardless how many are available.

2017 S2 A1
What are the two different ways in which a thread library could be implemented?
1. User-library: provide a library entirely in user space with no kernel support. All code and data structures for the library exist in user space. This case, invoking a function in the library results in a local function call in user space and not a system call.
2. Kernel-level library: implement a kernel-level library supported directly by the operating system. In this case, code and data structures for the library exist in kernel space. Invoking a function in the API for the library typically results in a system call to the kernel.

Chapter 5

2018 S2 A1
Describe two kernel data structures in which race conditions are possible. Be sure to include a description of how a race condition can occur.
· There are many answers to this question. Some kernel data structures include a process id (pid) management system, kernel process table, and scheduling queues. With a pid management system, it is possible two processes may be created at the same time and there is a race condition assigning each process a unique pid.
· The same type of race condition can occur in the kernel process table: two processes are created at the same time and there is a race assigning them a location in the kernel process table. With scheduling queues, it is possible one process has been waiting for IO which is now available. Another process is being context switched out. These two processes are being moved to the runnable queue at the same time. Hence there is a race condition in the Runnable queue.

2018 S2 A1
Explain why implementing synchronization primitives by disabling interrupts is not appropriate in a single-processor system if the synchronization primitives are to be used in user-level programs.
If a user-level program is given the ability to disable interrupts, then it can disable the timer interrupt and prevent context switching from taking place, thereby allowing it to use the processor without letting other processes execute.

2018 S1 A1
Explain why interrupts are not appropriate for implementing synchronization primitives in
multiprocessor systems.
Interrupts are not sufficient in multiprocessor systems since disabling interrupts only prevents other processes from executing on the processor in which interrupts were disabled; there are no limitations on what processes could be executing on other processors and therefore the process disabling interrupts cannot guarantee mutually exclusive access to program state.

2018 S1 A1
The Linux kernel has a policy that a process cannot hold a spinlock while attempting to
acquire a semaphore. Explain why this policy is in place.
Answer: Because acquiring a semaphore may put the process to sleep while it is waiting for the
semaphore to become available. Spinlocks are to only be held for short durations and a process
that is sleeping may hold the spinlock for too long a period.

Chapter 6

2018 S2 A1
Discuss how the following pairs of scheduling criteria conflict in certain settings.
1. CPU utilization and response time
CPU utilization and response time: CPU utilization is increased if the overheads associated with context switching is minimized. The context switching overheads could be lowered by performing context switches infrequently. This could, however, result in increasing the response time for processes.
2. Average turnaround time and maximum waiting time
Average turnaround time and maximum waiting time: Average turnaround time is minimized by executing the shortest tasks first. Such a scheduling policy could, however, starve long-running tasks and thereby increase their waiting time.
3. I/O device utilization and CPU utilization
I/O device utilization and CPU utilization: CPU utilization is maximized by running long-running CPU bound tasks without performing context switches. I/O device utilization is maximized by scheduling I/O bound jobs as soon as they become ready to run, thereby incurring the overheads of context switches.

2018 S2 A1
Which of the following scheduling algorithms could result in starvation? (a) First-come, first-served, (b) Shortest job first, (c) Round robin, (d) Priority
Shortest job first and priority-based scheduling algorithms could result in starvation.

2018 S1 A1
Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs?
I/O-bound programs have the property of performing only a small amount of computation before performing I/O. Such programs typically do not use up their entire CPU quantum. CPU-bound programs, on the other hand, use their entire quantum without performing any blocking I/O operations. Consequently, one could make better use of the computer’s resources by giving higher priority to I/O-bound programs and allow them to execute ahead of the CPU-bound programs.

Chapter 7

2018 S2 A2
What is the optimistic assumption made in the deadlock-detection algorithm? How can this assumption be violated?
The optimistic assumption is that there will not be any form of circular wait in terms of resources allocated and processes making requests for them. This assumption could be violated if a circular wait does indeed occur in practice.

2018 S1 A2
Is it possible to have a deadlock involving only one single-threaded process? Explain your
answer.
No. This follows directly from the hold-and-wait condition.

2017 S2 A2
Explain what has to happen for a set of processes to achieve a deadlocked state.
A deadlocked state is achieved whenever every process in the set is waiting for an event that can be caused only by another process in the set.

Describe the four conditions that must hold simultaneously in a system if a deadlock is to occur.
The necessary conditions for a set of processes to get into a deadlocked state are well explained in the prescribed textbook see SGG 9th edition, Section 7.21 (Necessary conditions) on pages 314 and 315. The conditions must hold simultaneously: Mutual exclusion, Hold and wait, No pre-emption, Circular wait.

Chapter 8

2018 S2 A2
Although Android does not support swapping on its boot disk, it is possible to set up a swap space using a separate SD non-volatile memory card. Why would Android disallow swapping on its boot disk yet allow it on a secondary disk?
Primarily because Android does not wish for its boot disk to be used as swap space; the boot disk has limited storage capacity. However, Android does support swapping, it is just that users must provide their own separate SD card for swap space.

2018 S1 A2
Explain why mobile operating systems such as iOS and Android do not support swapping.
There are three reasons:
1. First is that these mobile devices typically use flash memory with limited capacity and swapping is avoided because of this space constraint.
2. Second, flash memory can support a limited number of write operations before it becomes less reliable.
3. Lastly, there is typically poor throughput between main memory and flash memory.

2018 S1 A2
Program binaries in many systems are typically structured as follows. Code is stored starting with a small, fixed virtual address, such as 0. The code segment is followed by the data segment that is used for storing the program variables. When the program starts executing, the stack is allocated at the other end of the virtual address space and is allowed to grow toward lower virtual addresses. What is the significance of this structure for the following schemes?
a. Contiguous memory allocation
Contiguous-memory allocation requires the operating system to allocate the entire extent of the virtual address space to the program when it starts executing. This could be much larger than the actual memory requirements of the process.
b. Pure segmentation
Pure segmentation gives the operating system flexibility to assign a small extent to each segment at program startup time and extend the segment if required.
c. Pure paging
Pure paging does not require the operating system to allocate the maximum extent of the virtual address space to a process at startup time, but it still requires the operating system to allocate a large page table spanning all the program’s virtual address space. When a program needs to extend the stack or the heap, it needs to allocate a new page, but the corresponding page table entry is pre-allocated.

2017 S2 A2
What is the difference between internal and external fragmentation?
· Internal fragmentation: The memory is divided into blocks, namely, partitions. When a partition is allocated, it is very likely that the allocated partition will not be entirely used thus, the internal fragmentation: the unused memory space which is internal to the partition.
· External fragmentation: As processes are loaded and removed from memory, the free memory space is broken into little pieces. External fragmentation exists when there is enough total memory space to satisfy a request but the available spaces are not contiguous: storage is fragmented into a large number of small holes.
· Conclusion: what makes the internal and external fragmentations different is principally the fact that one applies to a partition involving multi-partition scheme whereas on the other side, the external fragmentation concerns the entire memory involving a single-partition scheme. (Section 8.3.3)

2017 S2 A2
Describe the elements of a hashed page table.
A hash page table is used to handle address spaces larger than 32 bits. From Figure 8.19 the following elements may be identified, each is briefly described:
· Logical address – contains a virtual page number (p) and the page offset (d).
· Hash function – hashes a virtual page number to a specific location in the hash table or memory address.
· Hash table – stores hash values
· Linked list – is used to resolve collisions, it is the list of all elements that have the same hash value generated by the hash functions.
[image:]

2017 S2 A2
Briefly describe the segmentation memory management scheme. How does it differ from the paging memory management scheme in terms of the user's view of memory?
Segmentation scheme:
Segmentation provides for a mechanism to map the programmer’s view of the memory to the actual physical memory. Each of the three points that follows needs to be explained: programmer’s view of the memory, the actual physical memory, and the mechanism to map the programmer’s representation of the memory to the physical memory.
· Programmer’s view of the memory – For ease of manipulation, a programmer sees the memory as a collection of segments with various lengths (logical address space). Each logical address is specified with a segment name and an offset within the segment but, to facilitate the implementation, a segment’s number is used instead of the segment’s name.
logical address::= <segment number, offset>
· The actual physical memory - The physical memory is just a sequence of bytes.
· Mechanism to map the programmer’s perception of the memory to the physical memory – Please refer to the prescribed textbook (see Figure 8.8 and the explanation that follows).
[image:]
Paging scheme:
The first paragraph of Section 8.5 discusses the difference between the paging scheme and other methods. However, the difference or similitudes with the segmentation scheme with regards to the user’s view of the memory is more perceptible throughout Sections 8.5.1 and 8.5.2.

Chapter 9

2018 S2 A2
When a page fault occurs, the process requesting the page must block while waiting for the page to be brought from disk into physical memory. Assume that there exists a process with five user-level threads and that the mapping of user threads to kernel threads is one to one. If one user thread incurs a page fault while accessing its stack, would the other user threads belonging to the same process also be affected by the page fault—that is, would they also have to wait for the faulting page to be brought into memory? Explain.
Yes. Because there is only one kernel thread for all user threads, that kernel thread blocks while waiting for the page fault to be resolved. Since there are no other kernel threads for available user threads, all other user threads in the process are thus affected by the page fault.

2017 S2 A2
Explain the distinction between a demand-paging system and a paging system with swapping.
Answer: (See SGG, Section 9.2)

2017 S2 A2
Explain the sequence of events that happens when a page-fault occurs.
Answer: Clearly described in (SGG, Section 9.2.1, P. 395)

2017 S2 A2
A certain computer provides its users with a virtual memory space of 232 bytes. The computer has 222 bytes of physical memory. The virtual memory is implemented by paging, and the page size is 4,096 bytes. A user process generates the virtual address 11123456. Explain how the system establishes the corresponding physical location. Distinguish between software and hardware operations.
The binary representation of the virtual address 11123456 is:
0001 0001 0001 0010 0011 0100 0101 0110.
Since the page size is 212, the page table size is 220. Therefore the low order 12 bits “0100 0101 0110” are used as the displacement into the page, while the remaining 20 bits “0001 0001 0001 0010 0011” are used as the displacement in the page table.

Chapter 10

2018 S2 A2
Why is it important to balance file-system I/O among the disks and controllers on a system in a multitasking environment?
· A system can perform only at the speed of its slowest bottleneck. Disks or disk controllers are frequently the bottleneck in modern systems as their individual performance cannot keep up with that of the CPU and system bus.
· By balancing I/O among disks and controllers, neither an individual disk nor a controller is overwhelmed, so that bottleneck is avoided.

2018 S2 A2
What are the trade-offs involved in rereading code pages from the file system versus using swap space to store them?
· If code pages are stored in swap space, they can be transferred more quickly to main memory (because swap space allocation is tuned for faster performance than general file system allocation).
· Using swap space can require startup time if the pages are copied there at process invocation rather than just being paged out to swap space on demand. Also, more swap space must be allocated if it is used for both code and data pages.

2018 S1 A2
Is disk scheduling, other than FCFS scheduling, useful in a single-user environment? Explain your answer.
In a single-user environment, the I/O queue usually is empty. Requests generally arrive from a
single process for one block or for a sequence of consecutive blocks. In these cases, FCFS is an
economical method of disk scheduling. But LOOK is nearly as easy to program and will give
much better performance when multiple processes are performing concurrent I/O, such as
when a Web browser retrieves data in the background while the operating system is paging
and another application is active in the foreground.

2018 S1 A2
Explain why SSTF scheduling tends to favour middle cylinders over the innermost and outermost cylinders.
The centre of the disk is the location having the smallest average distance to all other tracks.
Thus the disk head tends to move away from the edges of the disk. The current location of the head divides the cylinders into two groups. If the head is not in the centre of the disk and a new request arrives, the new request is more likely to be in the group that includes the centre of the disk; thus, the head is more likely to move in that direction.

Chapter 11

2018 S2 A2
The open-file table is used to maintain information about files that are currently open.
Should the operating system maintain a separate table for each user or maintain just one table that contains references to files that are currently being accessed by all users? If
the same file is being accessed by two different programs or users, should there be separate entries in the open-file table? Explain.
By keeping a central open-file table, the operating system can perform the following operation that would be infeasible otherwise. Consider a file that is currently being accessed by one or more processes. If the file is deleted, then it should not be removed from the disk until all processes accessing the file have closed it. This check can be performed only if there is centralized accounting of number of processes accessing the file. On the other hand, if two processes are accessing the file, then two separate states need to be maintained to keep track of the current location of which parts of the file are being accessed by the two processes. This requires the operating system to maintain separate entries for the two processes.

2018 S2 A2
Provide examples of applications that typically access files according to the following methods:
a. Sequential
Applications that access files sequentially include word processors, music players, video players, and web servers.
b. Random
Applications that access files randomly include databases, video and audio editors.

2018 S1 A2
Consider a file system where a file can be deleted and its disk space while links to that file still exist. What problems may occur if a new file is created in the same storage area or with the same absolute path name? How can these problems be avoided?
· Let F1 be the old file and F2 be the new file. A user wishing to access F1 through an existing link will actually access F2. Note that the access protection for file F1 is used rather than the one associated with F2.
· This problem can be avoided by insuring that all links to a deleted file are deleted also. This can be accomplished in several ways:
· maintain a list of all links to a file, removing each of them when the file is deleted
· retain the links, removing them when an attempt is made to access a deleted file
· maintain a file reference list (or counter), deleting the file only after all links or references to that file have been deleted

2018 S1 A2
What are the advantages and disadvantages of a system providing mandatory locks instead of providing advisory locks whose usage is left to the users’ discretion?
In many cases, separate programs might be willing to tolerate concurrent access to a file without requiring the need to obtain locks and thereby guaranteeing mutual exclusion to the files. Mutual exclusion could be guaranteed by other program structures such as memory locks or other forms of synchronization. In such situations, the mandatory locks would limit the flexibility in how files could be accessed and might also increase the overheads associated with accessing files.

Chapter 12

Consider a file currently consisting of 100 blocks. Assume that the file-control block (and the index block, in the case of indexed allocation) is already in memory. Calculate how many disk i/o operations are required for contiguous, linked, and indexed (single-level) allocation strategies, if, for one block, the following conditions hold. In the contiguous-allocation case, assume that there is no room to grow at the beginning but there is room to grow at the end. Also assume that the block information to be added is stored in memory.
Many students experienced difficulties with this question, and so we have decided to first explain how the number of disk accesses is calculated for each of (a) - (c) of the question and then summarise the results in a table at the end.

Contiguous File
In the question we are told that the directory information is already in memory, hence we need not do a disk I/O to read or change it. Now let's consider each of (a) - (c) in turn.
a. Add a block at the beginning – Probably the best way to do this is to create a whole new file and write its particulars into the directory which is already in memory. (Note that this doesn't count for an I/O.) Next we write the new block at the beginning of the new file, then read the 100 blocks from the old file and write them to the new file. We get:
1 write of the new block
100 reads from the old file
100 writes to the new file
201 I/O operations in total
b. Add a block in the middle – Block 51 is considered to be the middle of the file. Now we can go directly to the 51th position in the file (where the new block must be located) because we know where the file begins and that it is contiguous. Next, we first read the remaining 50 blocks of the file, write the new block and then rewrite the 50 blocks again. The changes to the file length in the directory information do not require any disk I/O since that information is memory resident. This gives:
50 reads from the file
1 write of the new block
50 writes to the file
101 I/O operations in total
c. Add a block at the end – We know where the file starts, and how long it is, so we can go directly to the correct position at the end of the file and write the new block. Thus, simply one I/O operation and a change to the file length in the directory information (in memory) are needed.

Linked File
In the question we are told that the directory information is already in memory, therefore we need not do any disk I/O to read or change it. Let's consider each of (a) - (c) in turn.
a. Add a block at the beginning – To do this, we have to write the new block to a free block on disk with a pointer to the old first block of the file. Then the directory information pointer to the first block of the file must be changed to reflect the new first block. Thus, only one I/O operation is required.
b. Add a block in the middle – Assume we add the block immediately before block 51. Now we have to read the first 50 blocks, write a new block to a free block in memory, change the pointer value in the 50th block to point to the new block and change the directory information accordingly. This gives us:
50 reads
1 write to add the new block
1 write to alter the pointer of block 50
52 I/O operations in total
c. Add a block at the end – We know where the file ends, so we simply write our new block to a free block on the disk. Then we change the pointer of the block that used to be the last block, to point to the new block just written. Finally the directory information has to be changed to reflect the new length of the file. This gives:
1 write of the new block
1 read of the old last block
1 write of the old last block
3 I/O operations in total
Indexed File
In the question we are told that the directory information as well as the index blocks are both already in memory and so we need not do any disk I/O's to read or change them. Now let's consider each of (a) - (c) in turn.
a. Add a block at the beginning – To do this, we have to write the new block to a free block on disk. The index block (which is in memory) has to be updated as well. Thus, only one I/O operation is needed.
b. Add a block in the middle – The new block is written to disk and the index block is altered. Thus, only one I/O operation is required.
c. Add a block at the end – The new block is written to disk and the index block is altered. Thus, only one I/O operation is required.

Finally we summarise the results above in the following table:
	Answer
	Contiguous
	Linked
	Indexed

	(a)
(b)
(c)
	141
101
1
	1
52
3
	1
1
1

Chapter 14

2018 S2 A2
What hardware features does a computer system need for efficient capability manipulation? Can these features be used for memory protection?
A hardware feature is needed allowing a capability object to be identified as either a capability of accessible object. Typically, several bits are necessary to distinguish between different types of capability objects. For example, 4 bits could be used to uniquely identify 24 or 16 different types of capability objects. These could not be used for routine memory protection as they offer little else for protection apart from a binary value indicating whether they are a capability object or not. Memory protection requires full support from virtual memory features discussed in Chapter 9.

2018 S2 A2
Discuss the strengths and weaknesses of implementing an access matrix using access lists that are associated with objects.
· Capabilities associated with domains provide substantial flexibility and faster access to objects.
· When a domain presents a capability, the system just needs to check the authenticity of the capability and that could be performed efficiently.
· Capabilities could also be passed around from one domain to another domain with great ease, allowing a system with a great amount of flexibility. However, the flexibility comes at the cost of a lack of control: revoking capabilities and restricting the flow of capabilities is a difficult task.

2018 S1 A2
The access-control matrix could be used to determine whether a process can switch from, say, domain A to domain B and enjoy the access privileges of domain B. Is this approach equivalent to including the access privileges of domain B in those of domain A?
Yes, this approach is equivalent to including the access privileges of domain B in those of
domain A as long as the switch privileges associated with domain B are also copied over to A.
2018 S1 A2
Consider a computer system in which computer games can be played by students only between 10pm and 6am, by faculty members between 5pm and 8pm, and by the computer centre staff at all times. Suggest a scheme for implementing this policy efficiently.
Set up a dynamic protection structure that changes the set of resources available with respect to the time allotted to the three categories of users. As time changes, so does the domain of users eligible to play the computer games. When the time comes that a user’s eligibility is over, a revocation process must occur. Revocation could be immediate, selective (since the computer staff may access it at any hour), total, and temporary (since rights to access will be given back later in the day).

Chapter 15

2017 S2 A2
Describe how the asymmetric encryption algorithm can be used to achieve the following goals.
(a) Authentication: the receiver knows that only the sender could have generated the message.
(b) Secrecy: only the receiver can decrypt the message.
(c) Authentication and secrecy: only the receiver can decrypt the message, and the receiver knows that only the sender could have generated the message.
Let kse the public key of the sender, kre be the public key of the receiver, ksd be the private key of the sender, and kse the private key of the receiver. Authentication is performed by having the sender send a message that is encoded using ksd. Secrecy is ensured by having the sender encode the message using kre. Both authentication and secrecy are guaranteed by performing double encryption using both ksd and kre.
image1.png
code || data || fies code || data fles
registers stack registers|[registers | registers
stack ||| stack ||| stack
thread — é —
single-threaded process multithreaded process

- thread

image2.png
logical address

physical
address

LI

ﬂmsw‘\h

hash table

image3.png
imit [pase

segment

table

cPU o

trap: addressing error

Figure 88 Segmentation hardware.

physical memory

