Microeconomics and mathematics (with answers)
 7 Consumer surplus and producer surplus

Consumer surplus (CS)	Producer surplus (PS)
CS is the difference between the price consumers are willing to pay and the price actually paid.	PS ist difference between the price actually paid and the price producers are willing to get paid.
CS $=\frac{(18-9)^{*} 18}{2}=81$	$\begin{aligned} \text { PS } & =\mathrm{P}^{\mathrm{e}} \mathrm{Q}^{\mathrm{e}}-\mathrm{A}-\mathrm{B} \\ & =9^{*} 18-\frac{(9-3)^{*} 18}{2}-3^{*} 18=54 \\ \text { or PS } & =\frac{(9-3)^{*} 18}{2}=54 \end{aligned}$
$\text { Formula } C S=\int_{0}^{f}(Q) d Q-P^{\mathrm{e} *} Q^{e}$	$\text { Formula } P S=P^{\mathrm{e} *} \mathrm{Q}^{\mathrm{e}}-{\underset{0}{\mathrm{Q}}}_{\mathrm{Q}}^{\mathrm{e}} \mathrm{~g}(\mathrm{Q}) \mathrm{dQ}$
$\begin{aligned} \text { CS again } & ={ }_{0}^{18}\left(18-\frac{1}{2} \mathrm{Q}\right) \mathrm{dQ}-\mathrm{P}^{\mathrm{e} *} \mathrm{Q}^{\mathrm{e}} \\ & =18 \mathrm{Q}-\frac{1}{4} \mathrm{Q}^{2}-\mathrm{P}^{\mathrm{e} *} \mathrm{Q}^{\mathrm{e}} \\ & =18^{*} 18-\frac{1}{4} * 18^{2}-9^{*} 18=81 \end{aligned}$	$\begin{aligned} \text { PS again } & =P^{\mathrm{e}^{*}} \mathrm{Q}^{\mathrm{e}}-{ }_{0}^{\mathrm{Q}_{\frac{18}{18}}^{4}}\left(3+\frac{1}{3} \mathrm{Q}\right) \mathrm{dQ} \\ & =\mathrm{P}^{\mathrm{e}} \mathrm{Q}^{\mathrm{e}}-3 \mathrm{Q}-\frac{1}{6} \mathrm{Q}^{2} \\ & =9^{*} 18-3^{\star} 18-\frac{1}{6} 18^{2}=54 \end{aligned}$

7.1 Consumer surplus (CS)

Demand: $\quad P=15-Q$
$\left(\mathrm{P}^{\mathrm{e}}=9\right)$
Calculate consumer surplus (diagram and formula).

\rightarrow Answers. Click here!

Answers Microeconomics and mathematics

7 Consumer surplus and producer surplus

7.1	Consumer surplus (CS)
7.2	Consumer surplus (CS) $\begin{aligned} & \mathrm{P}^{\mathrm{e}}=32-10-\frac{1}{10} 10^{2}=12 \\ & \mathrm{CS} \quad={ }_{0}^{10}\left(32-\mathrm{Q}-\frac{1}{10} \mathrm{Q}^{2}\right) \mathrm{dQ}-\mathrm{P}^{\mathrm{e} *} \mathrm{Q}^{\mathrm{e}}=32 \mathrm{Q}-\frac{1}{2} \mathrm{Q}^{2}-\frac{1}{30} \mathrm{Q}^{3}-\mathrm{P}^{\mathrm{e} *} Q^{\mathrm{e}} \\ & \quad=32^{\star} 10-\frac{1}{2} 10^{2}-\frac{1}{30} 10^{3}-12^{\star} 10=320-50-33 \frac{1}{3}-120=116 \frac{\mathbf{2}}{\mathbf{2}} \end{aligned}$

7.3 Producer surplus (PS)

7.3 cont.	$\begin{aligned} & P S=P^{e \star} Q^{e}-A-B=13^{*} 4-\frac{4^{*} 8}{2}-4^{*} 5=52-16-20=16 \\ & P S=P^{e^{*} Q^{e}-{\underset{0}{0}}_{4}^{4}(5+2 Q) d Q=13^{\star} 4-5 Q-Q^{2}=52-5^{*} 4-4^{2}=52-20-16=16} \end{aligned}$
7.4	Producer surplus (PS) Q^{e} $\begin{aligned} & 26=0.5 Q^{2}+Q+2 \\ & -0.5 Q^{2}-Q+24=0 \\ & Q^{2}+2 Q-48=0 \end{aligned}$ - Factorization: $\begin{aligned} & (Q+8)^{\star}(Q-6)=0 \\ & \left(Q_{1}=-8<0\right) \quad \rightarrow \quad \text { (Q must be positive.)) } \\ & Q_{2}=6 \\ & Q^{\mathrm{e}}=6 \end{aligned}$ - Formula: $\begin{aligned} & \quad \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{2^{2}+4 * 48}}{2}=\frac{-2+14}{2}=6 \text { and }\left(\frac{-2-14}{2}=-8\right) \\ & Q^{e}=6 \\ & \text { PS } \quad=P^{* *} Q^{e}-\frac{1}{0}\left(\frac{1}{2} Q^{2}+Q+2\right) d Q=26^{*} 6-\frac{1}{6} Q^{3}-\frac{1}{2} Q^{2}-2 Q=156-\frac{1}{6} 6^{3}-\frac{1}{2} 6^{2}-2^{*} 6 \\ & = \\ & 156-36-18-12=90 \end{aligned}$
7.5	Consumer surplus (CS) and producer surplus (PS) - Market equilibrium: $\begin{array}{ll} \mathrm{Q}^{\mathrm{e}}: & 32-8 \mathrm{Q}^{\mathrm{e}}=12+2 \mathrm{Q}^{\mathrm{e}} \\ 10 \mathrm{Q}^{\mathrm{e}}=20 \\ \mathrm{Q}^{\mathrm{e}}=2 \\ \mathrm{P}^{\mathrm{e}}=32-8^{\star} 2=16 \\ \mathbf{2} \end{array}$ $\mathrm{CS}={\underset{0}{0}}^{0}(32-8 \mathrm{Q}) \mathrm{dQ}-\mathrm{P}^{\mathrm{e}} \mathrm{Q}^{\mathrm{e}}=32 \mathrm{Q}-4 \mathrm{Q}^{2}-16^{*} 2=32^{*} 2-4^{*} 2^{2}-32$ $=64-16-32=16$ - $\quad P S=P^{e *} Q^{e}-\underset{0}{\mathbf{0}}(\mathbf{1 2}+\mathbf{2 Q}) \mathrm{dQ}=16^{*} 2-12 \mathrm{Q}-\mathrm{Q}^{2}=32-12^{*} 2-2^{2}=4$
7.6	Consumer surplus (CS) (Monopoly vs competition) 7.61 Q and P if maximum profit as target $\text { - } \quad \begin{aligned} & \mathrm{AR}=30-2 \mathrm{Q} \\ & \mathrm{TR}=30 \mathrm{Q}-2 \mathrm{Q}^{2} \\ & \mathrm{MR}=30-4 \mathrm{Q} \end{aligned}$ - $\quad M C=M R$ $12=30-4 Q$ $4 Q=18$ $Q=4.5$ $\mathbf{P}=30-2^{*} 4.5=\mathbf{2 1}$

