

DEPARTMENT OF LIFE AND CONSUMER SCIENCES

ANIMAL AND PLANT DIVERSITY

BLG1502

SEMESTER 2: ASSIGNMENT 2 MEMORANDUM 2018

QUESTION 1

- 1.1 Stigma 🗸
- 1.2 Haustoria 🗸
- 1.3 Karyogamy
- 1.4 Cnidaria
- 1.5 Cephalisation
- 1.6 Coelom/coelomate
- 1.7 Petiole/Leaf stalk
- 1.8 Vascular tissue 🗸
- 1.9 Ovaries 🗸
- 1.10 Epicotyl 🗸

[1 x 10=10]

QUESTION 2

2.1 ANY MATCH 1 MARK EACH (3)

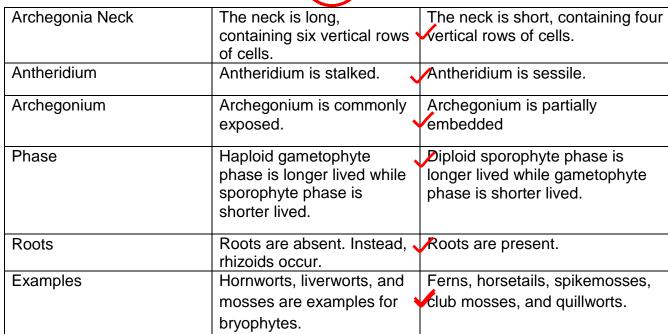
	Chitin	Peptidoglycan
Function	Chitin is a structural organic polymer made from glucose monomers.	Peptidoglycan, also known as murein, is a polymer consisting of sugars and amino acids.
Chemical Formula	The chemical formula of chitin is (C ₈ H ₁₃ O ₅ N)n	The chemical formula of Peptidoglycan is (C9H17NO7).
Type of Polymer	Chitin is a polymer of N- acetylglucosamine (derivative of glucose). consists of alternating unbranched residues of β-(1,4) glucose.	The sugar component consists of alternating unbranched residues of β -(1,4) linked N- acetylglucosamine (NAG) and N-acetylmuramic acid (NAM).
Location	Chitin is found mainly in cell walls of fungi, and also in the exoskeleton of arthropods and mollusks.	Peptidoglycan is found mainly in cell walls of most bacteria.
Abundance	Chitin is less abundant polysaccharide than cellulose	Peptidoglycan is less abundant organic compound than cellulose.
Amyl Group	Chitin has an amyl group as a substitution in the glucose molecule.	Peptidoglycan has a five amino acid attached to the N-acetylmuramic acid.
Nitrogen Molecules	Chitin has nitrogen molecules in its structure.	Peptidoglycan does not contain nitrogen in its structure
Hardness and Stability	Chitin is hard and stable than Peptidoglycan.	Peptidoglycan is less hard and stable than chitin.

$1\frac{1}{2}$ MARKS EACH (3)

Nutritional type	Energy Source	Carbon source	Examples
Photoautotrophs	Sunlight 🗸	Fix CO ₂	Photosynthetic prokaryotes such as Cyanobacteria, plants, certain protists like algae
Chemoheterotrophic	Organic compounds	Organic compounds	Many prokaryotes such as <i>Clostridium</i> , protists, fungi; animals and some plants

2.3 ANY MATCH 2 MARKS (2)

	Gram positive	Gram negative
Stain properties	Retain crystal violet dye and stain blue or purple	Can be decolorized to accept counterstain (safranin) and stain pink or red
Peptidoglycan layer	Thick multi-layered	Thin single-layered
Cell wall	The wall is smooth and 20- 30 nm thick.	Cell Wall is wavy and 8-12 nm thick.
Teichoic acids	Present in most species	Absent
Periplasmic Space	Absent	Present
Outer Membrane	Absent	Present
Porins	Absent	Occurs in outer Membrane
Lipopolysaccharide (LPS) Content	Virtually None	High
Lipid and Lipoprotein Content	Low (acid-fast bacteria have lipids linked to peptidoglycan	High (because of presence of outer membrane)
Mesosomes	Quite Prominent	Less Prominent


2.2

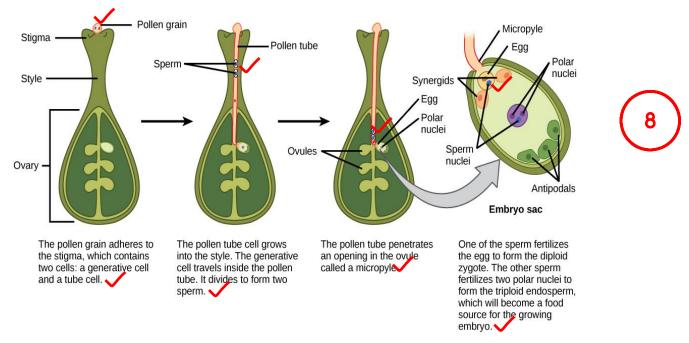
2.4 ANY MATCH 2 MARKS EACH (8)

	Collenchyma	Sclerenchyma
Structure cell wall	Collenchyma cells are	Sclerenchyma cells are
	elongated cells with	generally dead and have
	irregularly thick cell walls that	thick walls, but two main
	provide support and structure	types occur: fibres and
		sclereids
Composition of the	Collenchyma cell wall is made	Sclerenchyma cell wall is
cell wall	up of cellulose and pectin.	made up of waterproofing
	•	lignin.
Functions	Providing mechanical support	Providing mechanical
	to the plant, resisting bending	support, protection and
	and stretching by the wind are	transportation of water and
	the major functions of	nutrients are the major
	collenchyma.	functions of sclerenchyma.
Positions in plants.	Collenchyma cells are found	Sclerenchyma is found in the
	in petiole, leaves and young	mature parts of the plant like
	stems, appearing as a	herbaceous perennials and
	continuous ring beneath the	woody plants.
	epidermis.	

2.5 ANY MATCH 1 MARK EACH (8)

	Bryophytes	Pteridophytes
Definition	Embryophytes that do not possess a true vascular tissue.	Pteridophytes are vascular plants that reproduce via spores.
Habitat	Moist, shady places.	Terrestrial environments.
Alternative Names	Bryophytes are called non-	Pteridophytes are called
	vascular plants.	cryptogams.
Gametophyte/Sporophyte	Gametophyte is dominant.	Sporophyte is dominant.
Sporophyte	Completely depends on the gametophyte	Independent of gametophyte and is autotrophic
Plant Body	Plant body of bryophytes is either leafy or thalloid. True stem and leaves are absent.	Plant body differentiated into roots, stem, and leaves. Plants possess true stem and leaves.
Ploidy	The cells are haploid	The cells are diploid
Vascular Tissue	Vascular tissues absent	Vascular tissues present

QUESTION 3


3.1 ANY THREE 2 MARKS EACH (6)

- 1. Pollination is the process that involve the transfer of pollen grains from the male parts (anther) of a flower to the female part (stigma) of the same or different flowers. Whereas the fertilization is the common process that involve the union of the male gamete (sperm) and female gamete (egg) to form a zygote
- 2. Pollination does not involve the formation of the pollen tube, while in fertilization there is the formation of pollen tube which helps in transferring of male gametes up to an egg cell
- 3. Pollination is an external mechanism and takes place on an outer part of a flower, while fertilization is an internal mechanism and takes place inside the flowers.
- 4. Pollination takes place before fertilization, and it is of two types self-pollination and cross-pollination. Fertilization takes place only after pollination.
- 5. Pollination occurs in flowering plants only, and fertilization is followed by almost every living plants and living animals present on earth.
- 6. Pollination requires pollinating agents like wind, insects, animals, etc., whereas in fertilization there is no such requirement apart from the male gamete (sperms) and female gamete (egg). ✓

3.2 TWO MARKS FOR EACH DIAGRAM (8)

- Any diagram of double fertilisation
- Direct copy and paste- 4 marks
- > Full description and complete diagram- 8 marks
- Description only, no diagram- 0 marks
- Diagram only- 4 marks
- Wrong diagram- 0 mark

QUESTION 4

4.1 TWO MARKS EACH (4)

Undernutrition is a condition in which not enough calories are ingested to maintain health. \checkmark

Malnutrition is having a diet that lacks the correct balance of proteins, carbohydrates, vitamins and minerals.

OR

Undernutrition is the outcome of insufficient food intake and repeated infectious diseases, caused by not having enough food or not eating enough food containing substances necessary for growth and health

Malnutrition is a condition that results from eating a diet in which one or more nutrients are either not enough or are in excess such that the diet causes health problems.

4.2 ONE MARK EACH correct organ and enzyme (6)

ORGAN		ENZYME
Mouth 🗸		Salivary amylase
Small Intestines	(6)	Pancreatic amylase, lactase, sucrase and maltase
Large intestines		Enzymes from intestinal bacteria 🗸

QUESTION 5

5.1 ANY MATCH 1 MARK (4)

Endocytosis	Pinocytosis
Cell eating	✓Cell drinking
Large solid particles	Small or liquid particles
Larger vesicles formed	Smaller vesicles formed
Pseudopodia is formed	Vinvagination is formed
Digestion takes place	YNo digestion takes place
Specific and receptor mediated	Nonspecific and non-receptor mediated

5.2 ANY MATCH 1 MARK (4)

Osmosis	Diffusion
Flow of solvent molecules in one direction	Flow of solvent or solute molecules in both directions
The process takes place through a semi- permeable membrane	No such membrane is required
Occurs only with liquids	Occurs both in liquids and gases
Movement over short distances	Movements are over large distances
It is a slow process	At is a fast process
Osmosis can be stoppe3d or reversed by applying additional pressure on the higher concentration side	Cannot be stopped or reversed
Molecules of solvent move from a region of lower concentration to a region of higher concentration	Molecules of solvent or solute move from a region of higher concentration to a region of lower concentration

4

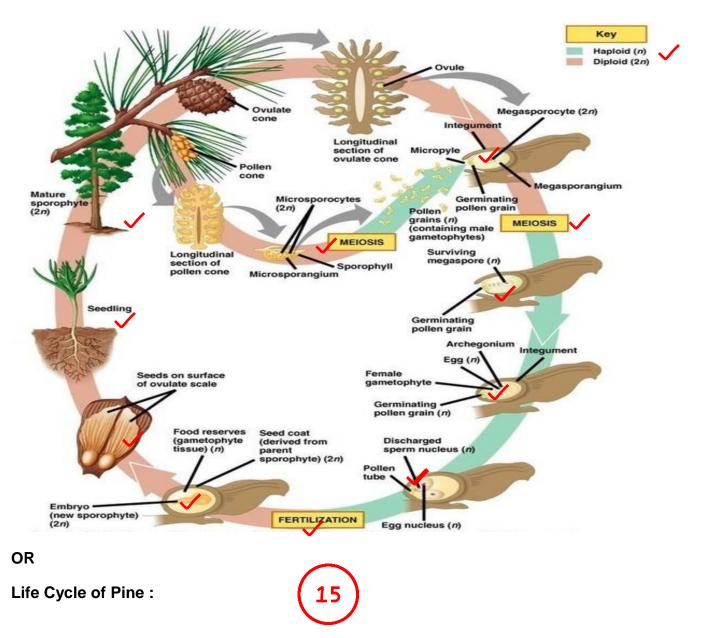
5.3.2 **(3)**

Osmoregulation is the process of maintenance of salt and water balance (osmotic balance) across membranes within the body's fluids, which are composed of water plus electrolytes and non-electrolytes.

OR

Osmoregulation is the process of regulating water potential in order to keep fluid and electrolyte balance within a cell or organism relative to the surrounding. Osmoregulation is important to organisms to keep a constant, optimal osmotic pressure within the body or cell.

OR


Osmoregulation is the maintenance of constant osmotic pressure in the fluids of an organism by the control of water and salt concentrations.

OR

Osmoregulation means the physiological processes that an organism uses to maintain water balance; that is, to compensate for water loss, avoid excess water gain, and maintain the proper osmotic concentration (osmolarity) of the body fluids.

QUESTION 6 (15)

- > Any life cycle of pine in a clockwise direction
- > Full description and complete diagram- 15 marks
- Description only, no diagram- 10 marks
- Wrong diagram- 0 mark
- > Diagram only, no description- 10 marks
- Direct copy and paste- 5 marks

- 1. The sporophyte bears sporangia in cones. Two types of cones are pollen cones and seeds cones
- 2. The pollen cones are small and develop near tips of lower branches \checkmark

Each scale (a microsporophyll) of a pollen cone possess two or more microsporangia on underside.

- 3. The sporangia bear microspores (pollen grains) from microspore mother cell after meiosis.
- 4. Each microspore develops into a microgametophyte (pollen grain)
- 5. Microgametophyte has two wings and is carried by wind to the seed cone during pollination
- 6. Seed cones are larger than pollen cones. They are located near the tip of branch.
- 7. Each scale/megasporophyll of seed cone has two ovules which lie on upper surfaces/
- 8. Each ovule is surrounded by a thick layered integument having an opening at one end. The ovule has the megasporangium within it
- 9. The megaspore mother cell in the megasporangium undergoes meiosis division to form four megaspores. Only one of these spores develops into a megagametophyte with two to six archegonia, each containing a single large egg lying near the ovule opening
- 10. Pollen grain develops pollen tube that slowly moves towards megagametophyte. Pollen tube discharges 2 non-flagellated sperms.✓
- 11. One of these fertilizes an egg in an archegonium while the other degenerates \checkmark
- 12. Fertilization occurs after one year of pollination.After fertilization, ovule matures and becomes the seed.
- 13. Seed consists of the embryo, reserve food and seed coat. In the fall of second season, seed cone becomes non-woody and hard. It opens to release winged seed ✓
- 14. When the seed germinates, the sporophyte embryo develops into a new pine tree and thus the cycle is completed.

QUESTION 7

7.1 **(6)** Definition- **2 marks** Body temperature explanation- **4 marks.**

Homeostasis is the maintenance of internal stability and constancy in living organisms?

When the body gets **too hot**, the heat loss centre in the hypothalamus is stimulated, this leads to reduction in heat production or transfer heat to the body surfaces such as the skin.

When the body feels **too cold**, it is the heat conservation centre of the hypothalamus which is stimulated. Low temperature actually generates heat (thermogenesis), whilst

others just conserve heat through processes. The body thus has a range of responses available, depending on the internal and external temperatures. \checkmark

7.2 1 MARK, ANY MATCHING 4 BELOW: (4)

Aerobic respiration	Fermentation
1. Occurs in the presence of oxygen	Occurs in the absence of oxygen
2. Complete breakdown of organic food	Organic food incomplete breakdown
3. All hydrogens in the glucose molecule are replaced	All hydrogens in the glucose molecule are not replaced
4. Large amount of energy is released	Small amount of energy is released
5. Carbon dioxide and water as waste	Produce carbon dioxide and ethanol in
products	plants and lactic acid in animals

7.3 ANY FOUR BELOW: (4)

- 1. **Respiratory-** transport of O_2 to the tissues and removal of CO_2 from tissues
- 2. Excretory- transport of waste products from tissues to excretory organs for removal from the body.
- 3. Nutrition- transport energy and distribute nutrients from the digestive system to body cells.
- 4. **Protection/immunity** fight infections by transporting white blood cells throughout the body.
- 5. Regulatory- essential for water, pH and temperature homeostasis.
- 6. Communication- transport hormones from secretory cells to target organs.
- 7. Contain **clotting** factors that prevent blood loss

TOTAL: 100 MARKS