
Operating System Concepts

PART ONE: OVERVIEW

Chapter 1: Introduction

 An operating system is a program that manages the computer hardware

 provides a basis for application programs

 acts as an intermediary between computer-user and hardware

 provides an environment within which other programs can do work

 Objectives:

 To provide a grand tour of the major components of operating system.

 To describe the basic organization of the computer.

What Operating Systems Do

 Computer system divided into 4 components:

 Hardware – provides basic computing resources

 CPU, memory, I/O devices

 Operating system

 Controls and coordinates use of hardware among various applications and users

 Application programs – define the ways in which the system resources are used to solve the
computing problems of the users

 Word processors, compilers, web browsers, database systems, video games

 Users

 People, machines, other computers

 Hardware, consisting out of: Central Processing Unit (CPU); Memory; Input/Output (I/O) devices,
provides the basic computing resources for the system.

 Application programs define the ways in which these resources are used to solve users' computing
problems.

 The operating system controls the hardware and coordinates its use among the various application
programs.

 Can also view a computer system as consisting of hardware, software, and data. The operating system
provides the means for proper use of these resources in the operation of the computer system.

 The operating system from two view points:

 User View

 System View

User View

 Users view varies according to interface used.

 Some operating systems are designed for ease of use with some attention paid to performance and none
paid to resource allocation.

 These systems are designed for the single-user experience.

 Some operating systems are designed to maximize resource utilization to assure that all available CPU
time, memory, and I/O are used efficiently and no individual user takes more than his share.

 These are multi-user systems where terminals are connected to mainframe or minicomputers.

 users share resources and may exchange information.

 In some cases users sit at workstations connected to networks of other workstations and servers.

 These systems have dedicated resources such as networking and servers.

 These operating systems compromise between individual usability and resource utilization.

System View

 The program that is most intimately involved with the hardware.

 The operating system is a resource allocator.

 The following resources may be required to solve a problem:

 CPU time

 memory space

 file-storage space

 I/O devices

 etc.

 The operating system acts as the manager of these resources.

 A different view of an operating system emphasizes the need to control the various I/O devices and user
programs. The operating system as a control program.

 A control program manages the execution of user programs to prevent errors and improper use
of the computer.

 It is especially concerned with the operation and control of I/O devices.

Defining Operating Systems

 There is no real definition for an Operating System.

 The goal of an operating system is to execute programs and to make solving user problems easier.

 The computer hardware is constructed toward this goal.

 Because hardware alone is not easy to use, application programs are developed.

 These programs require common operations, such as controlling I/O.

 These common functions of controlling and allocating resources are then brought together into one
piece of software: the operating system.

 The definition we use here is as follows:

 The operating system is the one program running at all times on the computer - usually called the
kernel.

 Along with the kernel there are two other types of programs:

 System programs: associated with the operating system but not part of the kernel.

 Application programs: include all programs not associated with the operation of the system.

Computer-System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common bus providing access to shared
memory

 Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

 For a computer to start running it needs an initial program to run at boot time.

 This initial program or bootstrap program tends to be simple.

 It is stored in ROM or EEPROM and is known as firmware within the computer hardware.

 It initializes all aspects of the system.

 The bootstrap must know how to load the operating system. To accomplish this the bootstrap
program must locate and load the operating system kernel into memory.

 The occurrence of an event is usually signaled by an interrupt from either hardware or software.

 Hardware trigger an interrupt by sending a signal to the CPU.

 Software may trigger an interrupt by executing a special operation called a system call or monitor
call.

 Look at fig 1.3 p.9 for a timeline of the interrupt operation.

 Since only a predefined number of interrupts are possible, a table of pointers to interrupt routines
is used to increase speed.

 The table of interrupt pointers is stored in low memory.

 These locations keep the addresses of the interrupt service routines for the various devices.

 This array or interrupt vector is then indexed by a unique device number. This number is given
with the interrupt request to provide the address of the interrupt service routine for the
interrupting device.

 The CPU and device controllers (each in charge of a certain type of device) are connected to shared
memory through a common bus

 The CPU and device controllers can execute concurrently, competing for memory cycles

 A memory controller synchronizes access to the memory

 Bootstrap program = a simple initial program that runs when the computer is powered up, and transfers
control to the OS

 Modern OSs are interrupt driven: If there is nothing for the OS to do, it will wait for something to happen

 Events are almost always signaled by an interrupt or a trap:

 Hardware interrupts usually occur by sending a signal to the CPU

 Software interrupts usually occur by executing a system call

 Trap = a software-generated interrupt caused by an error / a request from the program that an OS service
be performed

Storage Structure

 General purpose computers run their programs from random-access memory (RAM) called main
memory.

 Main memory is implemented using dynamic random-access memory (DRAM) technology.

 Interaction with memory is achieved through a sequence of load and store instructions to specific
memory addresses.

 Load instruction moves a word from main memory to an internal register within the CPU.

 Store instruction moves content of a register to main memory.

 The CPU automatically loads instructions from main memory for execution.

 Instruction-execution cycle as executed by von Neumann architecture system:

 Fetch instruction from memory and stores instruction in the instruction register.

 Decodes instruction and may cause operands to be fetched from memory and store in some
internal register.

 After instruction on operands executed, result is stored back in memory.

 The memory unit only sees a stream of memory addresses; it doesn't know they are generated.

 We are interested only in the sequence of memory addresses generated by the running program.

 Ideally we want programs and data to reside in main memory permanently, but it is not possible for the
following two reasons:

 Main memory is to small to store all needed programs and data permanently.

 Main memory is a volatile storage device that loses its contents when power is turned off or
otherwise lost.

 For this reason most computer systems provide secondary storage as an extension of main memory.

 The main requirement of secondary storage is that it must hold large quantities of data.

 Most common secondary storage device is magnetic disk which provide storage for both
programs and data.

 There are other types of secondary storage systems of which the speed, cost, size, and volatility
differ.

 Look at fig 1.4 p.11 for the storage hierarchy.

 Caching–copying information into faster storage system; main memory can be viewed as a last
cache for secondary storage.

 Important principle, performed at many levels in a computer (in hardware, operating system, software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

 Movement between levels of storage hierarchy can be explicit or implicit

I/O Structure

 Each device controller is in charge of a specific type of device

 A SCSI (small computer-systems interface) controller can have 7 or more devices attached to it

 A device controller maintains some buffer storage and a set of special-purpose registers

 It moves data between the peripherals and its buffer storage

 I/O interrupts

 Starting an I/O operation:

 The CPU loads the appropriate registers in the device controller

 The device controller examines the contents of these registers to see what action to take

 Once the transfer of data is complete, the device controller informs the CPU that it has
finished, by triggering an interrupt

 Synchronous I/O: Control is returned to the user process at I/O completion

 To wait for I/O completion, some machines have a ‘wait’ instruction, while others have a wait loop:
‘Loop:jmp Loop’

 Advantage: The OS knows which device is interrupting

 Disadvantage: No concurrent I/O operations to many devices

 Disadvantage: No overlapping useful computation with I/O

 Asynchronous I/O: Control is returned to the user process without waiting for I/O to complete

 A device-status table is used to keep track of I/O devices

 Each table entry shows the device’s type, address, & state

 If other processes request a busy device, the OS maintains a wait queue

 When an interrupt occurs, the OS determines which I/O device caused the interrupt and indexes
the table to determine the status of the device, and modifies it

 Advantage: increased system efficiency

 DMA structure

 DMA is used for high-speed I/O devicesA program or the OS requests a data transfer

 The OS finds a buffer for the transfer

 A device driver sets the DMA controller registers to use appropriate source & destination
addresses

 The DMA controller is instructed to start the I/O operation

 During the data transfer, the CPU can perform other tasks

 The DMA controller ‘steals’ memory cycles from the CPU (which slows down CPU execution)

 The DMA controller interrupts the CPU when the transfer has been completed

 The device controller transfers a block of data directly to / from its own buffer storage to memory, with no
CPU intervention

 There is no need for causing an interrupt to the CPU

 The basic operation of the CPU is the same:

Computer-System Architecture

Single-Processor Systems

 On a single-processor system, there is one main CPU capable of executing a general-purpose instruction
set, including instructions from user processes

Multiprocessor Systems

 Several processors share the bus, clock, memory, peripherals…

 3 main advantages:

 Increased throughput

 More processors get more work done in less time

 Economy of scale

 You save money because peripherals, storage, & power are shared

 Increased reliability

 Failure of one processor won't halt the system

 Graceful degradation = continuing to provide service proportional to the level of surviving hardware

 Tandem system

 2 identical processors (primary + backup) are connected by a bus

 2 copies are kept of each process, and the state information of each job is copied to the backup at
fixed checkpoints

 If a failure is detected, the backup copy is activated and restarted from the most recent checkpoint

 Expensive, because of hardware duplication

 Symmetric multiprocessing (SMP)

 Used by the most common multiple-processor systems

 Each processor runs an identical copy of the OS, and these copies communicate with one another
as needed

 Processes and resources are shared dynamically among processors

 Advantage of SMP: many processes can run simultaneously without causing a significant
deterioration of performance

 Disadvantage of SMP: Since the CPUs are separate, one may be idle while another is overloaded,
resulting in inefficiencies

 Asymmetric multiprocessing

 Each processor is assigned a specific task

 A master processor controls the system and the others either look to the master for instruction or
have predefined tasks

 Master-slave relationship: The master processor schedules & allocates work to the slave
processors

 As processors become less expensive and more powerful, extra OS functions are off-loaded to
slave processors (back ends)

 E.g. you could add a microprocessor with its own memory to manage a disk system, to
relieve the main CPU

Cluster Systems

 Multiple CPUs on two / more individual systems coupled together

 Clustering is usually performed to provide high availability

 A layer of cluster software runs on the cluster nodes

 Each node can monitor the others, so if the monitored machine fails, the monitoring one can take over

 Asymmetric clustering

 A hot standby host machine and one running the applications

 The hot standby host just monitors the active server

 If that server fails, the hot standby host à active server

 Symmetric mode

 Two / more hosts run applications and monitor each other

 More efficient mode, as it uses all the available hardware

 Requires that more than one application be available to run

 Parallel clusters

 Allow multiple hosts to access same data on shared storage

 Most clusters don’t allow shared access to data on the disk

 Distributed file systems must provide access control and locking

 DLM = Distributed Lock Manager

 Global clusters: Machines could be anywhere in the world

 Storage Area Networks: Hosts are connected to a shared storage

Operating System Structure

 Multiprogramming

 Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has one to
execute

 The OS keeps several jobs in memory and begins to execute one of them until it has to wait for a
task (like an I/O operation), when it switches to and executes another job

 Job scheduling = deciding which jobs to bring into memory if there is not enough room for all of
them

 CPU scheduling = deciding which job to choose if several are ready to run at the same time

 Time-sharing (multitasking) systems

 Like multiprogramming, but interactive instead of batch!

 Interactive computer system: direct communication between user & system, where the user
expects immediate results

 Time-sharing: many users can share the computer simultaneously

 The CPU switches among multiple jobs so frequently, that users can interact with each program
while it is running

 CPU scheduling and multiprogramming provide each user with a small portion of a time-shared
computer

 Process = a program that’s loaded into memory and executing

 For good response times, jobs may have to be swapped in & out of main memory to disk (now
serving as a backing store for memory)

 Virtual memory = a technique that allows the execution of a job that may not be completely in
memory

 Advantage of VM: programs can be larger than physical memory

 Time-sharing systems must also provide a file system

 The file system resides on a collection of disks, so disk management must be provided

 Concurrent execution needs sophisticated CPU-scheduling schemes

 The system must provide mechanisms for job synchronization & communication and ensure that
jobs don't get stuck in a deadlock

Chapter 2 :System Structures

 Objectives:

 To describe the services an operating system provides to users, processes, and other systems.

 To discuss the various ways of structuring an operating system.

 To explain how operating systems are installed and customized and how they boot.

 We can view an operating system from several vantage points.

 One view focuses on the services that the system provides.

 Another on the interface that it makes available to users and programmers.

 And thirdly on the components and their interconnections.

 Here we look at the viewpoint from the users, programmers and the operating-system designers.

Operating-System Services

 Operating system provides environment for execution of programs.

 Operating systems provides services to programs and users that use those programs.

 We identify common classes of services for all operating systems.

 One set of operating-system services provide functions helpful to the user:

 User interface

 Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch

 Program execution

 The system must be able to load a program into memory and run it

 The program must be able to end its execution, (ab)normally

 I/O operations

 For specific devices, special functions may be desired (e.g. to rewind a tape drive or to
blank a CRT screen)

 For efficiency and protection, users can't control I/O devices directly, so the OS must
provide a means to do I/O

 File-system manipulation

 Programs need to read, write, create, and delete files

 Communications

 Communications between processes may be implemented via shared memory, or by the
technique of message passing, in which packets of information are moved between
processes by the OS

 Error detection

 Errors may occur in the hardware, I/O devices, user programs…

 For each type of error, the OS should take appropriate action

 Debugging facilities can greatly enhance the user’s and programmer’s abilities to efficiently
use the system

 Another set of operating-system functions exists to ensure the efficient operation of the system itself:

 Resource allocation

 When multiple users are logged on, resources must be allocated

 Some resources have a special allocation code, whereas others have a general request &
release code

 Accounting

 You can keep track of which users use how many & which resources

 Usage statistics can be valuable if you want to reconfigure the system to improve
computing services

 Protection and Security

 Concurrent processes shouldn't interfere with one another

 Protection involves ensuring that all access to system resources is controlled

 Security of the system from outsiders requires user authentication, extends to defending
external I/O devices from invalid access attempts

 If a system is to be protected and secure, precautions must be instituted throughout it. A
chain is only as strong as its weakest link

User Operating-System Interface

 Two ways that users interface with the operating system:

 Command Interpreter (Command-line interface)

 Graphical User Interface (GUI)

Command Interpreter (Command-line interface)

 Main function of command interpreter is to get and execute the next user-specified command.

 Many of the commands are used to manipulate, create, copy, print, execute, etc. files.

 Two general ways to implement these commands:

 Command interpreter self contains code to execute command;

 Commands are implemented through system programs.

Graphical User Interface (GUI)

 No entering of commands but the use of a mouse-based window-and-menu system characterized by a
desktop metaphor.

 The mouse is used to move a pointer to the position of an icon that represents a file, program or folder
and by clicking on it the program is invoked.

System Calls

 System calls provide an interface to the services made available by an operating system.

 Look at figure 2.4 p.56 TB for an example of a sequence of system calls.

 Application developers design programs according to an application programming interface (API).

 The API defines a set of functions that are available to an application programmer.

 This includes the parameters passed to functions and the return values the programmer can
accept.

 Win32 API, POSIX API and Java API are the three most common API's.

 The functions that make up an API typically invoke the actual system calls on behalf of the
application programmer.

 Benefits of programming according to an API:

 Program portability;

 Actual system calls are more detailed and more difficult to work with than the API available to the
programmer.

 Run-time support system (set of functions built into libraries included with a compiler) provides a
system-call interface that serves as link to system calls made available by the Operating System.

 System-call interface intercepts function calls in the API and invokes necessary system calls
within the operating system.

 The relationship between API, system-interface and the operating system shown in fig 2.6 p.58 TB.

 System calls occur in different ways on different computers.

 Three general methods used to pass parameters to the operating system.

 Via registers;

 Using a block or table in memory and the address is passed as a parameter in a register;

 The use of a stack is also possible where parameters are pushed onto a stack and popped off
the stack by the operating system.

 The block or stack methods do not limit the number or length of parameters being passed.

Types of System Calls

 There are six major categories each with the following types of system calls:

 Process control:

 File manipulation:

 Device manipulation:

 Information maintenance:

 Communications:

 Protection:

Process Control

 A program needs to be able to end execution normally (end) or abnormally (abort).

 When abort a memory dump is written to disk for use with a debugger program to find the
program.

 The operating system must transfer control to the next invoking command interpreter.

 Command interpreter then reads next command.

 In interactive system the command interpreter simply continues with next command.

 In GUI system a pop-up window will request action from user.

 In batch system the command interpreter terminates whole job and continues with next
job.

1. Batch systems make use of control card system.

2. If an error occur in execution an error level is assigned.

3. The error level can be used by command interpreter or other program to
determine next action.

 A process might want to execute or load another program.

 This allows flexibility for the user by enabling the user to execute more than one program at a
time.

 Also to allow existing programs to execute new programs and thus allowing further flexibility.

 The question is where does control goes after such a new program terminates.

 If control returns to the existing program when the new program terminates a memory image of
the existing program should be saved. (Mechanism to call another program)

 If both programs runs concurrently a multiprogramming environment exists.

 We must be able to control the execution of a job or process.

 The priority;

 maximum allowable execution time;

 terminate process;

 etc...

 We must be able to wait for processes to complete certain actions (wait time / wait event).

 When action completed a signal is sent to inform the operating system (signal event).

 System locks are also implemented when data is shared between processes to ensure data integrity
(acquire lock / release lock).

 Examples of these process control system calls from p. 62 - 64 TB.

 System calls:

 end, abort;

 load execute;

 create process, terminate process;

 get process attributes, set process attributes;

 wait for time;

 wait event, signal event;

 allocate and free memory.

File Management

 These system calls deal with files.

 A file needs to be created then opened for use.

 After the file was read from or written to, the file needs to be closed to indicate that it is no longer in use.

 We need to be able to read and write the attributes of such a file.

 Some operating systems also can move and copy files.

 System calls:

 create file, delete file;

 open, close;

 read, write, reposition;

 get file attributes, set file attributes.

 move, copy

Device Management

 Resources are needed by processes to execute.

 Examples of resources:

 main memory;

 disk drives;

 access to files;

 etc;

 If resources available they can be granted and control is returned to user process otherwise the process
will have to wait for resources.

 In multi-user environments devices should be locked by a particular user to prevent devices contention
and deadlocks.

 Some are physical devices and others are abstract or virtual devices.

 A devices also have to be opened for use and closed after use.

 Many devices are viewed similar as files and in some operating systems these devices and files are
combined.

 Some system calls are used on files and devices.

 Even though the devices and files are viewed similarly, their underlying system calls are dissimilar
in many cases.

 System calls:

 request device, release device;

 read, write, reposition;

 get device attributes, set device attributes;

 logically attach or detach devices.

Information Maintenance

 System calls to transfer information between user program and operating system.

 Information like:

 time and date;

 version number;

 number of concurrent users;

 free memory or disk space;

 etc.

 Debugging information needed for program debugging is also provided in most cases.

 System calls:

 get time or date, set time or date;

 get system data, set system data;

 get process, file, or device attributes;

 get process, file, or device attributes.

Communication

 Two common models of interprocess communication:

 message-passing model;

 shared-memory model,

 Message-passing model:

 Useful for transferring small amounts of data.

 Easier to implement.

 Communicating processes exchanges messages with one another to transfer information.

 Messages are exchanged between processes either directly or indirectly through common
mailbox.

 explanation p.65 - 66 TB (NB!!!)

 Shared-memory model:

 Deliver greater speed of communication if communication takes place in the same computer.

 Greater risk on protection and synchronization problems.

 Processes use shared memory create and shared memory attach system calls to create and gain
of memory owned by other processes.

 Two processes agree to remove the restriction that only one process can access a particular part
of the memory. This is done to facilitate interprocess communication by sharing the memory.

 This data is not controlled by the operating system but by the communicating processes.

 Data can be shared by reading and writing the data to this shared areas.

 The synchronization of this data is also handled by the processes.

 explanation p.66 TB (NB!!!)

 System calls:

 create, delete communication connection;

 send, receive messages;

 transfer status information;

 attach or detach remote devices.

Protection

 Provides a mechanism for controlling access to the resources provided by the system.

 Especially with the Internet and networks, protection is very important.

System calls:

 get file security status, set file security status;

 allow user, deny user;

 set file security group;

System Programs

 System programs also known as system utilities provide a convenient environment for program
development and execution.

 Divided into the following categories: (P.67 TB give definitions)

 File management

 Programs create, delete, copy, rename, print, dump, list, and generally manipulate files &
directories

 Status information

 Some programs ask the system for the date, time, disk space, number of users, or similar
status information

 File modification

 Several text editors may be available to create & modify the content of files stored on disk
/ tape

 Programming-language support

 Compilers, assemblers, and interpreters are provided

 Program loading and execution

 The system may provide absolute loaders, re-locatable loaders, linkage editors, and overlay
loaders

 Debugging systems are also needed

 Communications

 These programs allow users to send messages to one another’s screens, browse the web,
send email…

 Read the part on application programs op p. 67 - 68 TB.

Operating-System Design and Implementation

 Problems faced in designing and implementing an operating system

 Design and Implementation of OS not “solvable”, but some approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals –operating system should be convenient to use, easy to learn, reliable, safe, and fast

 System goals –operating system should be easy to design, implement, and maintain, as well as
flexible, reliable, error-free, and efficient

 Important principle to separate

 Policy: What will be done?

 Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide what will be done

 The separation of policy from mechanism is a very important principle, it allows maximum
flexibility if policy decisions are to be changed later

Design Goals

 Firstly define goals and specification.

 E.g. Convenience, reliability, speed, flexibility, efficiency…

Mechanisms and Policies

 Mechanisms determine how to do something

 Policies determine what will be done

 Separating policy and mechanism is important for flexibility

 Policies change over time; mechanisms should be general

Implementation

 OS's are nowadays written in higher-level languages like C / C++

 Advantages of higher-level languages: faster development and the OS is easier to port (i.e. move to other
hardware)

 Disadvantages of higher-level languages: reduced speed and increased storage requirements

Operating-System Structure

Simple Structure

 MS-DOS and UNIX started as small, simple, limited systems

Layered Approach

 The OS is broken into layers: lowest = hardware, highest = GUI

 A typical layer has routines that can be invoked by higher ones

 Advantage: modularity (which simplifies debugging)

 A layer doesn't need to know how lower-level layer operations are implemented, only what they do

 Problems:

 Layers can use only lower ones so they must be well defined

 Layered implementations are less efficient than other types

 Nowadays fewer layers with more functionality are being designed

Microkernels

 Microkernel approach: all nonessential components are removed from the kernel and are implemented as
system & user programs

 The smaller kernel provides minimal process & memory management

 Advantages:

 Ease of extending the OS (new services are added to the user space and don't modify the kernel)

 The OS is easier to port from 1 hardware design to another

 More reliability: a failed user service won't affect the OS

 Main function of the microkernel: to provide a communication facility between the client program and the
various services

 E.g. If the client program wants to access a file, it must interact with the file server indirectly through the
microkernel

 QNX is a real-time OS that is based upon the microkernel design

 Windows NT uses a hybrid structure

Modules

 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the
operating system kernel as though they were all hardware

 A virtual machine provides an interface identical to the underlying bare hardware

 The operating system creates the illusion of multiple processes, each executing on its own processor with
its own (virtual) memory

 The resources of the physical computer are shared to create the virtual machines

 CPU scheduling can create the appearance that users have their own processor

 Spooling and a file system can provide virtual card readers and virtual line printers

 A normal user time-sharing terminal serves as the virtual machine operator’s console

 Non-virtual Machine Virtual Machine

 The virtual-machine concept provides complete protection of system resources since each virtual machine
is isolated from all other virtual machines. This isolation, however, permits no direct sharing of resources.

 A virtual-machine system is a perfect vehicle for operating-systems research and development. System
development is done on the virtual machine, instead of on a physical machine and so does not disrupt
normal system operation.

 The virtual machine concept is difficult to implement due to the effort required to provide an exact
duplicate to the underlying machine

History

Benefits

Simulation

Para-virtualization

Implementation

Examples

VMware

 VMware Architecture

The Java Virtual Machine

Java consists of:

 Programming language specification

 Application programming interface (API)

 Virtual machine specification

 Java portability across platforms

 Java Development Environment

Operating-System Debugging

Failure Analysis

Performance Tuning

DTrace

Operating-System Generation

 Operating systems are designed to run on any of a class of machines; the system must be configured for
each specific computer site

 SYSGEN = configuring a system for each specific computer site

 The SYSGEN program must determine (from a file / operator):

1. What CPU will be used

2. How will boot disk be formatted

3. How much memory is available

4. What devices are available

5. What OS options are desired

 A system administrator can use the above info to modify a copy of the source code of the OS

 The system description can cause the creation of tables and the selection of modules from a pre-compiled
library. These modules are linked together to form the generated OS

 A system that is completely table driven can be constructed, which is how most modern OS's are
constructed

System Boot

 After an OS is generated, the bootstrap program locates the kernel, loads it into main memory, and starts
its execution

 Booting–starting a computer by loading the kernel

 Bootstrap program–code stored in ROM that is able to locate the kernel, load it into memory, and start its
execution

 Operating system must be made available to hardware so hardware can start it

 Small piece of code –bootstrap loader, locates the kernel, loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed location loads bootstrap loader

 When power initialized on system, execution starts at a fixed memory location

 Firmware used to hold initial boot code

Summary

Operating System Operations

 Interrupt driven by hardware

 Software error or request creates exception or trap

 Division by zero, request for operating system service

 Other process problems include infinite loop, processes modifying each other or the operating system

Dual-Mode Operation

 The OS and other programs & their data must be protected from any malfunctioning program

 You need two separate modes of operation: user & monitor mode

 A mode bit is added to the hardware to indicate the current mode: monitor: 0 (task executed on behalf of
the OS) or user: 1 (task executed on behalf of the user)

 At system boot time, the hardware starts in monitor mode

 The OS loads and starts user processes in user mode

 When a trap / interrupt occurs, it switches to monitor mode

 Dual mode protects the OS from errant users, and errant users from one another

 This protection is accomplished by designating some machine instructions that may cause harm as
privileged instructions

 Privileged instructions can only be executed in monitor mode

 If an attempt is made to execute a privileged instruction in user mode, the hardware traps it to the OS

 System call = a request by the user executing a privileged instruction, to ask the OS to do tasks that only it
should do

Timer

 timer ensures that control is always returned to the OS, and prevents user programs from getting stuck in
infinite loops

 The timer can be set to interrupt the computer after a while

 A variable timer has a fixed-rate clock and a counter

 The OS sets the counter, which decrements when the clock ticks

 When the counter reaches 0, an interrupt occurs

 The timer can be used to:

 prevent a program from running too long

 compute the current time

 implement time sharing

 Timer to prevent infinite loop / process hogging resources

 Set interrupt after specific period

 Operating system decrements counter

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate program that exceeds allotted
time

Process Management

 A process needs resources (CPU, memory, files…) to do a task

 These resources are either given to the process when it is created, or allocated to it while it is running

 A program is a passive entity

 A process is an active entity, with a program counter giving the next instruction to execute

 The execution of a process must be sequential

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying location of next instruction to execute

 Process executes instructions sequentially, one at a time, until completion

 Multi-threaded process has one program counter per thread specifying location of next instruction to
execute in each thread

 Typically system has many processes, some user, some operating system (kernel) running concurrently on
one or more CPUs

 Concurrency by multiplexing the CPUs among the processes / threads

 Processes can execute concurrently by multiplexing the CPU

 In connection with process management, the OS is responsible for

 Scheduling processes and threads on the CPUs

 Creating and deleting both user & system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

PART TWO: PROCESS MANAGEMENT

 A process can be thought as a program in execution.

 A process will need resources - such as CPU time, memory, files, and I/O devices - to accomplish its
task.

 These resources are allocated to the process either when it is created or while it is executed.

 A process is the unit of work in most systems.

 Systems consist of a collection of processes:

 Operating-system processes execute system code

 User processes execute user code

 All these processes may execute concurrently.

 Although traditionally a process contained only a single thread of control as it ran, most modern
operating systems now support processes that have multiple threads.

 The operating system is responsible for the following activities in connection with process and thread
management:

 The creation and deletion of both user and system processes;

 The scheduling of processes;

 and the provision of mechanisms for synchronization, communication, and deadlock handling for
processes.

Chapter 3: Process Concept

 Objectives:

 To introduce the notion of a process - a program in execution, which forms the basis of all
computation.

 To describe the various features of processes, including scheduling, creation and termination, and
communication.

 To describe communication in client-server systems.

Process Concepts

 An operating system executes a variety of programs:

 Batch system –jobs

 Time-shared systems –user programs or tasks

 Textbook uses the terms job and process almost interchangeably

The Process

 Process = an active entity, with a program counter (to indicate the current activity), process stack (with
temporary data), and a data section (with global variables)

 Text section = the program code

 If you run many copies of a program, each is a separate process (The text sections are equivalent, but the
data sections vary)

 Process–a program in execution; process execution must progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

 A process in memory

 p.102 give description of stack, heap, data and text areas

Process State

 Each process may be in one of the following states:

 New (Process is being created)

 Running (Instructions are being executed)

 Waiting (Process is waiting for an event, e.g. I/O)

 Ready (Process is waiting to be assigned to a processor)

 Terminated (Process has finished execution)

 Only one process can be running on any processor at any instant

Process Control Block

 Contains information associated with a specific process:

1. Process state (as above)

2. Program counter (indicating the next instruction’s address)

3. CPU registers (Info must be saved when an interrupt occurs)

 CPU-scheduling info (includes process priority, pointers…)

 Memory-management info (includes value of base registers…)

 Accounting info (includes amount of CPU time used…)

 I/O status info (includes a list of I/O devices allocated…)

Threads

 Many OS's allow processes to perform more than one task at a time

Process Scheduling

 The objective of multiprogramming is to have some process running at all times, to maximize CPU
utilization

 The objective of time sharing is to switch the CPU among processes so frequently that the user can
interact with each program while it is running

 To meet this objectives, the process scheduler selects an available process for execution on the
CPU

 For single-processor system, there will never be more than one running process

 If more than one process, it will have to wait until CPU is free and can be rescheduled

Scheduling Queues

 As processes enter the system, they are put into a job queue

 Processes in memory, waiting to execute, are in the ready queue

 A ready queue header contains pointers to the fist & last PCBs in the list, each of which has a pointer to
the next PCB

 Device queue = the list of processes waiting for an I/O device

 After a process in the ready queue is selected for execution…

 it could issue an I/O request and be put in the I/O queue

 it could create a sub-process and wait for its termination

 it could be interrupted and go to the ready queue

 Processes migrate among the various queues

 Queuing-diagram representation of process scheduling

Schedulers

 A process migrates between the various scheduling queues throughout its lifetime

 The appropriate scheduler selects processes from these queues

 In a batch system, more processes are submitted than can be executed immediately

 These processes are spooled to a mass-storage device (typically a disk), where they are kept for
later execution

 The long-term scheduler / job scheduler selects processes from this pool and loads them into memory for
execution

 The short-term scheduler / CPU scheduler selects from among the processes that are ready to execute,
and allocates the CPU to it

 The main difference between these two schedulers is the frequency of execution (short-term = more
frequent)

 The degree of multiprogramming (= the number of processes in memory) is controlled by the long-term
scheduler

 I/O-bound process = spends more time doing I/O than computations, many short CPU bursts

 CPU-bound process = spends more time doing computations; few very long CPU bursts

 The long-term scheduler should select a good process mix of I/O-bound and CPU-bound processes for
good performance

 Some time-sharing systems have a medium-term scheduler:

 It removes processes from memory and thus reduces the degree of multiprogramming

 Later, the process can be reintroduced into memory and its execution can be continued where it
left off (= Swapping)

 Swapping may be necessary to improve the process mix, or because memory needs to be freed up

Context Switch

 Context switch = saving the state of the old process and switching the CPU to another process

 The context of a process is represented in the PCB of a process

 (It includes the value of the CPU registers, process state, and memory-management information)

 Context-switch time is pure overhead, because the system does no useful work while switching

 Context-switch time is highly dependent on hardware support (e.g. some processors provide multiple sets
of registers)

Operations on Processes

Process Creation

 Parent process = the creating process

 Children = new processes created by parent ones

 Sub-processes may…

 get resources directly from the OS

 be constrained to a subset of the parent’s resources (This prevents sub-processes from overloading
the system)

 When child processes are created, they may obtain initialization data from the parent process (in addition
to resources)

 Execution possibilities when a process creates a new one:

 The parent continues to execute concurrently with children

 The parent waits until some / all children have terminated

 Address space possibilities when a process creates a new one:

 The child process is a duplicate of the parent

 The child process has a program loaded into it

 UNIX example

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory space with a new program

 Windows example

 Java example

Process Termination

 A process terminates after it executes its final statement

 At that point the process may return data to its parent process

 All the process’ resources (memory, open files, I/O buffers) are de-allocated by the OS

 A parent process can cause its child processes to terminate

 Parents therefore need to know the identities of their children

 Reasons why a parent may terminate execution of children:

 If the child exceeds its usage of some resources

 If the task assigned to the child is no longer required

 If the parent is exiting, and the OS won't allow a child to continue if its parent terminates
(Cascading termination)

Interprocess Communication (IPC)

 Independent process: can't affect / be affected by the other processes (E.g. processes that don't share
data with other ones)

 Cooperating process: can affect / be affected by the other processes (E.g. processes that share data with
other ones)

 Reasons for providing an environment that allows cooperation:

 Information sharing: Several users may be interested in the same file

 Computation speedup: A task can be broken into subtasks to run faster

 Modularity: Functions can be divided into separate processes

 Convenience: An individual user may want to work on many tasks

 There are two fundamental models of interprocess communication:

 Shared memory

 message passing

 Message Passing Shared Memory

Shared-Memory Systems

 With a shared memory environment, processes share a common buffer pool, and the code for
implementing the buffer must be written explicitly by the application programmer

 Producer-consumer problem:

 Paradigm for cooperating processes, producer process produces information that is consumed by a
consumer process

 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

Message-Passing Systems

 The function of a message system is to allow processes to communicate with one another without
resorting to shared data

 Messages sent by a process can be of a fixed / variable size:

 Fixed size:

 Straightforward system-level implementation

 Programming task is more difficult

 Variable size:

 Complex system-level implementation

 Programming task is simpler

 A communication link must exist between processes to communicate

 Methods for logically implementing a link:

 Direct or indirect communication

 Symmetric or asymmetric communication

 Automatic or explicit buffering

 Message passing facility provides two operations:

 send(message) –message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

Naming

Direct communication Indirect communication

 Each process must explicitly name the
recipient / sender

 Messages are sent to / received from
mailboxes (ports)

Properties of a communication link:

 A link is established automatically
between every pair of processes that
want to communicate. The processes
need to know only each other’s identity
to communicate

 A link is associated with exactly two
processes

 Exactly one link exists between each pair
of processes

Properties of a communication link:

 A link is established between a pair
of processes only if both members
have a shared mailbox

 A link may be associated with
more than two processes

 A number of different links may
exist between each pair of
communicating processes

Symmetric addressing:

 Both sender and receiver processes must
name the other to communicate

Mailbox owned by a process:

 The owner can only receive, and
the user can only send

 The mailbox disappears when its
owner process terminates

Asymmetric addressing:

 Only the sender names the recipient; the
recipient needn't name the sender

Mailbox owned by the OS:

 The OS must provide a mechanism
that allows a process to:

* Create a new mailbox

* Send & receive messages via it

* Delete a mailbox

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is received

 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and continue

 Non-blocking receive has the receiver receive a valid message or null

Synchronous message passing (blocking) Asynchronous passing (non-blocking)

Blocking send:

 The sending process is blocked until the
message is received by the receiving process
or by the mailbox.

Non-blocking send:

 The sending process sends the message and
resumes operation.

Blocking receive: Non-blocking receive:

 The receiver blocks until a message is
available.

 The receiver retrieves either a valid message or a
null.

 Different combinations of send and receive are possible

 Rendezvous = when both the send and receive are blocking

 Look at NB!!! p.122 TB

Buffering

 Messages exchanged by processes reside in a temporary queue

 Such a queue can be implemented in three ways:

 Zero capacity

 The queue has maximum length 0, so the link can't have any messages waiting in it

 The sender must block until the recipient receives the message

 Bounded capacity

 The queue has finite length n (i.e. max n messages)

 If the queue is not full when a new message is sent, it is placed in the queue

 If the link is full, the sender must block until space is available in the queue

 Unbounded capacity

 The queue has potentially infinite length

 Any number of messages can wait in it

 The sender never blocks

Examples of IPC Systems

An Example: POSIX Shared Memory

 p.123 - 124

An Example: Mach

 p.124 - 126

An Example: Windows XP

 p.127 - 128

Communication in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

Sockets

 Socket = an endpoint for communication

 A pair of processes communicating over a network employs a pair of sockets - one for each process

 A socket is identified by an IP address together with a port no

 The socket 161.25.19.8:1625refers to port 1625on host 161.25.19.8

 In general, sockets use a client-server architecture

 The server waits for incoming requests by listening to a port

 Once a request is received, the server accepts a connection from the client socket to complete the
connection

 Servers implementing specific services (like telnet, ftp, http) listen to well-known ports (below 1024)

 When a client process initiates a request for a connection, it is assigned a port by the host computer (a no
greater than 1024)

 The connection consists of a unique pair of sockets

 Communication using sockets is considered low-level

 RPCs and RMI are higher-level methods of communication

Remote Procedure Calls

 Messages exchanged for RPC communication are well structured

 They are addressed to an RPC daemon listening to a port on the remote system, and contain an identifier
of the function to execute and the parameters to pass to that function

 The function is executed and any output is sent back to the requester in a separate message

 A port is a number included at the start of a message packet

 A system can have many ports within one network address

 If a remote process needs a service, it addresses its messages to the proper port

 The RPC system provides a stub (client-side proxy for actual procedure) on the client side, to hide the
details of how the communication takes place

 When the client invokes a remote procedure, the RPC system calls the appropriate stub, passing it
the parameters provided

 This stub locates the port on the server and marshals (=packs the parameters into a form for the
network) the parameters

 The stub then transmits a message to the server using message passing

 A similar stub on the server side receives this message and invokes the procedure on the server

 If necessary, return values are passed back to the client

 Many RPC systems define a machine-independent representation of data (because systems could be big-
endian / little-endian)

 External data representation (XDR) is one such representation:

 On the client side, parameter marshalling involves converting the machine-dependent data into
XDR before going to the server

 On the server side, the XDR data is unmarshalled and converted into the machine-dependent
representation for the server.

 Two approaches for binding client & server:

 The binding information may be predetermined, in the form of fixed port addresses

 Binding can be done dynamically by a rendezvous mechanism (also called a matchmaker daemon)

Pipes

 A pipe act as a conduit allowing two processes to communicate

 In implementing a pipe four issues need to be considered:

 Does the pipe allow unidirectional communication or unidirectional communication?

 If two-way communication is allowed, is it half or full duplex?

 Must a relationship exist between the communicating processes? (parent-child concept)

 Can pipes communicate over a network, or must the communicating processes reside on the same
machine?

Ordinary Pipes

 Allow communication between parent and child process

 Make use of producer-consumer concept

 Producer writes to write end of the write-end of the pipe

 Consumer reads from the read-end of the pipe

 Named anonymous pipes on Windows

 Ordinary pipes cease to exist as soon as processes terminate communication

 Unidirectional

Named Pipes

 More powerful than ordinary pipes

 Permit unrelated processes to communicate with one another

 Bidirectional, no parent child relationship needed

Summary

Chapter 4: Multithreaded Programming

 Objectives:

 To introduce the notion of a thread - a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems.

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries.

 To examine issues related to multithreaded programming.

