
 To create a new file, just create a new entry in the directory

 A write to the file causes a free block to be found

 This new block is then written to and linked to the end of file

 No external fragmentation, and any free block on the free-space list can be used to satisfy a request

 The size of the file doesn't need to be declared on creation

 Disadvantages:

 Can be used effectively only for sequential-access files

 Space required for the pointers

 Solution: collect blocks into multiples (‘clusters’) and allocate the clusters rather than
blocks

 Reliability (Problem if a pointer is lost / damaged)

 Linked Allocation:

 File Allocation Table (FAT) = a variation on linked allocation:

 A section of disk at the beginning of each partition is set aside to contain the table

 The table has one entry for each disk block, and is indexed by block number

 The directory entry contains the block number of the first block in the file

 The table entry indexed by that block number then contains the block number of the next block in
the file

 This chain continues until the last block, which has a special end-of-file value as the table entry

 The FAT can be cached to reduce the no. of disk head seeks

 Benefit: improved access time, since the disk head can find the location of any block by reading the
info in the FAT

 File-Allocation Table:

Indexed Allocation

 Solves the problems of linked allocation (without a FAT) by bringing all the pointers together into an index
block

 Each file has an index block (an array of disk-block addresses)

 Logical view of the Index Table:

 The ith entry in the index block points to the ith file block

 The directory contains the address of the index block

 Example of Index Allocation:

 When writing the ith block, a block is obtained from the free- space manager, and its address put in the ith
index- block entry

 Supports direct access, without external fragmentation

 Disadvantage: wasted space: pointer overhead of the index block is greater than the pointer overhead of
linked allocation

 We want the index block to be as small as possible, but what if file size is large?

 Mechanisms to deal with the problem of index block size:

 Linked scheme

 To allow for large files, link several index blocks

 Multilevel index

 A first-level index block points to second-level ones, which in turn point to the file
blocks

 Combined scheme

 The first few pointers point to direct blocks

 The next few point to indirect blocks

 (Indirect blocks contain addresses of blocks)

 Indexed-allocation schemes suffer from some of the same performance problems as does linked
allocation

Performance

 The above allocation methods vary in their storage efficiency and data-block access times

 Contiguous allocation

 Requires only one access to get a disk block

 Since we can keep the file’s initial address in memory, we can calculate immediately the disk
address of the ith block

 Good for direct access

 Linked allocation

 For direct access, you need i disk reads to access block i

 Good for sequential access

 Indexed allocation

 Performance depends on the index structure, the size of the file, and the position of the block
desired

Free-Space Management

 A free-space list keeps track of free disk space

 To create a file, we search the free-space list for the required amount of space, and allocate that space to
the new file

 When a file is deleted, its disk space is added to the list

Bit Vector

 The free-space list is implemented as a bit map / bit vector

 Each block is represented by a bit: 1 = free; 0 = allocated

 Advantage: relative simplicity & efficiency in finding the first free block, or n consecutive free blocks

 Disadvantage: Inefficient unless the entire vector is kept in main memory (and is written to disc
occasionally for recovery)

 Also look in PDF and PTT notes

Linked List

 Link together all the free disk blocks, keeping a pointer to the first free block in a special location on the
disk

 The first block contains a pointer to the next free one, etc.

 Not efficient, because to traverse the list, each block is read

 Usually the OS simply needs a free block, and uses the first one

Grouping

 The addresses of n free blocks are stored in the 1st free block

 The first n-1 of these blocks are actually free

 The last block contains addresses of another n free blocks, etc

 Advantage: Addresses of a large no of free blocks can be found quickly, unlike in the standard linked-list
approach

Counting

 Takes advantage of the fact that, generally, several contiguous blocks may be allocated / freed
simultaneously

 Keep the address of the first free block and the number n of free contiguous blocks that follow the first
block

 Each entry in the free-space list then consists of a disk address and a count

Space Maps

 p481 No description in notes...

Efficiency and Performance

Efficiency

 The efficient use of disk space is heavily dependent on the disk allocation and directory algorithms in use

 The type of data kept in a directory also affect efficiency

 Information like ‘last write / access date’ affect efficiency

 Small pointer sizes limit file length, but large ones take more space to store and make allocation methods
use more disk space

Performance

p483 - 486 for better description

 Most disk controllers include local memory to form an on-board cache that is large enough to store entire
tracks at a time

 Disk cache –separate section of main memory for frequently used blocks

 free-behind and read-ahead –techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual disk, or RAM disk

 A page cache caches pages rather than disk blocks using virtual memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure:

 A unified buffer cache uses the same page cache to cache both memory- mapped pages and ordinary file
system I/O

Recovery

 System crashes can cause inconsistencies among on-disk file-system data structures, such as directory
structures, free-block pointers, and free FCB pointers.

 Changes to these file-system structures can be performed in place and if interrupted by system
crashes.

 This causes the actual data on disk to be inconsistent to the state of the file-system structures.

 In addition to crashes, bugs in the file-system implementation, disk controllers, and even user applications
can corrupt a file system.

 File systems have varying methods to deal with corruption, depending on the file-system data structures
and algorithms.

 We deal with those issues next.

Consistency Checking

 Part of the directory info is kept in main memory (cache) to speed up access

 The directory info in main memory is more up to date than is the corresponding info on the disk

 When the computer crashes, the table of opened files is lost, as well as changes in the directories of
opened files

 This event can leave the file system in an inconsistent state

 The consistency checker compares the data in the directory structure with the data blocks on disk and
fixes inconsistencies (fsck in UNIX or chkdsk in Windows)

 p487 top

Log-Structured File Systems

See also: Log-Based Recovery

 Similar idea to p260 section 6.9.2

 All metadata changes are written sequentially to a log

 Transaction = a set of operations that perform a specific task

 Once the changes are written to this log, they are committed

 When an entire committed transaction is completed, it is removed from the log file which is actually a
circular buffer

 Side benefit of using logging on disk metadata updates: those updates proceed much faster than when
they are applied directly to the on-disk data structures

Other Solutions

p488

Backup and Restore

 System programs can back up data from disk to permanent storage

 Use system programs to back up data from disk to another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)

 Recover lost file or disk by restoring data from backup

 To minimize copying, use info from each file’s directory entry

 E.g. backup programs see when the last backup of a file was done

 Look at typical backup schedule on p.489 mid

NFS

 NFS = An implementation and a specification of a software system for accessing remote files across LANs
(or WANs)

 The implementation is part of the Solaris and SunOS operating systems running on Sun workstations using
an unreliable datagram protocol (UDP/IP protocol and Ethernet

Overview

 Sharing is based on a client-server relationship

 Sharing is allowed between any pair of machines

 To ensure machine independence, sharing of a remote file system affects only the client machine and
no other machine

 For a remote directory to be accessible from a machine, a client of that machine has to carry out a
mount operation first

 A remote directory is mounted over a directory of a local file system and looks like a sub-tree of the
local file system

 The local directory becomes the name of the root of the newly mounted directory

 No transitivity: the client doesn't gain access to other file systems that were mounted over the former
file system

 Interconnected workstations viewed as a set of independent machines with independent file systems,
which allows sharing among these file systems in a transparent manner

 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the local file system, replacing the
subtree descending from the local directory

 Specification of the remote directory for the mount operation is nontransparent; the host name of the
remote directory has to be provided

 Files in the remote directory can then be accessed in a transparent manner

 Subject to access-rights accreditation, potentially any file system (or directory within a file system), can
be mounted remotely on top of any local directory

 NFS is designed to operate in a heterogeneous environment of different machines, operating systems,
and network architectures; the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives built on top of an External Data
Representation (XDR) protocol used between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided by a mount mechanism and the
actual remote-file-access services

The Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded to mount server running on server
machine

 Export list –specifies local file systems that server exports for mounting, along with names of
machines that are permitted to mount them

 Following a mount request that conforms to its export list, the server returns a file handle—a key for
further accesses

 File handle –a file-system identifier, and an inode number to identify the mounted directory within the
exported file system

 The mount operation changes only the user’s view and does not affect the server side

 The server also maintains a list of clients and currently mounted directories, which it uses for admin
purposes

The NFS Protocol

 Provides a set of RPCs for remote operations

 The procedures support the following operations:

 Searching for a file within a directory

 Reading a set of directory entries

 Manipulating links and directories

 Accessing file attributes

 Reading & writing files

 These procedures can be invoked only after a file handle for the remotely mounted directory has been
established

 NFS servers are stateless and don’t maintain info about clients

 A server crash and recovery will be invisible to a client

 Modified data must be committed to the server’s disk before results are returned to the client (lose
advantages of caching)

 The NFS protocol doesn’t provide concurrency-control mechanisms

 Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write, and close calls, and file descriptors)

 Virtual File System(VFS) layer –distinguishes local files from remote ones, and local files are further
distinguished according to their file-system types

 The VFS activates file-system-specific operations to handle local requests according to their
file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer –bottom layer of the architecture

 Implements the NFS protocol

Path-Name Translation

 Path-name translation is done by breaking the path into component names and performing a separate
NFS lookup call for every pair of component name and directory vnode

 Once a mount point is crossed, every component lookup causes a separate RPC to the server

Remote Operations

 A remote file operation can be translated directly to a RPC

Example: The WAFL File System

 Used on Network Appliance “Filers”–distributed file system appliances

 “Write-anywhere file layout”

 Serves up NFS, CIFS, http, ftp

 Random I/O optimized, write optimized

 NVRAM for write caching

 Similar to Berkeley Fast File System, with extensive modifications

Summary

Mass-Storage Management

 Most programs are stored on disk until loaded into memory

 Usually disks used to store data that does not fit in main memory or data that must be kept for a
“long”period of time.

 Proper management is of central importance

 Entire speed of computer operation hinges on disk subsystem and its algorithms

 OS activities

 Free-space management

 Storage allocation

 Disk scheduling

 Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed

 Varies between WORM (write-once, read-many-times) and RW (read-write)

Caching

 Cache management is important because of cache’s limited size

 Data transfer from cache to CPU and registers is usually a hardware function, with no OS intervention

 Transfer of data from disk to memory is controlled by the OS

 Coherency and consistency

 In the storage hierarchy, data appears in different levels

 When it is modified, its value differs in the various storage

 Its value only becomes the same throughout after being written from the internal register back to
the e.g. magnetic disk

 In a computing environment where one process executes at a time, access to the data will be to
the copy at the highest level

 In a multitasking environment, care must be taken to ensure that the several processes access the
most recently updated value

 In a multiprocessor environment, where the data exists in several caches simultaneously, an
update to the data in one cache must be immediately reflected in all other caches where it
resides (Cache coherency)

 In a distributed environment, when a replica is updated in one place, all other replicas must be brought
up-to-date

 Caching is an important principle of computer systems

 Information is normally kept in some storage system (such as main memory)

 As it is used, it is copied into a faster storage system - the cache - on a temporary basis

 When we need a particular piece of information, we first check whether it is in the cache

 If it is, we use the information directly from the cache

 If it is not, we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon

 In addition, internal programmable registers, such as index registers, provide high-speed cache for main
memory

 The programmer (or compiler) implements the register-allocation and register-replacement
algorithms to decide which information to keep in registers and which to keep in main memory

 There are also caches that are implemented totally in hardware

 For instance, most systems have an instruction cache to hold the instructions expected to
be executed next

 Without this cache, the CPU would have to wait several cycles while an instruction was fetched
from main memory

 For similar reasons, most systems have one or more high-speed data caches in the memory
hierarchy

 We are not concerned with these hardware-only caches in this text, since they are outside the
control of the operating system

 Because caches have limited size, cache management is an important design problem

 Careful selection of the cache size and of a replacement policy can result in greatly increased
performance

 The figure below compares storage performance in large workstations and small servers

 Various replacement algorithms for software-controlled caches are discussed in Chapter 9

 Main memory can be viewed as a fast cache for secondary storage, since data in secondary storage must
be copied into main memory for use, and data must be in main memory before being moved to
secondary storage for safekeeping

 The file-system data, which resides on secondary storage, may appear on several levels in the
storage hierarchy

 At the highest level, the operating system may maintain a cache of file-system data in
main memory

 In addition, electronic RAM disks (also known as solid-state disks) may be used for high-
speed storage that is accessed through the file-system interface

 The bulk of secondary storage is on magnetic disks

 The magnetic-disk storage, in turn, is often backed up onto magnetic tapes or removable
disks to protect against data loss in case of hard-disk failure

 Some systems automatically archive old file data from secondary storage to tertiary
storage, such as tape jukeboxes, to lower the storage cost

 The movement of information between levels of a storage hierarchy may be either explicit or implicit,
depending on the hardware design and the controlling operating-system software

 For instance, data transfer from cache to CPU and registers is usually a hardware function, with
no operating system intervention

 In contrast, transfer of data from disk to memory is usually controlled by the operating system

 In a hierarchical storage structure, the same data may appear in different levels of the storage system

 For example, suppose that an integer A that is to be incremented by 1 is located in file B, and file
B resides on magnetic disk

 The increment operation proceeds by first issuing an I/O operation to copy the disk block
on which A resides to main memory

 This operation is followed by copying A to cache and to an internal register

 Thus, the copy of A appears in several places:

 on the magnetic disk

 in main memory

 in the cache

 and in an internal register

 (see the next figure)

 Once the increment takes place in the internal register, the value of A differs in the
various storage systems

 The value of A becomes the same only after the new value of A is written from the
internal register back to the magnetic disk

 In a computing environment where only one process executes at a time, this arrangement poses no
difficulties, since an access to integer A will always be to the copy at the highest level of the hierarchy

 However, in a multitasking environment, where the CPU is switched back and forth among various
processes, extreme care must be taken to ensure that, if several processes wish to access A, then
each of these processes will obtain the most recently updated value of A

 The situation becomes even more complicated in a multiprocessor environment where, in addition to
maintaining internal registers, each of the CPUs also contains a local cache

 In such an environment, a copy of A may exist simultaneously in several caches

 Since the various CPUs can all execute concurrently, we must make sure that an update to the
value A in one cache is immediately reflected in all other caches where A resides

 This situation is called cache coherency, and it is usually a hardware problem (handled below the
operating-system level)

 In a distributed environment, the situation becomes even more complex

 In this environment, several copies (or replicas) of the same file can be kept on different
computers that are distributed in space

 Since the various replicas may be accessed and updated concurrently, some distributed systems
ensure that, when a replica is updated in one place, all other replicas are brought up to date as
soon as possible

 There are various ways to do this - discussed in Chapter 17

I/O Systems

 The OS must hide peculiarities of hardware devices from users

 In UNIX, the peculiarities of I/O devices are hidden from the bulk of the OS itself by the I/O subsystem

 The I/O subsystem consists of

 A memory-management component that includes buffering, caching, and spooling

 A general device-driver interface

 Drivers for specific hardware devices

 Only the device driver knows the peculiarities of the specific device to which it is assigned

Protection and Security

 Protection–any mechanism for controlling access of processes or users to resources defined by the OS

 Security–defense of the system against internal and external attacks

 Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

 Systems generally first distinguish among users, to determine who can do what

 User identities (user IDs, security IDs) include name and associated number, one per user

 User ID then associated with all files, processes of that user to determine access control

 Group identifier (group ID) allows set of users to be defined and controls managed, then also
associated with each process, file

 Privilege escalation allows user to change to effective ID with more rights

PART SIX: PROTECTION AND SECURITY

Chapter 14: System Protection

 Discuss the goals and principles of protection in a modern computer system

 Explain how protection domains combined with an access matrix are used to specify the resources a
process may access

 Examine capability and language-based protection systems

Goals of Protection

 Operating system consists of a collection of objects, hardware or software

 Each object has a unique name and can be accessed through a well-defined set of operations.

 Protection problem -ensure that each object is accessed correctly and only by those processes that are
allowed to do so.

 Reasons for providing protection:

 To prevent mischievous violation of an access restriction

 To ensure that each program component active in a system uses system resources only in ways
consistent with policies

 Mechanisms are distinct from policies

 Mechanisms determine how something will be done

 Policies decide what will be done

 This principle provides flexibility

Principles of Protection

 Guiding principle –principle of least privilege

 Programs, users and systems should be given just enough privileges to perform their tasks

 p.592

Domain of Protection

 A process should be allowed to access only authorized resources

 Need-to-know principle: a process should be able to access only those resources that it currently requires
to complete its task

Domain Structure

 A protection domain specifies the resources a process may access

 A domain is a collection of access rights, each of which is an ordered pair <object-name, rights-set>

 Access right = the ability to execute an operation on an object

 Access-right = <object-name, rights-set> where rights-set is a subset of all valid operations that can
be performed on the object

 Domains also define the types of operations that can be invoked

 The association between a process and a domain may be

 Static (if the process’ life-time resources are fixed)

 Violates the need-to-know principle

 Dynamic

 A process can switch from one domain to another

 A domain can be realized in several ways:

 Each user may be a domain

 Domain switching occurs when a user logs out

 Each process may be a domain

 Domain switching occurs when a process sends a message to another process and waits for
a response

 Each procedure may be a domain

 Domain switching occurs when a procedure call is made

An Example: UNIX

 System consists of 2 domains:

 User

 Supervisor

 UNIX

 Domain = user-id

 Domain switch accomplished via file system.

 Each file has associated with it a domain bit (set uid bit).

 When file is executed and setuid = on, then user-id is set to owner of the file being
executed. When execution completes user-id is reset.

An Example: MULTICS

 Let Di and Dj be any two domain rings.

 If j < i ⇒ Di ⊆ Dj

Access Matrix

 View protection as a matrix (access matrix)

 Rows represent domains; Columns represent objects

 Access(i, j) is the set of operations that a process executing in Domaini can invoke on Objectj

 Example:

 F1 F2 F3 Printer

D1 Read Read

D2 Print

D3 Read Execute

D4 Read, Write Read, Write

 When we switch a process from one domain to another, we are executing an operation (switch) on an
object (the domain)

 We can include domains in the matrix to control domain switching

 In the following table, D1 can only switch to D2:

 F1 F2 F3 Printer D1 D2 D3 D4

D1 Read Read Switch

D2 Print Switch Switch

D3 Read Execute

D4 Read,

Write

 Read,

Write

 Switch

 Allowing controlled change to the contents of the access-matrix entries requires three additional
operations:

 Copy

 * denotes the ability for one domain to copy the access right to another domain (row)

 If the right is then removed from the original domain, it is called a transfer, not a copy

 The * isn't copied as well

 Owner

 Allows the addition and removal of rights

 'Owner' in a column means that the process executing in that domain can add / delete
rights in that column

 Control

 The control right is applicable only to domain objects

 'Control' in access(D2,D4) means that a process executing in domain D2 can modify the
row D4

 The problem of guaranteeing that no information initially held in an object can migrate outside of its
execution environments is called the confinement problem

Implementation of Access Matrix

 Here we look at ways to implement the access matrix.

Global Table

 Contains a set of ordered triples: <domain, object, rights-set>

 Drawbacks:

 The table is usually large and can't be kept in main memory

 It is difficult to take advantage of groupings, e.g. if all may read an object, there must be an entry in
each domain

Access Lists for Objects

 Each column in access list can be implemented as an access list for one object

 Each column = Access-control list for one object

 Defines who can perform what operation.

Domain 1 = Read, Write

Domain 2 = Read

Domain 3 = Read

 Resulting list: <domain, rights-set> for all non-empty columns

 Corresponds to users' needs: When you create an object, you can specify which domains may access it

 Determining the set of access rights for a domain is difficult

Capability Lists for Domains

 A capability list for a domain is a list of objects together with the operations allowed on those objects

 An object is represented by its physical name or address, called its capability

 Simple possession of the capability means that access is allowed

 Resulting list: Objects, with operations allowed on them

 Capabilities are useful for localizing info for a given process

 Capabilities are distinguished from other data in one of 2 ways:

 Each object has a tag to denote its type as either a capability or as accessible data

 The program's address space can be split into two parts:

 One part contains data, accessible to the program

 The other part contains the capability list, accessible only to the OS

 Each Row = Capability List (like a key)

 Fore each domain, what operations allowed on what objects.

Object 1 -Read

Object 4 -Read, Write, Execute

Object 5 -Read, Write, Delete, Copy

A Lock-Key Mechanism

 Compromise between access lists and capability lists

 Each object has locks and each domain has keys

 Unique bit patterns

 A process executing in a domain can access an object only if that domain has a key that matches one of
the object's locks

 Not accessible by users directly

Comparison

 Check p.604

Access Control

 Protection can be applied to non-file resources

 Solaris 10 provides role-based access control (RBAC) to implement least privilege

 Privilege is right to execute system call or use an option within a system call

 Can be assigned to processes

 Users assigned roles granting access to privileges and programs

Revocation of Access Rights

 Questions about revocation that may arise:

 Does it occur immediately or is it delayed?

 Does it affect all users or only a group?

 Can a subset of rights be revoked, or must they all be?

 Can access be revoked permanently or temporarily?

 Access List - Delete access rights from access list.

 Simple

 Search the access list for the right(s) to be revoked, then delete it once found

 Immediate

 Revocation is more difficult with capabilities:

 Capabilities are distributed throughout the system, so we must find them first

 Capability List - Scheme required to locate capability in the system before capability can be
revoked:

 Reacquisition

 Periodically, capabilities are deleted from each domain, and the process may try to
reacquire the capability

 Back-pointers

 Pointers point to all capabilities associated with an object, and can be followed
when revocation is required

 Indirection

 Each capability points to an entry in a global table, which in turn points to the
object

 Keys

 A key is associated with each capability and can't be modified / inspected by the
process owning the capability

 Master key is associated with each object; can be defined or replaced with the set-
key operation

Capability-Based Systems

 These systems are not widely used.

An Example: Hydra

 Capability based system that provides flexibility

 Fixed set of access rights known to and interpreted by the system

 Access rights:

 read

 write

 execute a memory segment

 User can declare other rights.

 Interpretation of user-defined rights performed solely by user's program; system provides access
protection for use of these rights.

 Operations on objects are defined procedurally.

 These procedures are objects themselves and are accessed indirectly by capabilities.

 When the definition of an object is made known by Hydra, the names of operations on the type
become auxiliary rights.

 Auxiliary rights are described in a capability for an instance of the type.

 Provides rights amplification.

 Procedures are certified as trustworthy to act on a formal parameter of a specified type on behalf
of any process that holds a right to execute the procedure.

 Amplification allows implementation procedures access to the representation variables of an abstract
data type.

 When a process invokes the operation P on an object A, however, the capability for access to A may be
amplified as control passes to the code body of P.

 When a user passes an object as an argument to a procedure, we may need to ensure that the
procedure cannot modify the object.

 The procedure-call mechanism of Hydra was designed as a direct solution to the problem of mutually
suspicious subsystems.

 A Hydra subsystem is built on top of its protection kernel and may require protection of its own
components.

An Example: Cambridge CAP System

 CAP's capability system is simpler and less powerful than that of Hydra.

 It also provide secure protection of user-defined objects.

 Two kinds of capabilities:

 Data capability

 Provides standard read, write, execute of individual storage segments associated with
object.

 Software capability

 Interpretation left to the subsystem, through its protected procedures.

 The interpretation of a software capability is left completely to the subsystem, through the protected
procedures it contains.

Language-Based Protection

 To the degree that protection is provided in existing computer systems, it is usually achieved through an
operating-system kernel, which acts as a security agent to inspect and validate each attempt to access a
protected resource.

 Protection systems are now concerned not only with the identity of a resource to which access is
attempted but also with the functional nature of that access. In the newest protection systems, concern
for the function to be invoked extends beyond a set of system-defined functions, such as standard file
access methods, to include functions that may be user-defined as well.

 Protection can no longer be considered a matter of concern only to the designer of an operating system. It
should also be available as a tool for use by the application designer, as that resources of an applications
subsystem can be guarded against tampering or the influence of an error.

Compiler-Based Enforcement

 Specification of protection in a programming language allows the high-level description of policies for the
allocation and use of resources.

 When protection is declared along with data typing, the designer of each subsystem can specify its
requirements for protection, as well as its need for use of other resources in a system.

 Such specification should be given directly as a program is composed, and in the language in which
the program itself is stated.

 This approach has several significant advantages:

 Protection needs are simply declared, rather than programmed as a sequence of calls on
procedures of an operating system.

 Protection requirements can be stated independently of the facilities provided by a particular
operating system.

 The means for enforcement need not be provided by the designer of a subsystem.

 A declarative notation is natural because access privileges are closely related to the linguistic
concept of data type.

 A variety of techniques can be provided by programming-language implementation to enforce protection,
but any of these must depend on some degree of support from an underlying machine and its operating
system.

 If a system does not provide a protection kernel as powerful as those of Hydra or CAP, protection can still
be implemented using specifications given in a programming language.

 This kind of security will not be as good as protection implemented using a protection kernel. This
is because the mechanism relay more on assumptions about the operational state of the system.

 The merits of security enforced by kernel opposed to enforcement by compiler:

 Security

 Enforcement by a kernel provides a greater degree of security of the protection system
itself than does the generation of protection-checking code by a compiler.

 Flexibility

 There are limits to the flexibility of a protection kernel in implementing a user defined
policy, although it may supply adequate facilities for the system to provide enforcement of
its own policies

 With a programming language, protection policy can be declared and enforcement
provided as needed by an implementation.

 Efficiency

 The greatest efficiency is obtained when enforcement of protection is supported directly
by hardware (microcode).

 Language based enforcement has the advantage that static access enforcement can be
verified off-line at compile time.

 Intelligent compilers can tailor the enforcement mechanism so that the fixed overhead of
kernel calls can often be avoided.

 Read the summary on p.612 (mid)

 What is needed is a safe, dynamic access-control mechanism for distribution capabilities to system
resources among user processes.

 To be useful in practice it soul be reasonably efficient.

 This has led to the development of a number of language constructs that allow the programmer to
declare various restrictions on the use of specific managed resources.

 These resources provide mechanisms for three functions:

 Distributing capabilities safely and efficiently among customer processes.

 Specifying the type of operations that a particular process may invoke on an allocated
resource.

 Specifying the order in which a particular process may invoke the various operations of a
resource.

 Language implementation can provide software for protection enforcement when automatic hardware-
supported checking is unavailable.

 Interpret protection specifications to generate calls on whatever protection system is provided by the
hardware and the operating system.

Protection in Java

 Protection is handled by the Java Virtual Machine (JVM)

 A class is assigned a protection domain when it is loaded by the JVM.

 The protection domain indicates what operations the class can (and cannot) perform.

 If a library method is invoked that performs a privileged operation, the stack is inspected to ensure the
operation can be performed by the library.

 Look at example p.614 (Top)

 Stack inspection:

 This philosophy require the class to explicitly permit a network connection.

 By doing this the method takes responsibility for the request.

 The following figure shows stack inspection:

 A Java program cannot directly access memory; it can manipulate only an object for which it has a
reference.

 Java's load-time and run-time checks enforce type safety of Java classes

 Type safety ensures that classes cannot treat integers as pointers, write past the end of an array,
or otherwise access memory in arbitrary ways.

 This is the foundation of Java protection, since it enables a class to effectively encapsulate and protect its
data and methods from other classes loaded in the same JVM.

Summary

Chapter 15: System Security

 Protection (Ch 14) is strictly an internal problem: How controlled access to programs and data stored in a
computer is provided.

 Security on the other hand, requires not only an adequate protection system but also consideration of the
external environment within which the system operates.

 A protection system is effective if user authentication is compromised or a program is rum by an
unauthorized user.

 Computer resources must be guarded against unauthorized access, malicious destruction or alteration,
and accidental introduction of inconsistency.

 These resources include information stored in the system (code and data), as well as the CPU, memory,
disks, tapes, and networking.

 Here we start by examining ways in which resources may be accidentally or purposely misused.

 We also look at key security enablers like cryptography.

 We then look at mechanisms to guard against or detect attacks.

Chapter Objectives:

 To discuss security threads and attacks

 To explain the fundamentals of encryption, authentication, and hashing

 To examine the uses of cryptography in computing

 To describe various countermeasures to security attacks

The Security Problem

 A system is secure if its resources are used and accessed as intended under all circumstances.

 Security violations (or misuse) of the system can be categorized as intentional (malicious) or accidental.

 Easier to protect against accidental misuse than against malicious misuse.

 Note the following:

 An intruder or attacker are people who are attempting to break security.

 A thread is the potential for a security violation, whereas an attack is the attempt to break
security.

 A list of several forms of accidental and malicious security violations (p.622):

 Breach of confidentiality:

 The unauthorized reading of data

 Breach of integrity:

 The unauthorized modification of data

 Breach of availability:

 The unauthorized destruction of data (ex. defacement)

 Theft of service:

 The unauthorized use of resources

 Denial of service (DOS):

 The prevention of the legitimate use of a system

 Standard methods used to attempt to breach security:

 Masquerading:

 One participant in a communication pretends to be someone else

 Replay attack (Captured exchange):

 The malicious or fraudulent repeat of a valid data transmission

 Used with message modification to escalate privileges

 Man-in-the-middle attack:

 The attacker sits in the data flow of a communication, masquerading as the sender to the
receiver, and vice versa

 Used after a session hijacking took place where the active communication session was
intercepted

 To protect a system, we must take security measures at 4 levels:

1) Physical (Armed entry)

2) Human (Users being bribed / tricked)

 Social Engineering

 Phishing

 Dumpster diving

3) Operating System (Security breaches to the system)

4) Network (Intercepting data over private lines)

 Security at the first two levels must be maintained if operating-system security is to be secured.

 The system must provide protection (ch 14) to allow the implementation of security features.

Program Threats

 Writing a program to create a breach of security or causing a normal process to change its behavior and
create a breach is a common goal of crackers

 While it is useful to log into a system without authorization it is even more useful to leave behind a back-
door daemon that provides information or allows easy access even if the original exploit is blocked

 Multi-user computers are generally not prone to viruses because the executable programs are protected
from writing by the OS

Trojan Horse

 A code segment that misuses its environment

 Examples:

 login program emulation

 Spyware (pop-ups, covert channels - where surreptitious communication occurs

Trap Door

 A programmer leaves a hole in the software that only he can use

Logic Bomb

 A program that initiates a security incident only under certain circumstances (e.g. date and time or looking
for a specific parameter to change)

Stack and Buffer Overflow

 The most common way for an attacker to gain unauthorized access

 An authorized user may also use this exploit for privilege escalation, to gain privileges beyond those
allowed for him

 Essentially, the attack exploits a bug in a program

 The attacker finds the vulnerability and writes a program to:

 Overflow an input field, command-line argument, or input buffer… until it writes into the stack

 Overwrite the current return address on the stack with the address of the exploit code loaded in

step 3

 Write a simple set of code for the next space in the stack that includes commands that the

attacker wants to execute

 This attack can be countered by doing bounds checking on inputs

 Read p.628-629 NB!!!

Viruses

 A virus is a fragment of code embedded in a legitimate program

 Whereas a worm is structured as a complete, standalone program, a virus is a fragment of code
embedded in a legitimate program

 Viruses are very specific to architectures

 Viruses are normally hidden in Trojan horse programs acting as virus droppers

 Viruses normally belong to more than one category:

 File:

 A virus appends itself to a file then after the program is executed it removes itself from
the file and return control to the program

 Boot:

 It infects the boot sector and executes every time the computer boots. It sits in memory
and infects all other boot sector disks which is inserted to the computer

 Macro:

 Written in a high-level language and triggered when a program capable of executing the
macro is run

 Source code:

 This virus looks for source code and include the virus to help distribute the virus

 Polymorphic:

 Virus changes each time installed to avoid detection. Done to change virus's signature.
Signature is a pattern that is used to detect the virus

 Encrypted:

 Encrypted to avoid detection. Decryption included to decrypt and to infect a target

 Stealth:

 It attempts to avoid detection by modifying parts of the system that normally detects it

 Tunneling:

 Bypass detection by anti-virus programs by installing itself in interrupt-handler chain
and into device drivers

 Multipartite:

 Infect multiple parts of the system (Boot sector; memory; files)

 Armored:

 Compressed to avoid detection and disinfection by anti-virus programs. Difficult to
understand by anti- virus researchers

 Keystroke logger:

 Record all thing entered on keyboard

 Monoculture:

 An environment where many systems run the same hardware, operating system, and/or
application software

System and Network Threats

 System and network threads involve the abuse of services and network connections

 System and network threats create a situation in which operating-system resources and user files are
misused

 System and network attacks are used to launch a program attack, and vice versa

 The more open an operating system is the more services are running and the more likely a bug is available
to be exploit

 The attack surface is the set of ways an attacker can try to break into a system

Worms

 (p.634)

 A worm spawns copies of itself, using up system resources

 The worm spawns copies of itself using up all system resources and locking out all other processes

Port Scanning

 Port scanning is a means for a cracker to detect a system's vulnerabilities to attack

 It normally attempts to create a TCP/IP connection to a specific port or a range of ports

 Port scans are normally launched from zombie systems

 Such systems are previously compromised systems that are serving their owners while being used for
nefarious purposes, including denial-of-service attacks and spam relay

Denial of Service

 Involves disabling legitimate use of a system / facility

 E.g. an intruder could delete all the files on a system

 Generally network based attacks, and fall into two categories:

 An attack that uses so many facility resources that no useful work can be done

 Disrupting the network of the facility

 Distributed Denial-Of-Service attacks (DDOS):

 Attacks launched from multiple sites at once

Cryptography as a Security Tool

 We look at details of cryptography and its use in computer security

 All computers on a network sent and receive bits onto and from the wire without knowing from where
they come or where they go to

 Constrains the potential senders and receivers of a message

 Keys are distributed to computers to process messages

 Cryptography enables a recipient of a message to verify that the message was created by some computer
possessing a certain key - the key is the source of the of the message

Encryption

 A means for constraining the possible receivers of a message

 An encryption algorithm enables the sender of a message to ensure that only a computer possessing a
certain key can read the message

 An encryption algorithm consists of the following components:

 A set K of keys

 A set M of messages

 A set C of ciphertexts

 A function E:K->(M->C)

 A function D:K->(C->M)

 An encryption algorithm must provide this essential property:

 Given a chipertext cEC, a computer can compute m such that E(k)(m)=c only if it possesses D(k)

 Two main types of encryption algorithms:

 Symmetric encryption algorithm

 Asymmetric encryption algorithm

Symmetric Encryption

 In a symmetric encryption algorithm, the same key is used to encrypt and decrypt

 E(k) is derived from D(k), hence E(k) must be protected to the same extend as D(k)

 Data-Encryption Standard (DES)

 Breaks messages up into 64-bit blocks

 Keys are 56-bit key

 Called a block cipher

 Cipher-block chaining:

 The chunks are XORed with the previous ciphertext

 This is done to prevent that the ciphertext can be used to determine the encryption and
decryption keys

 Triple-DES was developed since DES was deemed insecure

 Advanced Encryption Standard (AES)

 Breaks messages up into 128-bit blocks

 Key lengths are 128, 192, 256-bits

 Stream ciphers are designed to encrypt and decrypt a stream of bytes or bits rather than a block

 RC4

 Use pseudo-random-bit generator to produce random bits which is fed a key and delivers a
keystream

 A keystream is an infinite set of keys that can be used for the input plaintext stream

 RC4 is used to encrypt streams of data, such as WEP

 Used to encrypt Web communications between Web browsers and Web servers

Asymmetric Encryption

 In an asymmetric encryption algorithm, different keys are used to encrypt and decrypt

 RSA

 A block-cipher public-key algorithm

 The encryption key is called the public key and is distributed freely

 The decryption key needs to be kept secret and is thus called the private key

 It is not feasible to calculate the decryption key from the encrypted text

 More safe and are used authentication, confidentiality and key distribution

 Needs more computer power to execute

Authentication

 Authentication is used to constrain the set of potential senders of a message

 Authentication is complementary to encryption

 Used to prove that a message has not been modified

 Components of an authentication algorithm:

 A set K of keys

 A set M of messages

 A set A of authenticators

 A function S:K->(M->A)

 A function V:K->(MxA->{true, false}) (Verification function)

 A hash function H(m) creates a small fixed-size block of data, known as a message digest or hash value,
from a message m

 A hash function work by taking a message in n-bit blocks and processing the blocks to produce an
n-bit hash

 H must be collision resistant on m - that is, it must be infeasible to find an m' not equal to m such
that H(m)=H(m')

 If H(m)=H(m') we know that m=m' - that is, we know that the message has not been modified

 Two common message-digest functions:

 MD5 outputs 128-hash

 SHA-1 outputs 160-bit hash

 Message digests are useful for detecting changed messages but are not useful as authenticators

 An authentication algorithm takes the message digest and encrypts it

 Two varieties of authentication algorithms:

 Message authentication code (MAC)

 A cryptographic checksum is generated from the message using a secret key

 Knowledge of V(k) and knowledge of S(k) are equivalent: one can be derived from the
other, so k must be kept secret

 Because of the collision resistance in the hash function, we are reasonably assured that no
other message could create the same MAC

 Digital signature algorithm (with public & private keys)

 The authenticators produced are called digital signatures

 In a digital-signature algorithm, it is computationally infeasible to derive S(ks) from V(kv); in
particular, V is a one-way function

 kv is the public key and ks is the private key

 RSA digital algorithm is one example

 The primary three reasons why we need encryption and authentication algorithms:

 Authentication algorithms generally require fewer computations

 The authenticator of the message is almost always shorter than the message and its cipher

 Sometimes, we want authentication but not confidentiality

 Authentication is the core of nonrepudiation, which supplies proof that an entity performed an action

 Ex: The filling out of an electronic form

Key Distribution

 Delivery of a symmetric key is a huge challenge

 Done out-of-band: on paper or conversation

 Asymmetric keys can be exchanged in public and each the user needs only one private key

 To make sure that the public key is legit authentication takes place on the public key using a digital
certificate

 A digital certificate is a public key digitally signed by a trusted party

 The trusted party receives proof of identification from some entity and certifies that the public key
belongs to that party

 The certificate authorities have their public keys included within the Web browsers before they
are distributed, hence we know it's legit

 The digital certificates are distributed in the standard X.509 digital certificate format

Implementation of Cryptography

 Implementation of cryptography can happen at almost any one of the 7 seven OSI Model layers

 In general more protocols benefit from protections placed lower in the protocol stack (not definitive)

 This might lead to lower protection in higher-layers of the OSI model

 IPSec (IP security) is used as the basis for VPNs

 p.646 - p.647

An Example: SSL

 Protocol that enables two computers to communicate securely

 To limit the sender and receiver of messages to the other

 With SSL a client and server establishes a secure session key that can be used for symmetric encryption of
the session between the two to avoid man-in-the-middle attacks

 Once the session is complete the session key is thrown away

 The SSL protocol is initiated by a client c to communicate securely with a server s

 The server obtain a certificate (cert) from certification authority CA

 The certificate contain the following:

 Attributes of the server

 Identity of a public encryption algorithm

 Public key of this server

 Validity interval of the certificate

 Digital signature on the above information made by CA

 The client obtain the public verification algorithm prior to the protocol's use

User Authentication

 Protection depends on the ability to identify the programs and processes currently executing, which then
must also be able to identify each user of the system

 How does the system determine if a user is authentic?

 The user's possession of something (e.g. key or card)

 The user's knowledge of something (e.g. identifier or password)

 An attribute of the user (e.g. fingerprint or signature)

Passwords

 Used to protect access to a system together with a username

 Used to protect objects in the system (files etc.)

 Used to determine access rights

Password Vulnerabilities

 Guessing – through knowing the user / using brute force

 Use good (longer) passwords to prevent guessing

 Shoulder surfing = looking over the shoulder of a user

 Make sure people are not watching while entering password

 Sniffing = watching all data being transferred on the network

 Encryption solves sniffing problem

 Illegal transfer – when users break account-sharing rules

 Passwords can be system-generated

 Some systems age passwords, forcing them to change at intervals

Encrypted Passwords

 Only encoded passwords are stored

 When a user presents a password, it is encoded and compared

 Thus, the password file doesn't need to be kept secret

One-Time Passwords

 Different password every time, so interceptors can't re-use it

 Paired passwords: the system presents one part and the user must supply the other part – the user is
challenged

 System & user share a secret, which must not be exposed

 A seed is a random number / numeric sequence

 The seed is the authentication challenge from the computer

 The secret and seed are input to a function: f(secret,seed)

 The result of the function is transmitted as the password

 Two-factor authentication: using a one-time password + PIN (personal identification number)

 Code book / one-time pad = a list of single-use passwords, which are crossed out after being used

Biometrics

 Biometrics used to secure physical access

 ex. access to a data center

 Palm / finger-print readers can scan you

 Multifactor authentication is the use of various authentication methods to authenticate a user (password,
fingerprint, etc...)

Implementing Security Defenses

 Includes improved user education, technology and writing bug-free software (not all)

 Defense in depth is a theory where people believe it is better to have more layers of defense than fewer
layers

Security Policy

 First step to security is to have a security policy

 Statement of what is secured

 Without policy, users and admins wouldn't know what is permissible, required and what is not allowed

 Security policy document is a living document that is reviewed and updated periodically

Vulnerability Assessment

 To determine if security policy is correctly implemented a vulnerability assessment is needed

 This can consist out of broad range of tests, some of which are:

 Social engineering

 Risk assessment

 Port scans

 Risk Assessments:

 Look at the odds a security incident will affect the entity and decrease its value

 Core activity on vulnerability assessments is penetration test:

 Scan the entity for known vulnerabilities

 Done when computer use is relatively low

 Do on test systems

 Scans can check variety of aspects:

 Short or easy-to-guess passwords

 Unauthorized privileged programs (setuid)

 Unauthorized programs in system directories

 Unexpectedly long-running processes

 Improper directory protections on user and system directories

 Improper protections on system data files (password file, device drivers, OS kernel)

 Dangerous entries in program search path (section 15.2.1)

 Changes to system programs detected with checksum values

 Unexpected or hidden network daemons

 A system is only as secure as its most far-reaching connection

 If a system has a connection outside a building the system is not secure

 Vulnerability scans are used on networks to find problems with network security

 Scans search the network for ports that responds to a request

 Access to unsafe open ports can be blocked

 Scans determine details of applications on ports by listening and try to find vulnerabilities for the
application

 Maybe system needs patches or is misconfigured

 Tools that are used to test security can be dangerous in the hands of a bad person

 Security through obscurity:

 People advocate that no tools should be developed to test security, since it is used to find security
holes

Intrusion Detection

 Encompasses many techniques that vary on a number of axes:

 The time that detection occurs

 The types of inputs examined to detect intrusive activity

 The range of response capabilities

 Intrusion-Detection Systems (IDSs)

 Raises an alarm when intrusion is detected

 Intrusion-Prevention Systems(IDPs)

 Acts as routers, passing traffic unless an intrusion is detected

 What constitutes an intrusion?

 Signature-based detection

 System input is examined for specific behavior patterns

 E.g. monitoring for multiple failed attempts to log on

 ‘Characterizes dangerous behavior and detects it’

 Anomaly detection

 E.g. monitoring system calls of a daemon process to detect if its system-call behavior
deviates from normal patterns

 ‘Characterizes non-dangerous behavior and detects the opposite’

 Tripwire (Example of Anomaly-Detection Tool)

 Operates on the premise that a large class of intrusions result in anomalous
modification of system directories & files

 Tripwire is a tool to monitor file systems for added, deleted, or changed files, and to
alert admin to these modifications

 Limitations:

 The need to protect the Tripwire program

 Some security-relevant files are supposed to change in time

Virus Protection

Auditing, Accounting, and Logging

 Audit-trail processing: security-relevant events are logged to an audit trail and then matched against
attack signatures or analyzed for anomalous behavior

Firewalling to Protect Systems and Networks

 A firewall limits network access between two security domains

 It monitors and logs connections and can also limit connections

 A firewall can separate a network into multiple domains

 A Firewall don't prevent attacks that tunnel, or travel within protocols / connections that the firewall
allows

 Another firewall vulnerability spoofing, where an unauthorized host pretends to be an authorized one by
meeting some criteria

Computer-Security Classification

 Trusted Computer Base (TCB) = the sum total of all protection systems within a computer system that
enforce a security policy

An Example: Windows XP

Summary

Distributed Systems

PART SEVEN: DISTRIBUTED SYSTEMS

Chapter 16: Distributed Operating Systems

 A distributed system is a collection of processors that do not share memory or a clock

 Instead, each processor has its own local memory

 The processors communicate with one another through various communication networks, such as high-
speed buses or telephone lines

 Here we discuss the general structure of distributed systems and the networks that interconnect them

 We contrast the main differences in operating-system design between these systems and centralized
systems

 Chapter Objectives:

 To provide a high-level overview of distributed systems and the networks that interconnect them

 To discuss the general structure of distributed operating systems

Motivation

 Distributed system is a collection of loosely coupled processors interconnected by a communication
network

 Each processor has its own local resources

 The processors communicate through networks

 General structure of distributed system

 Four reasons for building Distributed Systems:

 resource sharing

 computation speedup

 reliability

 communication

Resource Sharing

 A user at one site can use the resources at another site

 E.g. sharing files, processing info, printing files…

Computation Speedup

 If a computation can be partitioned into sub-computations that can run concurrently, then a distributed
system allows us to distribute the sub-computations among various sites

 If a particular site is overloaded with jobs, some may be moved to other lightly loaded sites (= load
sharing)

Reliability

 If one site fails, the remaining ones can still operate

 If each machine is responsible for some crucial system function, then a single failure may halt the whole
system

 With enough redundancy, the system can continue operation

 The failure of a site must be detected by the system

 The system must no longer use the services of that site

 If the function of the failed site can be taken over by another site, the system must ensure that the
transfer of function occurs correctly

 When the failed site recovers / is repaired, mechanisms must be available to integrate it back into the
system

Communication

 Messages passed between systems in the same way a single-computer message system does (section 3.4)

 Functions include file transfer, login, mail, and remote procedure calls (RPCs)

 These functions can be carried out over distances

 Users at different sites can exchange information

 Advantages:

 Collaboration over distances

 Downsizing

Types of Network-based Operating Systems

 Two general categories of network-oriented operating systems:

 Network Operating Systems

 Distributed Operating Systems

Network Operating Systems

 Simpler to implement, but more difficult for users to access and utilize than distributed OSs

 Provides an environment where users who are aware of multiplicity of machines can access remote
resources on each others machines

Remote Login

 The Internet provides the telnet facility for this purpose

 ex: telnet cs.yale.edu

 Creates socket connection between the local machine and the cs.yale.edu computer

 Open bidirectional connection

 User must enter username and password

 User can execute any command on remote computer as any local user can

Remote File Transfer

 Each computer maintains its own local file system

 User need access, else use anonymous and arbitrary password

 Anonymous users can only access files in the directory with public access

 Care must be taken that anonymous users cannot access files outside this directory

 The Internet provides the FTP program

 ex. connect with: ftp cs.yal.edu

 copy the file with: get Server.java

 This does not provide real file sharing

 User must know where the files are in the subdirectories

 Various copies of the same file can exist and they can be inconsistent

 Only predefined set of file-related commands can be used:

 get - from remote to local machine

 put - from local to remote machine

 ls or dir - list files in current directory of remote machine

 cd - change current directory of remote machine

 A windows user logging into a Unix machine using telnet should change paradigms

 User must use Unix commands

 Distributed operating systems address this issue

Distributed Operating Systems

 Provide more features than network OSs

 Users access remote resources in the same manner as local ones

 Data and process migration is under control of distributed operating system

Data Migration

 If a user need to work on a remote file:

 Transfer the entire file to the other site and back after modifying the file

 Very inefficient if only small part of large file is being processed

 Efficient if large portions of file needs to be processed

 Transfer only the necessary portions of the file needed for immediate task

 If other portion needed, can be transferred

 After modification only the modified portion is transferred back to remote site

Computation Migration

 Invoke a procedure at another site and get the result

 Access to file carried out remotely and is initiated by RPC

 RPC uses datagram protocol (UDP on Internet) to execute routine on remote site (section 3.6.2)

 Can also send message to remote site

 Remote site opens up new process, executes task, sent result back and close

 Can be executed concurrently/bidirectional between sites

Process Migration

 Logical extension of computation migration

 Why (parts of) a process may be executed at different sites

 Load balancing - even workload

 Computation speedup - reduce total process turnaround time

 Hardware preference - specialized processor/hardware needs

 Software preference - software only available at specific site and not cost effective to move

 Data access - if to much data must be moved, remote processes can be more efficient

 Two techniques to move processes in a network

 The system can hide the fact that the process has migrated from the client

 No user programming needed to accomplish process migration

 The user must specify explicitly how the process should migrate

 Done to satisfy a hardware or software preference

Network Structure

 Two type of networks:

 Local Area Networks (LAN)

 Wide Area Networks (WAN)

 Main difference is in the way they are geographically distributed

 Local Area Networks (LAN)

 Distributed over small areas (inside single or adjacent buildings)

 Wide Area Networks (WAN)

 Distributed over large areas (in a country)

 Differences in speed and reliability of communications networks

Local-Area Networks

 LANs emerged as a substitute for large mainframe computers

 A number of small computers are used to replace the mainframe computers

 Small computers have self-contained applications

 Can be used for data sharing in the enterprise

 Designed to cover small geographical area

 Multiaccess bus, ring, or star network

 Because computers closer together, higher speed and lower error rate than computers in WAN

 Make use of twisted-pair and fiber-optic cabling

 Speeds of 10Mbps to 100Mbps can be obtained with the Ethernet protocol used for LANs

 Normally consists out of computers, shared peripheral devices and one or more gateways

 Wifi is the wireless alternative to Ethernet, but is slower than Ethernet

 No cables needed to connect hosts to network

 The distance between the wireless router and the host influences the speed of the network

Wide-Area Networks

 WANs emerged mainly as an academic research project

 Communication processors control communication links

 Responsible for defining the interface through which the sites communicate over the network, as
well as for transferring information among the various sites

 Links geographically separated sites

 Point-to-point connections over long-haul lines (often leased from a phone company)

 Speed ≈1.544 to 45Mbps

 Broadcast usually requires multiple messages

 Nodes:

 usually a high percentage of mainframes

Network Topology

 Sites in the system can be physically connected in a variety of ways; they are compared with respect to
the following criteria:

 Installation cost

 How expensive is it to link the various sites in the system?

 Communication cost

 How long does it take to send a message from site A to site B?

 Availability/Reliability

 If a link or a site in the system fails, can the remaining sites still communicate with each
other?

 The various topologies are depicted as graphs whose nodes correspond to sites

 An edge from node A to node B corresponds to a direct connection between the two sites

 The following six items depict various network topologies:

 The number of links grows as the square of the number of sites, resulting in a huge installation cost

 Criteria for comparing the different configurations:

 Installation cost

 Low for tree structured networks

 High for fully connected networks

 Communication cost

 Low for tree-structured networks

 Low for star networks

 High for ring networks

 Availability

 High for ring networks

 Lower for tree-structured networks

Communication Structure

 The design of a communication network must address five basic issues:

 Naming and name resolution

 How do two processes locate each other to communicate?

 Routing strategies

 How are messages sent through the network?

 Packet strategies

 Are packets sent individually or as a sequence?

 Connection strategies

 How do two processes send a sequence of messages?

 Contention

 The network is a shared resource, so how do we resolve conflicting demands for its use?

Naming and Name Resolution

 Each process has an identifier

 Identify processes on remote systems by <host-name, identifier> pair

 The computer’s host-name must be resolved into a host-id

 Domain name service (DNS) –specifies the naming structure of the hosts, as well as name-to-address
resolution (Internet)

 The OS is responsible for accepting from its process a message destined for <host-name, identifier> and
for transferring that message to the appropriate host

 The Kernel on the destination host is then responsible for transferring the message to the process named
by the identifier

 Check p.686 for DNS protocol

Routing Strategies

 Each site has a routing table, indicating alternative paths

 Fixed routing

 A path from A to B is specified in advance

 Disadvantage: Can't adapt to link failures & load changes

 Virtual routing

 A path from A to B is fixed for the duration of one session

 Dynamic routing

 The path is chosen only when a message is sent

 Messages may arrive out of order, so add sequence numbers

 Routers examine the destination Internet address and examine tables to determine the location of the
destination host

 With static routing, this table is changed by manual update

 With dynamic routing, a routing protocol is used between routers so that they can update their routing
tables automatically

Packet Strategies

 Communication is commonly implemented with fixed-length messages called packets, frames, or
datagrams

Connection Strategies

 Once messages are able to reach their destinations, processes can institute communications sessions to
exchange information

 Pairs of processes that want to communicate over the network can be connected in a number of
ways

 The three most common schemes are circuit switching, message switching, and packet switching

 Circuit switching

 If two processes want to communicate, a permanent physical link is established between them

 This link is allocated for the duration of the communication session, and no other process
can use that link during this period (even if the two processes are not actively
communicating for a while)

 This scheme is similar to that used in the telephone system

 Once a communication line has been opened between two parties (that is, party A calls
party B), no one else can use this circuit until the communication is terminated explicitly
(for example, when the parties hang up)

 Message switching

 If two processes want to communicate, a temporary link is established for the duration of one
message transfer

 Physical links are allocated dynamically among correspondents as needed and are allocated
for only short periods

 Each message is a block of data with system information - such as the source, the
destination, and error-correction codes (ECC) - that allows the communication network to
deliver the message to the destination correctly

 This scheme is similar to the post-office mailing system

 Each letter is a message that contains both the destination address and source
(return) address

 Many messages (from different users) can be shipped over the same link

 Packet switching

 One logical message may have to be divided into a number of packets

 Each packet may be sent to its destination separately, and each therefore must include a
source and a destination address with its data

 Furthermore, the various packets may take different paths through the network

 The packets must be reassembled into messages as they arrive

 Note that it is not harmful for data to be broken into packets, possibly routed separately,
and reassembled at the destination

 Breaking up an audio signal (say, a telephone communication), in contrast, could cause
great confusion if it was not done carefully

 There are obvious tradeoffs among these schemes:

 Circuit switching requires substantial setup time and may waste network bandwidth, but it incurs
less overhead for shipping each message

 Conversely, message and packet switching require less set-up time but incur more overhead per
message

 Also, in packet switching, each message must be divided into packets and later reassembled

 Packet switching is the method most commonly used on data networks because it makes best use
of network bandwidth

Contention

 Depending on the network topology, a link may connect more than two sites in the computer network,
and several of these sites may want to transmit information over a link simultaneously

 This situation occurs mainly in a ring or multi-access bus network

 In this case, the transmitted information may become scrambled

 If it does, it must be discarded

 The sites must be notified about there problem so that they can retransmit the information

 If no special provisions are made, this situation may be repeated, resulting in degraded
performance

 Several techniques have been developed to avoid repeated collisions, including collision detection and
token passing

 CSMA/CD (carrier sense with multiple access):

 Before transmitting a message over a link, a site must listen to determine whether another
message is currently being transmitted over that link

 If the link is free, the site can start transmitting

 Otherwise, it must wait (and continue to listen) until the link is free

 If two or more sites begin transmitting exactly the same time (each thinking that no other
site is using the link), then they will register a collision detection (CD) and will stop
transmitting

 Each site will try again after some random time interval

 The main problem with this approach is that, when the system is very busy, many collisions
may occur, and thus performance may be degraded

 Nevertheless, CSMA/CD has been used successfully in the Ethernet system, the most
common local area network system

 One strategy for limiting the number of collisions is to limit the number of hosts per
Ethernet network

 Adding more hosts to a congested network could result in poor network throughput

 As systems get faster, they are able to send more packets per time segment

 As a result, the number of systems per Ethernet network generally is decreasing so
that networking performance is kept reasonable

 Token passing:

 A unique message type, known as a token, continuously circulates in the system (usually a
ring structure)

 A site that wants to transmit information must wait until the token arrives

 It then removes the token from the ring and begins to transmit its message

 When the site completes its round of message passing, it retransmits the token

 This action, in turn, allows another site to receive and remove the token and to
start its message transmission

 If the token gets lost, the system must detect the loss and generate a new token

 It usually does that by declaring an election to choose a unique site where
a new token will be generated

 A token-passing scheme has been adopted by the IBM and HP / Apollo systems

 The benefit of a token-passing network is that performance is constant

 Adding new sites to a network may lengthen the waiting time for a token, but it will not
cause a large performance decrease, as may happen on Ethernet

 On lightly loaded networks, however, Ethernet is more efficient, because systems can
send messages at any time

Communication Protocols

OSI model

 Physical layer

 Handles mechanical & electrical details of transmission

 Data-link layer

 Responsible for handling the frames

 Network layer

 Responsible for providing connections & routing packets

 Transport layer

 Responsible for low-level access to the network

 Session layer

 Responsible for implementing sessions

 Presentation layer

 Responsible for resolving the differences in formats

 Application layer

 Responsible for interacting directly with the users

Robustness

Failure Detection

 To detect link and site failure, use a handshaking procedure:

 At fixed intervals both sites exchange ‘I-am-up’ messages

 If site A doesn't receive this message, it can assume

 That site B has failed, or

 That the link between A & B has failed, or

 That the message from B has been lost

 At this point, site A can

 Wait for another ‘I-am-up’ message from B, or

 Send an ‘Are-you-up?’ message to B

 Site A can differentiate between link and site failure by sending an ‘Are-you-up?’ message by
another route

 If B then replies, you know B is up and that the failure is in the direct link between A and B

Reconfiguration

 If a direct link from A to B has failed,

 This info must be broadcast to every site in the system so that the routing tables can be updated
accordingly

 If the system believes that a site has failed,

 Every site in the system must be notified, so they will no longer attempt to use the services of the
failed site

Recovery from Failure

 If a link between A and B has failed,

 When it is repaired, both A and B must be notified

 If site B has failed,

 When it recovers, it must notify all other sites

Fault Tolerance

Design Issues

An Example: Networking

Summary

Special-Purpose Systems

Real-Time Embedded Systems

 The most prevalent form of computers

 They run embedded real-time OS's that provide limited features

PART EIGHT: SPECIAL PURPOSE SYSTEMS

Chapter 19: Real-Time Systems

Overview

 Rigid time requirements on the operation of a processor

 Sensors bring data to the computer, which must analyze the data and possibly adjust controls to modify
the sensor inputs

 E.g. home appliance controllers, weapon & fuel-injection systems

 Processing must be done within the time constraints, or it fails

 Hard real-time systems

 Guarantee that critical tasks are completed on time

 Data is stored in memory / ROM instead of secondary storage

 No virtual memory, so no time-sharing

 No general-purpose OS supports hard real-time functionality

 Soft real-time systems

 A critical real-time task gets priority over other tasks

 More limited utility than hard real-time systems

 Risky to use for industrial control and robotics

 Useful for multimedia, virtual reality, scientific projects

 Finding its way into most current OS's, including UNIX

Multimedia Systems

Handheld Systems

 Limited memory, so the OS must manage memory efficiently

 Slow processors, so the OS must not tax the processor

 Small display screens, so web clipping is used for displaying

Computing Environments

Traditional Computing

 Companies have portals to provide web access to internal servers

 Network computers are terminals that understand web computing

 Handheld PCs can connect to wireless networks

Some homes have firewall to protect them from security breaches

 Traditional computer

 Blurring over time

 Office environment

 PCs connected to a network, terminals attached to mainframe or minicomputers providing
batch and timesharing

 Now portals allowing networked and remote systems access to same resources

 Home networks

 Used to be single system, then modems

 Now firewalled, networked

Client-Server Computing

 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated by clients

 Compute-server provides an interface to client to request services (i.e. database)

 File-server provides interface for clients to store and retrieve files

Peer-to-Peer Computing

 OS's include system software that enables computers to access the Internet, and several include the web
browser itself

 The processors communicate through communication lines

 Network OS = one that provides file sharing across the network

 Another model of distributed system

 P2P does not distinguish clients and servers

 Instead all nodes are considered peers

 May each act as client, server or both

 Node must join P2P network

 Registers its service with central lookup service on network, or

 Broadcast request for service and respond to requests for service via discovery protocol

 Examples include Napster and Gnutella

Web-Based Computing

 PCs are the most prevalent access devices

Load balancers distribute network connections

 Web has become ubiquitous

 PCs most prevalent devices

 More devices becoming networked to allow web access

 New category of devices to manage web traffic among similar servers: load balancers

 Use of operating systems like Windows 95, client-side, have evolved into Linux and Windows XP, which
can be clients and servers

Chapter 23: Influential Operating Systems

Feature Migration

 Features from mainframes have been adopted by microcomputers

Early Systems

 Early systems were

 first interactive systems (punch cards!)

 then became batch systems

 then interactive again

 Early systems were

 single-user systems (just one user could work at a time)

 then became multi-user systems

 and then single-user systems (with the advent of PCs)

 and are now aimed at a multi-user environment

 Dedicated Computer Systems

Shared Computer Systems

Overlapped I/O

Open-Source Operating Systems

History

Linux

BSD UNIX

Solaris

Utility

Summary

