
+ swap page in 

+ restart overhead ) 

 Example:   

 Memory access time = 200 nanoseconds 

 Average page-fault service time = 8 milliseconds 

 EAT = (1 -p) x 200 + p (8 milliseconds)  

= (1 -p x 200 + p x 8,000,000  

= 200 + p x 7,999,800 

 If one access out of 1,000 causes a page fault, then 

EAT = 8.2 microseconds.  

 This is a slowdown by a factor of 40!! 

Copy-on-Write 
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 Virtual memory allows other benefits during process creation:   

 Copy-on-Write  

 Memory-Mapped Files (later)   

 Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory   

 If either process modifies a shared page, only then is the page copied   

 COW allows more efficient process creation as only modified pages are copied 

 Free pages are allocated from a pool of zeroed-out pages 

 Before process 1 modifies page C 

 

 After process 1 modifies page C there will also be a Copy of page C in physical memory (p.368 bottom) 

 If there is no free frame, the following happens:   

 Page replacement - find some page in memory, but not really in use, swap it out   

 algorithm 

 performance - want an algorithm which will result in minimum number of page faults   

 Same page may be brought into memory several times 

Page Replacement 

 If we increase our degree of multiprogramming, we are over-allocating memory: 

 While a process is executing, a page fault occurs 



 The hardware traps to the OS, which checks its internal tables to see that this page fault is a 
genuine one 

 The OS determines where the desired page is residing on disk, but then finds no free frames on the 
free-  frame list 

 The OS then could:   

 Terminate the user process (Not a good idea) 

 Swap out a process, freeing all its frames, and reducing the level of multiprogramming 

 Perform page replacement 

 The need for page replacement arises:  

 

 Prevent over-allocation of memory by modifying page-fault service routine to include page replacement 

 Use modify (dirty) bit to reduce overhead of page transfers -only modified pages are written to disk 

 Page replacement completes separation between logical memory and physical memory -large virtual 
memory can  be provided on a smaller physical memory 

Basic Page Replacement 

 Basic page replacement approach: 

 If no frame is free, we find one that is not being used and free it 

 Page replacement takes the following steps: 

 Find the location of the desired page on the disk 

 Find a free frame:    

 If there is a free frame, use it, else 

 Select a victim frame with a page-replacement algorithm 

 Write the victim page to the disk and change the page & frame tables accordingly    

 Read the desired page into the (newly) free frame and change the page & frame tables 

 Restart the user process 



  

 Note: if no frames are free, two page transfers (one out & one in) are required, which doubles the page-
fault  service time and  increases the effective access time accordingly 

 We can reduce this overhead by using a modify / dirty bit: 

 When a page is modified, its modify bit is set 

 If the bit is set, the page must be written to disk 

 If the bit is not set, you don't need to write it to disk since it is already there, which reduces I/O 
time    

 We must solve two major problems to implement demand paging:    

 Develop a frame-allocation algorithm 

 If we have multiple processes in memory, we must decide how many frames to allocate to 
each  process    

 Develop a page-replacement algorithm 

 When page replacement is required, we must select the frames that are to be replaced    

 When selecting a particular algorithm, we want the one with the lowest page-fault rate 

 To evaluate an algorithm, run it on a reference string (a string of memory references) and compute the 
number of  page faults 

 Want lowest page-fault rate 

 Evaluate algorithm by running it on a particular string of memory references (reference string) and  
computing the number of page faults on that string 

 In all our examples, the reference string is  

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

 You can generate reference strings or trace a given system and record the address of each memory 
reference 

 Graph of page faults versus the number of frames: 



 

FIFO Page Replacement 
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 The simplest page-replacement algorithm is the first-in, first-out (FIFO) algorithm 

 A FIFO replacement algorithm associates with each page the time when that page was brought 
into  memory 

 When a page must be replaced, the oldest page is chosen 

 Notice it is not strictly necessary to record the time when a page is brought in 

 We can create a FIFO queue to hold all pages in memory 

 We replace the page at the head of the queue 

 When a page is brought into memory, we insert it at the tail of the queue 

 Easy to understand and implement 

 Example: 

 

 FIFO page replacement algorithm: 

 

 Yields 15 page faults   

  



 Belady’s anomaly:  

 For some algorithms, the page-fault rate may increase as the number of allocated frames 
increases 

 FIFO illustration of Belady's Anomaly: 

 

Optimal Page Replacement 

 Optimal page replacement was found as a result of Belady's anomaly 

 Guarantees the lowest possible page-fault rate for a fixed number of frames 

 This algorithm exists and is called either OPT or MIN 

 Difficult to implement because we require future knowledge of the reference string 

 Used mainly for comparative studies 

 Algorithm: 

 Replace the page that will not be used for the longest period 

 4 frames example: 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

 

 How do you know this? 

 Used for measuring how well your algorithm performs 

 Difficult to implement, because you need future knowledge of the reference string 

 Optimal Page replacement: 

 



 Yields 9 page faults 

LRU (least recently-used) Page Replacement 

 An approximation of the optimal page replacement algorithm 

 We use the recent past as an approximation of the near future 

 Replace the page that has not been used for the longest period 

 Think of this algorithm as the backward looking optimal page-replacement algorithm 

 Example:   

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

 

 LRU Page Replacement: 

 

 Yields 12 page faults   

 Two ways to determine an order for the frames defined by the time of last use:   

 Counters: 

 Each page-table entry has a time-of-use field and the CPU gets a logical clock / counter 

 Whenever a page is referenced, the contents of the clock register are copied to the time-
of-use field  in the page-table entry for that page   

 Stack:   

 Whenever a page is referenced, it is removed from the stack and put on top 

 The bottom of the stack is the LRU page 

 Use of a stack to record the most recent page references: 

 

 Neither optimal replacement nor LRU replacement suffers from Belady’s anomaly 



LRU-Approximation Page Replacement 

 Reference bit: 

 With each page associate a bit, initially = 0 

 When page is referenced bit set to 1 by hardware 

 Replace the one which is 0 (if one exists)   

 We do not know the order, however  

Additional-Reference-Bits Algorithm 

 You can gain additional ordering info by recording reference bits at regular intervals  

 A 8-bit byte is used for each page in a table in memory 

 This register is a right-shift register 

 Every 100 ms the pages are referenced and if the page was used then a 1 is moved into the MSB of 
the byte 

 Examples:   

 00000000 -  This page has not been used in the last 8 time units (800 ms) 

 11111111 - Page has been used every time unit in the past 8 time units 

 11000100 has been used more recently than 01110111 

 These can be treated as unsigned integers and the page with the lowest value is the LRU page 

 If numbers are equal, FCFS is used 

Second-Chance Algorithm 

 Like the FIFO replacement algorithm, but you inspect the reference bit and replace the page if the value is 
0 

 If the reference bit is 1, that page gets a second chance, its reference bit is cleared (0), and its arrival time 
is reset 

 A page that has been given a second chance will not be replaced until all other pages are replaced 

 If a page is used often enough to keep its reference bit set, it will never be replaced  

 Second chance: 

 Need reference bit 

 Clock replacement 

 If page to be replaced (in clock order) has reference bit = 1 then:   

 set reference bit 0 

 leave page in memory   

 replace next page (in clock order), subject to same rules 

 Second-Chance (clock) Page-Replacement Algorithm: 



 

Enhanced Second-Chance Algorithm 

 Consider both the reference bit and the modify bit as an ordered pair: 

 (0,0) neither recently used nor modified – best to replace 

 (0,1) not recently used but modified – not quite as good 

 (1,0) recently used but clean – probably used again soon 

 (1,1) recently used and modified – probably used again soon and will need to be written to disk 
before being replaced  

Counting-Based Page Replacement 

 Keep a counter of the number of references to each page 

 LFU (least frequently used) page-replacement algorithm   

 The page with the smallest count is replaced   

 MFU (most frequently used) page-replacement algorithm   

 The page with the smallest count was probably just brought in and has yet to be used 

Page-Buffering Algorithms 

 If a page is read into a free frame from the pool before a victim frame is written out, the process can 
restart as soon  as possible, without waiting for the victim page to be written out 

 Whenever the paging device is idle, a modified page is selected and written to disk, increasing the 
probability that a  page will be clean  when selected for replacement 

 You can remember which page was in each frame from the pool and reuse old pages directly if needed, 
before the  frame is reused 

Applications and Page Replacement 

 Sometimes applications processing data knows better how to handle their own data then the general-
purpose use of  page replacement used by the OS 

 Example: 

 Databases 



 Data warehouses perform massive sequential disk reads, followed by computations and writes 

 MFU would be more efficient than LFU 

Allocation of Frames 
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 Each process needs minimum number of pages 

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:   

 instruction is 6 bytes, might span 2 pages 

 2 pages to handle from 

 2 pages to handle to 

 Two major allocation schemes   

 fixed allocation 

 priority allocation 

Minimum Number of Frames 

 The instruction-set architecture defines the minimum number of frames that must be allocated 

 The maximum number is defined by the amount of available memory  

Allocation Algorithms 

 Equal allocation  

 Every process is given an equal share of frames  

 Proportional allocation  

 Allocate memory to each process according to its size  

Global versus Local Allocation 

 Global replacement  

 A process can select a replacement frame from the whole set 

 A process may even select only frames allocated to other processes, increasing the number of 
frames allocated to it 

 Problem: A process can't control its own page-fault rate 

 Global replacement is the more common method since it results in greater system throughput  

 Local replacement  

 A process selects only from its own set of allocated frames 

 The number of frames allocated to a process does not change  

Non-Uniform Memory Access 
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Thrashing 

 If a process does not have "enough"pages, the page-fault rate is very high. This leads to:   

 low CPU utilization 

 operating system thinks that it needs to increase the degree of multiprogramming 

 another process added to the system   



 If the number of frames allocated to a low-priority process falls below the minimum number required, it 
must be  suspended 

 A process is thrashing if it is spending more time paging than executing (E.g. its pages are all in use, and it 
must  replace a page that will be needed  again right away) 

Cause of Thrashing 

 The thrashing phenomenon:   

 As processes keep faulting, they queue up for the paging device, so CPU utilization decreases 

 The CPU scheduler sees the decreasing CPU utilization and increases the degree of 
multiprogramming as  a result 

 The new process causes even more page faults and a longer queue! 

 

 We can limit the effects of thrashing by using a local replacement algorithm: 

 If one process starts thrashing, it cannot steal frames from another process and cause the latter to 
thrash  also 

 Pages are replaced with regard to the process of which they are a part 

 However, if processes are thrashing, the effective access time will increase even for a process that 
is not  thrashing    

 To prevent thrashing, we must give a process enough frames: 

 The locality model of process execution: 

 As a process executes, it moves from locality to locality 

 (A locality is a set of pages that are actively used together – a program may have 
overlapping  localities) 

 If we allocate enough frames to a process to accommodate its current locality, it will fault 
for  pages in its locality until they are all in memory, and it won't fault again until it changes 
localities 

 Locality in a memory-reference pattern: 



 

Working-Set Model 

 Based on the assumption of locality 

 A parameter, Δ, defines the working-set window 

 Working set = set of pages in the most recent Δ page references 

 If a page is in use, it will be in the working set, else it will drop from the working set Δ time units after its 
last  reference  

 The accuracy of the working set depends on the selection of Δ 

 If Δ is too small, it won't encompass the entire locality 

 If Δ is too large, it may overlap several localities    

 The working-set strategy prevents thrashing while keeping the degree of multiprogramming as high as 
possible 

 Working-Set Model:   

 Δ ≡working-set window ≡a fixed number of page references  

Example: 10,000 instruction 

 WSSi (working set of Process Pi) = total number of pages referenced in the most recent Δ (varies in 
time)   

 if Δ too small will not encompass entire locality 

 if Δ too large will encompass several localities 

 if Δ = ∞⇒  will encompass entire program   

 D = Σ WSSi ≡total demand frames  

 if D > m ⇒ Thrashing 

 Policy if D > m, then suspend one of the processes 



 

Page-Fault Frequency 

 This takes a more direct approach than the working-set model 

 To prevent thrashing, control the page-fault rate:   

 When it is too high, we know the process needs more frames 

 When it is too low, the process has too many frames   

 Establish upper & lower bounds on the desired page-fault rate   

 Allocate / remove frames if needed   

 If the page-fault rate increases and no frames are available, select a process to suspend and re-distribute 
its freed frames 

 

Memory-Mapped Files 

 Memory-mapping a file allows a part of the virtual address space to be logically associated with a file 

 Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block 
to a page  in memory 

 A file is initially read using demand paging  

 A page-sized portion of the file is read from the file system into a physical page 

 Subsequent reads/writes to/from the file are treated as ordinary memory accesses  

 Simplifies file access by treating file I/O through memory rather than read()write()system calls 

 Also allows several processes to map the same file allowing the pages in memory to be shared 

Basic Mechanism 
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 A disk block is mapped to a page in memory 

 Initial access to the file proceeds using ordinary demand paging 

 Page-sized portions of the file are read from the file system into physical pages 

 Subsequent reads & writes to the files are handled as routine memory accesses, simplifying file access and 
usage 



 File manipulation through memory incurs less overhead than read() and write() system calls 

 Closing the file results in all the memory-mapped data being written back to disk and removed from the 
virtual  memory 

 Memory Mapped files: 

 

 In many ways, the sharing of memory mapped files is similar to shared memory  

 Processes can communicate using shared memory by having the communicating processes memory-map 
the  same file into their virtual address spaces 

 

Shared Memory in the Win32 API 
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Memory-Mapped I/O 
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Allocating Kernel Memory 

 Treated differently from user memory 

 Often allocated from a free-memory pool  

1. Kernel requests memory for structures of varying sizes 

2. Some kernel memory needs to be contiguous 

Buggy System 

 Allocates memory from fixed-size segment consisting of physically-contiguous pages 

 Memory allocated using power-of-2 allocator 

 Satisfies requests in units sized as power of 2 

 Request rounded up to next highest power of 2 



 When smaller allocation needed than is available, current chunk split into two buddies of next-
lower power of 2   

 Continue until appropriate sized chunk available 

 

Slab Allocation 

 Alternate strategy 

 Slab is one or more physically contiguous pages 

 Cache consists of one or more slabs 

 Single cache for each unique kernel data structure   

 Each cache filled with objects-instantiations of the data structure   

 When cache created, filled with objects marked as free 

 When structures stored, objects marked as used 

 If slab is full of used objects, next object allocated from empty slab   

 If no empty slabs, new slab allocated   

 Benefits include no fragmentation, fast memory request satisfaction 

 



Other Considerations 

Prepaging 
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 To reduce the large number of page faults that occurs at process startup 

 Prepage all or some of the pages a process will need, before they are referenced 

 But if prepaged pages are unused, I/O and memory was wasted 

 Assume s pages are prepaged and α of the pages is used   

 Is cost of s * α save pages faults > or < than the cost of prepaging s * (1-α) unnecessary pages?  

 α near zero ⇒ prepaging loses 

Page Size 

Large page size Small page size 

A large page size decreases the number of 

pages –  desirable since each active process 

must have its own  copy  of the page table 

Memory is better utilized with smaller pages, since 

it  minimizes internal fragmentation 

With I/O transfer, latency and seek time 

dwarf transfer  time,  so a larger page size 

minimizes I/O time 

Total I/O should be reduced, since locality will be  

improved  

We must allocate and transfer not only what 

is needed, but  also anything else in the 

page 

Better resolution, allowing us to isolate only the  

memory that is actually needed, resulting in less 

I/O &  less total allocated memory 

 The trend is towards larger page sizes 

 Page size selection must take into consideration:  

 fragmentation 

 table size  

 I/O overhead 

 locality 

TLB Reach 

 Hit ratio for the TLB = the % of virtual address translations that are resolved in the TLB rather than the 
page table 

 To increase the hit ratio, increase the number of TLB entries 

 However, this is both expensive and power-hungry 

 TLB reach = the amount of memory accessible from the TLB (= TLB size x the page size) 

 Ideally, the working set for a process is stored in the TLB 

 If not, the process will spend a considerable amount of time resolving memory reference in the page table 
rather than  TLB 

 To increase the TLB reach, you can    

 increase the size of the page     

 May lead to an increase in fragmentation    



 provide multiple page sizes    

 Requires the OS, not hardware, to manage the TLB 

 Managing the TBL in software raises performance costs  

Inverted Page Tables 

 Create a table that has one entry per physical memory page, indexed by the pair <process-id, page-
number> 

 Because they keep info about which virtual-memory page is stored in each physical frame, inverted page 
tables reduce the amount of physical memory  needed to store  this information 

 The inverted page table no longer contains complete info about a process’ logical address space, which 
demand paging requires 

 For this information to be available, an external page table (one per process) must be kept 

These tables are referenced only when a page fault occurs, so they don't need to be available quickly 

They are paged in and out of memory as necessary 

Program Structure 

 Demand paging is designed to be transparent to the user program 

 Sometimes, system performance can be improved if the user has an awareness of the underlying demand 
paging 

 Careful selection of data structures and programming structures can increase locality and lower the page-
fault rate 

 E.g. a stack has good locality and a hash table has bad locality    

 The choice of programming language can also affect paging: C++ uses pointers which randomize 
access to  memory a bad locality   

 Program Structure: 

 int[128,128] data; 

 Each row is stored in one page  

 Program 1  

for (j = 0; j <128; j++) 

for (i = 0; i < 128; i++) 

data[i,j] = 0; 

 128 x 128 = 16,384 page faults   

 Program 2  

for (i = 0; i < 128; i++) 

for (j = 0; j < 128; j++) 

data[i,j] = 0; 

 128 page faults 

I/O Interlock 

 A lock bit is associated with every frame 

 I/O pages are locked, and unlocked when the I/O is complete 

 This is because I/O must not be paged out until end of transfer 



 Another use for a lock bit involves normal page replacement:   

 To prevent replacing a newly brought-in page until it can be used at least once, it can be locked 
until used 

Operating-System Examples 

Windows XP 

 Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page. 

 Processes are assigned working set minimum and working set maximum 

 Working set minimum is the minimum number of pages the process is guaranteed to have in memory 

 A process may be assigned as many pages up to its working set maximum 

 When the amount of free memory in the system falls below a threshold, automatic working set 
trimmingis  performed to restore the amount of free memory 

 Working set trimming removes pages from processes that have pages in excess of their working set 
minimum 

Solaris 

 Maintains a list of free pages to assign faulting processes 

 Lotsfree - threshold parameter (amount of free memory) to begin paging 

 Desfree - threshold parameter to increasing paging 

 Minfree - threshold parameter to being swapping 

 Paging is performed by pageout process 

 Pageout scans pages using modified clock algorithm 

 Scanrate is the rate at which pages are scanned   

 This ranges from slowscan to fastscan 

 Pageout is called more frequently depending upon the amount of free memory available 

 Solaris 2 Page Scanner: 

 

Summary 

Storage Management 

 OS provides uniform, logical view of information storage  

 Abstracts physical properties to logical storage unit -file 



 Each medium is controlled by device (i.e., disk drive, tape drive)  

 Varying properties include access speed, capacity, data-transfer rate, access method 
(sequential or  random) 

File-System Management 

 Computers can store info on several different types of physical media (e.g. magnetic disk, optical disk…) 

 Each medium is controlled by a device (e.g. disk drive) 

 The OS maps files onto physical media, and accesses these files via the storage devices 

 File = a collection of related information 

 The OS implements the abstract concept of a file by managing mass storage media and the devices that 
control them 

 The OS is responsible for these file management activities:  

 Creating and deleting files 

 Creating and deleting directories 

 Supporting primitives for manipulating files & directories 

 Mapping files onto secondary storage 

 Backing up files on stable (non-volatile) storage media 

PART FIVE: STORAGE MANAGEMENT 

Chapter 10: File System 

Objectives: 

 To explain the function of file systems 

 To describe the interfaces to file systems 

 To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory 
structures 

 To explore file-system protection 

File Concept 

 File = a named collection of related info on secondary storage 

 Data can't be written to secondary storage unless its in a file 

 A file has a certain defined structure according to its type   

 Text file: sequence of characters organized into lines 

 Source file: sequence of subroutines & functions 

 Object file: sequence of bytes organized into blocks 

 Executable file: series of code sections  

 Contiguous logical address space 

 Types:   

 Data 

 numeric 

 character 

 binary  



 Program 

File Attributes 

 Name: The only info kept in human-readable form 

 Identifier: Unique tag 

 Type: Info needed for those systems that support different types 

 Location: Pointer to a device and to the location of the file 

 Size: Current size (in bytes, words, or blocks) 

 Protection: Access-control info 

 Time, date, & user id: Useful for protection & usage monitoring 

 Information about files are kept in the directory structure, which is maintained on the disk 

File Operations 

 Creating a file:    

 First, space in the file system must be found for the file 

 Then, an entry for the file must be made in the directory    

 Writing a file:    

 Make a system call specifying both the name of the file and the info to be written to the file 

 The system must keep a write pointer to the location in the file where the next write is to take 
place    

 Reading a file:    

 Use a system call that specifies the name of the file and where in memory the next block of the file 
should  be put 

 Once the read has taken place, the read pointer is updated    

 Repositioning within a file:    

 The directory is searched for the appropriate entry and the current-file-position is set to a given 
value    

 Deleting a file:    

 Search the directory for the named file and release all file space and erase the directory entry    

 Truncating a file:    

 The contents of a file are erased but its attributes stay    

 Most of these file operations involve searching the directory for the entry associated with the named file 

 To avoid this constant searching, many systems require that an ‘open’ system call be used before that file 
is first  used 

 The OS keeps a small table containing info about all open files 

 When a file operation is requested, the file is specified via an index into the open-file table, so no 
searching is  required 

 When the file is no longer actively used, it is closed by the process and the OS removes its entry in the 
open-file  table 

 Some systems implicitly open a file when the first reference is made to it, and close it automatically when 
the  program ends 



 Most systems require that the programmer open a file explicitly with the ‘open’ system call before that 
file can be  used 

 A per-process table tracks all files that a process has open and includes access rights to the file & 
accounting  info 

 Each entry in the per-process table in turn points to a system-wide open-file table, which contains 
process-  independent info, such as the file’s disk location, access dates, and file size 

 Information associated with an open file:    

 File pointer:    

 For the system to track the last read-write location    

 File open count:    

 A counter tracks the number of opens & closes and reaches zero on the last close    

 Disk location of the file:    

 Location info is kept in memory to avoid having to read it from disk for each operation    

 Access rights:    

 Each process opens a file in an access mode 

 Open file locking:  

 Provided by some operating systems and file systems 

 Mediates access to a file 

 Mandatory or advisory:   

 Mandatory–access is denied depending on locks held and requested 

 Advisory–processes can find status of locks and decide what to do 

File Types 

 If an OS recognizes the type of a file, it can operate on the file in reasonable ways 

 A common technique for implementing file types is to include the type as part of the file name 

 Name split into 2 parts: 

 name 

 extension 

 



 The system uses the extension to indicate the type of the file and the type of operations that can be done 
on that  file   

 Example:   

 Only a file with a .com, .exe, or .bat extension can be executed 

 .com and .exe are two forms of binary executable files 

 .bat file is a batch file containing, in ASCII format, commands to the operating system   

 MS-DOS only recognizes a few files but application programs also use extensions to indicate file types 
they are  interested in 

 Because application extensions are not supported by the operating system, they can be 
considered as  "hints" to the applications that operate on them 

 The TOPS-20 operating system will automatically recompile an object program if the source code was 
modified or  edited   

 This way the user always runs with an up-to-date object file 

 For this purpose the operating system must be able to discriminate the source file from the object 
file, to  determine if and when it was modified 

 File extensions are used for this purpose   

 In the Mac OS X operating system every file has a type, such as TEXT or APPL   

 Each file has a creator attribute that contain the name of the program that created it, set by the 
operating  during the create() call - use is enforced by the system   

 UNIX uses a crude magic number stored at the beginning of some files to indicate roughly the type of file,  
executable program; batch file (shell script), PostScript; etc   

 Not all files have magic numbers so system features cannot be based solely on this information 

 Does not record the name of the creating program 

 File extensions are meant mostly to aid users in determining what type of contents a file contains 

 Extensions can be used or ignored by applications   

 Up to the applications programmer 

File Structure 

 File types can indicate the internal structure of the file 

 Disadvantage of supporting multiple file structures: large size 

 All OSs must support at least one structure: an executable file 

 The Mac OS file structure:  

 Resource fork (contains info of interest to the user) 

 Data fork (contains program code / data)  

 Too few structures make programming inconvenient 

 Too many structures cause OS bloat and programmer confusion 

Internal File Structure 
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 Locating an offset within a file can be complicated for the OS 

 Disk systems typically have a well-defined block size 

 It is unlikely that the physical record size will exactly match the length of the desired logical record 



 Packing a number of logical records into physical blocks is a common solution to this problem 

 The logical record size, physical block size, and packing technique determine how many logical records are 
in each physical block 

 The packing can be done either by the user’s program or OS 

Access Methods 

Sequential Access 

 Information in the file is processed in order 

 The most common access method (e.g. editors & compilers) 

 Read: reads the next file portion and advances a file pointer 

 Write: appends to the end of file and advances to the new end 

 

Direct Access 

 A file is made up of fixed-length logical records that allow you to read & write records rapidly in no 
particular order 

 File operations include a relative block number as parameter, which is an index relative to the beginning 
of the file 

 The use of relative block numbers 

 allows the OS to decide where the file should be placed and  

 helps to prevent the user from accessing portions of the file system that may not be part of his file 

 

Other Access Methods 

 These methods generally involve constructing a file index 

 The index contains pointers to the various blocks 

 To find a record in the file   

 First search the index 

 Then use the pointer to access the file directly and to find the desired record   

 With large files, the index file itself may become too large to be kept in memory 

 Solution: create an index for the index file 



 

Directory and Disk Structure 

 A collection of nodes containing information about all files 

 

 Both the directory structure and the files reside on disk 

 Backups of these two structures are kept on tapes 

 Typical File-System Organization: 

 

Storage Structure 

 p434 (make sure) 

 Organizing a lot of data can be done in two parts:   

 Disks are split into one or more partitions 

 Each partition contains info about files within it (e.g. name, location, size, type…) in a device 
directory 

Directory Overview 

 Very Important p.435 (make sure) 

 Operations that can be performed on a directory:   



 Search for a file 

 Create a file 

 Delete a file 

 List a directory 

 Rename a file 

 Traverse the file system 

Single-Level Directory 

 All files are contained in the same directory 

 Limitations because all files must have unique names 

 A single directory for all users 

 

 Naming problem 

 Grouping problem 

Two-Level Directory 

 Separate directory for each user (UFD = user file directory) 

 Each entry in the MFD (master file directory) points to a UFD 

 Advantage: No filename-collision among different users 

 Disadvantage: Users are isolated from one another and can’t cooperate on the same task 

 System files (e.g. compilers, loaders, libraries…) are contained in a special user directory (e.g. user 0) that 
is  searched if the OS doesn’t find the file in the local UFD 

 Search path = directory sequence searched when a file is named 

 

 Path name 

 Can have the same file name for different user 

 Efficient searching 

 No grouping capability 

Tree-Structured Directories 

 Users can create their own subdirectories and organize files 

 Absolute path names: begin at the root 

 Relative path names: define a path from the current directory 

 To delete an empty directory: 



 Just delete it 

 To delete a non-empty directory:   

 First delete all files in the directory, or 

 Delete all that directory’s files and subdirectories   

 Efficient searching 

 Grouping Capability 

 Current directory (working directory)   

 cd /spell/mail/prog 

 type list 

 

 Absolute or relative path name 

 Creating a new file is done in current directory 

 Delete a file 

rm <file-name> 

 Creating a new subdirectory is done in current directory 

               mkdir <dir-name> 

 Example: if in current directory /mail 

               mkdir count  

 

 Deleting "mail" ⇒ deleting the entire subtree rooted by "mail" 

Acyclic-Graph Directories 

 Directories can have shared subdirectories and files 

 Advantage: simple algorithms to traverse the graph 

 Only one file exists, so changes made by one person are immediately visible to the other 

 Ways to implement shared files / subdirectories:   

 Create a new directory entry called a link, which is a pointer to another file / subdirectory 



 Duplicate all info about shared files in both sharing directories   

 Problems:   

 A file may now have multiple absolute path names 

 Deletion may leave dangling pointers to a non-existent file   

 Solutions to deletion problems:   

 Backpointers, so we can delete all pointers 

 Variable size records a problem 

 Backpointers using a daisy chain organization 

 Entry-hold-count solution   

 Approaches to deletion:   

 With symbolic links, remove only the link, not the file. If the file itself is deleted, the links are left 
dangling  and can be removed / left until an attempt is made to use them  

 Preserve the file until all references to it are deleted. A mechanism is needed to determine that the 
last  reference to the file has been deleted. Problem: potentially large size of the file- reference list   

 New directory entry type 

 Link-another name (pointer) to an existing file 

 Resolve the link-follow pointer to locate the file 

 

General Graph Directory 

 Can have cycles: links are added to an existing directory 

 If there are cycles, we want to avoid searching components twice   

 Solution: limit the no of directories accessed in a search   

 Similar problem when determining when a file can be deleted:   

 With cycles, the reference count may be nonzero, even when it is no longer possible to refer to a 
directory /  file (This anomaly results from the possibility of self-referencing in the directory  
structure) 

 Garbage collection is needed to determine when the last reference has been deleted, only 
because of  possible cycles 



 

 How do we guarantee no cycles?  

 Allow only links to file not subdirectories 

 Garbage collection 

 Every time a new link is added use a cycle detection algorithm to determine whether it is OK 

File-System Mounting 

 A file system must be mounted before it can be available to processes on the system 

 Mount procedure:   

 The OS is given the name of the device and location within the file structure at which to attach the 
file  system 

 The OS verifies that the device contains a valid file system 

 The OS notes in its directory structure that a file system is mounted at the specified mount point 

 Existing (a)  ; Unmounted Partition (b) : 

 

 

 

 

 

 

 



 Mount Point: 

 

File Sharing 

 Sharing of files on multi-user systems is desirable 

 Sharing may be done through a protection scheme 

 On distributed systems, files may be shared across a network 

 Network File System (NFS) is a common distributed file-sharing method 

Multiple Users 

 File sharing  

 The system can allow a user to access the files of other users by default, or 

 It may require that a user specifically grant access  

 To implement sharing & protection, the system must maintain more file & directory attributes than on a 
single-user system 

 Most systems use concepts of file/directory owner and group 

 Owner = the user who may change attributes, grant access, and has the most control over the file / 
directory 

 Most systems implement owner attributes by managing a list of user names and user IDs 

 Group = the attribute of a file that is used to define a subset of users who may share access to the file 

 Group functionality can be implemented as a system-wide list of group names and group IDs 

 The owner and group IDs of a file / directory are stored with the other file attributes, and can be used to 
allow / deny ops 

Remote File Systems 

 Uses networking to allow file system access between systems  

 Manually via programs like FTP 

 Automatically, seamlessly using distributed file systems 

 Semi automatically via the world wide web 

The Client-Server Model 

 The server specifies which resources (files) are available to which clients 

 Client-server model allows clients to mount remote file systems from servers  

 Server can serve multiple clients 



 Client and user-on-client identification is insecure or complicated 

 NFS is standard UNIX client-server file sharing protocol 

 CIFS is standard Windows protocol 

 Standard operating system file calls are translated into remote calls 

Distributed Information Systems 

 Provide unified access to info needed for remote computing 

 Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory  
implement unified access to information needed for remote computing 

 DNS provides host-name-to-network-address translations 

Failure Modes 

 RAID can prevent the loss of a disk 

 Remote file systems have more failure modes because the network can be interrupted between two hosts 

 Protocols can enforce delaying of file-system operations to remote hosts, for when the host becomes 
available again 

 Remote file systems add new failure modes, due to network failure, server failure 

 Recovery from failure can involve state information about status of each remote request 

 Stateless protocols such as NFS include all information in each request, allowing easy recovery but less 
security 

Consistency Semantics 

 Consistency semantics represent an important criterion of evaluating file systems that supports file 
sharing 

 These semantics specify how multiple users of a system are to access a shared file simultaneously 

 In particular, they specify when modifications of data by one user will be observed by other users 

 These semantics are typically implemented as code with the file system 

 Consistency semantics are directly related to the process-synchronization algorithms of chapter 6 

 However, the complex algorithms of that chapter tend not to be implemented in the case of file 
I/O because of  the great latencies and slow transfer rates of disks and networks 

 For example, performing an atomic transaction to a remote disk could involve several network  
communications, several disk reads and writes, or both 

 Systems that attempt such a full set of functionalities tend to perform poorly 

 A successful implementation of complex sharing semantics can be found in the Andrew file system 

 For the following discussion, we assume that a series of file accesses (that is reads and writes) attempted 
by a user  to the same file is always enclosed between the open() and close() operations  

 The series of accesses between the open() and close() operations make up a file session 

 To illustrate the concept, we sketch several prominent examples of consistency semantics 

UNIX Semantics 

 Unix file system (UFS) uses the following consistency semantics:    

 Writes to an open file by a user are visible immediately to other users who have this file open 

 One mode of sharing allows users to share the pointer of current location into a file 

 Thus, the advancing of the pointer by one user affects all sharing users 



 Here, a file has a single image that interleaves all accesses, regardless of their origin 

 In the UNIX semantics, a file is associated with a single physical image that is accessed as an exclusive 
resource 

 Contention for this single image causes delays in user processes 

Session Semantics 

 Andrew File System (AFS) uses the following consistency semantics 

 Writes to an open file by a user are not visible immediately to other users that have the same file 
open 

 Once a file is closed, the changes made to it are visible only in sessions starting later 

 Already open instances of the file do not reflect these changes 

 According to these semantics, a file may be associated temporarily with several (possibly different) images 
at the  same time 

 Consequently, multiple users are allowed to perform both read and write accesses concurrently 
on their  images of the file, without delay 

 Almost no constraints are enforced on scheduling accesses 

Immutable-Shared-Files Semantics 

 A unique approach is that of immutable shared files 

 Once a file is declared as shared by its creator, it cannot be modified 

 An immutable file has two key properties: 

 Its name may not be reused 

 Its contents may not be altered   

 Thus, the name of an immutable file signifies that the contents of the file are fixed 

 The implementation of these semantics in a distributed system is simple, because the sharing is 
disciplined (read- only) 

Protection 

 File owner/creator should be able to control:  

 what can be done 

 by whom 

Types of Access 

 Systems that don't permit access to other users’ files don't need protection so protection can provided by 
prohibiting  access 

 This is too extreme, so controlled access is needed: 

 Limit the types of file access that can be made 

 You can control operations like Read, Write, Delete, List… 

 Types of access:  

 Read 

 Write 

 Execute 

 Append 



 Delete 

 List 

Access Control 

 The most common approach to the protection problem is to make access dependent on the identify of the 
user 

 Files can be associated with an access-control list (ACL) specifying the user name and the types of access  
allowed for each user 

 Problems:   

 Constructing a list can be tedious 

 The directory entry now needs to be of variable size, resulting in more complicated space 
management   

 These problems can be resolved by combining access control lists with an ‘owner, group, universe’ access-
control  scheme  

 To condense the length of the access-control list, many systems recognize three classifications of 
users  in connection with each: 

 Owner 

 The user who created the file is the owner 

 Group 

 A set of users who are sharing the file and need similar access is a group, or work 
group 

 Universe 

 All other users in the system constitute the universe 

 Samples: 

 

 E.g. rwx bits indicate which users have permission to read/write/execute   

 Windows XP Access-control list management: 



 

 A Sample UNIX directory listing: 

 

Other Protection Approaches 

 A password can be associated with each file 

 Disadvantages:  

 The no of passwords you need to remember may become large 

 If only one password is used for all the files, then all files are accessible if it is discovered 

 Commonly, only one password is associated with all of the user’s files, so protection is all-or-
nothing  

 In a multilevel directory structure, we need to provide a mechanism for directory protection 

 The directory operations that must be protected are different from the file operations:  

 Control creation & deletion of files in a directory 

 Control whether a user can determine the existence of a file in a directory (i.e. the ‘dir’ command 
in DOS) 

Summary 

Chapter 11: Implementing File System 

Objectives: 

 To describe the details of implementing local file systems and directory structures 

 To describe the implementation of remote file systems 

 To discuss block allocation and free-block algorithms and trade-offs 



File-System Structure 

 Disks provide the bulk of secondary storage on which a file system is maintained 

 They have two characteristics that make them a convenient medium for storing multiple files:   

 They can be rewritten in place 

 Can read a block from disk, modify the block, and write it back into the same place 

 A disk can access directly any block of information it contains 

 Thus, it is simple to access any file either sequentially or randomly , and switching 
from one  file to another requires only moving the read-write heads and waiting for 
the disk to rotate   

 To improve I/O efficiency, I/O transfers between memory and disk are performed in units of blocks   

 Each block has one or more sectors 

 Depending on the disk drive, sector size varies from 32 bytes to 4096 bytes 

 The usual size is 512 bytes   

 File systems provide efficient and convenient access to the disk by allowing data to be stored, located, and  
retrieved easily 

 Design problems of file systems:   

 Defining how the file system should look to the user 

 Creating algorithms & data structures to map the logical file system onto the physical secondary-
storage  devices 

 The file system itself is generally composed of many different levels 

 Every level in the design uses the features of lower levels to create new features for use by higher 
levels 

 A layered File System: 

  

 Levels of the file system:   

 I/O Control (lowest level)  

 Consists of device drivers & interrupt handlers to transfer info between main memory & 
disk   

 Basic file system   



 Need only issue generic commands to the appropriate device driver to read & write blocks 
on the  disk   

 File-organization module   

 Knows about files and their logical & physical blocks 

 Translates logical block address to physical ones   

 Logical file system   

 Manages metadata information 

 Manages the directory structure 

 Maintains file structure via file control blocks (FCB)  

 Application programs 

File-System Implementation 

 Here we delve into the structures and operations used to implement file-system operations, like the 
open() and  close() operations 

Overview 

 On-disk & in-memory structures used to implement a file system: 

 On-disk structures include:   

 A boot control block   

 Contains info needed to boot an OS from that partition   

 A partition control block  

 Contains partition details, like the no of blocks in the partition, size of the blocks, free-
block count…   

 A directory structure    

 Used to organize the files   

 An FCB (file control block)   

 Contains file details, e.g. ownership, size… 

 A Typical File Control Block: 

 

 In-memory structures is used for both file-system management and performance improvement via 
caching:   

 An in-memory mount table   

 Contains information about each mounted partition   

 An in-memory directory structure   



 Holds directory info of recently accessed directories   

 The system-wide open-file table   

 Contains a copy of the FCB of each open file   

 The per-process open-file table   

 Contains a pointer to the appropriate entry in the system-wide open-file table  

 Buffers hold file-system blocks when they are being read from disk or written to disk   

 In-Memory File System Structure: (a) File open, (b) File read 

 

 To create a new file, a program calls the logical file system (LFS) 

 The ‘LFS’ knows the format of the directory structures 

 To create a new file, it    

 Allocates a new FCB 

 Reads the appropriate directory into memory 

 Updates it with the new file name and FCB 

 Writes it back to the disk   

 After a file has been created, it can be used for I/O   

 First the file must be opened 

 FCB: copied to a system-wide open-file table in memory 

 An entry is made in the per-process open-file table, with a pointer to the entry in the system-wide 
open-  file table 

 The open call returns a pointer to the appropriate entry in the per-process file-system table 

 All file operations are then performed via this pointer 

 When a process closes the file   

 The per-process table entry is removed  

 The system-wide entry’s open count is decremented 

Partitions and Mounting 

 Disk layouts:   



 A disk can be sliced into multiple partitions, or 

 A partition can span multiple disks (RAID)   

 Each partition can either be:   

 Raw (containing no file system), or 

 Cooked (containing a file system)   

 Boot info can be stored in a separate partition with its own format, since at boot time the system doesn't 
have file-  system device drivers loaded and can't interpret the file-system format 

 Boot info format: 

 A sequential series of blocks, loaded as an image into memory, and execution of the image 
starts at  a predefined location, such as the first byte 

 The root partition containing the kernel is mounted at boot time 

 Other partitions can be mounted at boot time, or later, manually 

 As part of a successful mount operation, the OS verifies that the device contains a valid file system 

 The OS notes in its in-memory mount table structure that a file system is mounted, and the type of the file 
system 

Virtual File Systems 

 The OS allows multiple types of file systems to be integrated into a directory structure (and be 
distinguished by the VFS!) 

 The file-system implementation consists of 3 major layers:   

 File-system interface 

 Virtual File System (VFS) interface (serves 2 functions):   

 Separates file-system-generic operations from their implementation by defining a clean 
VFS interface 

 The VFS is based on a file-representation structure (vnode) that contains a numerical 
designator for a  network-wide unique file, to support NFS   

 Local file system  

 Schematic view of a virtual file system: 

 



Directory Implementation 

 The selection of directory-allocation and directory-management algorithms significantly affects the 
efficiency,  performance, and reliability of the file system 

 Here we look at the trade-offs involved in choosing one of these algorithms 

Linear List 

 The simplest method of implementing a directory is to use a linear list of file names with pointers to the 
data blocks 

 A linear list of file names has pointers to the data blocks 

 Requires a linear search to find a particular entry 

 Simple to program, but time-consuming to execute (linear search) 

 A cache can store the most recently used directory information 

A sorted list allows a binary search and decreases search times  

Hash Table 

 A linear list stores the directory entries, but a hash data structure is also used 

 The hash table takes a value computed from the file name and returns a pointer to the file name in the 
linear list 

 Some provision must be made for collisions 

 Situation in which two file names hash to the same location 

 Disadvantages:  

 Fixed size of hash table and the dependence of the hash function on that size  

Allocation Methods 

 The direct-access nature of disks allows us flexibility in the implementation of files 

 In almost every case, many files are stored on the same disk 

 The main problem is how to allocate space to these files so that disk space is utilized effectively 
and files can  be accessed quickly 

 Three major methods of allocating disk space are in wide use: 

 Contiguous 

 Linked 

 Indexed 

 Each method has advantages and disadvantages 

 Some systems support all three (Data General's RDOS for its Nova line of computers) 

 More commonly, a system uses one method for all files within a file-system type 

Contiguous Allocation 

See also: Memory Allocation 

Read p.472 mid NB!!!!! 

 Each file occupies a set of contiguous blocks on the disk 

 Disk addresses define a linear ordering on the disk 

 The number of disk seeks required for accessing contiguously allocated files is minimal, as is seek time 



 Both sequential and direct access can be supported 

 Problems with contiguous allocation:    

 Finding space for a new file    

 External fragmentation can occur    

 Determining how much space is needed for a file    

 If you allocate too little space, it can't be extended 

 If you allocate too much space, it may go unused    

 To minimize these drawbacks:    

 A contiguous chunk of space can be allocated initially, and then when that amount is not 
large  enough, another chunk of contiguous space (an ‘extent’) is added   

 Contiguous Allocation of Disk Space: 

 

 An extent is a contiguous block of disks   

 Extents are allocated for file allocation 

 A file consists of one or more extents 

Linked Allocation 

 Each file is a linked list of disk blocks (scattered anywhere) 

 

 The directory contains a pointer to the first & last blocks 

 Each block contains a pointer to the next block 

 Mapping: 

 

 Block to be accessed is the Qth block in the linked chain of blocks representing the file 

 Displacement into block = R + 1   


