
+ swap page in

+ restart overhead)

 Example:

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 -p) x 200 + p (8 milliseconds)

= (1 -p x 200 + p x 8,000,000

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!!

Copy-on-Write

 p.369 TB

 Virtual memory allows other benefits during process creation:

 Copy-on-Write

 Memory-Mapped Files (later)

 Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are copied

 Free pages are allocated from a pool of zeroed-out pages

 Before process 1 modifies page C

 After process 1 modifies page C there will also be a Copy of page C in physical memory (p.368 bottom)

 If there is no free frame, the following happens:

 Page replacement - find some page in memory, but not really in use, swap it out

 algorithm

 performance - want an algorithm which will result in minimum number of page faults

 Same page may be brought into memory several times

Page Replacement

 If we increase our degree of multiprogramming, we are over-allocating memory:

 While a process is executing, a page fault occurs

 The hardware traps to the OS, which checks its internal tables to see that this page fault is a
genuine one

 The OS determines where the desired page is residing on disk, but then finds no free frames on the
free- frame list

 The OS then could:

 Terminate the user process (Not a good idea)

 Swap out a process, freeing all its frames, and reducing the level of multiprogramming

 Perform page replacement

 The need for page replacement arises:

 Prevent over-allocation of memory by modifying page-fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers -only modified pages are written to disk

 Page replacement completes separation between logical memory and physical memory -large virtual
memory can be provided on a smaller physical memory

Basic Page Replacement

 Basic page replacement approach:

 If no frame is free, we find one that is not being used and free it

 Page replacement takes the following steps:

 Find the location of the desired page on the disk

 Find a free frame:

 If there is a free frame, use it, else

 Select a victim frame with a page-replacement algorithm

 Write the victim page to the disk and change the page & frame tables accordingly

 Read the desired page into the (newly) free frame and change the page & frame tables

 Restart the user process

 Note: if no frames are free, two page transfers (one out & one in) are required, which doubles the page-
fault service time and increases the effective access time accordingly

 We can reduce this overhead by using a modify / dirty bit:

 When a page is modified, its modify bit is set

 If the bit is set, the page must be written to disk

 If the bit is not set, you don't need to write it to disk since it is already there, which reduces I/O
time

 We must solve two major problems to implement demand paging:

 Develop a frame-allocation algorithm

 If we have multiple processes in memory, we must decide how many frames to allocate to
each process

 Develop a page-replacement algorithm

 When page replacement is required, we must select the frames that are to be replaced

 When selecting a particular algorithm, we want the one with the lowest page-fault rate

 To evaluate an algorithm, run it on a reference string (a string of memory references) and compute the
number of page faults

 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular string of memory references (reference string) and
computing the number of page faults on that string

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 You can generate reference strings or trace a given system and record the address of each memory
reference

 Graph of page faults versus the number of frames:

FIFO Page Replacement

 p.373 TB

 The simplest page-replacement algorithm is the first-in, first-out (FIFO) algorithm

 A FIFO replacement algorithm associates with each page the time when that page was brought
into memory

 When a page must be replaced, the oldest page is chosen

 Notice it is not strictly necessary to record the time when a page is brought in

 We can create a FIFO queue to hold all pages in memory

 We replace the page at the head of the queue

 When a page is brought into memory, we insert it at the tail of the queue

 Easy to understand and implement

 Example:

 FIFO page replacement algorithm:

 Yields 15 page faults

 Belady’s anomaly:

 For some algorithms, the page-fault rate may increase as the number of allocated frames
increases

 FIFO illustration of Belady's Anomaly:

Optimal Page Replacement

 Optimal page replacement was found as a result of Belady's anomaly

 Guarantees the lowest possible page-fault rate for a fixed number of frames

 This algorithm exists and is called either OPT or MIN

 Difficult to implement because we require future knowledge of the reference string

 Used mainly for comparative studies

 Algorithm:

 Replace the page that will not be used for the longest period

 4 frames example:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs

 Difficult to implement, because you need future knowledge of the reference string

 Optimal Page replacement:

 Yields 9 page faults

LRU (least recently-used) Page Replacement

 An approximation of the optimal page replacement algorithm

 We use the recent past as an approximation of the near future

 Replace the page that has not been used for the longest period

 Think of this algorithm as the backward looking optimal page-replacement algorithm

 Example:

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 LRU Page Replacement:

 Yields 12 page faults

 Two ways to determine an order for the frames defined by the time of last use:

 Counters:

 Each page-table entry has a time-of-use field and the CPU gets a logical clock / counter

 Whenever a page is referenced, the contents of the clock register are copied to the time-
of-use field in the page-table entry for that page

 Stack:

 Whenever a page is referenced, it is removed from the stack and put on top

 The bottom of the stack is the LRU page

 Use of a stack to record the most recent page references:

 Neither optimal replacement nor LRU replacement suffers from Belady’s anomaly

LRU-Approximation Page Replacement

 Reference bit:

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1 by hardware

 Replace the one which is 0 (if one exists)

 We do not know the order, however

Additional-Reference-Bits Algorithm

 You can gain additional ordering info by recording reference bits at regular intervals

 A 8-bit byte is used for each page in a table in memory

 This register is a right-shift register

 Every 100 ms the pages are referenced and if the page was used then a 1 is moved into the MSB of
the byte

 Examples:

 00000000 - This page has not been used in the last 8 time units (800 ms)

 11111111 - Page has been used every time unit in the past 8 time units

 11000100 has been used more recently than 01110111

 These can be treated as unsigned integers and the page with the lowest value is the LRU page

 If numbers are equal, FCFS is used

Second-Chance Algorithm

 Like the FIFO replacement algorithm, but you inspect the reference bit and replace the page if the value is
0

 If the reference bit is 1, that page gets a second chance, its reference bit is cleared (0), and its arrival time
is reset

 A page that has been given a second chance will not be replaced until all other pages are replaced

 If a page is used often enough to keep its reference bit set, it will never be replaced

 Second chance:

 Need reference bit

 Clock replacement

 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0

 leave page in memory

 replace next page (in clock order), subject to same rules

 Second-Chance (clock) Page-Replacement Algorithm:

Enhanced Second-Chance Algorithm

 Consider both the reference bit and the modify bit as an ordered pair:

 (0,0) neither recently used nor modified – best to replace

 (0,1) not recently used but modified – not quite as good

 (1,0) recently used but clean – probably used again soon

 (1,1) recently used and modified – probably used again soon and will need to be written to disk
before being replaced

Counting-Based Page Replacement

 Keep a counter of the number of references to each page

 LFU (least frequently used) page-replacement algorithm

 The page with the smallest count is replaced

 MFU (most frequently used) page-replacement algorithm

 The page with the smallest count was probably just brought in and has yet to be used

Page-Buffering Algorithms

 If a page is read into a free frame from the pool before a victim frame is written out, the process can
restart as soon as possible, without waiting for the victim page to be written out

 Whenever the paging device is idle, a modified page is selected and written to disk, increasing the
probability that a page will be clean when selected for replacement

 You can remember which page was in each frame from the pool and reuse old pages directly if needed,
before the frame is reused

Applications and Page Replacement

 Sometimes applications processing data knows better how to handle their own data then the general-
purpose use of page replacement used by the OS

 Example:

 Databases

 Data warehouses perform massive sequential disk reads, followed by computations and writes

 MFU would be more efficient than LFU

Allocation of Frames

 p.382 TB

 Each process needs minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation

Minimum Number of Frames

 The instruction-set architecture defines the minimum number of frames that must be allocated

 The maximum number is defined by the amount of available memory

Allocation Algorithms

 Equal allocation

 Every process is given an equal share of frames

 Proportional allocation

 Allocate memory to each process according to its size

Global versus Local Allocation

 Global replacement

 A process can select a replacement frame from the whole set

 A process may even select only frames allocated to other processes, increasing the number of
frames allocated to it

 Problem: A process can't control its own page-fault rate

 Global replacement is the more common method since it results in greater system throughput

 Local replacement

 A process selects only from its own set of allocated frames

 The number of frames allocated to a process does not change

Non-Uniform Memory Access

 p.385 TB

Thrashing

 If a process does not have "enough"pages, the page-fault rate is very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of multiprogramming

 another process added to the system

 If the number of frames allocated to a low-priority process falls below the minimum number required, it
must be suspended

 A process is thrashing if it is spending more time paging than executing (E.g. its pages are all in use, and it
must replace a page that will be needed again right away)

Cause of Thrashing

 The thrashing phenomenon:

 As processes keep faulting, they queue up for the paging device, so CPU utilization decreases

 The CPU scheduler sees the decreasing CPU utilization and increases the degree of
multiprogramming as a result

 The new process causes even more page faults and a longer queue!

 We can limit the effects of thrashing by using a local replacement algorithm:

 If one process starts thrashing, it cannot steal frames from another process and cause the latter to
thrash also

 Pages are replaced with regard to the process of which they are a part

 However, if processes are thrashing, the effective access time will increase even for a process that
is not thrashing

 To prevent thrashing, we must give a process enough frames:

 The locality model of process execution:

 As a process executes, it moves from locality to locality

 (A locality is a set of pages that are actively used together – a program may have
overlapping localities)

 If we allocate enough frames to a process to accommodate its current locality, it will fault
for pages in its locality until they are all in memory, and it won't fault again until it changes
localities

 Locality in a memory-reference pattern:

Working-Set Model

 Based on the assumption of locality

 A parameter, Δ, defines the working-set window

 Working set = set of pages in the most recent Δ page references

 If a page is in use, it will be in the working set, else it will drop from the working set Δ time units after its
last reference

 The accuracy of the working set depends on the selection of Δ

 If Δ is too small, it won't encompass the entire locality

 If Δ is too large, it may overlap several localities

 The working-set strategy prevents thrashing while keeping the degree of multiprogramming as high as
possible

 Working-Set Model:

 Δ ≡working-set window ≡a fixed number of page references

Example: 10,000 instruction

 WSSi (working set of Process Pi) = total number of pages referenced in the most recent Δ (varies in
time)

 if Δ too small will not encompass entire locality

 if Δ too large will encompass several localities

 if Δ = ∞⇒ will encompass entire program

 D = Σ WSSi ≡total demand frames

 if D > m ⇒ Thrashing

 Policy if D > m, then suspend one of the processes

Page-Fault Frequency

 This takes a more direct approach than the working-set model

 To prevent thrashing, control the page-fault rate:

 When it is too high, we know the process needs more frames

 When it is too low, the process has too many frames

 Establish upper & lower bounds on the desired page-fault rate

 Allocate / remove frames if needed

 If the page-fault rate increases and no frames are available, select a process to suspend and re-distribute
its freed frames

Memory-Mapped Files

 Memory-mapping a file allows a part of the virtual address space to be logically associated with a file

 Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block
to a page in memory

 A file is initially read using demand paging

 A page-sized portion of the file is read from the file system into a physical page

 Subsequent reads/writes to/from the file are treated as ordinary memory accesses

 Simplifies file access by treating file I/O through memory rather than read()write()system calls

 Also allows several processes to map the same file allowing the pages in memory to be shared

Basic Mechanism

 p.392 TB

 A disk block is mapped to a page in memory

 Initial access to the file proceeds using ordinary demand paging

 Page-sized portions of the file are read from the file system into physical pages

 Subsequent reads & writes to the files are handled as routine memory accesses, simplifying file access and
usage

 File manipulation through memory incurs less overhead than read() and write() system calls

 Closing the file results in all the memory-mapped data being written back to disk and removed from the
virtual memory

 Memory Mapped files:

 In many ways, the sharing of memory mapped files is similar to shared memory

 Processes can communicate using shared memory by having the communicating processes memory-map
the same file into their virtual address spaces

Shared Memory in the Win32 API

 p.393 - 395 TB

Memory-Mapped I/O

 p.395 - 396 TB

Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool

1. Kernel requests memory for structures of varying sizes

2. Some kernel memory needs to be contiguous

Buggy System

 Allocates memory from fixed-size segment consisting of physically-contiguous pages

 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2

 Request rounded up to next highest power of 2

 When smaller allocation needed than is available, current chunk split into two buddies of next-
lower power of 2

 Continue until appropriate sized chunk available

Slab Allocation

 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure

 Each cache filled with objects-instantiations of the data structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab

 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request satisfaction

Other Considerations

Prepaging

 p.400 mid TB

 To reduce the large number of page faults that occurs at process startup

 Prepage all or some of the pages a process will need, before they are referenced

 But if prepaged pages are unused, I/O and memory was wasted

 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of prepaging s * (1-α) unnecessary pages?

 α near zero ⇒ prepaging loses

Page Size

Large page size Small page size

A large page size decreases the number of

pages – desirable since each active process

must have its own copy of the page table

Memory is better utilized with smaller pages, since

it minimizes internal fragmentation

With I/O transfer, latency and seek time

dwarf transfer time, so a larger page size

minimizes I/O time

Total I/O should be reduced, since locality will be

improved

We must allocate and transfer not only what

is needed, but also anything else in the

page

Better resolution, allowing us to isolate only the

memory that is actually needed, resulting in less

I/O & less total allocated memory

 The trend is towards larger page sizes

 Page size selection must take into consideration:

 fragmentation

 table size

 I/O overhead

 locality

TLB Reach

 Hit ratio for the TLB = the % of virtual address translations that are resolved in the TLB rather than the
page table

 To increase the hit ratio, increase the number of TLB entries

 However, this is both expensive and power-hungry

 TLB reach = the amount of memory accessible from the TLB (= TLB size x the page size)

 Ideally, the working set for a process is stored in the TLB

 If not, the process will spend a considerable amount of time resolving memory reference in the page table
rather than TLB

 To increase the TLB reach, you can

 increase the size of the page

 May lead to an increase in fragmentation

 provide multiple page sizes

 Requires the OS, not hardware, to manage the TLB

 Managing the TBL in software raises performance costs

Inverted Page Tables

 Create a table that has one entry per physical memory page, indexed by the pair <process-id, page-
number>

 Because they keep info about which virtual-memory page is stored in each physical frame, inverted page
tables reduce the amount of physical memory needed to store this information

 The inverted page table no longer contains complete info about a process’ logical address space, which
demand paging requires

 For this information to be available, an external page table (one per process) must be kept

These tables are referenced only when a page fault occurs, so they don't need to be available quickly

They are paged in and out of memory as necessary

Program Structure

 Demand paging is designed to be transparent to the user program

 Sometimes, system performance can be improved if the user has an awareness of the underlying demand
paging

 Careful selection of data structures and programming structures can increase locality and lower the page-
fault rate

 E.g. a stack has good locality and a hash table has bad locality

 The choice of programming language can also affect paging: C++ uses pointers which randomize
access to memory a bad locality

 Program Structure:

 int[128,128] data;

 Each row is stored in one page

 Program 1

for (j = 0; j <128; j++)

for (i = 0; i < 128; i++)

data[i,j] = 0;

 128 x 128 = 16,384 page faults

 Program 2

for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)

data[i,j] = 0;

 128 page faults

I/O Interlock

 A lock bit is associated with every frame

 I/O pages are locked, and unlocked when the I/O is complete

 This is because I/O must not be paged out until end of transfer

 Another use for a lock bit involves normal page replacement:

 To prevent replacing a newly brought-in page until it can be used at least once, it can be locked
until used

Operating-System Examples

Windows XP

 Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page.

 Processes are assigned working set minimum and working set maximum

 Working set minimum is the minimum number of pages the process is guaranteed to have in memory

 A process may be assigned as many pages up to its working set maximum

 When the amount of free memory in the system falls below a threshold, automatic working set
trimmingis performed to restore the amount of free memory

 Working set trimming removes pages from processes that have pages in excess of their working set
minimum

Solaris

 Maintains a list of free pages to assign faulting processes

 Lotsfree - threshold parameter (amount of free memory) to begin paging

 Desfree - threshold parameter to increasing paging

 Minfree - threshold parameter to being swapping

 Paging is performed by pageout process

 Pageout scans pages using modified clock algorithm

 Scanrate is the rate at which pages are scanned

 This ranges from slowscan to fastscan

 Pageout is called more frequently depending upon the amount of free memory available

 Solaris 2 Page Scanner:

Summary

Storage Management

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit -file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-transfer rate, access method
(sequential or random)

File-System Management

 Computers can store info on several different types of physical media (e.g. magnetic disk, optical disk…)

 Each medium is controlled by a device (e.g. disk drive)

 The OS maps files onto physical media, and accesses these files via the storage devices

 File = a collection of related information

 The OS implements the abstract concept of a file by managing mass storage media and the devices that
control them

 The OS is responsible for these file management activities:

 Creating and deleting files

 Creating and deleting directories

 Supporting primitives for manipulating files & directories

 Mapping files onto secondary storage

 Backing up files on stable (non-volatile) storage media

PART FIVE: STORAGE MANAGEMENT

Chapter 10: File System

Objectives:

 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory
structures

 To explore file-system protection

File Concept

 File = a named collection of related info on secondary storage

 Data can't be written to secondary storage unless its in a file

 A file has a certain defined structure according to its type

 Text file: sequence of characters organized into lines

 Source file: sequence of subroutines & functions

 Object file: sequence of bytes organized into blocks

 Executable file: series of code sections

 Contiguous logical address space

 Types:

 Data

 numeric

 character

 binary

 Program

File Attributes

 Name: The only info kept in human-readable form

 Identifier: Unique tag

 Type: Info needed for those systems that support different types

 Location: Pointer to a device and to the location of the file

 Size: Current size (in bytes, words, or blocks)

 Protection: Access-control info

 Time, date, & user id: Useful for protection & usage monitoring

 Information about files are kept in the directory structure, which is maintained on the disk

File Operations

 Creating a file:

 First, space in the file system must be found for the file

 Then, an entry for the file must be made in the directory

 Writing a file:

 Make a system call specifying both the name of the file and the info to be written to the file

 The system must keep a write pointer to the location in the file where the next write is to take
place

 Reading a file:

 Use a system call that specifies the name of the file and where in memory the next block of the file
should be put

 Once the read has taken place, the read pointer is updated

 Repositioning within a file:

 The directory is searched for the appropriate entry and the current-file-position is set to a given
value

 Deleting a file:

 Search the directory for the named file and release all file space and erase the directory entry

 Truncating a file:

 The contents of a file are erased but its attributes stay

 Most of these file operations involve searching the directory for the entry associated with the named file

 To avoid this constant searching, many systems require that an ‘open’ system call be used before that file
is first used

 The OS keeps a small table containing info about all open files

 When a file operation is requested, the file is specified via an index into the open-file table, so no
searching is required

 When the file is no longer actively used, it is closed by the process and the OS removes its entry in the
open-file table

 Some systems implicitly open a file when the first reference is made to it, and close it automatically when
the program ends

 Most systems require that the programmer open a file explicitly with the ‘open’ system call before that
file can be used

 A per-process table tracks all files that a process has open and includes access rights to the file &
accounting info

 Each entry in the per-process table in turn points to a system-wide open-file table, which contains
process- independent info, such as the file’s disk location, access dates, and file size

 Information associated with an open file:

 File pointer:

 For the system to track the last read-write location

 File open count:

 A counter tracks the number of opens & closes and reaches zero on the last close

 Disk location of the file:

 Location info is kept in memory to avoid having to read it from disk for each operation

 Access rights:

 Each process opens a file in an access mode

 Open file locking:

 Provided by some operating systems and file systems

 Mediates access to a file

 Mandatory or advisory:

 Mandatory–access is denied depending on locks held and requested

 Advisory–processes can find status of locks and decide what to do

File Types

 If an OS recognizes the type of a file, it can operate on the file in reasonable ways

 A common technique for implementing file types is to include the type as part of the file name

 Name split into 2 parts:

 name

 extension

 The system uses the extension to indicate the type of the file and the type of operations that can be done
on that file

 Example:

 Only a file with a .com, .exe, or .bat extension can be executed

 .com and .exe are two forms of binary executable files

 .bat file is a batch file containing, in ASCII format, commands to the operating system

 MS-DOS only recognizes a few files but application programs also use extensions to indicate file types
they are interested in

 Because application extensions are not supported by the operating system, they can be
considered as "hints" to the applications that operate on them

 The TOPS-20 operating system will automatically recompile an object program if the source code was
modified or edited

 This way the user always runs with an up-to-date object file

 For this purpose the operating system must be able to discriminate the source file from the object
file, to determine if and when it was modified

 File extensions are used for this purpose

 In the Mac OS X operating system every file has a type, such as TEXT or APPL

 Each file has a creator attribute that contain the name of the program that created it, set by the
operating during the create() call - use is enforced by the system

 UNIX uses a crude magic number stored at the beginning of some files to indicate roughly the type of file,
executable program; batch file (shell script), PostScript; etc

 Not all files have magic numbers so system features cannot be based solely on this information

 Does not record the name of the creating program

 File extensions are meant mostly to aid users in determining what type of contents a file contains

 Extensions can be used or ignored by applications

 Up to the applications programmer

File Structure

 File types can indicate the internal structure of the file

 Disadvantage of supporting multiple file structures: large size

 All OSs must support at least one structure: an executable file

 The Mac OS file structure:

 Resource fork (contains info of interest to the user)

 Data fork (contains program code / data)

 Too few structures make programming inconvenient

 Too many structures cause OS bloat and programmer confusion

Internal File Structure

 p.430 mid bot (make note on this piece)

 Locating an offset within a file can be complicated for the OS

 Disk systems typically have a well-defined block size

 It is unlikely that the physical record size will exactly match the length of the desired logical record

 Packing a number of logical records into physical blocks is a common solution to this problem

 The logical record size, physical block size, and packing technique determine how many logical records are
in each physical block

 The packing can be done either by the user’s program or OS

Access Methods

Sequential Access

 Information in the file is processed in order

 The most common access method (e.g. editors & compilers)

 Read: reads the next file portion and advances a file pointer

 Write: appends to the end of file and advances to the new end

Direct Access

 A file is made up of fixed-length logical records that allow you to read & write records rapidly in no
particular order

 File operations include a relative block number as parameter, which is an index relative to the beginning
of the file

 The use of relative block numbers

 allows the OS to decide where the file should be placed and

 helps to prevent the user from accessing portions of the file system that may not be part of his file

Other Access Methods

 These methods generally involve constructing a file index

 The index contains pointers to the various blocks

 To find a record in the file

 First search the index

 Then use the pointer to access the file directly and to find the desired record

 With large files, the index file itself may become too large to be kept in memory

 Solution: create an index for the index file

Directory and Disk Structure

 A collection of nodes containing information about all files

 Both the directory structure and the files reside on disk

 Backups of these two structures are kept on tapes

 Typical File-System Organization:

Storage Structure

 p434 (make sure)

 Organizing a lot of data can be done in two parts:

 Disks are split into one or more partitions

 Each partition contains info about files within it (e.g. name, location, size, type…) in a device
directory

Directory Overview

 Very Important p.435 (make sure)

 Operations that can be performed on a directory:

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

Single-Level Directory

 All files are contained in the same directory

 Limitations because all files must have unique names

 A single directory for all users

 Naming problem

 Grouping problem

Two-Level Directory

 Separate directory for each user (UFD = user file directory)

 Each entry in the MFD (master file directory) points to a UFD

 Advantage: No filename-collision among different users

 Disadvantage: Users are isolated from one another and can’t cooperate on the same task

 System files (e.g. compilers, loaders, libraries…) are contained in a special user directory (e.g. user 0) that
is searched if the OS doesn’t find the file in the local UFD

 Search path = directory sequence searched when a file is named

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

Tree-Structured Directories

 Users can create their own subdirectories and organize files

 Absolute path names: begin at the root

 Relative path names: define a path from the current directory

 To delete an empty directory:

 Just delete it

 To delete a non-empty directory:

 First delete all files in the directory, or

 Delete all that directory’s files and subdirectories

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list

 Absolute or relative path name

 Creating a new file is done in current directory

 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory

 mkdir <dir-name>

 Example: if in current directory /mail

 mkdir count

 Deleting "mail" ⇒ deleting the entire subtree rooted by "mail"

Acyclic-Graph Directories

 Directories can have shared subdirectories and files

 Advantage: simple algorithms to traverse the graph

 Only one file exists, so changes made by one person are immediately visible to the other

 Ways to implement shared files / subdirectories:

 Create a new directory entry called a link, which is a pointer to another file / subdirectory

 Duplicate all info about shared files in both sharing directories

 Problems:

 A file may now have multiple absolute path names

 Deletion may leave dangling pointers to a non-existent file

 Solutions to deletion problems:

 Backpointers, so we can delete all pointers

 Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 Approaches to deletion:

 With symbolic links, remove only the link, not the file. If the file itself is deleted, the links are left
dangling and can be removed / left until an attempt is made to use them

 Preserve the file until all references to it are deleted. A mechanism is needed to determine that the
last reference to the file has been deleted. Problem: potentially large size of the file- reference list

 New directory entry type

 Link-another name (pointer) to an existing file

 Resolve the link-follow pointer to locate the file

General Graph Directory

 Can have cycles: links are added to an existing directory

 If there are cycles, we want to avoid searching components twice

 Solution: limit the no of directories accessed in a search

 Similar problem when determining when a file can be deleted:

 With cycles, the reference count may be nonzero, even when it is no longer possible to refer to a
directory / file (This anomaly results from the possibility of self-referencing in the directory
structure)

 Garbage collection is needed to determine when the last reference has been deleted, only
because of possible cycles

 How do we guarantee no cycles?

 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection algorithm to determine whether it is OK

File-System Mounting

 A file system must be mounted before it can be available to processes on the system

 Mount procedure:

 The OS is given the name of the device and location within the file structure at which to attach the
file system

 The OS verifies that the device contains a valid file system

 The OS notes in its directory structure that a file system is mounted at the specified mount point

 Existing (a) ; Unmounted Partition (b) :

 Mount Point:

File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing method

Multiple Users

 File sharing

 The system can allow a user to access the files of other users by default, or

 It may require that a user specifically grant access

 To implement sharing & protection, the system must maintain more file & directory attributes than on a
single-user system

 Most systems use concepts of file/directory owner and group

 Owner = the user who may change attributes, grant access, and has the most control over the file /
directory

 Most systems implement owner attributes by managing a list of user names and user IDs

 Group = the attribute of a file that is used to define a subset of users who may share access to the file

 Group functionality can be implemented as a system-wide list of group names and group IDs

 The owner and group IDs of a file / directory are stored with the other file attributes, and can be used to
allow / deny ops

Remote File Systems

 Uses networking to allow file system access between systems

 Manually via programs like FTP

 Automatically, seamlessly using distributed file systems

 Semi automatically via the world wide web

The Client-Server Model

 The server specifies which resources (files) are available to which clients

 Client-server model allows clients to mount remote file systems from servers

 Server can serve multiple clients

 Client and user-on-client identification is insecure or complicated

 NFS is standard UNIX client-server file sharing protocol

 CIFS is standard Windows protocol

 Standard operating system file calls are translated into remote calls

Distributed Information Systems

 Provide unified access to info needed for remote computing

 Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory
implement unified access to information needed for remote computing

 DNS provides host-name-to-network-address translations

Failure Modes

 RAID can prevent the loss of a disk

 Remote file systems have more failure modes because the network can be interrupted between two hosts

 Protocols can enforce delaying of file-system operations to remote hosts, for when the host becomes
available again

 Remote file systems add new failure modes, due to network failure, server failure

 Recovery from failure can involve state information about status of each remote request

 Stateless protocols such as NFS include all information in each request, allowing easy recovery but less
security

Consistency Semantics

 Consistency semantics represent an important criterion of evaluating file systems that supports file
sharing

 These semantics specify how multiple users of a system are to access a shared file simultaneously

 In particular, they specify when modifications of data by one user will be observed by other users

 These semantics are typically implemented as code with the file system

 Consistency semantics are directly related to the process-synchronization algorithms of chapter 6

 However, the complex algorithms of that chapter tend not to be implemented in the case of file
I/O because of the great latencies and slow transfer rates of disks and networks

 For example, performing an atomic transaction to a remote disk could involve several network
communications, several disk reads and writes, or both

 Systems that attempt such a full set of functionalities tend to perform poorly

 A successful implementation of complex sharing semantics can be found in the Andrew file system

 For the following discussion, we assume that a series of file accesses (that is reads and writes) attempted
by a user to the same file is always enclosed between the open() and close() operations

 The series of accesses between the open() and close() operations make up a file session

 To illustrate the concept, we sketch several prominent examples of consistency semantics

UNIX Semantics

 Unix file system (UFS) uses the following consistency semantics:

 Writes to an open file by a user are visible immediately to other users who have this file open

 One mode of sharing allows users to share the pointer of current location into a file

 Thus, the advancing of the pointer by one user affects all sharing users

 Here, a file has a single image that interleaves all accesses, regardless of their origin

 In the UNIX semantics, a file is associated with a single physical image that is accessed as an exclusive
resource

 Contention for this single image causes delays in user processes

Session Semantics

 Andrew File System (AFS) uses the following consistency semantics

 Writes to an open file by a user are not visible immediately to other users that have the same file
open

 Once a file is closed, the changes made to it are visible only in sessions starting later

 Already open instances of the file do not reflect these changes

 According to these semantics, a file may be associated temporarily with several (possibly different) images
at the same time

 Consequently, multiple users are allowed to perform both read and write accesses concurrently
on their images of the file, without delay

 Almost no constraints are enforced on scheduling accesses

Immutable-Shared-Files Semantics

 A unique approach is that of immutable shared files

 Once a file is declared as shared by its creator, it cannot be modified

 An immutable file has two key properties:

 Its name may not be reused

 Its contents may not be altered

 Thus, the name of an immutable file signifies that the contents of the file are fixed

 The implementation of these semantics in a distributed system is simple, because the sharing is
disciplined (read- only)

Protection

 File owner/creator should be able to control:

 what can be done

 by whom

Types of Access

 Systems that don't permit access to other users’ files don't need protection so protection can provided by
prohibiting access

 This is too extreme, so controlled access is needed:

 Limit the types of file access that can be made

 You can control operations like Read, Write, Delete, List…

 Types of access:

 Read

 Write

 Execute

 Append

 Delete

 List

Access Control

 The most common approach to the protection problem is to make access dependent on the identify of the
user

 Files can be associated with an access-control list (ACL) specifying the user name and the types of access
allowed for each user

 Problems:

 Constructing a list can be tedious

 The directory entry now needs to be of variable size, resulting in more complicated space
management

 These problems can be resolved by combining access control lists with an ‘owner, group, universe’ access-
control scheme

 To condense the length of the access-control list, many systems recognize three classifications of
users in connection with each:

 Owner

 The user who created the file is the owner

 Group

 A set of users who are sharing the file and need similar access is a group, or work
group

 Universe

 All other users in the system constitute the universe

 Samples:

 E.g. rwx bits indicate which users have permission to read/write/execute

 Windows XP Access-control list management:

 A Sample UNIX directory listing:

Other Protection Approaches

 A password can be associated with each file

 Disadvantages:

 The no of passwords you need to remember may become large

 If only one password is used for all the files, then all files are accessible if it is discovered

 Commonly, only one password is associated with all of the user’s files, so protection is all-or-
nothing

 In a multilevel directory structure, we need to provide a mechanism for directory protection

 The directory operations that must be protected are different from the file operations:

 Control creation & deletion of files in a directory

 Control whether a user can determine the existence of a file in a directory (i.e. the ‘dir’ command
in DOS)

Summary

Chapter 11: Implementing File System

Objectives:

 To describe the details of implementing local file systems and directory structures

 To describe the implementation of remote file systems

 To discuss block allocation and free-block algorithms and trade-offs

File-System Structure

 Disks provide the bulk of secondary storage on which a file system is maintained

 They have two characteristics that make them a convenient medium for storing multiple files:

 They can be rewritten in place

 Can read a block from disk, modify the block, and write it back into the same place

 A disk can access directly any block of information it contains

 Thus, it is simple to access any file either sequentially or randomly , and switching
from one file to another requires only moving the read-write heads and waiting for
the disk to rotate

 To improve I/O efficiency, I/O transfers between memory and disk are performed in units of blocks

 Each block has one or more sectors

 Depending on the disk drive, sector size varies from 32 bytes to 4096 bytes

 The usual size is 512 bytes

 File systems provide efficient and convenient access to the disk by allowing data to be stored, located, and
retrieved easily

 Design problems of file systems:

 Defining how the file system should look to the user

 Creating algorithms & data structures to map the logical file system onto the physical secondary-
storage devices

 The file system itself is generally composed of many different levels

 Every level in the design uses the features of lower levels to create new features for use by higher
levels

 A layered File System:

 Levels of the file system:

 I/O Control (lowest level)

 Consists of device drivers & interrupt handlers to transfer info between main memory &
disk

 Basic file system

 Need only issue generic commands to the appropriate device driver to read & write blocks
on the disk

 File-organization module

 Knows about files and their logical & physical blocks

 Translates logical block address to physical ones

 Logical file system

 Manages metadata information

 Manages the directory structure

 Maintains file structure via file control blocks (FCB)

 Application programs

File-System Implementation

 Here we delve into the structures and operations used to implement file-system operations, like the
open() and close() operations

Overview

 On-disk & in-memory structures used to implement a file system:

 On-disk structures include:

 A boot control block

 Contains info needed to boot an OS from that partition

 A partition control block

 Contains partition details, like the no of blocks in the partition, size of the blocks, free-
block count…

 A directory structure

 Used to organize the files

 An FCB (file control block)

 Contains file details, e.g. ownership, size…

 A Typical File Control Block:

 In-memory structures is used for both file-system management and performance improvement via
caching:

 An in-memory mount table

 Contains information about each mounted partition

 An in-memory directory structure

 Holds directory info of recently accessed directories

 The system-wide open-file table

 Contains a copy of the FCB of each open file

 The per-process open-file table

 Contains a pointer to the appropriate entry in the system-wide open-file table

 Buffers hold file-system blocks when they are being read from disk or written to disk

 In-Memory File System Structure: (a) File open, (b) File read

 To create a new file, a program calls the logical file system (LFS)

 The ‘LFS’ knows the format of the directory structures

 To create a new file, it

 Allocates a new FCB

 Reads the appropriate directory into memory

 Updates it with the new file name and FCB

 Writes it back to the disk

 After a file has been created, it can be used for I/O

 First the file must be opened

 FCB: copied to a system-wide open-file table in memory

 An entry is made in the per-process open-file table, with a pointer to the entry in the system-wide
open- file table

 The open call returns a pointer to the appropriate entry in the per-process file-system table

 All file operations are then performed via this pointer

 When a process closes the file

 The per-process table entry is removed

 The system-wide entry’s open count is decremented

Partitions and Mounting

 Disk layouts:

 A disk can be sliced into multiple partitions, or

 A partition can span multiple disks (RAID)

 Each partition can either be:

 Raw (containing no file system), or

 Cooked (containing a file system)

 Boot info can be stored in a separate partition with its own format, since at boot time the system doesn't
have file- system device drivers loaded and can't interpret the file-system format

 Boot info format:

 A sequential series of blocks, loaded as an image into memory, and execution of the image
starts at a predefined location, such as the first byte

 The root partition containing the kernel is mounted at boot time

 Other partitions can be mounted at boot time, or later, manually

 As part of a successful mount operation, the OS verifies that the device contains a valid file system

 The OS notes in its in-memory mount table structure that a file system is mounted, and the type of the file
system

Virtual File Systems

 The OS allows multiple types of file systems to be integrated into a directory structure (and be
distinguished by the VFS!)

 The file-system implementation consists of 3 major layers:

 File-system interface

 Virtual File System (VFS) interface (serves 2 functions):

 Separates file-system-generic operations from their implementation by defining a clean
VFS interface

 The VFS is based on a file-representation structure (vnode) that contains a numerical
designator for a network-wide unique file, to support NFS

 Local file system

 Schematic view of a virtual file system:

Directory Implementation

 The selection of directory-allocation and directory-management algorithms significantly affects the
efficiency, performance, and reliability of the file system

 Here we look at the trade-offs involved in choosing one of these algorithms

Linear List

 The simplest method of implementing a directory is to use a linear list of file names with pointers to the
data blocks

 A linear list of file names has pointers to the data blocks

 Requires a linear search to find a particular entry

 Simple to program, but time-consuming to execute (linear search)

 A cache can store the most recently used directory information

A sorted list allows a binary search and decreases search times

Hash Table

 A linear list stores the directory entries, but a hash data structure is also used

 The hash table takes a value computed from the file name and returns a pointer to the file name in the
linear list

 Some provision must be made for collisions

 Situation in which two file names hash to the same location

 Disadvantages:

 Fixed size of hash table and the dependence of the hash function on that size

Allocation Methods

 The direct-access nature of disks allows us flexibility in the implementation of files

 In almost every case, many files are stored on the same disk

 The main problem is how to allocate space to these files so that disk space is utilized effectively
and files can be accessed quickly

 Three major methods of allocating disk space are in wide use:

 Contiguous

 Linked

 Indexed

 Each method has advantages and disadvantages

 Some systems support all three (Data General's RDOS for its Nova line of computers)

 More commonly, a system uses one method for all files within a file-system type

Contiguous Allocation

See also: Memory Allocation

Read p.472 mid NB!!!!!

 Each file occupies a set of contiguous blocks on the disk

 Disk addresses define a linear ordering on the disk

 The number of disk seeks required for accessing contiguously allocated files is minimal, as is seek time

 Both sequential and direct access can be supported

 Problems with contiguous allocation:

 Finding space for a new file

 External fragmentation can occur

 Determining how much space is needed for a file

 If you allocate too little space, it can't be extended

 If you allocate too much space, it may go unused

 To minimize these drawbacks:

 A contiguous chunk of space can be allocated initially, and then when that amount is not
large enough, another chunk of contiguous space (an ‘extent’) is added

 Contiguous Allocation of Disk Space:

 An extent is a contiguous block of disks

 Extents are allocated for file allocation

 A file consists of one or more extents

Linked Allocation

 Each file is a linked list of disk blocks (scattered anywhere)

 The directory contains a pointer to the first & last blocks

 Each block contains a pointer to the next block

 Mapping:

 Block to be accessed is the Qth block in the linked chain of blocks representing the file

 Displacement into block = R + 1

