
 The process is restarted only when it can regain its old resources as well as the new ones that it is 
requesting   

 Protocol # 2   

 If some requested resources are not available, check whether they are allocated to a process that 
is waiting for additional resources. If  so, preempt these resources from the waiting process and 
allocate them to the requesting one 

 This protocol is often applied to resources whose state can be easily saved and restored later, like 
CPU registers 

Circular Wait 

 Protocol # 1  

 Impose a total ordering of all resource types, and require that each process requests resources in 
an increasing order  

 Protocol # 2  

 Require that whenever a process requests an instance of a resource type, it has released resources 
with a lower no 

Deadlock Avoidance 

 The OS is given in advance additional info concerning which resources a process will request & use during 
its lifetime 

Safe State 

 A state is safe if the system can allocate resources to each process in some order and still avoid a deadlock  

 Safe sequence: <P1…Pn>, where all the resources that Pi may request are  

 Currently available, or 

 Held by a process Pj, where j < i   

 If the resources are not immediately available, Pi can wait until all processes Pj, j < i, have completed 

 When Pi finishes, Pi+1 may obtain its resources 

 An unsafe state may (but not necessarily) lead to a deadlock 

 Deadlocks are avoided by refusing any requests which lead to an unsafe state, so processes may wait for 
resources  that are available, which  may lead to sub-optimal resource utilization  

 

Resource-Allocation-Graph Algorithm 

 Claim edge Pi→Rj indicated that process Pj may request resource Rj; represented by a dashed line 



 Claim edge converts to request edge when a process requests a resource 

 Request edge converted to an assignment edge when the resource is allocated to the process 

 When a resource is released by a process, assignment edge reconverts to a claim edge 

 Resources must be claimed a priori in the system 

 Resource allocation graph: 

 

 Unsafe state in resource allocation graph: 

 

 Resource allocation graph algorithm:  

 Suppose that process Pi requests a resource Rj 

 The request can be granted only if converting the request edge to an assignment edge does not 
result in  the formation of a cycle in the resource allocation graph 

Banker's Algorithm 

 First use the Banker’s safety algorithm to determine whether the system is currently in a safe state 

 Then use the resource-request algorithm to check whether each of the given requests may be safely 
granted or not 

 Each process has  

 Allocation vector: The no of each resource type allocated 

 Max vector: The maximum no of each resource to be used 

 Need vector: Outstanding resources (Max – Allocation)  

 Available (‘work’) vector: Free resources over all processes 



 Maximum resource vector: Allocation vectors + Available vector 

 Finish vector: Indicates which processes are still running 

 Step 1: Initialize the Finish vector to 0 (0 = false) 

 Step 2: Search the array Need from the top to find a process needing fewer resources than those Available 

 Step 3: Assume the process completes, and free its resources:  

 Add the resources to the Available vector 

 Subtract the resources from the Process’ Allocation vector 

 Place 1 in the appropriate place in the Finish vector  

 Continue until Finish contains only 1s 

Problems with the Banker’s algorithm: 

 It requires a fixed number of resources to allocate  

 Resources may suddenly break down 

 Processes rarely know their max resource needs in advance  

 It requires a fixed number of processes  

 The no of processes varies dynamically (users log in & out) 

Safety Algorithm 

 Let Work and Finish be vectors of length m and n, respectively. Initialize:   (1) 

Work = Available 

Finish [i] =false fori= 0, 1, …, n-1. 

 Find and i such that both:      (2) 

(a) Finish[i] = false 

(b) Needi≤Work 

If no such i exists, go to step 4. 

 Work= Work + Allocationi     (3) 

Finish[i] =true 

go to step 2 

 If Finish[i] == true for all i, then the system is in a safe state      (4) 

Resource-Request Algorithm 

 Request= request vector for process Pi. If Requesti[j] = k then process Pi wants k instances of resource type 
Rj.   

 If Requesti ≤Needi go to step 2. Otherwise, raise error condition, since process has exceeded its 
maximum  claim     (1) 

 If Requesti≤Available, go to step 3. Otherwise Pimust wait, since resources are not available     (2) 

 Pretend to allocate requested resources to Piby modifying the state as follows:       (3) 

Available= Available -Request; 

Allocationi= Allocationi+ Requesti; 

Needi=Needi-Requesti; 



 If safe ⇒ the resources are allocated to Pi  

 If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored 

An Illustrative Example 

 Example of the Banker's Algorithm: 

 

 

 Example: P1 Request (1,0,2): 

 

Deadlock Detection 

 A detection algorithm determines if a deadlock has occurred  

 An algorithm recovers from the deadlock 

 



 Advantage:      

1. Processes don't need to indicate their needs beforehand   

 Disadvantages:   

1. Detection-and-recovery schemes require overhead 

2. Potential losses inherent in recovering from a deadlock 

Single Instance of Each Resource Type 

 Maintain wait-for graph   

 Nodes are processes 

 Pi→Pj if Pi is waiting for Pj. 

 Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists a 
deadlock. 

 An algorithm to detect a cycle in a graph requires an order of n^2 operations, where n is the number of 
vertices in the  graph 

 

Several Instances of a Resource Type 

 Wait-for graph not applicable to a resource-allocation system with multiple instances of each resource 
type 

 Here we make use of a deadlock detection algorithm which is applicable to such a system 

 Data structures of the algorithm: 

 Available: A vector of length m indicates the number of available resources of each type 

 Allocation: An n x m matrix defines the number of resources of each type currently allocated to 
each process 

 Request: An n x m matrix indicates the current request of each process. If Request [ij] = k, then 
process Pi  is requesting k more instances of resource type. Rj. 

 Detection algorithm: 

 Let Work and Finish be vectors of length m and n, respectively Initialize:   (1) 

(a) Work = Available 

(b) For i = 1,2, …,n, if Allocationi ≠0, then  

    Finish[i] = false;otherwise, Finish[i] = true. 

 Find an index i such that both:         (2) 

(a) Finish[i] == false 



(b) Requesti ≤Work 

 If no such i exists, go to step 4    

 Work = Work + Allocationi      (3) 

Finish[i] = true 

go to step 2. 

 If Finish[i] == false, for some i, 1 ≤i≤n, then the system is in deadlock state. Moreover, if Finish[i] == 
false,  then Pi is deadlocked        (4) 

Detection-Algorithm Usage 

 The frequency of invoking the detection algorithm depends on:   

 How often a deadlock is likely to occur? 

 How many processes will be affected by deadlock when it happens?   

 If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and so we 
would not be  able to tell which of the many deadlocked processes "caused" the deadlock 

 Every invocation of the algorithm adds to computation overhead 

Recovery from Deadlock 

 When a detection algorithm determines that a deadlock exists,   

 The operator can deal with the deadlock manually 

 The system can recover from the deadlock automatically  

Process Termination 

 Abort all deadlocked processes 

 Abort one process at a time until the deadlock cycle is eliminated 

 In which order should we choose to abort?   

 Priority of the process 

 How long process has computed, and how much longer to completion 

 Resources the process has used 

 Resources process needs to complete 

 How many processes will need to be terminated 

 Is process interactive or batch? 

Resource Preemption 

 Selecting a victim:   

 We must determine the order of preemption to minimize cost 

 Cost factors: no. of resources being held, time consumed… 

 Rollback:   

 If we preempt a resource from a process, the process can’t go on with normal execution because 
its missing a  resource 

 We must roll back the process to a safe state & restart it  

 

  



 Starvation:   

 In a system where victim selection is based primarily on cost factors, the same process may always 
be picked 

 To ensure a process can be picked only a small number of times, include the number of rollbacks in 
the cost  factor 

Summary 

Memory Management 

 For a program to be executed, it must be mapped to absolute addresses and loaded into memory 

 As the program executes, it accesses program instructions and data from memory by generating these 
absolute  addresses 

 Eventually the program terminates and its memory space is declared available so the next program can be 
loaded &  executed 

 To improve CPU utilization, keep several programs in memory 

 Selection of a memory-management scheme depends on many factors, especially the hardware design of 
the  system 

 The OS is responsible for these memory-management activities:   

 Keeping track of which parts of memory are currently being used and by whom 

 Deciding which processes are to be loaded into memory when memory space becomes available 

 Allocating and de-allocating memory space as needed 

PART FOUR: MEMORY MANAGEMENT 

Chapter 8: Memory-Management Strategies 

Chapter Objectives: 

 To provide a detailed description of various ways of organizing memory hardware 

 To discuss various memory-management techniques, including paging and segmentation 

 To provide a detailed description of the Intel Pentium, which supports both pure segmentation and 
segmentation with  paging 

Background 

 The strategies in this chapter have all the same goal:   

 To keep many processes in memory simultaneously to allow multiprogramming 

 However, they require that an entire process be in memory before it can execute 

Basic Hardware 

 Program must be brought (from disk) into memory and placed within a process for it to be run 

 Main memory and registers are only storage CPU can access directly 

 Register access in one CPU clock (or less) 

 Main memory can take many cycles 

 Cache sits between main memory and CPU registers 

 Protection of memory required to ensure correct operation 

 A pair of base and limit registers define the logical (virtual) address space 



 

 420940 - 300040 = 120900 (logical address space) 

Address Binding 

 Input queue = the collection of processes on the disk that is waiting to be brought into memory for 
execution 

 Processes can normally reside in any part of the physical memory 

 Addresses in the source program are generally symbolic (‘count’) 

 A compiler binds these symbolic addresses to relocatable addresses (’14 bytes from the beginning of this 
module’) 

 The linkage editor / loader binds these relocatable addresses to absolute addresses (‘74014’) 

 Address binding of instructions and data to memory addresses can happen at three different stages   

 Compile time: 

 If memory location known a priori, absolute code can be generated 

 Must recompile code if starting location changes 

 Load time: 

 Must generate relocatable code if memory location is not known at compile time 

 Execution time: 

 Binding delayed until run time if the process can be moved during its execution from one 
memory  segment to another 

 Need hardware support for address maps (e.g., base and limit registers) 

 Steps a user program needs to go through (some optional) before being executed: 

 



Logical versus Physical Address Space 

 Logical address = one generated by the CPU 

 Physical address = one seen by the memory unit, and loaded into the memory-address register of the 
memory 

 The compile-time and load-time address-binding methods generate identical logical & physical addresses 

 The execution-time address-binding scheme results in differing logical (= ‘virtual’) & physical addresses 

 Logical(virtual)-address space = the set of all logical addresses generated by a program 

 Physical-address space = the set of all physical addresses corresponding to these logical addresses  

 Memory-management unit (MMU) = a hardware device that does the run-time mapping from virtual to 
physical  addresses 

 The MMU:   

 Hardware device that maps virtual to physical address 

 In MMU scheme, the value in the relocation (base) register is added to every address generated by 
a user  process at the time it is sent to memory 

 The user program deals with logical addresses; it never sees the real physical addresses   

 Dynamic relocation using a relocation register: 

 

Dynamic Loading 

 With dynamic loading, a routine is not loaded until it is called 

 All routines are kept on disk in a relocatable load format 

 The main program is loaded into memory and is executed 

 When a routine needs to call another one, the calling routine first checks to see whether the other 
routine has  been loaded 

 If not, the relocatable linking loader is called to load the desired routine into memory 

 Then, control is passed to the newly loaded routine 

 Advantage of dynamic loading: 

 An unused routine is never loaded 

 Dynamic loading doesn't require special support from the OS 

 The user must design his programs to take advantage of this 

 However, OS's may help the programmer by providing library routines to implement dynamic loading 



Dynamic Linking and Shared Libraries 

 Static linking: 

 System language libraries are treated like any other object module and are combined by the 
loader into the  binary program image 

 Dynamic linking: 

 Linking is postponed until execution time 

 Look at image in address binding!!! Also shows dynamic linking  

 A stub is found in the image for each library-routine reference 

 Stub: 

 Code that indicates how to locate the memory-resident library routine, or how to load the 
library if the  routine is not already in memory 

 Either way, the stub replaces itself with the address of the routine, and executes the routine 

 The next time that code segment is reached, the library routine is executed directly, with no cost for 
dynamic linking 

 Under this scheme, all processes that use a language library execute only one copy of the library code 

 Unlike dynamic loading, dynamic linking requires help from the OS: 

 If the processes in memory are protected from one another, then the OS is the only entity that can 
check to  see whether the needed routine is in another process’ memory space 

 Shared libraries: 

 A library may be replaced by a new version, and all programs that reference the library will 
automatically use  the new one 

 Version info is included in both program & library so that programs won't accidentally execute 
incompatible versions 

Swapping 

 p.322 - 324 TB 

 A process can be swapped temporarily out of memory to a backing store, and then brought back into 
memory for  continued execution 

 Backing store 

 Fast disk large enough to accommodate copies of all memory images for all users; must provide 
direct  access to these memory images   

 Roll out, roll in: 

 When a higher-priority process arrives a lower-priority process is swapped out, and then swapped 
back in  when the higher-priority process finishes 

 Major part of swap time is transfer time   

 Total transfer time is directly proportional to the amount of memory swapped   

 Swapping requires a backing store (normally a fast disk) 

 The backing store must be big enough to accommodate all copies of memory images for all users, and 
must  provide direct access 

 The system has a ready queue with all processes whose memory images are on the backing store or in 
memory  and ready to run 

 The CPU scheduler calls the dispatcher before running a process 



 The dispatcher checks if the next process in queue is in memory 

 If not, and there is no free memory region, the dispatcher swaps out a process currently in 
memory and  swaps in the desired one 

 It then reloads registers and transfers control to the process    

 The context-switch time in such a swapping system is fairly high 

 If we want to swap a process, it must be completely idle 

 Schematic view of Swapping: 

 

Contiguous Memory Allocation 

 Memory is usually divided into two partitions:    

 One for the resident OS 

 One for the user processes    

 The OS is usually placed in low or high memory (Normally low since interrupt vector is in low memory) 

 Affected by location of the interrupt vector 

 Contiguous memory allocation: 

 Each process is contained in a single contiguous section of memory 

Memory Mapping and Protection 

 The OS must be protected from user processes, and user processes must be protected from one another 

 Use a relocation register with a limit register for protection 

 Relocation register contains the smallest physical address 

 The limit register contains the range of logical addresses 

 The memory-management unit (MMU) maps the logical address dynamically by adding the value in the 
relocation  register 

 This mapped address is sent to memory 

 When the CPU scheduler selects a process for execution, the dispatcher loads the relocation & limit 
registers  

 Because every address generated by the CPU is checked against these registers, we can protect both the 
OS and  the other users’ programs & data from being modified by this running process 

 HW address protection with base and limit registers: 



 

 The relocation-register scheme provides an effective way to allow the OS size to change dynamically 

 Transient OS code: 

 Code that comes & goes as needed to save memory space and overhead for unnecessary 
swapping 

Memory Allocation 

 A simple method: divide memory into fixed-sized partitions 

 Each partition may contain exactly one process 

 The degree of multiprogramming is bound by the no of partitions    

 When a partition is free, a process is selected from the input queue and is loaded into the 
free  partition 

 When the process terminates the partition becomes available    

 (The above method is no longer in use)    

 Another method: the OS keeps a table indicating which parts of memory are available and which are 
occupied 

 Initially, all memory is available, and is considered as one large block of available memory, a hole 

 When a process arrives, we search for a hole large enough 

 If we find one, we allocate only as much memory as is needed    

 As processes enter the system, they are put into an input queue 

 When a process is allocated space, it is loaded into memory and can then compete for the CPU 

 When a process terminates, it releases its memory    

 We have a list of available block sizes and the input queue 

 The OS can order the input queue with a scheduling algorithm 

 Memory is allocated to processes until, finally, there isn't a hole (block of memory) large enough to hold 
the next  process 

 The OS can then wait until a large enough block is available, or it can skip down the input queue to see 
whether  the smaller memory requirements of some other process can be met 

 In general, a set of holes of various sizes is scattered throughout memory at any given time 

 When a process arrives and needs memory, the system searches this set for a hole that is large enough for 
this  process 

 If the hole is too large, it is split up: 

 One part is allocated to the process, and the other is returned to the set of holes 

 On process termination, the memory block returns to the hole set 

 Adjacent holes are merged to form one larger hole 



 Solutions to the dynamic storage allocation problem: 

 First fit (Better and faster)   

 Allocate the first hole that is big enough    

 Best fit (Ok)   

 Allocate the smallest hole that is big enough    

 Worst fit (Not as good as the other two)   

 Allocate the largest hole    

 These algorithms suffer from external fragmentation: 

 Free memory space is broken into pieces as processes are loaded and removed 

Fragmentation 

 External fragmentation: 

 Exists when enough total memory space exists to satisfy a request, but it is not contiguous 

 Internal fragmentation: 

 Allocated memory may be slightly larger than requested memory; this size difference is memory 
internal to a  partition, but not being used    

 Compaction is a solution to the problem of external fragmentation 

 Free memory is shuffled together into one large block 

 Compaction is not always possible: if relocation is static and is done at assembly / load time, 
compaction  cannot be done 

 Simplest compaction algorithm: 

 Move all processes towards one end of memory, leaving one large hole of free memory 
(Expensive, lots of  overhead) 

 Another solution: 

 Permit the logical-address space of a process to be noncontiguous 

 Paging and segmentation allows this solution 

Paging 

 Permits the physical-address space of a process be noncontiguous  

 Traditionally: support for paging has been handled by hardware 

 Recent designs: the hardware & OS are closely integrated 

Basic Method 

 Physical memory is broken into fixed-sized blocks called frames 

 Logical memory is broken into same-sized blocks called pages 

 When a process is to be executed, its pages are loaded into any available memory frames from the 
backing store 

 The backing store has blocks the same size as the memory frames 

 Every address generated by the CPU is divided into 2 parts:     

 a page number (to index the page table)  

 a page offset 

    



 The page table contains the base address of each page in memory 

 This base address is combined with the page offset to define the physical memory address that is sent to 
the  memory unit 

 The page size, defined by the hardware, is usually a power of 2 

 Paging schemes have no external, but some internal fragmentation 

 Small page sizes mean less internal fragmentation 

 However, there is less overhead involved as page size increases 

 Also, disk I/O is more efficient with larger data transfers    

 When a process arrives in the system to be executed, its size, expressed in pages, is examined 

 (Noncontiguous) frames are allocated to each page of the process    

 The frame table contains entries for each physical page frame, indicating which are allocated to which 
pages of  which processes 

 Address Translation Scheme:    

 Address generated by CPU is divided into: 

 Page number (p) – used as an index into a page table which contains base address of each page in  
physical memory 

 Page offset (d) – combined with base address to define the physical memory address that is sent 
to the  memory unit 

 

 For given logical address space 2^m and page size 2^n page    

 An illustration of the hardware that supports paging: 

  

 

 

 

 

 

 

 



 The paging model of logical and physical memory: 

 

 Paging Example: 32-bytee memory and 4-byte pages (p.330) 

 

 With the arrival of new processes the following happens: 

 

 a) Before allocation 

 b) After allocation 

Hardware Support 

 Most OS's store a page table for each process 

 A pointer to the page table is stored in the PCB 



 Different ways for hardware implementation of the page table: 

 The page table is implemented as a set of dedicated registers 

 The CPU dispatcher reloads these registers just like the others 

 Instructions to load / modify the page-table registers are privileged, so that only the OS can 
change  the memory map 

 Disadvantage: works only if the page table is reasonably small    

 The page table is kept in memory, and a page-table base register (PTBR) points to the page 
table    

 Changing page tables requires changing only this one register, substantially reducing 
context-switch  time 

 Disadvantage: two memory accesses are needed to access one byte    

 Use a small, fast-lookup hardware cache: the translation look-aside buffer (TLB)    

 The TLB is associative, high-speed memory 

 Each entry in the TLB consists of a key and a value 

 When the associative memory is presented with an item, it is compared with all keys 
simultaneously 

 If the item is found, the corresponding value field is returned 

 The search is fast, but the hardware is expensive 

 The TLB is used with page tables in the following way:    

 When a logical address is generated by the CPU, its page number is presented to the TLB 

 If the page number is found, its frame number is immediately available and is used to access 
memory 

 If the page number is not in the TLB, a memory reference to the page table must be made 

 The obtained frame number can be used to access memory 

 If the TLB is full of entries, the OS must replace one 

 Some TLBs have wired down entries that can't be removed 

 Some TLBs store address-space identifiers (ASIDs) in each entry of the TLB, that uniquely identify 
each  process and provide address  space protection for that process 

 Paging Hardware with TLB: 

 

 The percentage of times that a particular page number is found in the TLB is called the hit ratio 



 Effective access time:  

 Associative Lookup = ε time unit 

 Assume memory cycle time is 1 microsecond 

 Hit ratio –percentage of times that a page number is found in the associative registers; ratio 
related to  number of associative registers 

 Hit ratio = ± 

 Effective Access Time(EAT) 

EAT = (1 + ε) α+ (2 + ε)(1 –α) 

       = 2 + ε–α 

Protection 

 Memory protection is achieved by protection bits for each frame 

 Normally, these bits are kept in the page table 

 One bit can define a page to be read-write or read-only 

 Every reference to memory goes through the page table to find the correct frame number, so the 
protection bits  can be checked 

 A valid-invalid bit is usually attached to each page table entry 

 ‘Valid’: the page is in the process’ logical-address space 

 ‘Invalid’: the page is not in the process’ logical-address space 

 Illegal addresses are trapped by using the valid-invalid bit 

 Valid (v) or Invalid (i) Bit in a Page Table: 

 

 Many processes use only a small fraction of the address space available to them, so it’s wasteful to create 
a page  table with entries for every page in the address range 

 A page-table length register (PTLR) can indicate the size of the page table 

Shared Pages 

 Another advantage of paging: it is possible to share common code 

 Reentrant code (pure code) = non-self-modifying code 

 If the code is reentrant, then it never changes during execution 

 Thus, two or more processes can execute the same code at once 



 Each process has its own copy of registers and data storage to hold the data for the process’ execution 

 Only one copy of the editor needs to be kept in physical memory 

 Each user’s page table maps onto the same physical copy of the editor, but data pages are mapped onto  
different frames 

 Systems that use inverted page tables have difficulty implementing shared memory 

 Shared code 

 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, 
window  systems). 

 Shared code must appear in same location in the logical address space of all processes   

 Private code and data 

 Each process keeps a separate copy of the code and data 

 The pages for the private code and data can appear anywhere in the logical address space 

 Shared Pages Example: 

 

 ed1, 2, 3 are shared code pages, while each process has its own data page 

Structure of the Page Table 

 Hierarchical Paging 

 Hashed Page Tables 

 Inverted Page Tables 

Hierarchical Paging 

 Two-level paging algorithm: 

 The page table is also paged 

 Known as a forward-mapped page table because address translation works from the outer page table 
inwards 

 Two-Level Page-Table Scheme: 



 

 Two-Level Paging Example:   

 A logical address (on 32-bit machine with 1K page size) is divided into:   

 a page number consisting of 22 bits 

 a page offset consisting of 10 bits   

 Since the page table is paged, the page number is further divided into:   

 a 12-bit page number  

 a 10-bit page offset   

 Thus, a logical address is as follows: 

 

 where pi is an index into the outer page table, and p2 is the displacement within the page of the 
outer page  table  

 Address-Translation Scheme: 

 

Hashed Page Tables 

 Each entry in the hash table contains a linked list of elements that hash to the same location 

 Each element consists of:   

 The virtual page number 

 The value of the mapped page frame 



 A pointer to the next element in the linked list   

 The virtual page number is compared to field (a) in the first element in the linked list 

 If there is a match, the corresponding page frame (field b) is used to form the desired physical address 

 If there is no match, subsequent entries in the linked list are searched for a matching virtual page number 

 Clustered page tables are similar to hashed page tables, except that each entry in the table refers to 
several pages 

 Clustered page tables are particularly useful for sparse address spaces where memory references are 
noncontiguous  and scattered throughout  the address space 

 

Inverted Page Tables 

 One entry for each real page of memory 

 Entry consists of the virtual address of the page stored in that real memory location, with information 
about the  process that owns that page 

 Decreases memory needed to store each page table, but increases time needed to search the table when 
a page  reference occurs 

 Use hash table to limit the search to one — or at most a few — page-table entries 

 

Segmentation 

 Memory-management scheme that supports the users’ view of memory 

 A program is a collection of segments. A segment is a logical unit such as:  

 main program, 



 procedure,  

 function, 

 method, 

 object, 

 local variables, global variables, 

 common block, 

 stack, 

 symbol table, arrays 

Basic Method 

 Segmentation is a memory-management scheme that supports this user view memory 

 A logical address space is a collection of segments 

 The user's view of a Program: 

 

 The user specifies each address by: a segment name and an offset 

 (Segments are implemented with numbers rather than names) 

 Logical view of segmentation 

 

 When a program is compiled, segments are constructed for E.g.    

 The code 

 The global variables 

 The heap, from which memory is allocated 

 The stacks used by each thread 



 The procedure call stack, to store parameters 

 The code portion of each procedure or function 

 The local variables of each procedure and function 

 The loader would take all these segments and assign them segment numbers 

Hardware 

 Although you can refer to objects by a two-dimensional address, the physical memory is still a one-
dimensional  sequence of bytes 

 A segment table maps two-dimensional user-defined addresses into one-dimensional physical addresses 

 Each entry of the table has a segment base and a segment limit 

 

 Example of Segmentation: 

 

Example: The Intel Pentium 

 Supports both segmentation and segmentation with paging 

 CPU generates logical address  

 Given to segmentation unit  

 Which produces linear addresses   

 Linear address given to paging unit  

 Which generates physical address in main memory 

 Paging units form equivalent of MMU 



Pentium Segmentation 

Pentium Paging 

Linux on Pentium Systems 

Summary 

Chapter 9: Virtual-Memory Management 

 Virtual memory is a technique that allows the execution of processes that are not completely in memory 

Objectives:  

 To describe the benefits of a virtual memory system 

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames 

 To discuss the principle of the working-set model 

Background 

 In many cases, the entire program is not needed:   

 Unusual error conditions are almost never executed 

 Arrays & lists are often allocated more memory than needed 

 Certain options & features of a program may be used rarely   

 Benefits of executing a program that is only partially in memory   

 More programs could be run at the same time 

 Programmers could write for a large virtual-address space and need no longer use overlays 

 Less I/O would be needed to load / swap programs into memory, so each user program would run 
faster 

 Virtual memory – separation of user logical memory from physical memory   

 Only part of the program needs to be in memory for execution 

 Logical address space can therefore be much larger than physical address space 

 Allows address spaces to be shared by several processes 

 Allows for more efficient process creation   

 Virtual memory can be implemented by:   

 Demand paging 

 Demand segmentation 

 Diagram showing virtual memory that is larger than physical memory: 



 

 The virtual address space of a process refers to the logical (or virtual) view of how a process is stored in 
memory   

 Typically, this view is that a process begins at a certain logical address - say, address 0 - and exists 
in  contiguous memory 

 

 We allow the for the heap to grow upward in memory as it is used for dynamic memory allocation 

 Virtual memory allows files and memory to be shared by two of more processes through page sharing 

 Benefits: 

 System libraries can be shared by several processes through mapping of the shared object 
into  virtual address space 

 Virtual memory enables processes to share memory 

 From chapter 3 we learned that two or more processes can communicate through 
the use of  shared memory 

 Virtual memory can allow pages to be shared during process creation with the fork() 
system call,  speeding up process creation 



 

Demand Paging 

 Bring a page into memory only when it is needed    

 Less I/O needed 

 Less memory needed  

 Faster response 

 More users    

 Page is needed ⇒ reference to it    

 invalid reference ⇒ abort 

 not-in-memory ⇒ bring to memory    

 Lazy swapper-never swaps a page into memory unless page will be needed    

 Swapper that deals with pages is a pager 

 A demand-paging system is similar to a paging system with swapping where processes reside in secondary 
memory  (usually on disk) 

 

Basic Concepts 

 Hardware support to distinguish pages in memory / pages on disk:   

 Valid bit: 

 The page is both legal and in memory 



 Invalid bit: 

 The page is either not valid, or valid but currently on the disk  

 

 The process executes and accesses pages that are memory resident 

 If the process tries to access a page that was not brought into memory (i.e. one marked ‘invalid’), a page-
fault trap  is caused 

 Procedure for handling page faults:   

 Check an internal table to determine whether the reference was a valid / invalid memory access 

 Invalid reference terminate the process; if it was valid, but we have not yet brought in that page, 
page it in 

 Find a free frame (by taking one from the free-frame list) 

 Read the desired page into the newly allocated frame 

 Modify the internal table and the page table to indicate that the page is now in memory 

 Restart the instruction that was interrupted by the illegal address trap at the same place  



 

 Pure demand paging: 

 Never bring pages into memory until required 

 Some programs may access several new pages of memory with each instruction, causing multiple page 
faults and  poor performance 

 Programs tend to have locality of reference, so this results in reasonable performance from demand 
paging 

 Hardware to support demand paging:   

 Page table:   

 Can mark an entry invalid through valid - invalid bit   

 Secondary memory:   

 Holds pages that are not present in main memory 

 Known as the swap device, and has a swap space (high-speed disk) 

 Architectural software constraints:   

 Instructions must be able to be restarted after page faults 

Performance of Demand Paging 

 p365-367 TB 

 Demand paging can significantly affect the performance of a computer system 

 We compute the effective access time for a demand-paged memory  

 Page Fault Rate 0 ≤p ≤1.0   

 if p = 0 no page faults  

 if p = 1, every reference is a fault   

 Effective Access Time (EAT) 

EAT = (1 -p) x memory access 

+ p(page fault overhead 

+ swap page out 


