
 The process is restarted only when it can regain its old resources as well as the new ones that it is
requesting

 Protocol # 2

 If some requested resources are not available, check whether they are allocated to a process that
is waiting for additional resources. If so, preempt these resources from the waiting process and
allocate them to the requesting one

 This protocol is often applied to resources whose state can be easily saved and restored later, like
CPU registers

Circular Wait

 Protocol # 1

 Impose a total ordering of all resource types, and require that each process requests resources in
an increasing order

 Protocol # 2

 Require that whenever a process requests an instance of a resource type, it has released resources
with a lower no

Deadlock Avoidance

 The OS is given in advance additional info concerning which resources a process will request & use during
its lifetime

Safe State

 A state is safe if the system can allocate resources to each process in some order and still avoid a deadlock

 Safe sequence: <P1…Pn>, where all the resources that Pi may request are

 Currently available, or

 Held by a process Pj, where j < i

 If the resources are not immediately available, Pi can wait until all processes Pj, j < i, have completed

 When Pi finishes, Pi+1 may obtain its resources

 An unsafe state may (but not necessarily) lead to a deadlock

 Deadlocks are avoided by refusing any requests which lead to an unsafe state, so processes may wait for
resources that are available, which may lead to sub-optimal resource utilization

Resource-Allocation-Graph Algorithm

 Claim edge Pi→Rj indicated that process Pj may request resource Rj; represented by a dashed line

 Claim edge converts to request edge when a process requests a resource

 Request edge converted to an assignment edge when the resource is allocated to the process

 When a resource is released by a process, assignment edge reconverts to a claim edge

 Resources must be claimed a priori in the system

 Resource allocation graph:

 Unsafe state in resource allocation graph:

 Resource allocation graph algorithm:

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the request edge to an assignment edge does not
result in the formation of a cycle in the resource allocation graph

Banker's Algorithm

 First use the Banker’s safety algorithm to determine whether the system is currently in a safe state

 Then use the resource-request algorithm to check whether each of the given requests may be safely
granted or not

 Each process has

 Allocation vector: The no of each resource type allocated

 Max vector: The maximum no of each resource to be used

 Need vector: Outstanding resources (Max – Allocation)

 Available (‘work’) vector: Free resources over all processes

 Maximum resource vector: Allocation vectors + Available vector

 Finish vector: Indicates which processes are still running

 Step 1: Initialize the Finish vector to 0 (0 = false)

 Step 2: Search the array Need from the top to find a process needing fewer resources than those Available

 Step 3: Assume the process completes, and free its resources:

 Add the resources to the Available vector

 Subtract the resources from the Process’ Allocation vector

 Place 1 in the appropriate place in the Finish vector

 Continue until Finish contains only 1s

Problems with the Banker’s algorithm:

 It requires a fixed number of resources to allocate

 Resources may suddenly break down

 Processes rarely know their max resource needs in advance

 It requires a fixed number of processes

 The no of processes varies dynamically (users log in & out)

Safety Algorithm

 Let Work and Finish be vectors of length m and n, respectively. Initialize: (1)

Work = Available

Finish [i] =false fori= 0, 1, …, n-1.

 Find and i such that both: (2)

(a) Finish[i] = false

(b) Needi≤Work

If no such i exists, go to step 4.

 Work= Work + Allocationi (3)

Finish[i] =true

go to step 2

 If Finish[i] == true for all i, then the system is in a safe state (4)

Resource-Request Algorithm

 Request= request vector for process Pi. If Requesti[j] = k then process Pi wants k instances of resource type
Rj.

 If Requesti ≤Needi go to step 2. Otherwise, raise error condition, since process has exceeded its
maximum claim (1)

 If Requesti≤Available, go to step 3. Otherwise Pimust wait, since resources are not available (2)

 Pretend to allocate requested resources to Piby modifying the state as follows: (3)

Available= Available -Request;

Allocationi= Allocationi+ Requesti;

Needi=Needi-Requesti;

 If safe ⇒ the resources are allocated to Pi

 If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored

An Illustrative Example

 Example of the Banker's Algorithm:

 Example: P1 Request (1,0,2):

Deadlock Detection

 A detection algorithm determines if a deadlock has occurred

 An algorithm recovers from the deadlock

 Advantage:

1. Processes don't need to indicate their needs beforehand

 Disadvantages:

1. Detection-and-recovery schemes require overhead

2. Potential losses inherent in recovering from a deadlock

Single Instance of Each Resource Type

 Maintain wait-for graph

 Nodes are processes

 Pi→Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists a
deadlock.

 An algorithm to detect a cycle in a graph requires an order of n^2 operations, where n is the number of
vertices in the graph

Several Instances of a Resource Type

 Wait-for graph not applicable to a resource-allocation system with multiple instances of each resource
type

 Here we make use of a deadlock detection algorithm which is applicable to such a system

 Data structures of the algorithm:

 Available: A vector of length m indicates the number of available resources of each type

 Allocation: An n x m matrix defines the number of resources of each type currently allocated to
each process

 Request: An n x m matrix indicates the current request of each process. If Request [ij] = k, then
process Pi is requesting k more instances of resource type. Rj.

 Detection algorithm:

 Let Work and Finish be vectors of length m and n, respectively Initialize: (1)

(a) Work = Available

(b) For i = 1,2, …,n, if Allocationi ≠0, then

 Finish[i] = false;otherwise, Finish[i] = true.

 Find an index i such that both: (2)

(a) Finish[i] == false

(b) Requesti ≤Work

 If no such i exists, go to step 4

 Work = Work + Allocationi (3)

Finish[i] = true

go to step 2.

 If Finish[i] == false, for some i, 1 ≤i≤n, then the system is in deadlock state. Moreover, if Finish[i] ==
false, then Pi is deadlocked (4)

Detection-Algorithm Usage

 The frequency of invoking the detection algorithm depends on:

 How often a deadlock is likely to occur?

 How many processes will be affected by deadlock when it happens?

 If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and so we
would not be able to tell which of the many deadlocked processes "caused" the deadlock

 Every invocation of the algorithm adds to computation overhead

Recovery from Deadlock

 When a detection algorithm determines that a deadlock exists,

 The operator can deal with the deadlock manually

 The system can recover from the deadlock automatically

Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is eliminated

 In which order should we choose to abort?

 Priority of the process

 How long process has computed, and how much longer to completion

 Resources the process has used

 Resources process needs to complete

 How many processes will need to be terminated

 Is process interactive or batch?

Resource Preemption

 Selecting a victim:

 We must determine the order of preemption to minimize cost

 Cost factors: no. of resources being held, time consumed…

 Rollback:

 If we preempt a resource from a process, the process can’t go on with normal execution because
its missing a resource

 We must roll back the process to a safe state & restart it

 Starvation:

 In a system where victim selection is based primarily on cost factors, the same process may always
be picked

 To ensure a process can be picked only a small number of times, include the number of rollbacks in
the cost factor

Summary

Memory Management

 For a program to be executed, it must be mapped to absolute addresses and loaded into memory

 As the program executes, it accesses program instructions and data from memory by generating these
absolute addresses

 Eventually the program terminates and its memory space is declared available so the next program can be
loaded & executed

 To improve CPU utilization, keep several programs in memory

 Selection of a memory-management scheme depends on many factors, especially the hardware design of
the system

 The OS is responsible for these memory-management activities:

 Keeping track of which parts of memory are currently being used and by whom

 Deciding which processes are to be loaded into memory when memory space becomes available

 Allocating and de-allocating memory space as needed

PART FOUR: MEMORY MANAGEMENT

Chapter 8: Memory-Management Strategies

Chapter Objectives:

 To provide a detailed description of various ways of organizing memory hardware

 To discuss various memory-management techniques, including paging and segmentation

 To provide a detailed description of the Intel Pentium, which supports both pure segmentation and
segmentation with paging

Background

 The strategies in this chapter have all the same goal:

 To keep many processes in memory simultaneously to allow multiprogramming

 However, they require that an entire process be in memory before it can execute

Basic Hardware

 Program must be brought (from disk) into memory and placed within a process for it to be run

 Main memory and registers are only storage CPU can access directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

 A pair of base and limit registers define the logical (virtual) address space

 420940 - 300040 = 120900 (logical address space)

Address Binding

 Input queue = the collection of processes on the disk that is waiting to be brought into memory for
execution

 Processes can normally reside in any part of the physical memory

 Addresses in the source program are generally symbolic (‘count’)

 A compiler binds these symbolic addresses to relocatable addresses (’14 bytes from the beginning of this
module’)

 The linkage editor / loader binds these relocatable addresses to absolute addresses (‘74014’)

 Address binding of instructions and data to memory addresses can happen at three different stages

 Compile time:

 If memory location known a priori, absolute code can be generated

 Must recompile code if starting location changes

 Load time:

 Must generate relocatable code if memory location is not known at compile time

 Execution time:

 Binding delayed until run time if the process can be moved during its execution from one
memory segment to another

 Need hardware support for address maps (e.g., base and limit registers)

 Steps a user program needs to go through (some optional) before being executed:

Logical versus Physical Address Space

 Logical address = one generated by the CPU

 Physical address = one seen by the memory unit, and loaded into the memory-address register of the
memory

 The compile-time and load-time address-binding methods generate identical logical & physical addresses

 The execution-time address-binding scheme results in differing logical (= ‘virtual’) & physical addresses

 Logical(virtual)-address space = the set of all logical addresses generated by a program

 Physical-address space = the set of all physical addresses corresponding to these logical addresses

 Memory-management unit (MMU) = a hardware device that does the run-time mapping from virtual to
physical addresses

 The MMU:

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation (base) register is added to every address generated by
a user process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real physical addresses

 Dynamic relocation using a relocation register:

Dynamic Loading

 With dynamic loading, a routine is not loaded until it is called

 All routines are kept on disk in a relocatable load format

 The main program is loaded into memory and is executed

 When a routine needs to call another one, the calling routine first checks to see whether the other
routine has been loaded

 If not, the relocatable linking loader is called to load the desired routine into memory

 Then, control is passed to the newly loaded routine

 Advantage of dynamic loading:

 An unused routine is never loaded

 Dynamic loading doesn't require special support from the OS

 The user must design his programs to take advantage of this

 However, OS's may help the programmer by providing library routines to implement dynamic loading

Dynamic Linking and Shared Libraries

 Static linking:

 System language libraries are treated like any other object module and are combined by the
loader into the binary program image

 Dynamic linking:

 Linking is postponed until execution time

 Look at image in address binding!!! Also shows dynamic linking

 A stub is found in the image for each library-routine reference

 Stub:

 Code that indicates how to locate the memory-resident library routine, or how to load the
library if the routine is not already in memory

 Either way, the stub replaces itself with the address of the routine, and executes the routine

 The next time that code segment is reached, the library routine is executed directly, with no cost for
dynamic linking

 Under this scheme, all processes that use a language library execute only one copy of the library code

 Unlike dynamic loading, dynamic linking requires help from the OS:

 If the processes in memory are protected from one another, then the OS is the only entity that can
check to see whether the needed routine is in another process’ memory space

 Shared libraries:

 A library may be replaced by a new version, and all programs that reference the library will
automatically use the new one

 Version info is included in both program & library so that programs won't accidentally execute
incompatible versions

Swapping

 p.322 - 324 TB

 A process can be swapped temporarily out of memory to a backing store, and then brought back into
memory for continued execution

 Backing store

 Fast disk large enough to accommodate copies of all memory images for all users; must provide
direct access to these memory images

 Roll out, roll in:

 When a higher-priority process arrives a lower-priority process is swapped out, and then swapped
back in when the higher-priority process finishes

 Major part of swap time is transfer time

 Total transfer time is directly proportional to the amount of memory swapped

 Swapping requires a backing store (normally a fast disk)

 The backing store must be big enough to accommodate all copies of memory images for all users, and
must provide direct access

 The system has a ready queue with all processes whose memory images are on the backing store or in
memory and ready to run

 The CPU scheduler calls the dispatcher before running a process

 The dispatcher checks if the next process in queue is in memory

 If not, and there is no free memory region, the dispatcher swaps out a process currently in
memory and swaps in the desired one

 It then reloads registers and transfers control to the process

 The context-switch time in such a swapping system is fairly high

 If we want to swap a process, it must be completely idle

 Schematic view of Swapping:

Contiguous Memory Allocation

 Memory is usually divided into two partitions:

 One for the resident OS

 One for the user processes

 The OS is usually placed in low or high memory (Normally low since interrupt vector is in low memory)

 Affected by location of the interrupt vector

 Contiguous memory allocation:

 Each process is contained in a single contiguous section of memory

Memory Mapping and Protection

 The OS must be protected from user processes, and user processes must be protected from one another

 Use a relocation register with a limit register for protection

 Relocation register contains the smallest physical address

 The limit register contains the range of logical addresses

 The memory-management unit (MMU) maps the logical address dynamically by adding the value in the
relocation register

 This mapped address is sent to memory

 When the CPU scheduler selects a process for execution, the dispatcher loads the relocation & limit
registers

 Because every address generated by the CPU is checked against these registers, we can protect both the
OS and the other users’ programs & data from being modified by this running process

 HW address protection with base and limit registers:

 The relocation-register scheme provides an effective way to allow the OS size to change dynamically

 Transient OS code:

 Code that comes & goes as needed to save memory space and overhead for unnecessary
swapping

Memory Allocation

 A simple method: divide memory into fixed-sized partitions

 Each partition may contain exactly one process

 The degree of multiprogramming is bound by the no of partitions

 When a partition is free, a process is selected from the input queue and is loaded into the
free partition

 When the process terminates the partition becomes available

 (The above method is no longer in use)

 Another method: the OS keeps a table indicating which parts of memory are available and which are
occupied

 Initially, all memory is available, and is considered as one large block of available memory, a hole

 When a process arrives, we search for a hole large enough

 If we find one, we allocate only as much memory as is needed

 As processes enter the system, they are put into an input queue

 When a process is allocated space, it is loaded into memory and can then compete for the CPU

 When a process terminates, it releases its memory

 We have a list of available block sizes and the input queue

 The OS can order the input queue with a scheduling algorithm

 Memory is allocated to processes until, finally, there isn't a hole (block of memory) large enough to hold
the next process

 The OS can then wait until a large enough block is available, or it can skip down the input queue to see
whether the smaller memory requirements of some other process can be met

 In general, a set of holes of various sizes is scattered throughout memory at any given time

 When a process arrives and needs memory, the system searches this set for a hole that is large enough for
this process

 If the hole is too large, it is split up:

 One part is allocated to the process, and the other is returned to the set of holes

 On process termination, the memory block returns to the hole set

 Adjacent holes are merged to form one larger hole

 Solutions to the dynamic storage allocation problem:

 First fit (Better and faster)

 Allocate the first hole that is big enough

 Best fit (Ok)

 Allocate the smallest hole that is big enough

 Worst fit (Not as good as the other two)

 Allocate the largest hole

 These algorithms suffer from external fragmentation:

 Free memory space is broken into pieces as processes are loaded and removed

Fragmentation

 External fragmentation:

 Exists when enough total memory space exists to satisfy a request, but it is not contiguous

 Internal fragmentation:

 Allocated memory may be slightly larger than requested memory; this size difference is memory
internal to a partition, but not being used

 Compaction is a solution to the problem of external fragmentation

 Free memory is shuffled together into one large block

 Compaction is not always possible: if relocation is static and is done at assembly / load time,
compaction cannot be done

 Simplest compaction algorithm:

 Move all processes towards one end of memory, leaving one large hole of free memory
(Expensive, lots of overhead)

 Another solution:

 Permit the logical-address space of a process to be noncontiguous

 Paging and segmentation allows this solution

Paging

 Permits the physical-address space of a process be noncontiguous

 Traditionally: support for paging has been handled by hardware

 Recent designs: the hardware & OS are closely integrated

Basic Method

 Physical memory is broken into fixed-sized blocks called frames

 Logical memory is broken into same-sized blocks called pages

 When a process is to be executed, its pages are loaded into any available memory frames from the
backing store

 The backing store has blocks the same size as the memory frames

 Every address generated by the CPU is divided into 2 parts:

 a page number (to index the page table)

 a page offset

 The page table contains the base address of each page in memory

 This base address is combined with the page offset to define the physical memory address that is sent to
the memory unit

 The page size, defined by the hardware, is usually a power of 2

 Paging schemes have no external, but some internal fragmentation

 Small page sizes mean less internal fragmentation

 However, there is less overhead involved as page size increases

 Also, disk I/O is more efficient with larger data transfers

 When a process arrives in the system to be executed, its size, expressed in pages, is examined

 (Noncontiguous) frames are allocated to each page of the process

 The frame table contains entries for each physical page frame, indicating which are allocated to which
pages of which processes

 Address Translation Scheme:

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which contains base address of each page in
physical memory

 Page offset (d) – combined with base address to define the physical memory address that is sent
to the memory unit

 For given logical address space 2^m and page size 2^n page

 An illustration of the hardware that supports paging:

 The paging model of logical and physical memory:

 Paging Example: 32-bytee memory and 4-byte pages (p.330)

 With the arrival of new processes the following happens:

 a) Before allocation

 b) After allocation

Hardware Support

 Most OS's store a page table for each process

 A pointer to the page table is stored in the PCB

 Different ways for hardware implementation of the page table:

 The page table is implemented as a set of dedicated registers

 The CPU dispatcher reloads these registers just like the others

 Instructions to load / modify the page-table registers are privileged, so that only the OS can
change the memory map

 Disadvantage: works only if the page table is reasonably small

 The page table is kept in memory, and a page-table base register (PTBR) points to the page
table

 Changing page tables requires changing only this one register, substantially reducing
context-switch time

 Disadvantage: two memory accesses are needed to access one byte

 Use a small, fast-lookup hardware cache: the translation look-aside buffer (TLB)

 The TLB is associative, high-speed memory

 Each entry in the TLB consists of a key and a value

 When the associative memory is presented with an item, it is compared with all keys
simultaneously

 If the item is found, the corresponding value field is returned

 The search is fast, but the hardware is expensive

 The TLB is used with page tables in the following way:

 When a logical address is generated by the CPU, its page number is presented to the TLB

 If the page number is found, its frame number is immediately available and is used to access
memory

 If the page number is not in the TLB, a memory reference to the page table must be made

 The obtained frame number can be used to access memory

 If the TLB is full of entries, the OS must replace one

 Some TLBs have wired down entries that can't be removed

 Some TLBs store address-space identifiers (ASIDs) in each entry of the TLB, that uniquely identify
each process and provide address space protection for that process

 Paging Hardware with TLB:

 The percentage of times that a particular page number is found in the TLB is called the hit ratio

 Effective access time:

 Associative Lookup = ε time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio –percentage of times that a page number is found in the associative registers; ratio
related to number of associative registers

 Hit ratio = ±

 Effective Access Time(EAT)

EAT = (1 + ε) α+ (2 + ε)(1 –α)

 = 2 + ε–α

Protection

 Memory protection is achieved by protection bits for each frame

 Normally, these bits are kept in the page table

 One bit can define a page to be read-write or read-only

 Every reference to memory goes through the page table to find the correct frame number, so the
protection bits can be checked

 A valid-invalid bit is usually attached to each page table entry

 ‘Valid’: the page is in the process’ logical-address space

 ‘Invalid’: the page is not in the process’ logical-address space

 Illegal addresses are trapped by using the valid-invalid bit

 Valid (v) or Invalid (i) Bit in a Page Table:

 Many processes use only a small fraction of the address space available to them, so it’s wasteful to create
a page table with entries for every page in the address range

 A page-table length register (PTLR) can indicate the size of the page table

Shared Pages

 Another advantage of paging: it is possible to share common code

 Reentrant code (pure code) = non-self-modifying code

 If the code is reentrant, then it never changes during execution

 Thus, two or more processes can execute the same code at once

 Each process has its own copy of registers and data storage to hold the data for the process’ execution

 Only one copy of the editor needs to be kept in physical memory

 Each user’s page table maps onto the same physical copy of the editor, but data pages are mapped onto
different frames

 Systems that use inverted page tables have difficulty implementing shared memory

 Shared code

 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers,
window systems).

 Shared code must appear in same location in the logical address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear anywhere in the logical address space

 Shared Pages Example:

 ed1, 2, 3 are shared code pages, while each process has its own data page

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hierarchical Paging

 Two-level paging algorithm:

 The page table is also paged

 Known as a forward-mapped page table because address translation works from the outer page table
inwards

 Two-Level Page-Table Scheme:

 Two-Level Paging Example:

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 Thus, a logical address is as follows:

 where pi is an index into the outer page table, and p2 is the displacement within the page of the
outer page table

 Address-Translation Scheme:

Hashed Page Tables

 Each entry in the hash table contains a linked list of elements that hash to the same location

 Each element consists of:

 The virtual page number

 The value of the mapped page frame

 A pointer to the next element in the linked list

 The virtual page number is compared to field (a) in the first element in the linked list

 If there is a match, the corresponding page frame (field b) is used to form the desired physical address

 If there is no match, subsequent entries in the linked list are searched for a matching virtual page number

 Clustered page tables are similar to hashed page tables, except that each entry in the table refers to
several pages

 Clustered page tables are particularly useful for sparse address spaces where memory references are
noncontiguous and scattered throughout the address space

Inverted Page Tables

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with information
about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed to search the table when
a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table entries

Segmentation

 Memory-management scheme that supports the users’ view of memory

 A program is a collection of segments. A segment is a logical unit such as:

 main program,

 procedure,

 function,

 method,

 object,

 local variables, global variables,

 common block,

 stack,

 symbol table, arrays

Basic Method

 Segmentation is a memory-management scheme that supports this user view memory

 A logical address space is a collection of segments

 The user's view of a Program:

 The user specifies each address by: a segment name and an offset

 (Segments are implemented with numbers rather than names)

 Logical view of segmentation

 When a program is compiled, segments are constructed for E.g.

 The code

 The global variables

 The heap, from which memory is allocated

 The stacks used by each thread

 The procedure call stack, to store parameters

 The code portion of each procedure or function

 The local variables of each procedure and function

 The loader would take all these segments and assign them segment numbers

Hardware

 Although you can refer to objects by a two-dimensional address, the physical memory is still a one-
dimensional sequence of bytes

 A segment table maps two-dimensional user-defined addresses into one-dimensional physical addresses

 Each entry of the table has a segment base and a segment limit

 Example of Segmentation:

Example: The Intel Pentium

 Supports both segmentation and segmentation with paging

 CPU generates logical address

 Given to segmentation unit

 Which produces linear addresses

 Linear address given to paging unit

 Which generates physical address in main memory

 Paging units form equivalent of MMU

Pentium Segmentation

Pentium Paging

Linux on Pentium Systems

Summary

Chapter 9: Virtual-Memory Management

 Virtual memory is a technique that allows the execution of processes that are not completely in memory

Objectives:

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model

Background

 In many cases, the entire program is not needed:

 Unusual error conditions are almost never executed

 Arrays & lists are often allocated more memory than needed

 Certain options & features of a program may be used rarely

 Benefits of executing a program that is only partially in memory

 More programs could be run at the same time

 Programmers could write for a large virtual-address space and need no longer use overlays

 Less I/O would be needed to load / swap programs into memory, so each user program would run
faster

 Virtual memory – separation of user logical memory from physical memory

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented by:

 Demand paging

 Demand segmentation

 Diagram showing virtual memory that is larger than physical memory:

 The virtual address space of a process refers to the logical (or virtual) view of how a process is stored in
memory

 Typically, this view is that a process begins at a certain logical address - say, address 0 - and exists
in contiguous memory

 We allow the for the heap to grow upward in memory as it is used for dynamic memory allocation

 Virtual memory allows files and memory to be shared by two of more processes through page sharing

 Benefits:

 System libraries can be shared by several processes through mapping of the shared object
into virtual address space

 Virtual memory enables processes to share memory

 From chapter 3 we learned that two or more processes can communicate through
the use of shared memory

 Virtual memory can allow pages to be shared during process creation with the fork()
system call, speeding up process creation

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed ⇒ reference to it

 invalid reference ⇒ abort

 not-in-memory ⇒ bring to memory

 Lazy swapper-never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager

 A demand-paging system is similar to a paging system with swapping where processes reside in secondary
memory (usually on disk)

Basic Concepts

 Hardware support to distinguish pages in memory / pages on disk:

 Valid bit:

 The page is both legal and in memory

 Invalid bit:

 The page is either not valid, or valid but currently on the disk

 The process executes and accesses pages that are memory resident

 If the process tries to access a page that was not brought into memory (i.e. one marked ‘invalid’), a page-
fault trap is caused

 Procedure for handling page faults:

 Check an internal table to determine whether the reference was a valid / invalid memory access

 Invalid reference terminate the process; if it was valid, but we have not yet brought in that page,
page it in

 Find a free frame (by taking one from the free-frame list)

 Read the desired page into the newly allocated frame

 Modify the internal table and the page table to indicate that the page is now in memory

 Restart the instruction that was interrupted by the illegal address trap at the same place

 Pure demand paging:

 Never bring pages into memory until required

 Some programs may access several new pages of memory with each instruction, causing multiple page
faults and poor performance

 Programs tend to have locality of reference, so this results in reasonable performance from demand
paging

 Hardware to support demand paging:

 Page table:

 Can mark an entry invalid through valid - invalid bit

 Secondary memory:

 Holds pages that are not present in main memory

 Known as the swap device, and has a swap space (high-speed disk)

 Architectural software constraints:

 Instructions must be able to be restarted after page faults

Performance of Demand Paging

 p365-367 TB

 Demand paging can significantly affect the performance of a computer system

 We compute the effective access time for a demand-paged memory

 Page Fault Rate 0 ≤p ≤1.0

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 -p) x memory access

+ p(page fault overhead

+ swap page out

