
Overview

 A thread is a flow of control within a process

 A multithreaded process contains several different flows of control within the same address space

 A traditional (heavyweight) process has one thread of control

 A thread / lightweight process (LWP) = a unit of CPU utilization

 It comprises a thread ID, program counter, register set, & stack

 It shares with other threads belonging to the same process its code section, data section, and other OS
resources

 If a process has multiple threads of control, it can perform more than one task at a time

 Look at fig 4.1 p.153 TB

 User-level threads are threads that are visible to a programmer and are unknown to the kernel

 OS kernel supports and manages kernel-level threads

Motivation

 It is more efficient to have multithreading than many processes

 RPC servers are typically multithreaded

 When a server receives a message, it services it with a separate thread

 This lets the server service several concurrent requests

Benefits

 Responsiveness:

 A program can continue running even if part of it is busy

 Resource sharing:

 Threads share the memory and resources of their process

 Economy:

 Allocating memory and resources for processes is costly (time)

 Scalability:

 Utilization of multiprocessor architectures

 Each thread runs on a separate CPU, increasing concurrency / parallelism

Multicore Programming

 p.156 - 157 TB

 Provides a mechanism for more efficient use of multiple cores and improved concurrency

 On a system with multiple cores the processes run concurrently since the system can assign a separate
thread to each core

 Five areas that present challenges in programming multicore systems:

 Dividing activities:

 Areas of applications to be divided into different tasks

 Balance:

 Tasks must perform equal work of equal value, else CPU time is wasted

 Data splitting:

 Data accessed and manipulated must be divided to run on separate cores

 Data dependency:

 If data between cores depends on each other, execution must be synchronized

 Testing and debugging:

 More difficult to test and debug than single-threaded execution

Multithreading Models

User threads (Many-to-One) Kernel threads (One-to-One)

Implemented by a thread library at the user

level

Supported directly by the OS

The library provides support for thread

creation, scheduling, and management with no

support from the OS kernel

The kernel performs thread creation, scheduling, and

management in kernel space

Faster to create & manage because the kernel

is unaware of user threads and doesn't

intervene

Slower to create & manage than user threads because

thread management is done by the OS

Disadvantage:

If the kernel is single- threaded, then any user-

level thread performing a blocking system call

will cause the entire process to block, even if

other threads are available to run within the

application

Since the kernel is managing the threads, if a thread

performs a blocking system call, the kernel can schedule

another thread in the application for execution.

In a multiprocessor environment, the kernel can

schedule threads on different processors.

Many-to-One Model

 Many user-level threads are mapped to one kernel thread

 Thread management is done in user space, so it is efficient

 The entire process will block if a thread makes a blocking call

 Multiple threads can’t run in parallel on multiprocessors

One-to-One Model

 Each user thread is mapped to a kernel thread

 More concurrency than the many-to-one model because another thread can run when a thread makes a
blocking system call

 Multiple threads can run in parallel on multiprocessors

 Disadvantage: creating a user thread requires creating the corresponding kernel thread (This overhead
burdens performance)

Many-to-Many Model

 Many user-level threads are multiplexed to a smaller / equal number of kernel threads

 Developers can create as many user threads as necessary

 The kernel threads can run in parallel on a multiprocessor

 When a thread performs a blocking system call, the kernel can schedule another thread for execution

 A variation on the Many-to-Many Model is the two level-model:

 Similar to M:M, except that it allows a user thread to be bound to kernel thread

Thread Libraries

 Thread libraries provide the application programmer with an API for creating and managing threads

 Three main thread libraries in use today:

 POSIX Pthreads

 Win32 threads

 Java threads

Pthreads

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Win32 Threads

Java Threads

 Java threads are managed by the JVM

 Java threads may be created by:

1. Implementing the Runnable interface

 Sample program:

 Java thread states:

Threading Issues

 Here we discuss issues to consider with multithreaded programs

The fork() and exec() System Calls

 fork() system call: used to create a separate, duplicate process

 Some versions of fork() duplicate all threads

 If exec() won't be called afterwards

 Other versions duplicate only the thread that invoked fork()

 If exec() is called immediately after forking

 exec() system call: the parameter used will replace the process

 All threads will also be replaced

Cancellation

 Thread cancellation is the task of terminating a thread before it has completed.

 Target thread = the thread that is to be canceled

 Cancellation of target threads occur in two different scenarios:

Asynchronous cancellation Deferred cancellation

One thread immediately terminates the target

thread

The target thread can periodically check if it should

terminate

Canceling a thread may not free a necessary

system- wide resource

Cancellation occurs only when the target thread

checks if it should be canceled. (Cancellation points)

 Deferred cancellation in Java

 Interrupting a thread

 Deferred cancellation in Java

 Checking interruption status

Signal Handling

 A signal is used in UNIX to notify a process that a particular event has occurred

 All signals follow this pattern:

 A signal is generated by the occurrence of a certain event

 A generated signal is delivered to a process

 Once delivered, the signal must be handled

 A signal handler is used to process signals

 Signal is generated by particular event

 Signal is delivered to a process

 Signal is handled

 Delivering signals in multithreaded programs, the options are:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the process

 Synchronous signals are delivered to the same process that performed the operation causing the signal
(E.g. / by 0)

 Asynchronous signals are generated by an event external to a running process (E.g. user terminating a
process with <ctrl><c>)

 Every signal must be handled by one of two possible handlers:

 A default signal handler

 Run by the kernel when handling the signal

 A user-defined signal handler

 Overrides the default signal handler

Single-threaded programs Multithreaded programs

Straightforward signal handling Complicated signal handling

Signals are always delivered to a process Which thread should the signal be delivered to?

 The method for delivering a signal depends on the signal type:

 Synchronous signals need to be delivered to the thread that generated the signal, not to other
threads in the process

 It is not clear what to do with asynchronous signals

 Signals need to be handled only once, so they're usually delivered to the 1
st

 thread not
blocking them

Thread Pools

 The idea is to create a number of threads at process startup and place them into a pool, where they sit
and wait for work

 When a server receives a request, it awakens a thread from this pool

 If one is available the request is passed to it for service

 Once the service is completed, the thread returns to the pool and wait for more work

 Benefits of thread pools:

 It is faster to service a request with an existing thread

 A thread pool limits the number of threads that exist

 Potential problems with a multithreaded server:

 It takes time to create a thread before servicing a request

 Unlimited threads could exhaust system resources (CPU time)

 Thread pools are a solution to these problems:

 At process startup, several threads are created and placed into a pool, where they sit and wait for
work

 When a server receives a request, it awakens a thread from this pool, passing it the request to
service

 When the thread finishes its service it returns to the pool

Thread-Specific Data

 Threads belonging to a process share the data of the process

 Sometimes, each thread might need its own copy of certain data

 E.g. Transactions in different threads may each be assigned a unique identifier

 Thread-specific data in Java

Scheduler Activations

 Both M:M and Two-level models require communication to maintain the appropriate number of kernel
threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

 This communication allows an application to maintain the correct number kernel threads

Operating-System Examples

 Windows XP threads

 Implements the one-to-one mapping

 Each thread contains

1. A thread id

2. Register set

3. Separate user and kernel stacks

4. Private data storage area

 The register set, stacks, and private storage area are known as the context of the threads

 Linux threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the parent task (process)

Summary

Chapter 5: Process (CPU) Scheduling

 Here we look at basic CPU-scheduling concepts and present several CPU-scheduling algorithms.

 We also consider the problem of selecting an algorithm for a particular system.

 Objectives:

 To introduce CPU scheduling, which is the basis for multi-programmed operating systems.

 To describe various CPU-scheduling algorithms.

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system.

 The terms process scheduling and thread scheduling are often used interchangeably

Basic Concepts

 CPU scheduling is the task of selecting a waiting process from the ready queue and allocating the CPU to it

 The CPU is allocated to the selected process by the dispatcher

 In a uni-processor system, only one process may run at a time; any other process must wait until the CPU
is rescheduled

 The objective of multiprogramming is to have some process running at all times, in order to maximize CPU
utilization

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait

 CPU burst distribution

CPU-I/O Burst Cycle

 Process execution comprises a cycle of CPU execution & I/O wait

 Process execution begins with a CPU burst, followed by an I/O burst, then another CPU burst, etc…

 Finally, a CPU burst ends with a request to terminate execution

Histogram of CPU-burst times:

 An I/O-bound program typically has many short CPU bursts

 A CPU-bound program might have a few long CPU bursts

 These are important points to keep in mind for the selection of an appropriate CPU-scheduling algorithm

CPU Scheduler

 Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of
them

 The short-term scheduler selects a process in the ready queue when the CPU becomes idle

 The ready queue could be a FIFO / priority queue, tree, list…

 The records in the queues are generally process control blocks (PCBs) of the processes

Preemptive Scheduling

 Circumstances under which CPU scheduling decisions take place:

 When a process switches from the running state to the waiting state (E.g. I/O request) (1)

 When a process switches from the running state to the ready state (E.g. when an interrupt occurs)
(2)

 When a process switches from the waiting state to the ready state (E.g. completion of I/O) (3)

 When a process terminates (4)

 Non-preemptive/cooperative scheduling

 Processes are allowed to run to completion

 When scheduling takes place under circumstances 1 & 4

 There is no choice in terms of scheduling

 Preemptive scheduling

 Processes that are runnable may be temporarily suspended

 There is a scheduling choice in circumstances 2 & 3

 Problem: if one process is busy updating data and it is preempted for the second process to run, if
the second process reads that data, it could be inconsistent

Dispatcher

 A component involved in the CPU scheduling function

 The dispatcher is the module that gives control of the CPU to the process selected by the short-term
scheduler

 This function involves:

 Switching context

 Switching user mode

 Jumping to the proper location in the user program to restart that program

 The dispatcher should be as fast as possible, given that it is invoked during every process switch

 Dispatch latency = the time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

 Different CPU-scheduling algorithms have different properties and the choice of a particular algorithm
may favor one class of process over another

 Criteria to compare CPU-scheduling algorithms:

 CPU utilization

 CPU utilization should range from 40% - 90%

 Throughput

 The number of processes completed per time unit

 Turnaround time

 The time interval from process submission to completion

 Formula: Time of completion – Time of submission

 Formula: CPU burst time + Waiting time (includes I/O)

 Waiting time

 The sum of the periods spent waiting in the ready queue

 Formula: Turnaround time – CPU burst time

 Response time

 The amount of time it takes to start responding, but not the time it takes to output that
response

 We want to maximize CPU utilization, and minimize turnaround, waiting & response time

Scheduling Algorithms

 CPU scheduling deals with the problem of deciding which of the processes in the ready queue is to be
allocated the CPU

 There are many different CPU-scheduling algorithms. Here we describe several of them.

First-Come, First-Served (FCFS) Scheduling

 The process that requests the CPU first is allocated the CPU 1
st

 The PCB of a process is linked onto the tail of the ready queue

 When the CPU is free, it gets the process at the queue’s head

 The average waiting time is generally not minimal

 Convoy effect = when processes wait for a big one to get off

 Non-preemptive (a process keeps the CPU until it releases it)

 Not good for time-sharing systems, where each user needs to get a share of the CPU at regular intervals

 Example:

 Process Burst Time

 P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1, P2, P3

 The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

 Suppose that the processes arrive in the order P2, P3, P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6;P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect short process behind long process

Shortest-Job-First (SJF) Scheduling

 The CPU is assigned the process with the shortest next CPU burst

 If two processes have the same length, FCFS scheduling is used

 The difficulty is knowing the length of the next CPU request

 For long-term scheduling in a batch system, we can use the process time limit specified by the user, as the
‘length’

 SJF can't be implemented at the level of short-term scheduling, because there is no way to know the
length of the next CPU burst

 We can, however, try to predict the length of the next CPU burst

 The SJF algorithm may be either preemptive or non-preemptive

 Preemptive SJF algorithm:

 If the new process has a shorter next CPU burst than what is left of the executing process,
that process is preempted

 aka Shortest-Remaining-Time-First (SRTF) scheduling

 Non-preemptive SJF algorithm:

 The current process is allowed to finish its CPU burst

 SJF has the minimum average waiting time for a set of processes

 Example:

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

 SJF (preemptive)

 Average waiting time = (9 + 1 + 0 +2)/4 = 3

 Determining the length of the next CPU burst:

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential averaging

 Formula on p.191 top

 Examples of exponential averaging:

Priority Scheduling

 Each process gets a priority (Highest priority = executed first)

Preemptive priority scheduling

 The CPU is preempted if the priority of the newly arrived process is higher than the priority
of the current one

Non-preemptive priority scheduling

 The new process is put at the head of the ready queue

 Equal-priority processes are scheduled in FCFS order

 Internally-defined priorities

 Use some measurable quantity to compute the priority

 E.g. time limits, memory requirements, no. of open files…

 Externally-defined priorities

 Set by criteria that are external to the OS

 E.g. the importance of a process, political factors…

 Problem:

 Indefinite blocking (starvation), where low-priority processes are left waiting indefinitely for the
CPU

 Solution:

 Aging (a technique of gradually increasing the priority of processes that wait in the system for a
long time)

Round-Robin Scheduling

 Designed especially for time-sharing systems

 Like FCFS scheduling, but with preemption

 A time quantum / time slice is defined (generally 10 – 100 ms)

 The ready queue is treated as a circular queue

 The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of
up to 1 time quantum

 The ready queue is kept as a FIFO queue of processes

 The CPU scheduler

 picks the 1
st

 process from the ready queue

 sets a timer to interrupt after 1 time quantum, and

 dispatches the process

 One of two things will then happen:

 The process may have a CPU burst of less than 1 time quantum, and will release the CPU
voluntarily

 If the process has a CPU burst longer than 1 time quantum, the timer will go off and cause an
interrupt to the OS. The process will then be put at the tail of the ready queue

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units

 RR Performance depends heavily on the size of the time quantum

 q large ⇒ FIFO

 q small ⇒ q must be large with respect to context switch, otherwise overhead is too high

 We want the time quantum to be large with respect to the context-switch time

 Example of RR with time Quantum = 20:

Process Burst Time

 P1 53

 P2 17

 P3 68

 P4 24

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

 In software we need to consider the effect of context switching on the performance of RR scheduling

 The larger the time quantum for a specific process time, the less time is spend on context
switching

 The smaller the time quantum, more overhead is added for the purpose of context-switching

 Example: (This is on a per case situation)

 Turnaround time also depends on the size of the time quantum:

Multilevel Queue Scheduling

 For when processes can easily be classified into separate groups

 E.g. a common division is made between foreground (interactive) and background (batch) processes

 The ready queue is partitioned into several separate queues

 The processes are permanently assigned to one queue, based on a property like memory size, process
priority, process type…

 Each queue has its own scheduling algorithm

 There must also be scheduling among the queues, which is commonly implemented as fixed-priority
preemptive scheduling

 Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of
starvation.

 Time slice -each queue gets a certain amount of CPU time which it can schedule amongst its
processes; i.e., 80% to foreground in RR

 20% to background in FCFS

Multilevel Feedback Queue Scheduling

 Processes may move between queues

 Processes with different CPU-burst characteristics are separated

 If a process uses too much CPU time, it will be moved to a lower-priority queue

 If a process waits too long in a lower-priority queue, it may be moved to a higher-priority queue (Aging
prevents starvation)

 In general, a multilevel feedback queue scheduler is defined by the following parameters:

 The number of queues

 The scheduling algorithm for each queue

 The method used to determine when to upgrade a process to a higher priority queue

 The method used to determine when to demote a process to a lower-priority queue

 The method used to determine which queue a process will enter when that process needs service

 This is the most general, but complex scheme

 Example of Multilevel Feedback Queue:

 Three queues:

 Q0 - RR with time quantum 8 milliseconds

 Q1 - RR time quantum 16 milliseconds

 Q2 - FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS

 When it gains CPU, job receives 8 milliseconds

 If it does not finish in 8 milliseconds, job is moved to queue Q1

 At Q1 job is again served FCFS and receives 16 additional milliseconds

 If it still does not complete, it is preempted and moved to queue Q2

 Multilevel feedback queues:

Thread Scheduling

 p.199 TB

 On operating systems that support them, it is kernel-level threads - not processes - that are being
scheduled by the operating system

 Local Scheduling

 How the threads library decides which thread to put onto an available LWP

 Global Scheduling

 How the kernel decides which kernel thread to run next

Contention Scope

 Process-Contention scope:

 On systems implementing the many-to-one and many-to-many models, the thread library
schedules user-level threads to run on an available LWP

 System-Contention scope:

 The process of deciding which kernel thread to schedule on the CPU

Pthread Scheduling

Sample of thread creation with Pthreads:

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Typically each processor maintains its own private queue of processes (or threads) all of which are
available to run

 Load sharing

 Asymmetric multiprocessing

 Only one processor accesses the system data structures, alleviating the need for data sharing

Approaches to Multiple-Processor Scheduling

 We assume homogeneous processors (identical in functionality) and uniform memory access (UMA)

 If several identical processors are available, then load sharing can occur, with a common ready queue

 Processes in the queue are scheduled to any available processor

 One of two scheduling approaches may be used:

 Each processor is self-scheduling, and selects a process from the common ready queue to execute

 One processor is appointed as scheduler for the other processors, creating a master-slave
structure

 Some systems carry the master-slave structure further by having all scheduling decisions, I/O processing,
and other system activities handled by one single processor – the master server

 This asymmetric multiprocessing is simpler than symmetric multiprocessing (SMP), because only one
processor accesses the system data structures, alleviating the need for data sharing

 It isn't as efficient, because I/O processes may bottleneck on the one CPU that is performing all of the
operations

 Typically, asymmetric multiprocessing is implemented 1
st

 within an OS, and then upgraded to symmetric
as the system evolves

Processor Affinity

 Processor affinity:

 Migration of processes to another processor is avoided because of the cost of invalidating the
process and repopulating the processor cache

 Soft affinity:

 When an OS try to keep a process on one processor because of policy, but cannot guarantee it will
happen

 Hard affinity:

 When an OS have the ability to allow a process to specify that it is not to migrate to other
processors

Load Balancing

 Load balancing attempts to keep the workload evenly distributed across all processors in an SMP system

 Two migration approaches:

 Push migration

 A specific task checks the load on each processor and if it finds an imbalance it evenly
distributes the load to less-busy processors

 Pull migration

 A idle processor pulls a waiting task from a busy processor

Multicore Processors

 Complicated scheduling issue

Virtualization and Scheduling

Operating System Examples

Algorithm Evaluation

 p.213 TB

 Deterministic modeling:

 Takes a particular predetermined workload and defines the performance of each algorithm for
that workload

 Queuing models

 Implementation

Deterministic Modeling

 A method that takes a particular predetermined workload and defines the performance of each algorithm
for that workload

 Simple; fast; exact numbers, so algorithms can be compared

 However, it requires exact numbers for input, and its answers apply to only those cases

 The main uses of deterministic modeling are in describing scheduling algorithms and providing examples

 Good if you're running the same programs over and over again

 Over many examples, deterministic modeling may indicate trends

 In general, deterministic modeling is too specific, and requires too much exact knowledge to be useful

Queuing Models

 You can determine the distribution of CPU and I/O bursts

 A formula describes the probability of a particular CPU burst

 The computer system is described as a network of servers

 Each server has a queue of waiting processes

 Knowing arrival & service rates, we can compute utilization, average queue length, wait time… (= queuing-
network analysis)

 Limitations of queuing analysis:

 The algorithms that can be handled are limited

 The math of complicated algorithms can be hard to work with

 It is necessary to make assumptions that may not be accurate

 As a result, the computed results might not be accurate

Simulations

 Involve programming a model of the computer system

 Software data structures represent the major system components

 The simulator has a variable representing a clock

 As this variable’s value is increased, the simulator modifies the system state to reflect the activities of the
devices, the process, and the scheduler

 As the simulation executes, statistics that indicate algorithm performance are gathered and printed

 A random-number generator is programmed to generate processes, CPU-burst times… according to
probability distributions

 The distributions may be defined mathematically or empirically

 If the distribution is to be defined empirically, measurements of the actual system under study are taken

 The results are used to define the actual distribution of events in the real system, and this distribution can
then be used to drive the simulation

 Trace tapes can be used to record the sequence of actual events

 Disadvantages:

 Simulations can be costly, requiring hours of computer time

 Traced tapes can require large amounts of storage space

 The design, coding, and debugging of the simulator can be a major task

Implementation

 The only completely accurate way to evaluate a scheduling algorithm is to code it, put it in the OS, and see
how it works

 The major difficulty is the cost of this approach

 The environment in which the algorithm is used will change

Summary

PART THREE: PROCESS COORDINATION

Chapter 6: Synchronization

 Co-operating process = one that can affect / be affected by other processes.

 Co-operating processes may either directly share a logical address space (i.e. code & data) , or share data
through files or messages through threads (ch4).

 Concurrent access to shared data can result in inconsistencies

 Objectives:

1. To introduce the critical-section problem, whose solutions can be used to ensure the consistency
of shared data

2. To present both software and hardware solutions of the critical- section problem

3. To introduce the concept of an atomic transaction and describe mechanisms to ensure atomicity

Background

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating
processes

 Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers.
We can do so by having an integer count that keeps track of the number of full buffers. Initially, count is
set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the
consumer after it consumes a buffer

 Producer:

 Consumer:

 Race condition:

 When the outcome of the execution depends on the particular order in which data access takes
place

 Example:

 count++ could be implemented as

register1 = count

register1 = register1 + 1

count = register1

 count-- could be implemented as

register2 = count

register2 = register2 -1

count = register2

 Consider this execution interleaving with "count = 5" initially:

S0: producer execute register1 = count{register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = count{register2 = 5}

S3: consumer execute register2 = register2 -1{register2 = 4}

S4: producer execute count = register1{count = 6 }

S5: consumer execute count = register2{count = 4}

The Critical-Section Problem

 Critical section = a segment of code in which a process may be changing common variables, updating a
table, writing a file, etc

 Entry section

 Requests permission to enter the critical section

 Critical section

 Mutually exclusive in time (no other process can execute in its critical section)

 Exit section

 Follows the critical section

 Remainder section

 A solution to the critical-section problem must satisfy:

 Mutual exclusion

 Only one process can be in its critical section

 Progress

 Only processes that are not in their remainder section can enter their critical section, and
the selection of a process cannot be postponed indefinitely

 Bounded waiting

 There must be a bound on the number of times that other processes are allowed to enter
their critical sections after a process has made a request to enter its critical section and
before the request is granted

 Structure of a typical process:

Peterson's Solution

 This is an example of a software solution that can be used to prevent race conditions

 Two process solution

 Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted.

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section.

 The flag array is used to indicate if a process is ready to enter the critical section

 flag[i] = true implies that process Pi is ready!

 Algorithm for process Pi:

 To prove that this solution is correct we show that:

 Mutual exclusion is preserved

 The progress requirement is satisfied

 The bounded-waiting requirement is met

Synchronization Hardware

 Hardware can also be used to solve the critical-section problem

 If in a uni-processor environment interrupts were disabled, no unexpected modifications would be made
to shared variables

 Disabling interrupts in a multi-processor environment isn't feasible, so many machines provide special
hardware instructions

 Instead, we can generally state that any solution to the critical-section problem requires a simple tool, a
lock

 Race conditions are prevented by requiring that critical regions be protected by locks

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

 Either test memory word and set value

 Or swap contents of two memory words

 These instructions allow us either to test & modify the content of a word, or to swap the contents of two
words, atomically

 TestAndSet

boolean TestAndSet(boolean *target) {

 boolean rv = *target;

 *target = true;

 return rv;

}

 NB characteristic: this instruction is executed atomically, so if two TestAndSet instructions are
executed simultaneously (on different CPUs), they will be executed sequentially

 TestAndSet with mutual exclusion

do{

 while(TestAndSet(&lock)) ;

 // critical section

 lock = false;

 // remainder section

} while(true);

 lock is initialized to false

 Swap

void swap(boolean *a, boolean *b) {

 boolean temp = *a;

 *a = *b;

 *b = temp;

}

 Swap with mutual-exclusion

do{

 key = true;

 while(key == true)

 swap(& lock, &key);

 // critical section

 lock = false;

 // remainder section

} while(true);

 lock is initialized to false

 Bounded-waiting mutual exclusion with TestAndSet

do{

 waiting[i] = true;

 key = true;

 while(waiting[i] && key }

 key = TestAndSet(&lock);

 waiting[i] = false;

 // critical section

 j = (i+1)%n;

 while((j!=i) && !waiting[j])

 j = (j+1)%n;

 if(j==i)

 lock = false;

 else

 waiting[j] = false;

 // remainder section

} while(true);

 Common data structures are

boolean waiting[n];

boolean lock;

 Data structures initialized to false

 To prove that the mutual-exclusion requirements is met:

 note that Pi can enter its critical section only if either waiting[i] == false or key == false

 key can become false only if the TestAndSet() is executed

 first process to execute TestAndSet() will find key == false, all others must wait

 waiting[i] can become false only if another process leaves its critical section

 only one waiting[i] is set to false

 To prove the Progress requirement is met:

 The mutual exclusion arguments apply, since they let a process that is waiting to enter its critical
section proceed

 To prove the Bounded waiting requirement is met:

 When a process leaves its critical section, it scans the waiting array in the cyclic ordering (i+1,
i+2…, n-1, 0…, i-1) and designates the first process in this ordering that is in the entry section
(waiting[j] == true) as the next one to enter the critical section

Semaphores

 Semaphore = a synchronization tool used to control access to shared variables so that only one process
may at any point in time change the value of the shared variable

 A semaphore S is an integer variable that is accessed only through two standard atomic operations: wait
and signal

wait(s){

 while(s<=0) ;

 ;//no-op

 s--;

}

signal(s){

 s++;

}

 Modifications to the integer value of the semaphore in the wait and signal operations must be executed
indivisibly (atomic)

Usage

 Counting semaphores can allow n processes to access (e.g. a database) by initializing the semaphore to n

 Binary semaphores (with values 0 & 1) are simpler to implement

 N processes share a semaphore, mutex (mutual exclusion), initialized to 1

 Each process is organized as follows:

do {

 wait(mutex);

 // critical section

 Signal(mutex);

 // remainder section

} while (true);

 Example on p.235 mid

Implementation

 p.235 - p.238

 Disadvantage of these mutual-exclusion solutions: they all require busy waiting (i.e. processes trying to
enter their critical sections must loop continuously in the entry code)

 This wastes CPU cycles that another process might be able to use

 This type of semaphore is also called a spinlock (because the process ‘spins’ while waiting for the lock)

 Advantage of a spinlock: no context switch is required when a process must wait on a lock (Useful for
short periods)

 To overcome the need for busy waiting, we can modify the definition of the wait and signal semaphore
operations so that rather than busy waiting, the process can block itself:

 The process is placed into a waiting queue

 The state of the process is switched to the waiting state

 Control is transferred the CPU scheduler

 The CPU scheduler selects another process to execute

 The critical aspect of semaphores is that they must be executed atomically, i.e. wait & signal operations
can't execute together

 This (critical-section) problem can be solved in two ways:

 In a uni-processor environment

 Inhibit interrupts when the wait and signal operations execute

 Only the current process executes, until interrupts are re-enabled and the scheduler
regains control

 In a multiprocessor environment

 Inhibiting interrupts doesn't work

 Use the hardware / software solutions described above

Deadlocks and Starvation

 Deadlock state = when every process in a set is waiting for an event that can be caused only by another
process in the set

 Implementing a semaphore with a waiting queue may result in two processes each waiting for the other
one to signal

 Resource acquisition and release are the events concerned here

 Starvation (indefinite blocking) = when processes wait indefinitely within the semaphore

Priority Inversion

 Priority inversion = when a high-priority process needs data currently being accessed by a lower-priority
one

Classic Problem of Synchronization

Bounded-Buffer Problem

 There is a pool of n buffers, each capable of holding one item

 The mutex semaphore provides mutual exclusion for access to the buffer pool and is initialized to 1

 The empty & full semaphores count the no of empty & full buffers

 Symmetry: The producer produces full buffers for the consumer / the consumer produces empty buffers
for the producer

 p.240 TB

The Readers-Writers Problem

 p.241 TB

 A data set is shared among a number of concurrent processes

 Readers

 only read the data set; they do not perform any updates

 Writers

 can both read and write

 Many readers can access shared data without problems

 Writers need exclusive use to shared objects

 First readers-writers problem:

 Readers don't wait, unless a writer has permission

 Problem: writers may starve if new readers keep appearing because the readers are granted
shared access each time

 Second readers-writers problem:

 If a writer is ready, no new readers may start reading

 Problem: readers may starve

 Used to provide reader-writer locks on some systems

 The mode of lock needs to be specified

 read access

 write access

 Reader-writer locks most useful in following situations:

 In applications where it is easy to identify which processes only read shared data and which
processes only write shared data

 In applications that have more readers than writers. This is because reader-writer locks generally
require more overhead to establish than semaphores or mutual-exclusion locks. The increased
concurrency of allowing multiple readers compensates for the overhead involved in setting up the
reader-writer lock

The Dining-Philosophers Problem

 p.242 TB

 There are 5 philosophers with 5 chopsticks (semaphores)

 A philosopher is either eating (with two chopsticks) or thinking

 A philosopher tries to grab a chopstick by executing a wait operation on that semaphore, and releases the
chopsticks by executing the signal operation on the appropriate semaphores

 The shared data are: semaphore chopstick[5]; where all the elements of chopstick are initialized to 1

 This solution guarantees that no two neighbors are eating simultaneously, but a deadlock will occur if all 5
philosophers become hungry simultaneously and grab their left chopstick

 Some remedies to the deadlock problem:

 Allow at most four philosophers to be sitting simultaneously at the table

 Allow a philosopher to pick up chopsticks only if both are available (He must pick them up in a
critical section)

 Use an asymmetric solution: An odd philosopher picks up his left chopstick first, and an even one
the right one first

 A deadlock-free solution doesn't necessarily eliminate the possibility of starvation

 Monitors is a solution to the dining-philosophers problem

Monitors

 p.244-245 TB

 A high-level abstraction that provides a convenient and effective mechanism for process synchronization

 Only one process may be active within the monitor at a time

 Monitors are needed because if many programmers are using a semaphore and one programmer forgets
to signal after the program has left the critical section, then the entire synchronization mechanism will
end up in a deadlock

 Definition: A collection of procedures, variables, and data structures that are all grouped together in a
module / package

Usage

 p.245-246 TB

 A monitor type is presents a set of programmer-defined operations that are provided to ensure mutual
exclusion within the monitor

 Three distinguishing characteristics of a monitor:

 It encapsulates its permanent variables

 Procedures execute in mutual exclusion

 Synchronization is provided via condition variables

 The monitor shouldn't access any non-local variables, and local variables shouldn't be accessible from
outside the monitor

 Any process may call the monitor, but only one process at any point in time may be executing inside the
monitor

Dining-Philosophers Solution Using Monitors

 p.248 - p.249

Implementing a Monitor Using Semaphores

Resuming Processes within a Monitor

Synchronization Examples

Atomic Transactions

System Model

 Assures that operations happen as a single logical unit of work, in its entirety, or not at all

 Related to field of database systems

 Challenge is assuring atomicity despite computer system failures

 Transaction - collection of instructions or operations that performs single logical function

 Here we are concerned with changes to stable storage - disk

 Transaction is series of read and write operations

 Terminated by commit(transaction successful) or abort(transaction failed) operation

 Aborted transaction must be rolled back to undo any changes it performed

 To determine how the system should ensure atomicity, we need first to identify the properties of devices
used for storing the various data accessed by transactions

 Volatile storage - information stored here does not survive system crashes

 Example: main memory, cache

 Nonvolatile storage -Information usually survives crashes

 Example: disk and tape

 Stable storage - Information never lost

 Not actually possible, so approximated via replication or RAID to devices with independent
failure modes

 Goal is to assure transaction atomicity where failures cause loss of information on volatile storage

Log-Based Recovery

 Write-ahead logging: Each log record describes a single operation of a transaction write and has these
fields:

 Transaction name (The unique name of the transaction)

 Data item name (The unique name of the item written)

 Old value (The value of the data prior to the write)

 New value (The value that the data will have afterwards)

 Prior to a write being executed, the log records must be written onto stable storage

 Performance penalty: Two physical writes are required for each logical write requested, and more storage
is needed

 Two procedures used by the recovery algorithm:

 undo – restores the data to the old values

 redo – sets the data to the new values

 The set of data updated by the transaction and their respective old and new values can be found in the log

Checkpoints

 When a failure occurs, we must consult the log to determine those transactions that need to be redone /
undone

 Drawbacks to searching the entire log:

 The search is time-consuming

 Redoing data modifications causes recovery to take longer

 To reduce this overhead, the system performs checkpoints:

 Output all log records onto stable storage

 Output all modified data to the stable storage

 Output a log record <checkpoint> onto stable storage

 The presence of a <checkpoint> record in the log allows streamlined recovery, since you search for the last
checkpoint

Concurrent Atomic Transactions

 Serializability = when transactions are executed serially

 Can be maintained by executing each transaction within a critical section

 All transactions could share a semaphore mutex, initialized to 1

 When the transaction starts, it first executes wait

 After the transaction commits / aborts, it executes signal

 This scheme ensures atomicity of all concurrently executing transactions, but is still too restrictive

 Concurrency-control algorithms to ensure serializability

Serializability

 Serial schedule: each transaction executes atomically

 Example:

 Consider two data items A and B

 Consider Transactions T0 and T1

 Execute T0, T1atomically

 Execution sequence called schedule

 Atomically executed transaction order called serial schedule

 For N transactions, there are N! valid serial schedules

 Schedule 1: T0 then T1

 Non-serial schedule: transactions overlap execution

 Resulting execution not necessarily incorrect

 Consider schedule S, operations Oi, Oj

 Conflict if access same data item, with at least one write

 If Oi, Oj consecutive and operations of different transactions & Oi and Oj don't conflict

 Then S' with swapped order Oj Oi equivalent to S

 If S can become S' via swapping non conflicting operations

 S is conflict serializable

Locking Protocol

 Ensure serializability by associating lock with each data item

 Follow locking protocol for access control

 Locks

 Shared

 It has shared-mode lock (S) on item Q, It can read Q but not write Q

 Exclusive

 Ti has exclusive-mode lock (X) on Q, Tican read and write Q

 Require every transaction on item Q acquire appropriate lock

 If lock already held, new request may have to wait

 Similar to readers-writers algorithm

Timestamp-Based Protocols

 Select order among transactions in advance -timestamp-ordering

 Transaction Ti associated with timestamp TS(Ti) before Ti starts

 TS(Ti) < TS(Tj) if Ti entered system before Tj

 TS can be generated from system clock or as logical counter incremented at each entry of
transaction

 Timestamps determine serializability order

 If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule where It
appears before Tj

Summary

Chapter 7: Deadlocks

 Objectives:

 To develop a description of deadlocks, which prevents sets of concurrent processes from
completing their tasks

 To present a number of different methods for preventing or avoiding deadlocks in a computer
system

System Model

 Computer resources are partitioned into several types (e.g. memory space, CPU cycles, files, I/O devices…)

 Each type consists of some number of identical instances (e.g. if you have two CPUs, the resource type
CPU has two instances)

 If a process requests an instance of a resource type, the allocation of any instance of the type will satisfy
the request

 A process may utilize a resource in only this sequence: (p.284 TB)

 Request:

 The process requests the resource

 If the request cannot be granted immediately (for example, if the resource is being used by
other process), then the requesting process must wait it can acquire the resource

 Use:

 The process can operate on the resource (for example, if the resource is a printer, the
process can print on the printer)

 Release:

 The process releases the resource

Deadlock Characterization

 A deadlocked state occurs when two or more processes are waiting indefinitely for an event that can be
caused only by one of the waiting processes

Necessary Conditions

 A deadlock situation can arise if all these situations hold simultaneously:

 Mutual exclusion

 At least one resource must be held in a non-sharable mode

 Hold and wait

 A process must hold at least one resource and be waiting

 No preemption

 A resource can be released only voluntarily by a process

 Circular wait

 In a set of waiting processes, all are waiting for a resource held by another process in the
set

 All four conditions must hold for a deadlock to occur

Resource-Allocation Graph

 p.287 - p.289 TB

 Deadlocks can be described more precisely in terms of a directed graph called a system resource-
allocation graph

 It consists of the following parts:

 A set of vertices V and a set of edges E

 V is partitioned into two types:

 P= {P1, P2, …, Pn}, the set consisting of all the processes in the system

 R= {R1, R2, …, Rm}, the set consisting of all resource types in the system

 request edge - directed edge P1 →Rj

 From a process to a resource

 assignment edge - directed edge Rj→Pi

 From a resource to a process

 Example of a Resource Allocation Graph:

 If a resource-allocation graph doesn't have a cycle, then the system is not in a deadlock state

 If there is a cycle, then the system may / may not be in a deadlock state

 Resource Allocation Graph with a deadlock:

 Graph with a Cycle but no deadlock:

 Basic facts about Resource Allocation Graphs:

 If graph contains no cycles ⇒ no deadlock

