
Overview 

 A thread is a flow of control within a process 

 A multithreaded process contains several different flows of control within the same address space 

 A traditional (heavyweight) process has one thread of control  

 A thread / lightweight process (LWP) = a unit of CPU utilization 

 It comprises a thread ID, program counter, register set, & stack 

 It shares with other threads belonging to the same process its code section, data section, and other OS 
resources 

 If a process has multiple threads of control, it can perform more than one task at a time 

 Look at fig 4.1 p.153 TB 

 

 User-level threads are threads that are visible to a programmer and are unknown to the kernel 

 OS kernel supports and manages kernel-level threads 

Motivation 

 It is more efficient to have multithreading than many processes 

 RPC servers are typically multithreaded 

 When a server receives a message, it services it with a separate thread 

 This lets the server service several concurrent requests 

Benefits 

 Responsiveness:    

 A program can continue running even if part of it is busy    

 Resource sharing:    

 Threads share the memory and resources of their process    

 Economy:    

 Allocating memory and resources for processes is costly (time)    

 Scalability:    

 Utilization of multiprocessor architectures  

 Each thread runs on a separate CPU, increasing concurrency / parallelism 



Multicore Programming 

 p.156 - 157 TB 

 Provides a mechanism for more efficient use of multiple cores and improved concurrency 

 On a system with multiple cores the processes run concurrently since the system can assign a separate 
thread to  each core 

 Five areas that present challenges in programming multicore systems: 

 Dividing activities: 

 Areas of applications to be divided into different tasks 

 Balance: 

 Tasks must perform equal work of equal value, else CPU time is wasted 

 Data splitting: 

 Data accessed and manipulated must be divided to run on separate cores 

 Data dependency: 

 If data between cores depends on each other, execution must be synchronized 

 Testing and debugging: 

 More difficult to test and debug than single-threaded execution 

Multithreading Models 

User threads (Many-to-One) Kernel threads (One-to-One) 

Implemented by a thread library at the user 

level 

Supported directly by the OS 

The library provides support for thread 

creation,  scheduling, and management with no 

support from the OS  kernel 

The kernel performs thread creation, scheduling, and  

management in kernel space 

Faster to create & manage because the kernel 

is unaware  of user threads and doesn't 

intervene 

Slower to create & manage than user threads because  

thread management is done by the OS 

Disadvantage: 

If the kernel is single- threaded, then any user-

level thread  performing a blocking system call 

will cause the entire  process to block, even if 

other threads are available to run  within the 

application 

Since the kernel is managing the threads, if a thread  

performs a blocking system call, the kernel can schedule  

another thread in the application for execution. 

In a multiprocessor environment, the kernel can 

schedule  threads on different processors. 

Many-to-One Model 

 Many user-level threads are mapped to one kernel thread 

 Thread management is done in user space, so it is efficient 

 The entire process will block if a thread makes a blocking call 

 Multiple threads can’t run in parallel on multiprocessors 



 

One-to-One Model 

 Each user thread is mapped to a kernel thread 

 More concurrency than the many-to-one model because another thread can run when a thread makes a 
blocking  system call 

 Multiple threads can run in parallel on multiprocessors 

 Disadvantage: creating a user thread requires creating the corresponding kernel thread (This overhead 
burdens  performance) 

 

Many-to-Many Model 

 Many user-level threads are multiplexed to a smaller / equal number of kernel threads 

 Developers can create as many user threads as necessary 

 The kernel threads can run in parallel on a multiprocessor 

 When a thread performs a blocking system call, the kernel can schedule another thread for execution 



 

 A variation on the Many-to-Many Model is the two level-model:   

 Similar to M:M, except that it allows a user thread to be bound to kernel thread 

 

Thread Libraries 

 Thread libraries provide the application programmer with an API for creating and managing threads 

 Three main thread libraries in use today:    

 POSIX Pthreads 

 Win32 threads 

 Java threads  

Pthreads 

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization 

 API specifies behavior of the thread library, implementation is up to development of the library 

 Common in UNIX operating systems (Solaris, Linux, Mac OS X) 

Win32 Threads 

Java Threads 

 Java threads are managed by the JVM 

 Java threads may be created by:  

1. Implementing the Runnable interface 



 

 Sample program: 

 

 

 Java thread states: 

 



Threading Issues 

 Here we discuss issues to consider with multithreaded programs 

The fork() and exec() System Calls 

 fork() system call: used to create a separate, duplicate process    

 Some versions of fork() duplicate all threads    

 If exec() won't be called afterwards    

 Other versions duplicate only the thread that invoked fork()    

 If exec() is called immediately after forking    

 exec() system call: the parameter used will replace the process    

 All threads will also be replaced 

Cancellation 

 Thread cancellation is the task of terminating a thread before it has completed. 

 Target thread = the thread that is to be canceled 

 Cancellation of target threads occur in two different scenarios: 

Asynchronous cancellation Deferred cancellation 

One thread immediately terminates the target 

thread 

The target thread can periodically check if it should  

terminate 

Canceling a thread may not free a necessary 

system-  wide resource 

Cancellation occurs only when the target thread 

checks if  it should be canceled. (Cancellation points) 

 Deferred cancellation in Java   

 Interrupting a thread 

 

 Deferred cancellation in Java  

 Checking interruption status 

 



Signal Handling 

 A signal is used in UNIX to notify a process that a particular event has occurred 

 All signals follow this pattern:     

 A signal is generated by the occurrence of a certain event 

 A generated signal is delivered to a process 

 Once delivered, the signal must be handled   

 A signal handler is used to process signals   

 Signal is generated by particular event 

 Signal is delivered to a process 

 Signal is handled   

 Delivering signals in multithreaded programs, the options are:   

 Deliver the signal to the thread to which the signal applies 

 Deliver the signal to every thread in the process 

 Deliver the signal to certain threads in the process 

 Assign a specific thread to receive all signals for the process   

 Synchronous signals are delivered to the same process that performed the operation causing the signal 
(E.g. / by  0) 

 Asynchronous signals are generated by an event external to a running process (E.g. user terminating a 
process  with <ctrl><c>) 

 Every signal must be handled by one of two possible handlers:     

 A default signal handler 

 Run by the kernel when handling the signal     

 A user-defined signal handler 

 Overrides the default signal handler 

Single-threaded programs Multithreaded programs 

Straightforward signal handling Complicated signal handling 

Signals are always delivered to a process Which thread should the signal be delivered to? 

 The method for delivering a signal depends on the signal type:     

 Synchronous signals need to be delivered to the thread that generated the signal, not to other 
threads in  the process 

 It is not clear what to do with asynchronous signals     

 Signals need to be handled only once, so they're usually delivered to the 1
st

 thread not 
blocking  them 

Thread Pools 

 The idea is to create a number of threads at process startup and place them into a pool, where they sit 
and wait for  work 

 When a server receives a request, it awakens a thread from this pool 

 If one is available the request is passed to it for service 



 Once the service is completed, the thread returns to the pool and wait for more work 

 Benefits of thread pools:   

 It is faster to service a request with an existing thread 

 A thread pool limits the number of threads that exist  

 Potential problems with a multithreaded server:   

 It takes time to create a thread before servicing a request 

 Unlimited threads could exhaust system resources (CPU time)   

 Thread pools are a solution to these problems:   

 At process startup, several threads are created and placed into a pool, where they sit and wait for 
work 

 When a server receives a request, it awakens a thread from this pool, passing it the request to 
service 

 When the thread finishes its service it returns to the pool  

Thread-Specific Data 

 Threads belonging to a process share the data of the process 

 Sometimes, each thread might need its own copy of certain data   

 E.g. Transactions in different threads may each be assigned a unique identifier  

 Thread-specific data in Java 

 

Scheduler Activations 

 Both M:M and Two-level models require communication to maintain the appropriate number of kernel 
threads  allocated to the application 

 Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread 
library 

 This communication allows an application to maintain the correct number kernel threads 



 

Operating-System Examples 

 Windows XP threads 

 Implements the one-to-one mapping 

 Each thread contains   

1. A thread id 

2. Register set 

3. Separate user and kernel stacks 

4. Private data storage area   

 The register set, stacks, and private storage area are known as the context of the threads 

 

 Linux threads 

 Linux refers to them as tasks rather than threads 

 Thread creation is done through clone() system call 

 clone() allows a child task to share the address space of the parent task (process) 



 

Summary 

Chapter 5: Process (CPU) Scheduling 

 Here we look at basic CPU-scheduling concepts and present several CPU-scheduling algorithms. 

 We also consider the problem of selecting an algorithm for a particular system. 

 Objectives: 

 To introduce CPU scheduling, which is the basis for multi-programmed operating systems. 

 To describe various CPU-scheduling algorithms. 

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system. 

 The terms process scheduling and thread scheduling are often used interchangeably 

Basic Concepts 

 CPU scheduling is the task of selecting a waiting process from the ready queue and allocating the CPU to it 

 The CPU is allocated to the selected process by the dispatcher 

 In a uni-processor system, only one process may run at a time; any other process must wait until the CPU 
is  rescheduled   

 The objective of multiprogramming is to have some process running at all times, in order to maximize CPU 
utilization 

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait 

 CPU burst distribution  

CPU-I/O Burst Cycle 

 Process execution comprises a cycle of CPU execution & I/O wait 

 Process execution begins with a CPU burst, followed by an I/O burst, then another CPU burst, etc… 

 Finally, a CPU burst ends with a request to terminate execution 



 

Histogram of CPU-burst times: 

 

 An I/O-bound program typically has many short CPU bursts 

 A CPU-bound program might have a few long CPU bursts 

 These are important points to keep in mind for the selection of an appropriate CPU-scheduling algorithm 

CPU Scheduler 

 Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of 
them 

 The short-term scheduler selects a process in the ready queue when the CPU becomes idle 

 The ready queue could be a FIFO / priority queue, tree, list… 

 The records in the queues are generally process control blocks (PCBs) of the processes 

Preemptive Scheduling 

 Circumstances under which CPU scheduling decisions take place:    

 When a process switches from the running state to the waiting state (E.g. I/O request)        (1) 

 When a process switches from the running state to the ready state (E.g. when an interrupt occurs)       
(2) 

 When a process switches from the waiting state to the ready state (E.g. completion of I/O)       (3) 



 When a process terminates       (4)    

 Non-preemptive/cooperative scheduling 

 Processes are allowed to run to completion 

 When scheduling takes place under circumstances 1 & 4 

 There is no choice in terms of scheduling     

 Preemptive scheduling 

 Processes that are runnable may be temporarily suspended 

 There is a scheduling choice in circumstances 2 & 3 

 Problem: if one process is busy updating data and it is preempted for the second process to run, if 
the second  process reads that data, it could be inconsistent 

Dispatcher 

 A component involved in the CPU scheduling function 

 The dispatcher is the module that gives control of the CPU to the process selected by the short-term 
scheduler 

 This function involves:  

 Switching context 

 Switching user mode 

 Jumping to the proper location in the user program to restart that program  

 The dispatcher should be as fast as possible, given that it is invoked during every process switch 

 Dispatch latency = the time it takes for the dispatcher to stop one process and start another running 

Scheduling Criteria 

 Different CPU-scheduling algorithms  have different properties and the choice of a particular algorithm 
may favor one  class of process over another 

 Criteria to compare CPU-scheduling algorithms: 

 CPU utilization   

 CPU utilization should range from 40% - 90%   

 Throughput  

 The number of processes completed per time unit   

 Turnaround time   

 The time interval from process submission to completion 

 Formula: Time of completion – Time of submission 

 Formula: CPU burst time + Waiting time (includes I/O)   

 Waiting time   

 The sum of the periods spent waiting in the ready queue 

 Formula: Turnaround time – CPU burst time   

 Response time   

 The amount of time it takes to start responding, but not the time it takes to output that 
response   

 We want to maximize CPU utilization, and minimize turnaround, waiting & response time 



Scheduling Algorithms 

 CPU scheduling deals with the problem of deciding which of the processes in the ready queue is to be 
allocated the  CPU 

 There are many different CPU-scheduling algorithms. Here we describe several of them. 

First-Come, First-Served (FCFS) Scheduling 

 The process that requests the CPU first is allocated the CPU 1
st

 

 The PCB of a process is linked onto the tail of the ready queue 

 When the CPU is free, it gets the process at the queue’s head 

 The average waiting time is generally not minimal 

 Convoy effect = when processes wait for a big one to get off 

 Non-preemptive (a process keeps the CPU until it releases it) 

 Not good for time-sharing systems, where each user needs to get a share of the CPU at regular intervals 

 Example: 

                  Process           Burst Time 

                     P1                      24 

                     P2                        3 

                     P3                        3 

 Suppose that the processes arrive in the order: P1, P2, P3  

 The Gantt Chart for the schedule is:  

 

 Waiting time for P1 = 0; P2 = 24; P3 = 27 

 Average waiting time: (0 + 24 + 27)/3 = 17   

 Suppose that the processes arrive in the order P2, P3, P1 

 The Gantt chart for the schedule is: 

 

 Waiting time for P1 = 6;P2 = 0; P3 = 3 

 Average waiting time: (6 + 0 + 3)/3 = 3 

 Much better than previous case 

 Convoy effect short process behind long process 

Shortest-Job-First (SJF) Scheduling 

 The CPU is assigned the process with the shortest next CPU burst 

 If two processes have the same length, FCFS scheduling is used 



 The difficulty is knowing the length of the next CPU request 

 For long-term scheduling in a batch system, we can use the process time limit specified by the user, as the  
‘length’ 

 SJF can't be implemented at the level of short-term scheduling, because there is no way to know the 
length of the  next CPU burst 

 We can, however, try to predict the length of the next CPU burst 

 The SJF algorithm may be either preemptive or non-preemptive 

 Preemptive SJF algorithm:    

 If the new process has a shorter next CPU burst than what is left of the executing process, 
that  process is preempted 

 aka Shortest-Remaining-Time-First (SRTF) scheduling    

 Non-preemptive SJF algorithm:    

 The current process is allowed to finish its CPU burst    

 SJF has the minimum average waiting time for a set of processes 

 Example: 

Process       Arrival Time      Burst Time 

P1              0.0                     7 

P2              2.0                     4 

P3              4.0                     1 

P4              5.0                     4 

 SJF (non-preemptive) 

 

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4 

 SJF (preemptive) 

 

 Average waiting time = (9 + 1 + 0 +2)/4 = 3 

 Determining the length of the next CPU burst:    

 Can only estimate the length 

 Can be done by using the length of previous CPU bursts, using exponential averaging  

 Formula on p.191 top 



 

 Examples of exponential averaging: 

 

Priority Scheduling 

 Each process gets a priority (Highest priority = executed first) 

Preemptive priority scheduling   

 The CPU is preempted if the priority of the newly arrived process is higher than the priority 
of the  current one   

Non-preemptive priority scheduling   

 The new process is put at the head of the ready queue   

 Equal-priority processes are scheduled in FCFS order 

 Internally-defined priorities   

 Use some measurable quantity to compute the priority 

 E.g. time limits, memory requirements, no. of open files… 

 Externally-defined priorities   

 Set by criteria that are external to the OS 

 E.g. the importance of a process, political factors… 

 Problem: 

 Indefinite blocking (starvation), where low-priority processes are left waiting indefinitely for the 
CPU 

 



 Solution: 

 Aging (a technique of gradually increasing the priority of processes that wait in the system for a 
long time) 

Round-Robin Scheduling 

 Designed especially for time-sharing systems 

 Like FCFS scheduling, but with preemption  

 A time quantum / time slice is defined (generally 10 – 100 ms) 

 The ready queue is treated as a circular queue 

 The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of 
up to 1  time quantum 

 The ready queue is kept as a FIFO queue of processes 

 The CPU scheduler    

 picks the 1
st

 process from the ready queue 

 sets a timer to interrupt after 1 time quantum, and 

 dispatches the process   

 One of two things will then happen:   

 The process may have a CPU burst of less than 1 time quantum, and will release the CPU 
voluntarily 

 If the process has a CPU burst longer than 1 time quantum, the timer will go off and cause an 
interrupt to  the OS. The process will then be  put at the tail of the ready queue   

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the 
CPU  time in chunks of at most q time units at once. No process waits more than (n-1)q time units 

 RR Performance depends heavily on the size of the time quantum   

 q large ⇒  FIFO 

 q small ⇒  q must be large with respect to context switch, otherwise overhead is too high   

 We want the time quantum to be large with respect to the context-switch time 

 Example of RR with time Quantum = 20: 

Process           Burst Time 

   P1                        53 

   P2                        17 

   P3                        68 

   P4                        24 

 The Gantt chart is:  

 

 Typically, higher average turnaround than SJF, but better response 

 In software we need to consider the effect of context switching on the performance of RR scheduling 

 The larger the time quantum for a specific process time, the less time is spend on context 
switching 



 The smaller the time quantum, more overhead is added for the purpose of context-switching 

 Example: (This is on a per case situation)  

 

 Turnaround time also depends on the size of the time quantum: 

 

Multilevel Queue Scheduling 

 For when processes can easily be classified into separate groups 

 E.g. a common division is made between foreground (interactive) and background (batch) processes 

 The ready queue is partitioned into several separate queues 

 The processes are permanently assigned to one queue, based on a property like memory size, process 
priority,  process type… 

 Each queue has its own scheduling algorithm 

 There must also be scheduling among the queues, which is commonly implemented as fixed-priority 
preemptive  scheduling   

 Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of 
starvation. 

 Time slice -each queue gets a certain amount of CPU time which it can schedule amongst its 
processes; i.e.,  80% to foreground in RR 

 20% to background in FCFS 



 

Multilevel Feedback Queue Scheduling 

 Processes may move between queues 

 Processes with different CPU-burst characteristics are separated 

 If a process uses too much CPU time, it will be moved to a lower-priority queue 

 If a process waits too long in a lower-priority queue, it may be moved to a higher-priority queue (Aging 
prevents  starvation) 

 In general, a multilevel feedback queue scheduler is defined by the following parameters:   

 The number of queues 

 The scheduling algorithm for each queue 

 The method used to determine when to upgrade a process to a higher priority queue 

 The method used to determine when to demote a process to a lower-priority queue 

 The method used to determine which queue a process will enter when that process needs service   

 This is the most general, but complex scheme 

 Example of Multilevel Feedback Queue:   

 Three queues:   

 Q0 - RR with time quantum 8 milliseconds 

 Q1 - RR time quantum 16 milliseconds 

 Q2 - FCFS   

 Scheduling 

 A new job enters queue Q0 which is served FCFS 

 When it gains CPU, job receives 8 milliseconds 

 If it does not finish in 8 milliseconds, job is moved to queue Q1 

 At Q1 job is again served FCFS and receives 16 additional milliseconds 

 If it still does not complete, it is preempted and moved to queue Q2   

 Multilevel feedback queues: 



 

Thread Scheduling 

 p.199 TB 

 On operating systems that support them, it is kernel-level threads - not processes - that are being 
scheduled by the  operating system 

 Local Scheduling   

 How the threads library decides which thread to put onto an available LWP   

 Global Scheduling   

 How the kernel decides which kernel thread to run next 

Contention Scope 

 Process-Contention scope:   

 On systems implementing the many-to-one and many-to-many models, the thread library 
schedules user-level  threads to run on an available LWP   

 System-Contention scope:   

 The process of deciding which kernel thread to schedule on the CPU  

Pthread Scheduling 

Sample of thread creation with Pthreads: 



 

Multiple-Processor Scheduling 

 CPU scheduling more complex when multiple CPUs are available 

 Homogeneous processors within a multiprocessor 

 Typically each processor maintains its own private queue of processes (or threads) all of which are 
available to  run 

 Load sharing 

 Asymmetric multiprocessing 

 Only one processor accesses the system data structures, alleviating the need for data sharing 

Approaches to Multiple-Processor Scheduling 

 We assume homogeneous processors (identical in functionality) and uniform memory access (UMA) 

 If several identical processors are available, then load sharing can occur, with a common ready queue 

 Processes in the queue are scheduled to any available processor 

 One of two scheduling approaches may be used:    

 Each processor is self-scheduling, and selects a process from the common ready queue to execute 

 One processor is appointed as scheduler for the other processors, creating a master-slave 
structure    

 Some systems carry the master-slave structure further by having all scheduling decisions, I/O processing, 
and other  system activities handled by one single processor – the master server 



 This asymmetric multiprocessing is simpler than symmetric multiprocessing (SMP), because only one  
processor accesses the system data structures, alleviating the need for data sharing 

 It isn't as efficient, because I/O processes may bottleneck on the one CPU that is performing all of the 
operations 

 Typically, asymmetric multiprocessing is implemented 1
st

 within an OS, and then upgraded to symmetric 
as the  system evolves 

Processor Affinity 

 Processor affinity:   

 Migration of processes to another processor is avoided because of the cost of invalidating the 
process and  repopulating the processor cache 

 Soft affinity: 

 When an OS try to keep a process on one processor because of policy, but cannot guarantee it will 
happen 

 Hard affinity: 

 When an OS have the ability to allow a process to specify that it is not to migrate to other 
processors 

Load Balancing 

 Load balancing attempts to keep the workload evenly distributed across all processors in an SMP system 

 Two migration approaches: 

 Push migration 

 A specific task checks the load on each processor and if it finds an imbalance it evenly 
distributes the  load to less-busy processors  

 Pull migration 

 A idle processor pulls a waiting task from a busy processor 

Multicore Processors 

 Complicated scheduling issue 

Virtualization and Scheduling 

Operating System Examples 

Algorithm Evaluation 

 p.213 TB 

 Deterministic modeling: 

 Takes a particular predetermined workload and defines the performance of each algorithm for 
that workload 

 Queuing models 

 Implementation 

Deterministic Modeling 

 A method that takes a particular predetermined workload and defines the performance of each algorithm 
for that  workload 

 Simple; fast; exact numbers, so algorithms can be compared 



 However, it requires exact numbers for input, and its answers apply to only those cases 

 The main uses of deterministic modeling are in describing scheduling algorithms and providing examples 

 Good if you're running the same programs over and over again 

 Over many examples, deterministic modeling may indicate trends 

 In general, deterministic modeling is too specific, and requires too much exact knowledge to be useful 

Queuing Models 

 You can determine the distribution of CPU and I/O bursts 

 A formula describes the probability of a particular CPU burst 

 The computer system is described as a network of servers 

 Each server has a queue of waiting processes 

 Knowing arrival & service rates, we can compute utilization, average queue length, wait time… (= queuing-
network analysis) 

 Limitations of queuing analysis:   

 The algorithms that can be handled are limited   

 The math of complicated algorithms can be hard to work with 

 It is necessary to make assumptions that may not be accurate 

 As a result, the computed results might not be accurate 

Simulations 

 Involve programming a model of the computer system 

 Software data structures represent the major system components 

 The simulator has a variable representing a clock 

 As this variable’s value is increased, the simulator modifies the system state to reflect the activities of the 
devices,  the process, and the scheduler 

 As the simulation executes, statistics that indicate algorithm performance are gathered and printed 

 A random-number generator is programmed to generate processes, CPU-burst times… according to 
probability  distributions 

 The distributions may be defined mathematically or empirically 

 If the distribution is to be defined empirically, measurements of the actual system under study are taken 

 The results are used to define the actual distribution of events in the real system, and this distribution can 
then be  used to drive the simulation 

 Trace tapes can be used to record the sequence of actual events 

 Disadvantages:   

 Simulations can be costly, requiring hours of computer time 

 Traced tapes can require large amounts of storage space 

 The design, coding, and debugging of the simulator can be a major task 

Implementation 

 The only completely accurate way to evaluate a scheduling algorithm is to code it, put it in the OS, and see 
how it works 

 The major difficulty is the cost of this approach 



 The environment in which the algorithm is used will change 

Summary 

PART THREE: PROCESS COORDINATION 

Chapter 6: Synchronization 

 Co-operating process = one that can affect / be affected by other processes. 

 Co-operating processes may either directly share a logical address space  (i.e. code & data) , or share data 
through  files or messages through  threads (ch4). 

 Concurrent access to shared data can result in inconsistencies 

 Objectives:     

1. To introduce the critical-section problem, whose solutions can be  used to ensure the consistency 
of shared  data 

2. To present both software and hardware solutions of the critical- section problem 

3. To introduce the concept of an atomic transaction and describe  mechanisms to ensure atomicity 

Background 

 Concurrent access to shared data may result in data inconsistency 

 Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating 
processes 

 Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers. 
We can  do so by having an integer count that keeps track of the number of full buffers. Initially, count is 
set to 0. It is  incremented by the producer after it produces a new buffer and is decremented by the 
consumer after it consumes  a buffer 

 Producer: 

 

 Consumer: 

 

 Race condition: 

 When the outcome of the execution depends on the particular order in which data access takes 
place 

 Example:   

 count++ could be implemented as 

register1 = count 



register1 = register1 + 1 

count = register1 

 count-- could be implemented as 

register2 = count 

register2 = register2 -1 

count = register2 

 Consider this execution interleaving with "count = 5" initially: 

S0: producer execute register1 = count{register1 = 5} 

S1: producer execute register1 = register1 + 1 {register1 = 6}  

S2: consumer execute register2 = count{register2 = 5}  

S3: consumer execute register2 = register2 -1{register2 = 4}  

S4: producer execute count = register1{count = 6 }  

S5: consumer execute count = register2{count = 4} 

The Critical-Section Problem 

 Critical section = a segment of code in which a  process may be changing common variables, updating a 
table,  writing a file, etc 

 Entry section   

 Requests permission to enter the critical section   

 Critical section   

 Mutually exclusive in time (no other process can execute in its  critical section)   

 Exit section   

 Follows the critical section   

 Remainder section   

 A solution to the critical-section problem must satisfy:   

 Mutual exclusion   

 Only one process can be in its critical section   

 Progress  

 Only processes that are not in their remainder section can enter their critical section, and 
the selection  of a process cannot be postponed indefinitely 

 Bounded waiting   

 There must be a bound on the number of times that other processes are allowed to enter 
their critical  sections after a process has made a request to enter its critical section and 
before the request is  granted 

 

 

 

 

 



 Structure of a typical process: 

 

Peterson's Solution 

 This is an example of a software solution that can be used to prevent race conditions 

 Two process solution 

 Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted. 

 The two processes share two variables:   

 int turn;  

 Boolean flag[2]   

 The variable turn indicates whose turn it is to enter the critical section.  

 The flag array is used to indicate if a process is ready to enter the critical section 

 flag[i] = true implies that process Pi is ready! 

 Algorithm for process Pi: 

 

 To prove that this solution is correct we show that:   

 Mutual exclusion is preserved 

 The progress requirement is satisfied 

 The bounded-waiting requirement is met 

Synchronization Hardware 

 Hardware can also be used to solve the critical-section problem 

 If in a uni-processor environment interrupts were disabled, no unexpected modifications would be made 
to shared  variables 

 Disabling interrupts in a multi-processor environment isn't feasible, so many machines provide special  
hardware instructions 



 Instead, we can generally state that any solution to the critical-section problem requires a simple tool, a 
lock 

 Race conditions are prevented by requiring that critical regions be protected by locks 

 

 Modern machines provide special atomic hardware instructions   

 Atomic = non-interruptible 

 Either test memory word and set value 

 Or swap contents of two memory words   

 These instructions allow us either to test & modify the content of a word, or to swap the contents of two 
words,  atomically    

 TestAndSet 

boolean TestAndSet( boolean *target ) { 

  boolean rv = *target; 

  *target = true; 

  return rv; 

} 

 NB characteristic: this instruction is executed atomically, so if two TestAndSet instructions are 
executed  simultaneously (on  different CPUs), they will be executed sequentially 

 TestAndSet with mutual exclusion 

do{ 

  while( TestAndSet( &lock ) ) ; 

  // critical section 

  lock = false; 

  // remainder section 

} while( true); 

 lock is initialized to false  

 Swap 

void swap( boolean *a, boolean *b ) { 

  boolean temp = *a; 

  *a = *b; 

  *b = temp; 



} 

 Swap with mutual-exclusion 

do{ 

  key = true; 

  while(key == true ) 

    swap(& lock, &key ); 

  // critical section 

  lock = false; 

  // remainder section 

} while(true); 

 lock is initialized to false  

 Bounded-waiting mutual exclusion with TestAndSet 

do{ 

  waiting[i] = true; 

  key = true; 

  while( waiting[i] && key } 

    key = TestAndSet( &lock ); 

  waiting[i] = false; 

  // critical section 

  j = (i+1)%n; 

  while(( j!=i ) && !waiting[j] ) 

    j = (j+1)%n; 

  if( j==i ) 

    lock = false; 

  else 

    waiting[j] = false; 

  // remainder section 

} while( true); 

 Common data structures are 

boolean waiting[n]; 

boolean lock; 

 Data structures initialized to false    

 To prove that the mutual-exclusion requirements is met:    

 note that Pi can enter its critical section only if either waiting[i] == false or key == false  

 key can become false only if the TestAndSet() is executed    

 first process to execute TestAndSet() will find key == false, all others must wait    



 waiting[i] can become false only if another process leaves its critical section    

 only one waiting[i] is set to false    

 To prove the Progress requirement is met: 

 The mutual exclusion arguments apply, since they let a process that is waiting to enter its critical 
section  proceed 

 To prove the Bounded waiting requirement is met: 

 When a process leaves its critical section, it scans the waiting array in the cyclic ordering (i+1, 
i+2…, n-1,  0…, i-1) and designates  the first process in this ordering that is in the entry section 
(waiting[j] == true) as  the next one to enter the critical section 

Semaphores 

 Semaphore = a synchronization tool used to control access to shared variables so that only one process 
may at  any point in time change the value of the shared variable 

 A semaphore S is an integer variable that is accessed only through two standard atomic operations: wait 
and signal 

wait(s){               

  while(s<=0) ; 

                  ;//no-op           

            s--;                   

} 

signal(s){ 

             s++; 

} 

 Modifications to the integer value of the semaphore in the wait and signal operations must be executed 
indivisibly  (atomic) 

Usage 

 Counting semaphores can allow n processes to access (e.g. a database) by initializing the semaphore to n 

 Binary semaphores (with values 0 & 1) are simpler to implement 

 N processes share a semaphore, mutex (mutual exclusion), initialized to 1 

 Each process is organized as follows: 

do { 

  wait(mutex); 

      // critical section 

  Signal(mutex); 

      // remainder section 

} while (true); 

 Example on p.235 mid 

Implementation 

 p.235 - p.238 



 Disadvantage of these mutual-exclusion solutions: they all require busy waiting (i.e. processes trying to 
enter their  critical sections must loop continuously in the entry code) 

 This wastes CPU cycles that another process might be able to use 

 This type of semaphore is also called a spinlock (because the process ‘spins’ while waiting for the lock) 

 Advantage of a spinlock: no context switch is required when a process must wait on a lock (Useful for 
short  periods)  

 To overcome the need for busy waiting, we can modify the definition of the wait and signal semaphore 
operations so  that rather than busy  waiting, the process can block itself:     

 The process is placed into a waiting queue 

 The state of the process is switched to the waiting state 

 Control is transferred the CPU scheduler 

 The CPU scheduler selects another process to execute     

 The critical aspect of semaphores is that they must be executed atomically, i.e. wait & signal operations 
can't  execute together 

 This (critical-section) problem can be solved in two ways:     

 In a uni-processor environment     

 Inhibit interrupts when the wait and signal operations execute 

 Only the current process executes, until interrupts are re-enabled and the scheduler 
regains control     

 In a multiprocessor environment     

 Inhibiting interrupts doesn't work 

 Use the hardware / software solutions described above 

Deadlocks and Starvation 

 Deadlock state = when every process in a set is waiting for an event that can be caused only by another 
process in  the set 

 Implementing a semaphore with a waiting queue may result in two processes each waiting for the other 
one to signal 

 Resource acquisition and release are the events concerned here 

 Starvation (indefinite blocking) = when processes wait indefinitely within the semaphore 

Priority Inversion 

 Priority inversion = when a high-priority process needs data currently being accessed by a lower-priority 
one 

Classic Problem of Synchronization 

Bounded-Buffer Problem 

 There is a pool of n buffers, each capable of holding one item 

 The mutex semaphore provides mutual exclusion for access to the buffer pool and is initialized to 1 

 The empty & full semaphores count the no of empty & full buffers 

 Symmetry: The producer produces full buffers for the consumer / the consumer produces empty buffers 
for the producer 

 p.240 TB 



The Readers-Writers Problem 

 p.241 TB 

 A data set is shared among a number of concurrent processes   

 Readers 

 only read the data set; they do not perform any updates 

 Writers 

 can both read and write   

 Many readers can access shared data without problems 

 Writers need exclusive use to shared objects 

 First readers-writers problem:     

 Readers don't wait, unless a writer has permission 

 Problem: writers may starve if new readers keep appearing because the readers are granted 
shared access  each time     

 Second readers-writers problem:     

 If a writer is ready, no new readers may start reading 

 Problem: readers may starve 

 Used to provide reader-writer locks on some systems 

 The mode of lock needs to be specified 

 read access 

 write access 

 Reader-writer locks most useful in following situations: 

 In applications where it is easy to identify which processes only read shared data and which 
processes only  write shared data 

 In applications that have more readers than writers. This is because reader-writer locks generally 
require more  overhead to establish than  semaphores or mutual-exclusion locks. The increased 
concurrency of allowing  multiple readers compensates for the overhead involved in setting up the 
reader-writer lock 

The Dining-Philosophers Problem 

 p.242 TB 

 There are 5 philosophers with 5 chopsticks (semaphores) 

 A philosopher is either eating (with two chopsticks) or thinking 

 A philosopher tries to grab a chopstick by executing a wait operation on that semaphore, and releases the 
chopsticks by executing the signal  operation on the appropriate semaphores 

 The shared data are: semaphore chopstick[5]; where all the elements of chopstick are initialized to 1 

 This solution guarantees that no two neighbors are eating simultaneously, but a deadlock will occur if all 5 
philosophers become hungry  simultaneously and grab their left chopstick 

 Some remedies to the deadlock problem:   

 Allow at most four philosophers to be sitting simultaneously at the table 

 Allow a philosopher to pick up chopsticks only if both are available (He must pick them up in a 
critical section) 



 Use an asymmetric solution: An odd philosopher picks up his left chopstick first, and an even one 
the right one first   

 A deadlock-free solution doesn't necessarily eliminate the possibility of starvation 

 Monitors is a solution to the dining-philosophers problem 

Monitors 

 p.244-245 TB 

 A high-level abstraction that provides a convenient and effective mechanism for process synchronization 

 Only one process may be active within the monitor at a time 

 Monitors are needed because if many programmers are using a semaphore and one programmer forgets 
to signal  after the program has left the critical section, then the entire synchronization mechanism will 
end up in a deadlock 

 Definition: A collection of procedures, variables, and data structures that are all grouped together in a 
module /  package 

Usage 

 p.245-246 TB 

 A monitor type is presents a set of programmer-defined operations that are provided to ensure mutual 
exclusion  within the monitor 

 Three distinguishing characteristics of a monitor:    

 It encapsulates its permanent variables 

 Procedures execute in mutual exclusion 

 Synchronization is provided via condition variables 

 The monitor shouldn't access any non-local variables, and local variables shouldn't be accessible from 
outside the  monitor 

 Any process may call the monitor, but only one process at any point in time may be executing inside the 
monitor 

 

Dining-Philosophers Solution Using Monitors 

 p.248 - p.249 



Implementing a Monitor Using Semaphores 

Resuming Processes within a Monitor 

Synchronization Examples 

Atomic Transactions 

System Model 

 Assures that operations happen as a single logical unit of work, in its entirety, or not at all 

 Related to field of database systems 

 Challenge is assuring atomicity despite computer system failures 

 Transaction - collection of instructions or operations that performs single logical function   

 Here we are concerned with changes to stable storage - disk 

 Transaction is series of read and write operations 

 Terminated by commit(transaction successful) or abort(transaction failed) operation 

 Aborted transaction must be rolled back to undo any changes it performed 

 To determine how the system should ensure atomicity, we need first to identify the properties of devices 
used for  storing the various data accessed by transactions 

 Volatile storage - information stored here does not survive system crashes  

 Example: main memory, cache  

 Nonvolatile storage  -Information usually survives crashes  

 Example: disk and tape  

 Stable storage - Information never lost  

 Not actually possible, so approximated via replication or RAID to devices with independent 
failure modes 

 Goal is to assure transaction atomicity where failures cause loss of information on volatile storage 

Log-Based Recovery 

 Write-ahead logging: Each log record describes a single operation of a transaction write and has these 
fields:  

 Transaction name (The unique name of the transaction) 

 Data item name (The unique name of the item written) 

 Old value (The value of the data prior to the write) 

 New value (The value that the data will have afterwards)  

 Prior to a write being executed, the log records must be written onto stable storage 

 Performance penalty: Two physical writes are required for each logical write requested, and more storage 
is needed 

 Two procedures used by the recovery algorithm:  

 undo – restores the data to the old values 

 redo – sets the data to the new values  

 The set of data updated by the transaction and their respective old and new values can be found in the log 



Checkpoints 

 When a failure occurs, we must consult the log to determine those transactions that need to be redone / 
undone 

 Drawbacks to searching the entire log:  

 The search is time-consuming 

 Redoing data modifications causes recovery to take longer  

 To reduce this overhead, the system performs checkpoints:  

 Output all log records onto stable storage 

 Output all modified data to the stable storage 

 Output a log record <checkpoint> onto stable storage  

 The presence of a <checkpoint> record in the log allows streamlined recovery, since you search for the last 
checkpoint 

Concurrent Atomic Transactions 

 Serializability = when transactions are executed serially 

 Can be maintained by executing each transaction within a critical section 

 All transactions could share a semaphore mutex, initialized to 1    

 When the transaction starts, it first executes wait 

 After the transaction commits / aborts, it executes signal    

 This scheme ensures atomicity of all concurrently executing transactions, but is still too restrictive 

 Concurrency-control algorithms to ensure serializability 

Serializability 

 Serial schedule: each transaction executes atomically 

 Example:   

 Consider two data items A and B 

 Consider Transactions T0 and T1 

 Execute T0, T1atomically 

 Execution sequence called schedule 

 Atomically executed transaction order called serial schedule 

 For N transactions, there are N! valid serial schedules   

 Schedule 1: T0 then T1 

 



 Non-serial schedule: transactions overlap execution   

 Resulting execution not necessarily incorrect   

 Consider schedule S, operations Oi, Oj   

 Conflict if access same data item, with at least one write   

 If Oi, Oj consecutive and operations of different transactions & Oi and Oj don't conflict   

 Then S' with swapped order Oj Oi equivalent to S   

 If S can become S' via swapping non conflicting operations   

 S is conflict serializable 

 

Locking Protocol 

 Ensure serializability by associating lock with each data item   

 Follow locking protocol for access control   

 Locks   

 Shared 

 It has shared-mode lock (S) on item Q, It can read Q but not write Q 

 Exclusive 

 Ti has exclusive-mode lock (X) on Q, Tican read and write Q   

 Require every transaction on item Q acquire appropriate lock 

 If lock already held, new request may have to wait   

 Similar to readers-writers algorithm 

Timestamp-Based Protocols 

 Select order among transactions in advance -timestamp-ordering 

 Transaction Ti associated with timestamp TS(Ti) before Ti starts   

 TS(Ti) < TS(Tj) if Ti entered system before Tj 

 TS can be generated from system clock or as logical counter incremented at each entry of 
transaction   

 Timestamps determine serializability order   

 If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule where It 
appears  before Tj 



 

Summary 

Chapter 7: Deadlocks 

 Objectives: 

 To develop a description of deadlocks, which prevents sets of concurrent processes from 
completing their  tasks 

 To present a number of different methods for preventing or avoiding deadlocks in a computer 
system 

System Model 

 Computer resources are partitioned into several types (e.g. memory space, CPU cycles, files, I/O devices…) 

 Each type consists of some number of identical instances (e.g. if you have two CPUs, the resource type 
CPU has  two instances) 

 If a process requests an instance of a resource type, the allocation of any instance of the type will satisfy 
the request 

 A process may utilize a resource in only this sequence:  (p.284 TB)   

 Request: 

 The process requests the resource 

 If the request cannot be granted immediately (for example, if the resource is being used by 
other  process), then the requesting process must wait it can acquire the resource 

 Use: 

 The process can operate on the resource (for example, if the resource is a printer, the 
process can  print on the printer) 

 Release: 

 The process releases the resource 

Deadlock Characterization 

 A deadlocked state occurs when two or more processes are waiting indefinitely for an event that can be 
caused only  by one of the waiting processes 

Necessary Conditions 

 A deadlock situation can arise if all these situations hold simultaneously: 

 Mutual exclusion 

 At least one resource must be held in a non-sharable mode    

 Hold and wait 

 A process must hold at least one resource and be waiting    



 No preemption 

 A resource can be released only voluntarily by a process    

 Circular wait 

 In a set of waiting processes, all are waiting for a resource held by another process in the 
set 

 All four conditions must hold for a deadlock to occur 

Resource-Allocation Graph 

 p.287 - p.289 TB 

 Deadlocks can be described more precisely in terms of a directed graph called a system resource-
allocation graph 

 It consists of the following parts: 

 A set of vertices V and a set of edges E 

 V is partitioned into two types:   

 P= {P1, P2, …, Pn}, the set consisting of all the processes in the system 

 R= {R1, R2, …, Rm}, the set consisting of all resource types in the system   

 request edge - directed edge P1 →Rj 

 From a process to a resource  

 assignment edge - directed edge Rj→Pi 

  From a resource to a process 

 

 

 

 

 

 

 

 

 



 Example of a Resource Allocation Graph: 

 

 If a resource-allocation graph doesn't have a cycle, then the system is not in a deadlock state 

 If there is a cycle, then the system may / may not be in a deadlock state 

 Resource Allocation Graph with a deadlock: 

 

 Graph with a Cycle but no deadlock: 

 

 Basic facts about Resource Allocation Graphs:   

 If graph contains no cycles ⇒ no deadlock 


