
Overview 

 A thread is a flow of control within a process 

 A multithreaded process contains several different flows of control within the same address space 

 A traditional (heavyweight) process has one thread of control  

 A thread / lightweight process (LWP) = a unit of CPU utilization 

 It comprises a thread ID, program counter, register set, & stack 

 It shares with other threads belonging to the same process its code section, data section, and other OS 
resources 

 If a process has multiple threads of control, it can perform more than one task at a time 

 Look at fig 4.1 p.153 TB 

 

 User-level threads are threads that are visible to a programmer and are unknown to the kernel 

 OS kernel supports and manages kernel-level threads 

Motivation 

 It is more efficient to have multithreading than many processes 

 RPC servers are typically multithreaded 

 When a server receives a message, it services it with a separate thread 

 This lets the server service several concurrent requests 

Benefits 

 Responsiveness:    

 A program can continue running even if part of it is busy    

 Resource sharing:    

 Threads share the memory and resources of their process    

 Economy:    

 Allocating memory and resources for processes is costly (time)    

 Scalability:    

 Utilization of multiprocessor architectures  

 Each thread runs on a separate CPU, increasing concurrency / parallelism 



Multicore Programming 

 p.156 - 157 TB 

 Provides a mechanism for more efficient use of multiple cores and improved concurrency 

 On a system with multiple cores the processes run concurrently since the system can assign a separate 
thread to  each core 

 Five areas that present challenges in programming multicore systems: 

 Dividing activities: 

 Areas of applications to be divided into different tasks 

 Balance: 

 Tasks must perform equal work of equal value, else CPU time is wasted 

 Data splitting: 

 Data accessed and manipulated must be divided to run on separate cores 

 Data dependency: 

 If data between cores depends on each other, execution must be synchronized 

 Testing and debugging: 

 More difficult to test and debug than single-threaded execution 

Multithreading Models 

User threads (Many-to-One) Kernel threads (One-to-One) 

Implemented by a thread library at the user 

level 

Supported directly by the OS 

The library provides support for thread 

creation,  scheduling, and management with no 

support from the OS  kernel 

The kernel performs thread creation, scheduling, and  

management in kernel space 

Faster to create & manage because the kernel 

is unaware  of user threads and doesn't 

intervene 

Slower to create & manage than user threads because  

thread management is done by the OS 

Disadvantage: 

If the kernel is single- threaded, then any user-

level thread  performing a blocking system call 

will cause the entire  process to block, even if 

other threads are available to run  within the 

application 

Since the kernel is managing the threads, if a thread  

performs a blocking system call, the kernel can schedule  

another thread in the application for execution. 

In a multiprocessor environment, the kernel can 

schedule  threads on different processors. 

Many-to-One Model 

 Many user-level threads are mapped to one kernel thread 

 Thread management is done in user space, so it is efficient 

 The entire process will block if a thread makes a blocking call 

 Multiple threads can’t run in parallel on multiprocessors 



 

One-to-One Model 

 Each user thread is mapped to a kernel thread 

 More concurrency than the many-to-one model because another thread can run when a thread makes a 
blocking  system call 

 Multiple threads can run in parallel on multiprocessors 

 Disadvantage: creating a user thread requires creating the corresponding kernel thread (This overhead 
burdens  performance) 

 

Many-to-Many Model 

 Many user-level threads are multiplexed to a smaller / equal number of kernel threads 

 Developers can create as many user threads as necessary 

 The kernel threads can run in parallel on a multiprocessor 

 When a thread performs a blocking system call, the kernel can schedule another thread for execution 



 

 A variation on the Many-to-Many Model is the two level-model:   

 Similar to M:M, except that it allows a user thread to be bound to kernel thread 

 

Thread Libraries 

 Thread libraries provide the application programmer with an API for creating and managing threads 

 Three main thread libraries in use today:    

 POSIX Pthreads 

 Win32 threads 

 Java threads  

Pthreads 

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization 

 API specifies behavior of the thread library, implementation is up to development of the library 

 Common in UNIX operating systems (Solaris, Linux, Mac OS X) 

Win32 Threads 

Java Threads 

 Java threads are managed by the JVM 

 Java threads may be created by:  

1. Implementing the Runnable interface 



 

 Sample program: 

 

 

 Java thread states: 

 



Threading Issues 

 Here we discuss issues to consider with multithreaded programs 

The fork() and exec() System Calls 

 fork() system call: used to create a separate, duplicate process    

 Some versions of fork() duplicate all threads    

 If exec() won't be called afterwards    

 Other versions duplicate only the thread that invoked fork()    

 If exec() is called immediately after forking    

 exec() system call: the parameter used will replace the process    

 All threads will also be replaced 

Cancellation 

 Thread cancellation is the task of terminating a thread before it has completed. 

 Target thread = the thread that is to be canceled 

 Cancellation of target threads occur in two different scenarios: 

Asynchronous cancellation Deferred cancellation 

One thread immediately terminates the target 

thread 

The target thread can periodically check if it should  

terminate 

Canceling a thread may not free a necessary 

system-  wide resource 

Cancellation occurs only when the target thread 

checks if  it should be canceled. (Cancellation points) 

 Deferred cancellation in Java   

 Interrupting a thread 

 

 Deferred cancellation in Java  

 Checking interruption status 

 



Signal Handling 

 A signal is used in UNIX to notify a process that a particular event has occurred 

 All signals follow this pattern:     

 A signal is generated by the occurrence of a certain event 

 A generated signal is delivered to a process 

 Once delivered, the signal must be handled   

 A signal handler is used to process signals   

 Signal is generated by particular event 

 Signal is delivered to a process 

 Signal is handled   

 Delivering signals in multithreaded programs, the options are:   

 Deliver the signal to the thread to which the signal applies 

 Deliver the signal to every thread in the process 

 Deliver the signal to certain threads in the process 

 Assign a specific thread to receive all signals for the process   

 Synchronous signals are delivered to the same process that performed the operation causing the signal 
(E.g. / by  0) 

 Asynchronous signals are generated by an event external to a running process (E.g. user terminating a 
process  with <ctrl><c>) 

 Every signal must be handled by one of two possible handlers:     

 A default signal handler 

 Run by the kernel when handling the signal     

 A user-defined signal handler 

 Overrides the default signal handler 

Single-threaded programs Multithreaded programs 

Straightforward signal handling Complicated signal handling 

Signals are always delivered to a process Which thread should the signal be delivered to? 

 The method for delivering a signal depends on the signal type:     

 Synchronous signals need to be delivered to the thread that generated the signal, not to other 
threads in  the process 

 It is not clear what to do with asynchronous signals     

 Signals need to be handled only once, so they're usually delivered to the 1
st

 thread not 
blocking  them 

Thread Pools 

 The idea is to create a number of threads at process startup and place them into a pool, where they sit 
and wait for  work 

 When a server receives a request, it awakens a thread from this pool 

 If one is available the request is passed to it for service 



 Once the service is completed, the thread returns to the pool and wait for more work 

 Benefits of thread pools:   

 It is faster to service a request with an existing thread 

 A thread pool limits the number of threads that exist  

 Potential problems with a multithreaded server:   

 It takes time to create a thread before servicing a request 

 Unlimited threads could exhaust system resources (CPU time)   

 Thread pools are a solution to these problems:   

 At process startup, several threads are created and placed into a pool, where they sit and wait for 
work 

 When a server receives a request, it awakens a thread from this pool, passing it the request to 
service 

 When the thread finishes its service it returns to the pool  

Thread-Specific Data 

 Threads belonging to a process share the data of the process 

 Sometimes, each thread might need its own copy of certain data   

 E.g. Transactions in different threads may each be assigned a unique identifier  

 Thread-specific data in Java 

 

Scheduler Activations 

 Both M:M and Two-level models require communication to maintain the appropriate number of kernel 
threads  allocated to the application 

 Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread 
library 

 This communication allows an application to maintain the correct number kernel threads 



 

Operating-System Examples 

 Windows XP threads 

 Implements the one-to-one mapping 

 Each thread contains   

1. A thread id 

2. Register set 

3. Separate user and kernel stacks 

4. Private data storage area   

 The register set, stacks, and private storage area are known as the context of the threads 

 

 Linux threads 

 Linux refers to them as tasks rather than threads 

 Thread creation is done through clone() system call 

 clone() allows a child task to share the address space of the parent task (process) 



 

Summary 

Chapter 5: Process (CPU) Scheduling 

 Here we look at basic CPU-scheduling concepts and present several CPU-scheduling algorithms. 

 We also consider the problem of selecting an algorithm for a particular system. 

 Objectives: 

 To introduce CPU scheduling, which is the basis for multi-programmed operating systems. 

 To describe various CPU-scheduling algorithms. 

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system. 

 The terms process scheduling and thread scheduling are often used interchangeably 

Basic Concepts 

 CPU scheduling is the task of selecting a waiting process from the ready queue and allocating the CPU to it 

 The CPU is allocated to the selected process by the dispatcher 

 In a uni-processor system, only one process may run at a time; any other process must wait until the CPU 
is  rescheduled   

 The objective of multiprogramming is to have some process running at all times, in order to maximize CPU 
utilization 

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait 

 CPU burst distribution  

CPU-I/O Burst Cycle 

 Process execution comprises a cycle of CPU execution & I/O wait 

 Process execution begins with a CPU burst, followed by an I/O burst, then another CPU burst, etc… 

 Finally, a CPU burst ends with a request to terminate execution 



 

Histogram of CPU-burst times: 

 

 An I/O-bound program typically has many short CPU bursts 

 A CPU-bound program might have a few long CPU bursts 

 These are important points to keep in mind for the selection of an appropriate CPU-scheduling algorithm 

CPU Scheduler 

 Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of 
them 

 The short-term scheduler selects a process in the ready queue when the CPU becomes idle 

 The ready queue could be a FIFO / priority queue, tree, list… 

 The records in the queues are generally process control blocks (PCBs) of the processes 

Preemptive Scheduling 

 Circumstances under which CPU scheduling decisions take place:    

 When a process switches from the running state to the waiting state (E.g. I/O request)        (1) 

 When a process switches from the running state to the ready state (E.g. when an interrupt occurs)       
(2) 

 When a process switches from the waiting state to the ready state (E.g. completion of I/O)       (3) 



 When a process terminates       (4)    

 Non-preemptive/cooperative scheduling 

 Processes are allowed to run to completion 

 When scheduling takes place under circumstances 1 & 4 

 There is no choice in terms of scheduling     

 Preemptive scheduling 

 Processes that are runnable may be temporarily suspended 

 There is a scheduling choice in circumstances 2 & 3 

 Problem: if one process is busy updating data and it is preempted for the second process to run, if 
the second  process reads that data, it could be inconsistent 

Dispatcher 

 A component involved in the CPU scheduling function 

 The dispatcher is the module that gives control of the CPU to the process selected by the short-term 
scheduler 

 This function involves:  

 Switching context 

 Switching user mode 

 Jumping to the proper location in the user program to restart that program  

 The dispatcher should be as fast as possible, given that it is invoked during every process switch 

 Dispatch latency = the time it takes for the dispatcher to stop one process and start another running 

Scheduling Criteria 

 Different CPU-scheduling algorithms  have different properties and the choice of a particular algorithm 
may favor one  class of process over another 

 Criteria to compare CPU-scheduling algorithms: 

 CPU utilization   

 CPU utilization should range from 40% - 90%   

 Throughput  

 The number of processes completed per time unit   

 Turnaround time   

 The time interval from process submission to completion 

 Formula: Time of completion – Time of submission 

 Formula: CPU burst time + Waiting time (includes I/O)   

 Waiting time   

 The sum of the periods spent waiting in the ready queue 

 Formula: Turnaround time – CPU burst time   

 Response time   

 The amount of time it takes to start responding, but not the time it takes to output that 
response   

 We want to maximize CPU utilization, and minimize turnaround, waiting & response time 



Scheduling Algorithms 

 CPU scheduling deals with the problem of deciding which of the processes in the ready queue is to be 
allocated the  CPU 

 There are many different CPU-scheduling algorithms. Here we describe several of them. 

First-Come, First-Served (FCFS) Scheduling 

 The process that requests the CPU first is allocated the CPU 1
st

 

 The PCB of a process is linked onto the tail of the ready queue 

 When the CPU is free, it gets the process at the queue’s head 

 The average waiting time is generally not minimal 

 Convoy effect = when processes wait for a big one to get off 

 Non-preemptive (a process keeps the CPU until it releases it) 

 Not good for time-sharing systems, where each user needs to get a share of the CPU at regular intervals 

 Example: 

                  Process           Burst Time 

                     P1                      24 

                     P2                        3 

                     P3                        3 

 Suppose that the processes arrive in the order: P1, P2, P3  

 The Gantt Chart for the schedule is:  

 

 Waiting time for P1 = 0; P2 = 24; P3 = 27 

 Average waiting time: (0 + 24 + 27)/3 = 17   

 Suppose that the processes arrive in the order P2, P3, P1 

 The Gantt chart for the schedule is: 

 

 Waiting time for P1 = 6;P2 = 0; P3 = 3 

 Average waiting time: (6 + 0 + 3)/3 = 3 

 Much better than previous case 

 Convoy effect short process behind long process 

Shortest-Job-First (SJF) Scheduling 

 The CPU is assigned the process with the shortest next CPU burst 

 If two processes have the same length, FCFS scheduling is used 



 The difficulty is knowing the length of the next CPU request 

 For long-term scheduling in a batch system, we can use the process time limit specified by the user, as the  
‘length’ 

 SJF can't be implemented at the level of short-term scheduling, because there is no way to know the 
length of the  next CPU burst 

 We can, however, try to predict the length of the next CPU burst 

 The SJF algorithm may be either preemptive or non-preemptive 

 Preemptive SJF algorithm:    

 If the new process has a shorter next CPU burst than what is left of the executing process, 
that  process is preempted 

 aka Shortest-Remaining-Time-First (SRTF) scheduling    

 Non-preemptive SJF algorithm:    

 The current process is allowed to finish its CPU burst    

 SJF has the minimum average waiting time for a set of processes 

 Example: 

Process       Arrival Time      Burst Time 

P1              0.0                     7 

P2              2.0                     4 

P3              4.0                     1 

P4              5.0                     4 

 SJF (non-preemptive) 

 

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4 

 SJF (preemptive) 

 

 Average waiting time = (9 + 1 + 0 +2)/4 = 3 

 Determining the length of the next CPU burst:    

 Can only estimate the length 

 Can be done by using the length of previous CPU bursts, using exponential averaging  

 Formula on p.191 top 



 

 Examples of exponential averaging: 

 

Priority Scheduling 

 Each process gets a priority (Highest priority = executed first) 

Preemptive priority scheduling   

 The CPU is preempted if the priority of the newly arrived process is higher than the priority 
of the  current one   

Non-preemptive priority scheduling   

 The new process is put at the head of the ready queue   

 Equal-priority processes are scheduled in FCFS order 

 Internally-defined priorities   

 Use some measurable quantity to compute the priority 

 E.g. time limits, memory requirements, no. of open files… 

 Externally-defined priorities   

 Set by criteria that are external to the OS 

 E.g. the importance of a process, political factors… 

 Problem: 

 Indefinite blocking (starvation), where low-priority processes are left waiting indefinitely for the 
CPU 

 



 Solution: 

 Aging (a technique of gradually increasing the priority of processes that wait in the system for a 
long time) 

Round-Robin Scheduling 

 Designed especially for time-sharing systems 

 Like FCFS scheduling, but with preemption  

 A time quantum / time slice is defined (generally 10 – 100 ms) 

 The ready queue is treated as a circular queue 

 The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of 
up to 1  time quantum 

 The ready queue is kept as a FIFO queue of processes 

 The CPU scheduler    

 picks the 1
st

 process from the ready queue 

 sets a timer to interrupt after 1 time quantum, and 

 dispatches the process   

 One of two things will then happen:   

 The process may have a CPU burst of less than 1 time quantum, and will release the CPU 
voluntarily 

 If the process has a CPU burst longer than 1 time quantum, the timer will go off and cause an 
interrupt to  the OS. The process will then be  put at the tail of the ready queue   

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the 
CPU  time in chunks of at most q time units at once. No process waits more than (n-1)q time units 

 RR Performance depends heavily on the size of the time quantum   

 q large ⇒  FIFO 

 q small ⇒  q must be large with respect to context switch, otherwise overhead is too high   

 We want the time quantum to be large with respect to the context-switch time 

 Example of RR with time Quantum = 20: 

Process           Burst Time 

   P1                        53 

   P2                        17 

   P3                        68 

   P4                        24 

 The Gantt chart is:  

 

 Typically, higher average turnaround than SJF, but better response 

 In software we need to consider the effect of context switching on the performance of RR scheduling 

 The larger the time quantum for a specific process time, the less time is spend on context 
switching 



 The smaller the time quantum, more overhead is added for the purpose of context-switching 

 Example: (This is on a per case situation)  

 

 Turnaround time also depends on the size of the time quantum: 

 

Multilevel Queue Scheduling 

 For when processes can easily be classified into separate groups 

 E.g. a common division is made between foreground (interactive) and background (batch) processes 

 The ready queue is partitioned into several separate queues 

 The processes are permanently assigned to one queue, based on a property like memory size, process 
priority,  process type… 

 Each queue has its own scheduling algorithm 

 There must also be scheduling among the queues, which is commonly implemented as fixed-priority 
preemptive  scheduling   

 Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of 
starvation. 

 Time slice -each queue gets a certain amount of CPU time which it can schedule amongst its 
processes; i.e.,  80% to foreground in RR 

 20% to background in FCFS 



 

Multilevel Feedback Queue Scheduling 

 Processes may move between queues 

 Processes with different CPU-burst characteristics are separated 

 If a process uses too much CPU time, it will be moved to a lower-priority queue 

 If a process waits too long in a lower-priority queue, it may be moved to a higher-priority queue (Aging 
prevents  starvation) 

 In general, a multilevel feedback queue scheduler is defined by the following parameters:   

 The number of queues 

 The scheduling algorithm for each queue 

 The method used to determine when to upgrade a process to a higher priority queue 

 The method used to determine when to demote a process to a lower-priority queue 

 The method used to determine which queue a process will enter when that process needs service   

 This is the most general, but complex scheme 

 Example of Multilevel Feedback Queue:   

 Three queues:   

 Q0 - RR with time quantum 8 milliseconds 

 Q1 - RR time quantum 16 milliseconds 

 Q2 - FCFS   

 Scheduling 

 A new job enters queue Q0 which is served FCFS 

 When it gains CPU, job receives 8 milliseconds 

 If it does not finish in 8 milliseconds, job is moved to queue Q1 

 At Q1 job is again served FCFS and receives 16 additional milliseconds 

 If it still does not complete, it is preempted and moved to queue Q2   

 Multilevel feedback queues: 



 

Thread Scheduling 

 p.199 TB 

 On operating systems that support them, it is kernel-level threads - not processes - that are being 
scheduled by the  operating system 

 Local Scheduling   

 How the threads library decides which thread to put onto an available LWP   

 Global Scheduling   

 How the kernel decides which kernel thread to run next 

Contention Scope 

 Process-Contention scope:   

 On systems implementing the many-to-one and many-to-many models, the thread library 
schedules user-level  threads to run on an available LWP   

 System-Contention scope:   

 The process of deciding which kernel thread to schedule on the CPU  

Pthread Scheduling 

Sample of thread creation with Pthreads: 



 

Multiple-Processor Scheduling 

 CPU scheduling more complex when multiple CPUs are available 

 Homogeneous processors within a multiprocessor 

 Typically each processor maintains its own private queue of processes (or threads) all of which are 
available to  run 

 Load sharing 

 Asymmetric multiprocessing 

 Only one processor accesses the system data structures, alleviating the need for data sharing 

Approaches to Multiple-Processor Scheduling 

 We assume homogeneous processors (identical in functionality) and uniform memory access (UMA) 

 If several identical processors are available, then load sharing can occur, with a common ready queue 

 Processes in the queue are scheduled to any available processor 

 One of two scheduling approaches may be used:    

 Each processor is self-scheduling, and selects a process from the common ready queue to execute 

 One processor is appointed as scheduler for the other processors, creating a master-slave 
structure    

 Some systems carry the master-slave structure further by having all scheduling decisions, I/O processing, 
and other  system activities handled by one single processor – the master server 



 This asymmetric multiprocessing is simpler than symmetric multiprocessing (SMP), because only one  
processor accesses the system data structures, alleviating the need for data sharing 

 It isn't as efficient, because I/O processes may bottleneck on the one CPU that is performing all of the 
operations 

 Typically, asymmetric multiprocessing is implemented 1
st

 within an OS, and then upgraded to symmetric 
as the  system evolves 

Processor Affinity 

 Processor affinity:   

 Migration of processes to another processor is avoided because of the cost of invalidating the 
process and  repopulating the processor cache 

 Soft affinity: 

 When an OS try to keep a process on one processor because of policy, but cannot guarantee it will 
happen 

 Hard affinity: 

 When an OS have the ability to allow a process to specify that it is not to migrate to other 
processors 

Load Balancing 

 Load balancing attempts to keep the workload evenly distributed across all processors in an SMP system 

 Two migration approaches: 

 Push migration 

 A specific task checks the load on each processor and if it finds an imbalance it evenly 
distributes the  load to less-busy processors  

 Pull migration 

 A idle processor pulls a waiting task from a busy processor 

Multicore Processors 

 Complicated scheduling issue 

Virtualization and Scheduling 

Operating System Examples 

Algorithm Evaluation 

 p.213 TB 

 Deterministic modeling: 

 Takes a particular predetermined workload and defines the performance of each algorithm for 
that workload 

 Queuing models 

 Implementation 

Deterministic Modeling 

 A method that takes a particular predetermined workload and defines the performance of each algorithm 
for that  workload 

 Simple; fast; exact numbers, so algorithms can be compared 



 However, it requires exact numbers for input, and its answers apply to only those cases 

 The main uses of deterministic modeling are in describing scheduling algorithms and providing examples 

 Good if you're running the same programs over and over again 

 Over many examples, deterministic modeling may indicate trends 

 In general, deterministic modeling is too specific, and requires too much exact knowledge to be useful 

Queuing Models 

 You can determine the distribution of CPU and I/O bursts 

 A formula describes the probability of a particular CPU burst 

 The computer system is described as a network of servers 

 Each server has a queue of waiting processes 

 Knowing arrival & service rates, we can compute utilization, average queue length, wait time… (= queuing-
network analysis) 

 Limitations of queuing analysis:   

 The algorithms that can be handled are limited   

 The math of complicated algorithms can be hard to work with 

 It is necessary to make assumptions that may not be accurate 

 As a result, the computed results might not be accurate 

Simulations 

 Involve programming a model of the computer system 

 Software data structures represent the major system components 

 The simulator has a variable representing a clock 

 As this variable’s value is increased, the simulator modifies the system state to reflect the activities of the 
devices,  the process, and the scheduler 

 As the simulation executes, statistics that indicate algorithm performance are gathered and printed 

 A random-number generator is programmed to generate processes, CPU-burst times… according to 
probability  distributions 

 The distributions may be defined mathematically or empirically 

 If the distribution is to be defined empirically, measurements of the actual system under study are taken 

 The results are used to define the actual distribution of events in the real system, and this distribution can 
then be  used to drive the simulation 

 Trace tapes can be used to record the sequence of actual events 

 Disadvantages:   

 Simulations can be costly, requiring hours of computer time 

 Traced tapes can require large amounts of storage space 

 The design, coding, and debugging of the simulator can be a major task 

Implementation 

 The only completely accurate way to evaluate a scheduling algorithm is to code it, put it in the OS, and see 
how it works 

 The major difficulty is the cost of this approach 



 The environment in which the algorithm is used will change 

Summary 

PART THREE: PROCESS COORDINATION 

Chapter 6: Synchronization 

 Co-operating process = one that can affect / be affected by other processes. 

 Co-operating processes may either directly share a logical address space  (i.e. code & data) , or share data 
through  files or messages through  threads (ch4). 

 Concurrent access to shared data can result in inconsistencies 

 Objectives:     

1. To introduce the critical-section problem, whose solutions can be  used to ensure the consistency 
of shared  data 

2. To present both software and hardware solutions of the critical- section problem 

3. To introduce the concept of an atomic transaction and describe  mechanisms to ensure atomicity 

Background 

 Concurrent access to shared data may result in data inconsistency 

 Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating 
processes 

 Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers. 
We can  do so by having an integer count that keeps track of the number of full buffers. Initially, count is 
set to 0. It is  incremented by the producer after it produces a new buffer and is decremented by the 
consumer after it consumes  a buffer 

 Producer: 

 

 Consumer: 

 

 Race condition: 

 When the outcome of the execution depends on the particular order in which data access takes 
place 

 Example:   

 count++ could be implemented as 

register1 = count 



register1 = register1 + 1 

count = register1 

 count-- could be implemented as 

register2 = count 

register2 = register2 -1 

count = register2 

 Consider this execution interleaving with "count = 5" initially: 

S0: producer execute register1 = count{register1 = 5} 

S1: producer execute register1 = register1 + 1 {register1 = 6}  

S2: consumer execute register2 = count{register2 = 5}  

S3: consumer execute register2 = register2 -1{register2 = 4}  

S4: producer execute count = register1{count = 6 }  

S5: consumer execute count = register2{count = 4} 

The Critical-Section Problem 

 Critical section = a segment of code in which a  process may be changing common variables, updating a 
table,  writing a file, etc 

 Entry section   

 Requests permission to enter the critical section   

 Critical section   

 Mutually exclusive in time (no other process can execute in its  critical section)   

 Exit section   

 Follows the critical section   

 Remainder section   

 A solution to the critical-section problem must satisfy:   

 Mutual exclusion   

 Only one process can be in its critical section   

 Progress  

 Only processes that are not in their remainder section can enter their critical section, and 
the selection  of a process cannot be postponed indefinitely 

 Bounded waiting   

 There must be a bound on the number of times that other processes are allowed to enter 
their critical  sections after a process has made a request to enter its critical section and 
before the request is  granted 

 

 

 

 

 



 Structure of a typical process: 

 

Peterson's Solution 

 This is an example of a software solution that can be used to prevent race conditions 

 Two process solution 

 Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted. 

 The two processes share two variables:   

 int turn;  

 Boolean flag[2]   

 The variable turn indicates whose turn it is to enter the critical section.  

 The flag array is used to indicate if a process is ready to enter the critical section 

 flag[i] = true implies that process Pi is ready! 

 Algorithm for process Pi: 

 

 To prove that this solution is correct we show that:   

 Mutual exclusion is preserved 

 The progress requirement is satisfied 

 The bounded-waiting requirement is met 

Synchronization Hardware 

 Hardware can also be used to solve the critical-section problem 

 If in a uni-processor environment interrupts were disabled, no unexpected modifications would be made 
to shared  variables 

 Disabling interrupts in a multi-processor environment isn't feasible, so many machines provide special  
hardware instructions 



 Instead, we can generally state that any solution to the critical-section problem requires a simple tool, a 
lock 

 Race conditions are prevented by requiring that critical regions be protected by locks 

 

 Modern machines provide special atomic hardware instructions   

 Atomic = non-interruptible 

 Either test memory word and set value 

 Or swap contents of two memory words   

 These instructions allow us either to test & modify the content of a word, or to swap the contents of two 
words,  atomically    

 TestAndSet 

boolean TestAndSet( boolean *target ) { 

  boolean rv = *target; 

  *target = true; 

  return rv; 

} 

 NB characteristic: this instruction is executed atomically, so if two TestAndSet instructions are 
executed  simultaneously (on  different CPUs), they will be executed sequentially 

 TestAndSet with mutual exclusion 

do{ 

  while( TestAndSet( &lock ) ) ; 

  // critical section 

  lock = false; 

  // remainder section 

} while( true); 

 lock is initialized to false  

 Swap 

void swap( boolean *a, boolean *b ) { 

  boolean temp = *a; 

  *a = *b; 

  *b = temp; 



} 

 Swap with mutual-exclusion 

do{ 

  key = true; 

  while(key == true ) 

    swap(& lock, &key ); 

  // critical section 

  lock = false; 

  // remainder section 

} while(true); 

 lock is initialized to false  

 Bounded-waiting mutual exclusion with TestAndSet 

do{ 

  waiting[i] = true; 

  key = true; 

  while( waiting[i] && key } 

    key = TestAndSet( &lock ); 

  waiting[i] = false; 

  // critical section 

  j = (i+1)%n; 

  while(( j!=i ) && !waiting[j] ) 

    j = (j+1)%n; 

  if( j==i ) 

    lock = false; 

  else 

    waiting[j] = false; 

  // remainder section 

} while( true); 

 Common data structures are 

boolean waiting[n]; 

boolean lock; 

 Data structures initialized to false    

 To prove that the mutual-exclusion requirements is met:    

 note that Pi can enter its critical section only if either waiting[i] == false or key == false  

 key can become false only if the TestAndSet() is executed    

 first process to execute TestAndSet() will find key == false, all others must wait    



 waiting[i] can become false only if another process leaves its critical section    

 only one waiting[i] is set to false    

 To prove the Progress requirement is met: 

 The mutual exclusion arguments apply, since they let a process that is waiting to enter its critical 
section  proceed 

 To prove the Bounded waiting requirement is met: 

 When a process leaves its critical section, it scans the waiting array in the cyclic ordering (i+1, 
i+2…, n-1,  0…, i-1) and designates  the first process in this ordering that is in the entry section 
(waiting[j] == true) as  the next one to enter the critical section 

Semaphores 

 Semaphore = a synchronization tool used to control access to shared variables so that only one process 
may at  any point in time change the value of the shared variable 

 A semaphore S is an integer variable that is accessed only through two standard atomic operations: wait 
and signal 

wait(s){               

  while(s<=0) ; 

                  ;//no-op           

            s--;                   

} 

signal(s){ 

             s++; 

} 

 Modifications to the integer value of the semaphore in the wait and signal operations must be executed 
indivisibly  (atomic) 

Usage 

 Counting semaphores can allow n processes to access (e.g. a database) by initializing the semaphore to n 

 Binary semaphores (with values 0 & 1) are simpler to implement 

 N processes share a semaphore, mutex (mutual exclusion), initialized to 1 

 Each process is organized as follows: 

do { 

  wait(mutex); 

      // critical section 

  Signal(mutex); 

      // remainder section 

} while (true); 

 Example on p.235 mid 

Implementation 

 p.235 - p.238 



 Disadvantage of these mutual-exclusion solutions: they all require busy waiting (i.e. processes trying to 
enter their  critical sections must loop continuously in the entry code) 

 This wastes CPU cycles that another process might be able to use 

 This type of semaphore is also called a spinlock (because the process ‘spins’ while waiting for the lock) 

 Advantage of a spinlock: no context switch is required when a process must wait on a lock (Useful for 
short  periods)  

 To overcome the need for busy waiting, we can modify the definition of the wait and signal semaphore 
operations so  that rather than busy  waiting, the process can block itself:     

 The process is placed into a waiting queue 

 The state of the process is switched to the waiting state 

 Control is transferred the CPU scheduler 

 The CPU scheduler selects another process to execute     

 The critical aspect of semaphores is that they must be executed atomically, i.e. wait & signal operations 
can't  execute together 

 This (critical-section) problem can be solved in two ways:     

 In a uni-processor environment     

 Inhibit interrupts when the wait and signal operations execute 

 Only the current process executes, until interrupts are re-enabled and the scheduler 
regains control     

 In a multiprocessor environment     

 Inhibiting interrupts doesn't work 

 Use the hardware / software solutions described above 

Deadlocks and Starvation 

 Deadlock state = when every process in a set is waiting for an event that can be caused only by another 
process in  the set 

 Implementing a semaphore with a waiting queue may result in two processes each waiting for the other 
one to signal 

 Resource acquisition and release are the events concerned here 

 Starvation (indefinite blocking) = when processes wait indefinitely within the semaphore 

Priority Inversion 

 Priority inversion = when a high-priority process needs data currently being accessed by a lower-priority 
one 

Classic Problem of Synchronization 

Bounded-Buffer Problem 

 There is a pool of n buffers, each capable of holding one item 

 The mutex semaphore provides mutual exclusion for access to the buffer pool and is initialized to 1 

 The empty & full semaphores count the no of empty & full buffers 

 Symmetry: The producer produces full buffers for the consumer / the consumer produces empty buffers 
for the producer 

 p.240 TB 



The Readers-Writers Problem 

 p.241 TB 

 A data set is shared among a number of concurrent processes   

 Readers 

 only read the data set; they do not perform any updates 

 Writers 

 can both read and write   

 Many readers can access shared data without problems 

 Writers need exclusive use to shared objects 

 First readers-writers problem:     

 Readers don't wait, unless a writer has permission 

 Problem: writers may starve if new readers keep appearing because the readers are granted 
shared access  each time     

 Second readers-writers problem:     

 If a writer is ready, no new readers may start reading 

 Problem: readers may starve 

 Used to provide reader-writer locks on some systems 

 The mode of lock needs to be specified 

 read access 

 write access 

 Reader-writer locks most useful in following situations: 

 In applications where it is easy to identify which processes only read shared data and which 
processes only  write shared data 

 In applications that have more readers than writers. This is because reader-writer locks generally 
require more  overhead to establish than  semaphores or mutual-exclusion locks. The increased 
concurrency of allowing  multiple readers compensates for the overhead involved in setting up the 
reader-writer lock 

The Dining-Philosophers Problem 

 p.242 TB 

 There are 5 philosophers with 5 chopsticks (semaphores) 

 A philosopher is either eating (with two chopsticks) or thinking 

 A philosopher tries to grab a chopstick by executing a wait operation on that semaphore, and releases the 
chopsticks by executing the signal  operation on the appropriate semaphores 

 The shared data are: semaphore chopstick[5]; where all the elements of chopstick are initialized to 1 

 This solution guarantees that no two neighbors are eating simultaneously, but a deadlock will occur if all 5 
philosophers become hungry  simultaneously and grab their left chopstick 

 Some remedies to the deadlock problem:   

 Allow at most four philosophers to be sitting simultaneously at the table 

 Allow a philosopher to pick up chopsticks only if both are available (He must pick them up in a 
critical section) 



 Use an asymmetric solution: An odd philosopher picks up his left chopstick first, and an even one 
the right one first   

 A deadlock-free solution doesn't necessarily eliminate the possibility of starvation 

 Monitors is a solution to the dining-philosophers problem 

Monitors 

 p.244-245 TB 

 A high-level abstraction that provides a convenient and effective mechanism for process synchronization 

 Only one process may be active within the monitor at a time 

 Monitors are needed because if many programmers are using a semaphore and one programmer forgets 
to signal  after the program has left the critical section, then the entire synchronization mechanism will 
end up in a deadlock 

 Definition: A collection of procedures, variables, and data structures that are all grouped together in a 
module /  package 

Usage 

 p.245-246 TB 

 A monitor type is presents a set of programmer-defined operations that are provided to ensure mutual 
exclusion  within the monitor 

 Three distinguishing characteristics of a monitor:    

 It encapsulates its permanent variables 

 Procedures execute in mutual exclusion 

 Synchronization is provided via condition variables 

 The monitor shouldn't access any non-local variables, and local variables shouldn't be accessible from 
outside the  monitor 

 Any process may call the monitor, but only one process at any point in time may be executing inside the 
monitor 

 

Dining-Philosophers Solution Using Monitors 

 p.248 - p.249 



Implementing a Monitor Using Semaphores 

Resuming Processes within a Monitor 

Synchronization Examples 

Atomic Transactions 

System Model 

 Assures that operations happen as a single logical unit of work, in its entirety, or not at all 

 Related to field of database systems 

 Challenge is assuring atomicity despite computer system failures 

 Transaction - collection of instructions or operations that performs single logical function   

 Here we are concerned with changes to stable storage - disk 

 Transaction is series of read and write operations 

 Terminated by commit(transaction successful) or abort(transaction failed) operation 

 Aborted transaction must be rolled back to undo any changes it performed 

 To determine how the system should ensure atomicity, we need first to identify the properties of devices 
used for  storing the various data accessed by transactions 

 Volatile storage - information stored here does not survive system crashes  

 Example: main memory, cache  

 Nonvolatile storage  -Information usually survives crashes  

 Example: disk and tape  

 Stable storage - Information never lost  

 Not actually possible, so approximated via replication or RAID to devices with independent 
failure modes 

 Goal is to assure transaction atomicity where failures cause loss of information on volatile storage 

Log-Based Recovery 

 Write-ahead logging: Each log record describes a single operation of a transaction write and has these 
fields:  

 Transaction name (The unique name of the transaction) 

 Data item name (The unique name of the item written) 

 Old value (The value of the data prior to the write) 

 New value (The value that the data will have afterwards)  

 Prior to a write being executed, the log records must be written onto stable storage 

 Performance penalty: Two physical writes are required for each logical write requested, and more storage 
is needed 

 Two procedures used by the recovery algorithm:  

 undo – restores the data to the old values 

 redo – sets the data to the new values  

 The set of data updated by the transaction and their respective old and new values can be found in the log 



Checkpoints 

 When a failure occurs, we must consult the log to determine those transactions that need to be redone / 
undone 

 Drawbacks to searching the entire log:  

 The search is time-consuming 

 Redoing data modifications causes recovery to take longer  

 To reduce this overhead, the system performs checkpoints:  

 Output all log records onto stable storage 

 Output all modified data to the stable storage 

 Output a log record <checkpoint> onto stable storage  

 The presence of a <checkpoint> record in the log allows streamlined recovery, since you search for the last 
checkpoint 

Concurrent Atomic Transactions 

 Serializability = when transactions are executed serially 

 Can be maintained by executing each transaction within a critical section 

 All transactions could share a semaphore mutex, initialized to 1    

 When the transaction starts, it first executes wait 

 After the transaction commits / aborts, it executes signal    

 This scheme ensures atomicity of all concurrently executing transactions, but is still too restrictive 

 Concurrency-control algorithms to ensure serializability 

Serializability 

 Serial schedule: each transaction executes atomically 

 Example:   

 Consider two data items A and B 

 Consider Transactions T0 and T1 

 Execute T0, T1atomically 

 Execution sequence called schedule 

 Atomically executed transaction order called serial schedule 

 For N transactions, there are N! valid serial schedules   

 Schedule 1: T0 then T1 

 



 Non-serial schedule: transactions overlap execution   

 Resulting execution not necessarily incorrect   

 Consider schedule S, operations Oi, Oj   

 Conflict if access same data item, with at least one write   

 If Oi, Oj consecutive and operations of different transactions & Oi and Oj don't conflict   

 Then S' with swapped order Oj Oi equivalent to S   

 If S can become S' via swapping non conflicting operations   

 S is conflict serializable 

 

Locking Protocol 

 Ensure serializability by associating lock with each data item   

 Follow locking protocol for access control   

 Locks   

 Shared 

 It has shared-mode lock (S) on item Q, It can read Q but not write Q 

 Exclusive 

 Ti has exclusive-mode lock (X) on Q, Tican read and write Q   

 Require every transaction on item Q acquire appropriate lock 

 If lock already held, new request may have to wait   

 Similar to readers-writers algorithm 

Timestamp-Based Protocols 

 Select order among transactions in advance -timestamp-ordering 

 Transaction Ti associated with timestamp TS(Ti) before Ti starts   

 TS(Ti) < TS(Tj) if Ti entered system before Tj 

 TS can be generated from system clock or as logical counter incremented at each entry of 
transaction   

 Timestamps determine serializability order   

 If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule where It 
appears  before Tj 



 

Summary 

Chapter 7: Deadlocks 

 Objectives: 

 To develop a description of deadlocks, which prevents sets of concurrent processes from 
completing their  tasks 

 To present a number of different methods for preventing or avoiding deadlocks in a computer 
system 

System Model 

 Computer resources are partitioned into several types (e.g. memory space, CPU cycles, files, I/O devices…) 

 Each type consists of some number of identical instances (e.g. if you have two CPUs, the resource type 
CPU has  two instances) 

 If a process requests an instance of a resource type, the allocation of any instance of the type will satisfy 
the request 

 A process may utilize a resource in only this sequence:  (p.284 TB)   

 Request: 

 The process requests the resource 

 If the request cannot be granted immediately (for example, if the resource is being used by 
other  process), then the requesting process must wait it can acquire the resource 

 Use: 

 The process can operate on the resource (for example, if the resource is a printer, the 
process can  print on the printer) 

 Release: 

 The process releases the resource 

Deadlock Characterization 

 A deadlocked state occurs when two or more processes are waiting indefinitely for an event that can be 
caused only  by one of the waiting processes 

Necessary Conditions 

 A deadlock situation can arise if all these situations hold simultaneously: 

 Mutual exclusion 

 At least one resource must be held in a non-sharable mode    

 Hold and wait 

 A process must hold at least one resource and be waiting    



 No preemption 

 A resource can be released only voluntarily by a process    

 Circular wait 

 In a set of waiting processes, all are waiting for a resource held by another process in the 
set 

 All four conditions must hold for a deadlock to occur 

Resource-Allocation Graph 

 p.287 - p.289 TB 

 Deadlocks can be described more precisely in terms of a directed graph called a system resource-
allocation graph 

 It consists of the following parts: 

 A set of vertices V and a set of edges E 

 V is partitioned into two types:   

 P= {P1, P2, …, Pn}, the set consisting of all the processes in the system 

 R= {R1, R2, …, Rm}, the set consisting of all resource types in the system   

 request edge - directed edge P1 →Rj 

 From a process to a resource  

 assignment edge - directed edge Rj→Pi 

  From a resource to a process 

 

 

 

 

 

 

 

 

 



 Example of a Resource Allocation Graph: 

 

 If a resource-allocation graph doesn't have a cycle, then the system is not in a deadlock state 

 If there is a cycle, then the system may / may not be in a deadlock state 

 Resource Allocation Graph with a deadlock: 

 

 Graph with a Cycle but no deadlock: 

 

 Basic facts about Resource Allocation Graphs:   

 If graph contains no cycles ⇒ no deadlock 


