STUDENT MADE MEMO

BLG1502

MAY JUNE 2018

QUESTION 1

- 1. D
- 2. C
- 3. C
- 4. D
- 5. D
- 6. X
- 7. D
- 8. D
- 9. C
- 10. D

QUESTION 2

2.1 Phylogeny is the similarities that species share in their physical and genetic characteristics that they may share or differ in due to evolution. A phylogenetic tree is a branching diagram that is used to show evolutionary relationships between species or the phylogeny that they show.

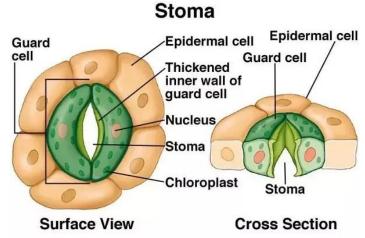
2.2

Monophyletic	Paraphyletic
Is a ground of organisms that all came from a	Is a group of organisms that come from a
common ancestor, they often share	common evolutionary ancestor but not
characteristics.	including all the descendant groups.
Includes a single common ancestor not many	Includes all the common ancestors from most
like a paraphyletic taxon.	recent to earliest,

2.3

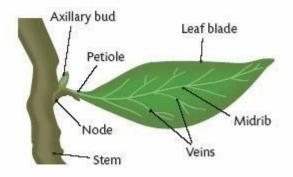
Homology	Homoplasy
Is the existence of a shared ancestry between a	Homoplasy is a character shared by a set of
pair of structures genes or taxa. It is the	species but not present in their common
product of divergent evolution when a species	ancestor.
splits into 2 or more species that exist at the	Due to convergent evolution, 2 or more species
same time. DIVERGE	become one. CONVERGE

2.4


Orthologous genes	Paralogous genes
Are genes of a different species that evolved	Are homologous genes that have evolved by
from a common ancestral gene by specification.	duplication and have similar but not identical

They normally retain the same function.	functions.
SAME FUNCTION	DIFFERENT FUNCTION

2.5 The three major branches on the tree of life are ARCHAE, EUBACTERUA, EUKARYOTES


QUESTION 3

3.1 Stomata is a small opening on the underside of a life that plays a part in photosynthesis and transpiration. The stomata's opening is where carbon dioxide is takin in from the atmosphere and oxygen is released as a waste product. The Stomata can open and close to regulate the intake and

exit of O2 and CO2.

- 3.2 Guard cells are positioned around the opening of the stomata they help to regulate the rate of transpiration by opening and closing the stomata. They are like an inflatable set of doors that can change their shape to open or close the stomata. They change their shape depending on the amount of H20 and potassium ions that are present in the cell.
- 3.3 Petiole is the stalk that joins the leaf to the stem.

QUESTION 4

Name	Function
Prop root	Root that is above ground

Buttress root	Roots that support either side of a tree they
	grow out along the trunk and into the ground.
Strangling Aerial root	They wrap around a host tree and strangle it
Storage root	Store water and nutrients
Pneumatophore	Air roots that enable water plants to obtain
	oxygen by projecting above the waters surface.

QUESTION 5

5.1 The Medulla oblongata monitors the PH of the cerebrospinal fluid that it is bathed in and will react to any change that occurs. When a lot of CO2 is in the blood it diffuses into the cerebrospinal fluid and will react with H2O and carbonic acid and form many hydrogen ions that will change the PH of the blood. So, an increase in blood CO2 will result in an increase of CO2 in the cerebrospinal fluid. A higher concentration of H+ will cause a lower PH that the medulla will react to. The sensors in the medulla and the major blood vessels react to this change, as a result the breathing rate will increase. And will stay that way until the CO2 is eliminated in exhaled air and the PH returns to a normal value.

Before the CO2 is exhaled and the blood PH has been affected due to high CO2 concentration it needs to be released by respiring cells and transported to the blood plasma where it binds to the haemoglobin in the erythrocytes and reacts with water to form H+ which the medulla would react to as explained above. The CO2 binds to the haemoglobin in the erythrocytes and the blood flows through the lungs and alveoli. Gas exchange will occur due to the partial pressure of the CO2 being a higher concentration in the blood then in the alveoli of the lungs. And because of the difference in partial pressure the CO2 will diffuse from the blood into the alveoli and the amount of CO2 in the blood decreases as the CO2 is exhaled from the body.

5.2 Homeostasis is the word given to the body carrying out various tasks in order to maintain a constant internal environment in response to environmental changes such as PH regulation, temperature, concentration of blood glucose levels, etc. The nervous and endocrine systems control homeostasis, with receptors that respond to a change in environment that would travel to alert the body through a negative feedback mechanism that would involve various organs and organ systems that would cause a response in the body in various ways to cancel out the change and maintain a constant internal environment. With hormonal, physical (such as sweating) and cellular responses. For example, the pancreases response to too much glucose in the blood, the medullas response to a change in PH in the cerebrospinal fluid or the blood vessels dilating or constricting in response to a change in temperature.

QUESTION 6

- 6.1 FSH, LH, TSH, prolactin, growth hormone, adrenocorticotropic hormone
- 6.2 testosterone, oestrogen, progesterone, androgen
- 6.3 aldosterone, adrenaline, cortisol, adrenocorticotropic hormone
- 6.4 melatonin

QUESTION 7

Monocotyledons	Dicotyledons
1 cotyledon	2 cotyledons
Vascular tissue is complexly arranged	Vascular is arranged in a ring
Veins are parallel	Veins are netlike
3 multiples of floral parts	4 or 5 multiples of floral parts
Fibrous root system	Taproot system

7.2

Specific mechanisms	Non-specific mechanism
-Humoral immune response and cellular	Fight against any type of antigen, they are non-
immune response that provide antibodies and	specific. And have a series of defence
defences cells against specific antigens.	mechanisms such as a skin barrier against
A particular antibody is created in response to a	foreign agents, mucous membranes, ciliated
specific antigen!	epithelium, inflammatory response and the
	action of the nonspecific proteins and defence
	cells (macrophages).
	Has no specific response

7.3

Cytokines	Interferons
An inflammatory response is activated when a	Innate defence by interfering with viral
macrophage discharges cytokine, signalling	infections. The virus infected body cells
other molecules to recruit neutrophils to the	produce interferon that tell other cells in the
site of the injury or infection. The cytokines are	body to produce a substance that inhibits viral
cells that carry signals for the body to perform	replication. They limit the cell to cell spread of
various Immunol responses.	the virus in the body this helps to control viral
	infections.
	Part of the complement system

7.4 The infection fighting complement system has 30 proteins in the blood plasma.

The first function of the complement system is when these proteins circulate in an inactive state and are activated by substances on the surface of many pathogens. Activation results in a cascade of biochemical reactions that can lead to bursting of the invading cell.

The complement system also functions in the inflammatory response as well as adaptive defences.

QUESTION 8

8.1 (not in study guide)Chondrichthyes are sharksOsteichthyes are bony fish

8.2

Closed Circulatory system	Open circulatory system

The closed circulatory system has **blood** that is confined to **blood vessels** and **a heart** is used to pump this blood around the body to transport O2 and nutrients to the organs and waste product/ CO2 away from the organs to the kidneys and lungs to exit the body. The blood vessels are different sizes and have different wall thicknesses, the blood once pumped by the heart does not full body cavities.

The blood is contained at all times within the blood vessels.

Humans (common in veterbrates)

Open circulatory system is when the organisms is bathed in a haemolymph fluid that is not confined to any organs. The entire internal cavity of the body has this haemolymph that flows freely through the body. The haemolymph is pumped into a body cavity called the haemocoel where the blood diffuses back to the circulatory system between cells. The haemolymph is pumped by a heart into the body cavity and bathes organs in the fluid.

Spiders (common in arthropods)