Exam scope ecs 2601

		May/June 2018 Suggested Solutions							
		Section A							
1.1		Market demand curve = $D_1 + D_2 + D_3 + \cdots$							
		Therefore Jones' aggregate family demand for sports bag: $AD = (100 - 2P) + (5 - 5P) + (300) + (150 - \frac{1}{2}P) + (0)$							
		AD = 100 - 2P + 5 - 5P + 300 + 150 - 0.5P + 0							
		AD = 555 - 7.5P							
1.2		Individual demand curvemarket demand curveCurve relating the quantity of a good that a single consumer will buy to its price.market demand curveCurve relating the quantity of a good that all consumers in a market will buy to its price.							
		The market demand curve flatter as compared to individual demand curves, therefore market demand curve is more elastic as compared to individual demand curve.							
		Refer to figure: 4.10 in textbook in chapter 4							
1.3		Movement along the demand curve: is as a result of a change in price of the commodity and is referred to as change in quantity demanded							
		Shift of the demand curve: is as a result of change in other determinants of demand such as income and price of other commodities namely substitues or complements. The shift of demand curve is usually referred to as change in demand							
1.4		Consider two goods, X and Y The price of product X increases from R6 to R8 per unit As a result, the quantity demanded of product Y decreases from 200 to 190 units							
	1.4.1	Arc elasticity general formula = $\frac{\Delta quantity}{\Delta determinant} \times \frac{Average \ determinant}{Average \ quantity}$							
		Arc cross – price elasticity = $\frac{190-200}{8-6} \times \frac{[8+6]\div 2}{[190+200]\div 2} = -0.18 (3 d. p)$							
	1.4.2	Complement goods							
2.1		21 The Department of Agriculture is interested in analysing the domestic market for maize. The staff economists of the Department of Agriculture estimate the following equations for the demand and supply curves.							
		$Q_d = 1600 - 125P$ $Q_s = 400 + 165P$							
	2.1.1	1600 - 125P = 400 + 165P							
		1600 - 400 = 165P + 125P							

		1200 = 290P						
		$\frac{1200}{290} = P$						
		290						
		P = R4.14						
	2.1.2	Substitute	price into any of the tw	o equations:				
		$Q_d = 1600$	0 - 125(4.14) = 1083 u t	ıits				
		$Q_s = 400 -$	+ 165(4.14) = 1083 uni	ts				
2.2		Consider the equilibrium pr	market for wheat Using the rice and quantity would change	standard rule of demand and in each of the following situa	d supply, explain how the ations, ceteris paribus			
	2.2.1		urve for wheat will shift quantity will decrease s		ards, equilibrium			
	2.2.2		rve for wheat will shift to ase and equilibrium qua		, equilibrium price			
	2.2.3		Demand curve for wheat will shift to the right and upwards, equilibrium price will increase and equilibrium quantity will increase.					
	2.2.4	Demand curve for wheat will shift to the right and upwards, equilibrium price will increase and equilibrium quantity will increase.						
	2.2.5	Supply curve for wheat will shift to the left and upwards and demand curve will shift to the right. Equilibrium price will increase and equilibrium quantity will be uncertain or indeterminant.						
3.1		Utility Is a numerical score representing the satisfaction that a consumer gets from a given market basket.						
3.2		Marginal utility (MU) Additional satisfaction obtained from consuming one additional unit of a good.						
3.3		Satisfactio	n is maximized (given t	he budget constraint)	at the point where:			
		$MRS = \frac{P_X}{P_Y}$ or Indiffrence curve is tanget to the budget line						
3.4		Bundle	MU of peanut buttrer	MU of Tuna	MRS			
		Α	0.25	2.41	0.1037			
		В	0.31	1.50	0.2067			
		C	0.42	0.84	0.5			
		D	0.66	0.33	2			
		Odwa is maximising satisfaction at: $\frac{MU_x}{MU_y} = \frac{P_x}{P_y}$, That is $\frac{0.42}{0.84} = \frac{1}{2} = 0.5$.						

		That is on bundle C, MRS = $\frac{MU_x}{MU_y} = \frac{P_x}{P_y} = \frac{1}{2} = 0.5$						
		y -y -						
4.1								
	4.1.1	Profit maximisation condition:						
		MR = MC						
		200 - 2Q = 20						
		2Q = 200 - 20 Q = 90						
	4.1.2	Profit maximisation condition:						
		90 = 250 - 4P						
		4P = 250 - 90						
		P = R40						
	4.1.3	Total profit = Total revenue minus Total cost						
		1 at find total non-much into mating manainal non-much						
		1st find total revenue curve by integrating marginal revenue						
		$TR = P \times Q = R40 \times 90 = R3600$						
		$TC = 10 \times 90 = R900$						
		$Total \ profit = R3600 - R900 = R2700$						
5.1		Nash Equilibrium Nash equilibrium is a set of strategies (or actions) such that each player is						
		doing the best it can given the actions of its opponents. Because each player has no incentive to deviate from its Nash strategy, the strategies are stable.						
		Dominant strategy						
		Is a strategy that is optimal no matter what an opponent does.						
		Dominant Strategies: I'm doing the best I can no matter what you do.						
		You're doing the best you can <i>no matter what I do</i>						
		Nash Equilibrium:I'm doing the best I can given what you are doing.You're doing the best you can given what I am						
		doing.						
	5.2.1	The nash equilibrium occurs at the bottom right C,C position.						
		Firm Y has a diminant strategy to always target the civilian research market.						
		Firm X does not have a dominant startegy.						
		However, Firm X's best response fo Firm Y's dominant strategy is to also the civilian market.						
		In this postion, each firm does its best given what the other firm does.						
5.3		Cournot equilibrium It is a Nash equilibrium in which each firm correctly assumes how much its competitor will produce and sets its own production level accordingly.						

		Stackelberg model It is an oligopoly model in which one firm sets its output before other firms do, First Mover Advantage Section B
1.	3	800 - 80P = -200 + 120P 800 + 200 = 120P + 80P 1000 = 200P P = R5 $Q_d = 800 - 80(R5) = 400$ Or $Q_s = -200 + 120(R5) = 400$
2.	4	If commodities are complements, increase in the price of one commodity will result in a left shift of the demand curve or if price of one commodity increase the demand curve of another will shift to the right.
3.	4	
4.	3	
5.	3	2000-2400 [45+40]÷2
6.	4	$\frac{2000-2400}{45-40} \times \frac{[45+40]\div 2}{[2000+2400]\div 2} = -1.55$
7.	2	Repeated in 2017 Oct/Nov section B question 3 Given $Q_s = -300 + 15P$, $P_0 = R30$ and $P_1 = R60$ 1^{st} : Calculate quantities for each price by substituting given prices into Q_s equation. $Q_0 = -300 + 15(30) = 150$ units and $Q_1 = -300 + 15(60) = 600$ units Arc elasticity general formula = $\frac{\Delta quantity}{\Delta determinant} \times \frac{Average determinant}{Average quantity}$ Arc elasticity general formula = $\frac{600-150}{60-30} \times \frac{[60+30]+2}{[600+150]+2} = 1.8$ where: $600 - 150 = 450$, $60 - 30 = 30$, $[60 + 30] \div 2 = 45$ & $[600 + 150] \div 2 = 375$ Therefore: $\frac{450}{30} \times \frac{45}{375} = 1.8$ Thank you
8.	4	
9.	1	
10.	2	
11.	2	
12.	4	
13.	1	
14.	4	

45	0	Demosted estimate 2017 musclism 0 section D
15.	2	Repeated oct/nov 2017 question 9 section B
10	4	$Q_a = Q_b$, therefore R160 = R1(32units) + R4(32units)
16.	4	Repeated oct/nov 2017 question 13 section B
		$FC = R20 \times 6 = R120$, formula refer to question 1.2 section A
47		$AFC = 120 \div 4 = 30$
17.	2	Repeated as well
18.	2	Repeated as well
19.	4	
20.	3	Assignment 02 sem 02 2018
21.	3	
22.	4	
23.	1	
24.	1	
25.	2	
26.	2	
27.	1	
28.	3	
29.	2	
30.	1	
		Oct/Nov 2018
		Suggested Solutions
1.1		QUESTION 1 (25 marks)
		1 1 The average monthly income of households in a certain town increases from R2 000 to R2 500
		As a result, the quantity demanded of white bread increases from 1 000 to 1 100 units per day, the
		quantity demanded of brown bread decreases from 2 000 to 1 900 units per day and the quantity demanded of KFC (friend chicken) increases from 300 to 500 pieces per day
		$Y_0 = R2000 \& Y_1 = 2500$
		$D_{WB0} = 1000 \& D_{WB1} = 1100$
		$D_{BB0} = 2000 \& D_{BB1} = 1900$
		$D_{KFC0} = 300 \& D_{KFC1} = 500$
		A quantity Anong a a datarmin ant
		Arc elasticity general formula = $\frac{\Delta quantity}{\Delta quantity} \times \frac{Average determinant}{\Delta quantity}$
		Arc elasticity general formula = $\frac{\Delta quantity}{\Delta determinant} \times \frac{Average determinant}{Average quantity}$
	1.1.1	1100-1000 [2500+2000]÷2
	1.1.1	a) Arc elasticity of $D_{WB} = \frac{1100-1000}{2500-2000} \times \frac{[2500+2000]\div 2}{[1100+1000]\div 2} = 0.429 \ (3 \ d. p)$
		b) Arc elasticity of $D_{BB} = \frac{1900-2000}{2500-2000} \times \frac{[2500+2000]\div 2}{[1900+2000]\div 2} = -0.231 \ (3 \ d. p)$
		2500-2000 [1900+2000]÷2
		500-300 [2500+2000]÷2
		c) Arc elasticity of $D_{KFC} = \frac{500-300}{2500-2000} \times \frac{[2500+2000]\div 2}{[500+300]\div 2} = 2.25 (3 d.p)$
	1.1.2	Normal Goods (YED > 0)Inferior Goods (YED < 0)
		White Bread Brown Bread
		KFC
		Refer to table on page 4 of Study Guide
	4.4.5	
	1.1.3	a) White Bread is a necessity because its YED lies between 0 and 1
		b) Prown Prood is not than no constitution by the second since $VED < 0$
		b) Brown Bread is neither necessity or luxury good since $YED < 0$

		c) KFC is a Luxury good because its YED > 1
1.2		20 labourers @ R60 per labourer
		AP for 20 labourers = 3 units per day
		$MP for 20^{th} labourer = 1 unit per day$
		FC = R360
		 Formulas: Average Total Cost (ATC) = Total Cost / Q (Output is quantity produced or 'Q') Average Variable Cost (AVC) = Total Variable Cost / Q Average Fixed Cost (AFC) = ATC - AVC Total Cost (TC) = (AVC + AFC) X Output (Which is Q) Total Variable Cost (TVC) = AVC X Output Total Fixed Cost (TFC) = TC - TVC Marginal Cost (MC) = Change in Total Costs / Change in Output Marginal Product (MP) = Change in Total Product / Change in Variable Factor Marginal Revenue (MR) = Change in Total Revenue / Change in Q Average Product (AP) = TP / Variable Factor Total Product (TP) = AP X Variable Factor Total Product (TP) = AP X Variable Factor Economic Profit = TR - TC > 0 A Loss = TR - TC < 0 Break Even Point = AR = ATC Profit Maximizing Condition = MR = MC Explicit Costs = Payments to non-owners of the firm for the resources they supply.
	1.2.1	$Total Product = AP \times variable factor$
		Total Product or Output or $Q = 3 \times 20 = 60$ units
	1.2.2	Total Cost = TFC + TVC = TFC + AVC(Q) = 360 + 60(60) = R3960
	1.2.3	$ATC = \frac{3960}{60} = R66$
	1.2.4	<i>MC</i> of the 60 th unit of output = $R60 \times \frac{1}{1} = R60$, were $w = R60, \Delta L = 20 - 19 = 1 \& \Delta q = MP$ for 20^{th} labourer = 1 unit per day
		Borrowing from the slides: $MC = \Delta VC / \Delta q = w \Delta L / \Delta q$ And
		$MC = w/MP_L$

	1.2.5	AVC	$=\frac{ATC}{Q}=\frac{360}{60}$	$\frac{00}{0} = R60$)							
2.1												
	2.1.1	Monopoly: Market with only one seller and many buyers										
	2.1.2	-	Oligopoly: a market in which only a few firms compete with one another, and entry by new firms is impeded.									
	2.1.3		Collusion: is collective action by buyers or sellers so as to influence the market (acquire monopoly power).									
	2.1.4		dependenc her firm.	e betwe	en firms	s: occurs wh	nen actions	of one firm	affects			
	2.1.5		•	•		et in which sion of a diff		•	each			
2.2		Q	Total Revenue (TR)	Total Cost (TC)	Total Profit	Average Revenue (AR)	Average Total Cost (ATC)	Marginal Revenue (MR)	Marginal Cost (MC)			
		0	0	50	-50	-	-					
								300	250			
		1	300	300	0	300	300					
								275	225			
		2	575	525	50	287.5	262.5	050				
			005	705	400	075	044.07	250	200			
		3	825	725	100	275	241.67	450	475			
		1	1050	000	150	262.5	225	150	175			
		4	1050	900	150	202.5	220	200	250			
		5	1250	1050	200	250	210	200	230			
		5	1230	1030	200	230	210	175	175			
		6	1425	1225	200	237.5	204.17	170	170			
		-						150	200			
		7	1575	1425	150	225	203.57					
								125	225			
		8	1700	1650	50	212.5	206.25					
								100	250			
		9	1800	1900	-100	200	211.11					
		10	1875	2175	-300	187.5	217.5	75	275			
		TC =	TR - TR									
3.1		cons	umption of p	oizza slie	ces durir		J-can-eat lui	nch at the u	is derives fro niversity's caf			
		Nu	mber of piz Eaten		S	Total uti	lity	Margir	al utility			

		0	0				
		0	0	40			
		1	40				
				32			
		2	72				
				27			
		3	99				
		-	1.2.2	24			
		4	123	40			
			1.4.1	18			
		5	141	8			
		6	149	0			
		0	145	0			
		7	149	Ŭ			
			110	7			
		8	142				
			1				
	3.1.1	Thomas' addititonal utility	from the consumtion of a fo	ourth pizza slice is 24			
	3.1.2	Thomas' addititonal utility	from the consumtion of a fo	ourth pizza slice is 8			
	3.1.3		decreasing rate from first p				
		-	slice there is no increase	and from seventh to			
	244	eighth slice total utility starts decline.					
	3.1.4	Marginal utility follows the law of diminishing marginal utility as Thomas eats more and more pizza					
		Explanation:					
		Diminishing marginal utility:					
		Principle that as more of a good is consumed, the consumption of additional					
		amounts will yield smaller additions to utility.					
F 4		The no question 4					
5.1		Cournot model	firmo produco o homorare	aug good ooch firm			
			firms produce a homogene opetitors as fixed, and all fir				
		simultaneously how much	•				
		Stackelberg model					
		-	one firm sets its output befo	ore other firms do.			
		· · · ·					
5.2							
		Firm A and B would cho	-				
		- It is the dominant strateg					
		- If firm B cuts and Firm A	•				
		- It makes sense for firm A	n A cuts Firm A would get 2				
		- Same logic applies to firr					
		Section B					
Qn.	Ans.	Explanation					
	•						

1.	3	A change in the price of the product will result in a movement along the same market demand curve.							
2.	3	(Perfect	compleme	nts are two	-		MRS is zero	o or infinite;	
3.	2	(Perfect complements are two goods for which the MRS is zero or infinite; the indifference curves are shaped as right angles) Given $Q_s = -300 + 15P$, $P_0 = R30$ and $P_1 = R60$ 1^{st} : Calculate quantities for each price by substituting given prices into Q_s equation. $Q_0 = -300 + 15(30) = 150$ units and $Q_1 = -300 + 15(60) = 600$ units Arc elasticity general formula = $\frac{\Delta quantity}{\Delta determinant} \times \frac{Average \ determinant}{Average \ quantity}$ Arc elasticity general formula = $\frac{600-150}{60-30} \times \frac{[60+30]+2}{[600+150]+2} = 1.8$ where: $600 - 150 = 450$, $60 - 30 = 30$, $[60 + 30] \div 2 = 45$ & $[600 + 150] \div 2 = 375$ Therefore: $\frac{450}{30} \times \frac{45}{375} = 1.8$ Thank you							
4.	1	<u>change in</u> change in perfect	substitute	ıd it is a sti				<i>bstitutes</i> . of substitution	
5.	1	Refer to	figure 4.6	in textbook	or slides				
6.	3	Units	Total utility From cookies		Weighted Marginal utility	Total Utility From Rusks	Marginal Utility From Rusks	Weighted Marginal Utility	
		0	0	10	10 _ 10	0	14	1414	
					$\frac{10}{R1} = 10$		ļ	$\frac{14}{R1} = 14$	
		1	10	0	0	14	10	10	
				8	$\frac{8}{D1} = 8$		10	$\frac{10}{R1} = 10$	
		2	18		KI	24			
				6	$\frac{6}{R1} = 6$		8	$\frac{8}{R_1} = 8$	
		3	24			32		11 I	
				4	$\frac{4}{R1} = 4$		6	$\frac{6}{R1} = 6$	
		4	28			38			
					tcion when ¹ / ₁ following equ				

	1	$D1(1_{aunit}) + D1(2_{aunit_0}) \neq D^{r}$
		$R1(1unit) + R1(2units) \neq R5$
		R1(2unit) + R1(3units) = 5
		$R1(3unit) + R1(4units) \neq 5$
7.	2	The consumer could gain more utility by consuming more A and less B, as stated in 2.
		Utility is maximised when the marginal utility per rand is equal between good A and B.
		For good $A, \frac{MU_A}{P_A} = \frac{100}{5} = 20$
		For good B, $\frac{MU_B}{P_B} = \frac{160}{10} = 16$
		Since MU_A/P_A is greater than MU_B/P_B , utility can be increased by consuming more of good A and less of good B.
8.	2	Isoquant Refer to figure 6.3 in unit 6 Curve showing all possible combinations of inputs that yield the same output.
		Marginal rate of technical substitution (MRTS) Amount by which the quantity of one input can be reduced when one extra unit of another input is used, so that output remains constant.
9.	2	$Q_a = Q_b$, therefore R160 = R1(32units) + R4(32units)
10.	3	Refer question 4 section B
11.	3	OCDQ
12.	3	Profit maximization condition: <i>MR</i> = <i>MC</i>
13.	4	$FC = R20 \times 6 = R120$, formula refer to question 1.2 section A $AFC = 120 \div 4 = 30$
14.	3	
15.	2	Refer to 8.6
16.	4	
17.	2	350-250=100
18.	1	$\frac{27000}{15000} = 1.8$
19.	2	
20.	1	
21.	3	One of the characteristics of perfect market
22.	2	Raw materials and labour are variable costs = $R2000(10 \times R700) = R9000$ Capital and land i.e rent are fixed cost = R2 250
23.	1	
24.	3	
25.	3	$\frac{MP_L}{MP_K} = \frac{w}{r}$
		$\frac{15}{45} = \frac{300}{900}$
26.	1	When a market is in equilibrium, firms are doing the best they can and have no reason to change their price or output.
		Nash Equilibrium Equilibrium in oligopoly markets means that each firm will want to do the best it can, given what its competitors are doing, and these competitors will do the best they can, given what that firm is doing.

		Nash equilibrium Set of strategies or actions in which each firm does the best it can given its competitors' actions.
27.	1	R2 805 000 – R2 800 000
28.	4	Cournot model Oligopoly model in which firms produce a homogeneous good, each firm treats the output of its competitors as fixed, and all firms decide simultaneously how much to produce.
29.	3	Stackelberg model Oligopoly model in which one firm sets its output before other firms do. Suppose Firm 1 sets its output first and then Firm 2, after observing Firm 1's output, makes its output decision. In setting output, Firm 1 must therefore consider how Firm 2 will react.
30.	1	