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Abstract— In previous work (El-bakry, H. M., Mastorakis N., (2009)), a fast systematic method for 
minimization of the Boolean functions was presented. Such method is a simple because there is no need 
for any visual representation such as Karnough map or arrangement technique such as Tabulation 
method. Furthermore, it is suitable for boolean function with large number of variables (more than 4 
variable). Moreover, it is very simple to understand and use. In this paper, the simplified functions are 
implemented with minimum amount of components. A powerful solution for realization of more complex 
functions is given. This is done by using modular neural nets (MNNs) that divide the input space into 
several homogenous regions. Such approach is applied to implement XOR functions, 16 logic function 
on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear 
reduction in the order of computations and hardware requirements is achieved. 
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1. INTRODUCTION 

The simplification of Boolean functions is mainly used to 
reduce the number of gates in a logic circuit. Less number of 
gates means less power consumption, sometimes the circuit 
works faster and also when number of gates is reduced, cost 
also comes down (Marcovitz, A. B., (2007), Mano, M. M., 
and Ciletti, M. D., (2003) & Mano, M. M., (1984)). There are 
many ways to simplify a logic design, such as algebraic 
simplification, Karnough maps, Tabulation Method and  
Diagrammatic technique using 'Venn-like diagram' some of 
them are discussed in detail in this introduction (Marcovitz, 
A. B., (2005), Arntson, A. E., (2005), Mano, M. M., Ciletti, 
M. D., (2003), & Mano, M. M., (1984)).  
In this paper, a new fast systematic method for minimization 
of the Boolean function is introduced. Such method is a very 
simple because there is no need to any visual representation 
such as Karnough map or arrangement technique such as 
Tabulation method and very easy for programming. This 
method is very suitable for high variables (more than 4 
variable) boolean function, and very simple for students 
(Mano, M. M., and Ciletti, M. D., (2003) & Mano, M. M., 
(1984)). Furthermore, neural networks are used to implement 
Boolean functions because they can recognize patterns even 
with noise, distortion or deformation in shape. This is very 
important especially in communication applications.   

1.1 Boolean Functions
A Boolean function is an expression consisting of binary 

variable operators OR, AND, the operator NOT, parentheses, 
and an equal sign. For a given value of these variables, the 
function can be either 0 or 1. Consider, for example, the 
following Boolean function (Atwan, A. (2006), Marcovitz, A. 
B., (2007) & Mano, M. M., Ciletti, M. D., (2003)):    
F=X+Y'Z , F equal 1, when    X=1    or     Y=0, while Z=1. 
1.  Rules of Boolean Algebra: 
The standard rules of Boolean algebra which reproduce for 
simplicity are introduced in table 1: 

   Table 1: Rules of Boolean algebra 

X + X = X X  . X = X 
X + 0 = X X  . 1  = X 
X + 1 = 1 X  . 0  =  0 
X + X' = 1 X .  X' =  0 

2. Canonical and Standard Form (Minterms) 
A binary variable may come into view either in its normal 
form, X, or in its complement form, X'. Now consider two 
binary variables X and Y combined with AND operations. 
Since each variable may appear in each form, there are four 
possible combinations, namely, XY, XY', X'Y, and X'Y'. Each 
of these four terms is called a Minterm or a standard product. 
In a similar way, N variables can be combined to form 2n

Minterms. The 2n different Minterms may be determined by a 
method similar to the one shown in Table 1 which shows the 
case of 3 variables (Marcovitz, A. B., (2007), Arntson, A. E., 
(2005), Vahid, F., (2006) & Hayes, J. P. (1993)). 

Table 2. Combination of Minterms for 3 variables 
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Decimal 
 Form X Y Z Term Designatio

n 
0 0 0 0 X'Y'Z' m0 
1 0 0 1 X'Y'Z m1 
2 0 1 0 X'YZ' m2 
3 0 1 1 X'YZ m3 
4 1 0 0 XY'Z' m4 
5 1 0 1 XY'Z m5 
6 1 1 0 XYZ' m6 
7 1 1 1 XYZ m7 

A Boolean function may be expressed algebraically from a 
given truth table  by forming  a minterm  for each 
combination of the variable  which produces  a  1 in the 
function and  then taking the OR  of all those terms. For 
example, the function F1 in Table 2 is determined by 
expressing the combination 001, 100, and 111 as X'Y'Z, 
XY'Z', and XYZ. Each one of these minterms results in the 
expression, so F1 can be expressed as: 

F1 = xyz + xyz +xyz = m1+m4+m7 
It may be more suitable to express the boolean function in the 
following short notation:  F1 (x,y,z)  = ∑ ( 1,4,7 ) 

Table 3. Representation of F1 

X Y Z F1

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

1.2 Traditional Methods for Simplification of Boolean 
Functions   
There are many Traditional Methods to simplify a Boolean 
Functions, such as Algebraic Simplification, Karnough Maps 
and Tabulation Method. This part discusses the frequently 
used method such as Karnough Map and Tabulation Method. 

1.  Map Method (Karnough Map) 

Karnough Map is a visual representation diagram of all 
possible ways a function may be expressed. Map method is 
introduced by Veich and slightly modified by Karnough .A 
K-map consists of a grid of squares, each square representing 
one canonical minterm combination of the variables or their 
inverse. The map is arranged so that squares representing 
minterms which differ by only one variable are adjacent both 
vertically and horizontally. Therefore XY'Z' would be 
adjacent to X'Y'Z' and would also adjacent to XY'Z and XYZ' 
(Marcovitz, A. B., (2007), Hayes, J. P. (1993), Arntson, A. 
E., (2005), & Mano, M. M., (1984)).  Example : Simplify the 
boolean function: 

F=W'X'Y'Z + W'X'YZ + W'XY'Z + W'XYZ + WXY'Z'+ 
WX'Y'Z'  or  F(X,Y,Z,W) = ∑ (1,3,5,7,8,12) 

Solution: 

YZ 

 00 01 11 10 

00  1 1  

01  1 1  

11 1    

W
X

 

10 1    

               Fig. 1. Karnough Map 

F = W'Z + WY'Z' 

2. Tabulation  Method (QUINE AND MC CLUSKEY ) 
The Map method of simplification is convenient as long as 
the number of variable is suitable number. The excessive 
number of squares prevents a reasonable selection of adjacent 
squares .The tabulation methods overcomes this difficulty. It 
is a specific step by step procedure that is guarantied to 
produce a simplified standard -form expression for the 
function. the tabular method of  simplification consists of  
two parts. The first is to find by an exhaustive search of all 
the term that are candidates for inclusion in the simplified 
function. These terms are called Prime-Implicants .The 
second operation is to choose among the prime-Implicants 
those that give an expression  with the least number of literals 
(Mano, M. M., (1984), Floyd, T. L., (2006), Hayes, J. P. 
(1993), Biswas, N. N., (1984) & Dueck, R., (2004)).
Example: Simplify the following Boolean function by using 
the tabulation methods: F(W,X,Y,Z) = 
∑(0,1,2,8,10,11,14,15) 

SOLUTON: 
Table 4. The Prime Implicants 

a B c 
 wxyz   wxyz   wxyz  
0 0000 

↑

 0,1  000-  0,2,8,10 -0-0  

   0,2 00-0 
↑

 0,8,2,10 -0-0  

1 0001 
↑

 0,8 -000 
↑

    

2 0010 
↑

    10,11,14,15 1-1-  

8 1000 
↑

 2,10 -010 
↑

 10,14,11,15 1-1-  

   8,10 10-0 
↑

    

10 1010 
↑

       

   10,11 101- 
↑

    

11 1011 
↑

 10,14 1-10 
↑

    

14 1110 
↑

       

   11,15 1-11 
↑

    

15 1111 
↑

 14,15 111- 
↑
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2. A NEW METHOD FOR SIMPLIFICATION OF 
BOOLEAN FUNCTIONS 

Starting point is offering the main definitions and
terminology to be used throughout this method.  

• The number of Minterms equals 2n where n is the 
number of variables. 

• The maximum Minterm to be obtained equals 2 n -1.  
• The 1's complement of any binary number turns 0  

to  1 and  vise versa , for instance  1's complement f  
110101 equals   001010 . 

Definition 1: 
The combination of two Minterms is called "double 
minimization ".The smaller Minterm  is called   The base   
and The other is called  The follower. 

Definition 2: 
The combination  of  four Minterms is called  " quadruple 
minimization " in which the smaller two Minterms  are called 
the base and the other two Minterms  are the followers  . 

Theorem 1: 
If  X  is the number which  represent any Minterm of Boolean 
function and , Y  is the binary number which represent  the 
maximum Minterm then  The  1's complement of   X   equal  
Y – X. 
Proof : 

• 1's complement of  X = 2 n -1-X  where  n  equal  the 
number of digits of  X  which  represent the number
of variables .   

• The maximum Minterm  Y= 2 n - 1 . 
• From  1  and 2  , the 1,s  complement of  X  is Y- X. 

2.1 The Method for generating The Prime Implicants Terms 
Procedure : 
1. Minterms which are included in the function are put in 
order from the  smaller to bigger in a column way. 
2. Every Minterm included in the function is subtracted from 
the maximum Minterm whether it (maximum Minterm) is
included in the function or not (For instance the maximum 
Minterm of a function include 3 variables equals 7 which 
resulted from 23-1). 
3. The result of step 2 should be segmented into its initial 
values of digits but in a decimal form as shown in table 4. 

Table 5. Initial values of digits in a decimal form 

The maximum minterm(MAX) for 3 variable 
is 23-1=7 

Minterms 
 (Base) 

(MAX- 
Minterm) 

Initial  
Value 

SET 

0 7 (1) 
(2) 
(4) 

0'set 

1 6 (2) 
(4) 

1'set 

2 5 (1) 
(4) 

2'set 

3 4 (4) 3'set 
4 3 (1) 

(2) 
4'set 

5 2 (2) 5'set 
6 1 (1) 6'set 
7 0 - - 

♦ The minterm 3 is subtracted from the maximum minterm 
7 to result in 4 that could not be divided. 

♦ The minterm 4 is subtracted from 7 to result 3 that could 
be divided into 1 and 2. 
1. Each minterm  X  can be combined  with  each 

minterm Y when  Y equal  X  plus  the numbers 
resulted from the pervious division . 
- Minterms  3  combined  with minterm  7 which  

result from  3+4  to form  a new term 3,7(4) that 
becomes one variable less than the two 
combined minterms . 

- The number between brackets is called 
"reference" that determine the position of the 
omitted variables. 

- at the same way; minterm  4 combined with 
minterm  5  which result from  4+1 to from  the 
term 4,5(1). and minterm 4 also combined with 
minterm 6  to form  the term 4,6(2)  . 

2. The probabilities of minimization of the minterms  
included in the function are taken. This will lead to 
the probabilities of the double minimization. 

Example: 

Determine the probabilities of the double minimization of the 
following function: 

F(X,Y,Z) = ∑(1,2,3,4,5) 

Solution: 

Table 6. The maximum minterm for 3 variable is 23-1=7 
Minterms 

(Base) 
(MAX- 

Minterm) 
Initial 
Value 

SET 

1 6 (2)1,3 
(4)1,5 

1'set 

2 5 (1)2,3 
(4)- 

2'set 

3 4 (4)- 3'set 

4 3 (1)4,5 
(2)- 

4'set 

5 2 (2)- 5'set 

Notice that the name of set is the name of base. 

Table 7. The probabilities of double minimization

TERM X Y Z Name 
(2)1,3 0 - 1 X'Z 

(4)1,5 - 0 1 Y'Z 

(1)2,3 0 1 - X'Y 

(1)4,5 1 0 - XY' 
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♦ Quadruple Minimization 
If (a)k,L is a double minimization term whose its  base set is 
k and the follower set is L, to get the quadruple minimization 
look at the two sets  K, L if there are one term in each set 
equals in reference then its Minterm can be combined with 
the two minterm K, L to give quadruple minimization. 
Example: (1)0,1  the base set is "0" set  and the follower set  
is "1"set are observed and compared . If there are terms equal 
in the reference included minterms will be taken. 
This means that term (1)1,0 is combined with two minterms  
2&3 because of the equality  of the reference  (2)  in two 
terms  (2)0,2  &(2)1,3  to result the quadruple term  
(1,2)0,1,2,3  at the same way , the term  (1)1,0 is combined  
with two minterms  4 and 5  because  of the equality  of  the 
reference (4)  in two minterms (4)1,4  & (4)1,5 to result  a 
quadruple  term (1,4)0,1,4,5. 

Table 8. 
"0" set (1)0,1 

(2)0,2 
(4)0,4 

"1"set (2)1,3 
(4)1,5 

"2"set (1)2,3 
(4)2,6 

But for  the quadruple minimization for the  term  (2) 0,2   in 
set "0", The term (1)0,1   neglected  because   it is before the  
term (2)0,2 in the base set "0". the  term  (2) 0,2   is combined 
with the two minterms 6&4 because  of the equality of the 
reference  (4)  in the two minterms (4)2,6 &(4)0,4.

Table 9. 

Rules

1. The base which contain one term is neglected during the higher 
minimization. 
2. All the minimization higher than the quadruple minimization for 
instance octal minimization is applied as the quadruple 
minimization. 
3. It is taken in the consideration that the minterms or terms which 
are a part of higher minimization are neglected in the final result 
(The quadruple minimization for instance is higher than double 
minimization). 

Example: 

F ( X,Y,Z ) = (0,1,2,3,4,5 ) 

Solution: 
Table 10. The maximum minterm for 3 variable is 23-1=7 

Example: 

F ( X,Y,Z,W  ) = (1,2,3,5,7,10,11,15 ) 

Solution: 

Table 11. The maximum minterm for 4 variable is 24-1=15 
Minterms 

(Base) 
(Max-

Minterm) 
Double 

minimization 
Quadruple 

minimization 
SET 

1 14 (2)1,3 
(4)1,5 
(8)- 

(2,4)1,3,5,7 1'set 

2 13 (1)2,3 
(4)- 

(8)2,10 

(1,8)2,3,10,
11 

2'set 

3 12 (4)3,7 
(8)3,11 

(4,8)3,7,11,
15 

3'set 

5 10 (2)5,7 
(8)- 

 5'set 

7 8 (8)7,15   

10 5 (1)10,11 
(4)- 

  

11 4 (4)11,15   
15 0 -   

3. IMPLEMENTATION OF BOOLEAN FUNCTION BY 
USING MNNs

MNNs present a new trend in neural network architecture 
design. Motivated by the highly-modular biological network, 
artificial neural net designers aim to build architectures which 
are more scalable and less subjected to interference than the 
traditional non-modular neural nets (J, Murre, (1992)).  
There are now a wide variety of MNN designs for 
classification. Non-modular classifiers tend to introduce high 
internal interference because of the strong coupling among 
their hidden layer weights (R. Jacobs, M. Jordan, A. Barto, 
(1991)). As a result of this, slow learning or over fitting can 
be done during the learning process. Sometime, the network 
could not be learned for complex tasks.  Such tasks tend to 
introduce a wide range of overlap which, in turn, causes a 
wide range of deviations from efficient learning in the 

"0" set (1)0,1 
(2)0,2 
(4)0,4 

"2"set (1)2,3 
(4)2,6 

Minterms 
(Base) 

(Max- 
Minterm) 

Double 
minimization 

Quadruple 
minimization 

SET 

0 7 (1)0,1 
(2)0,2 
(4)0,4 

(1,2)0,1,2,3 
(1,4)0,1,4,5 

0'set 

1 6 (2)1,3 
(4)1,5 

 1'set 

2 5 (1)2,3 
(4)- 

 2'set 

3 4 (4)-  3'set 

4 3 (1)4,5 
(2)- 

 4'set 

5 2 (2)-  5'set 
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different regions of input space (G. Auda, M. Kamel, H. 
Raafat, (November, 1995)). Usually there are regions in the 
class feature space which show high overlap due to the 
resemblance of two or more input patterns (classes). At the 
same time, there are other regions which show little or even 
no overlap, due to the uniqueness of the classes therein. High 
coupling among hidden nodes will then, result in over and 
under learning at different regions. Enlarging the network, 
increasing the number and quality of training samples, and 
techniques for avoiding local minina, will not stretch the 
learning capabilities of the NN classifier beyond a certain 
limit as long as hidden nodes are tightly coupled, and hence 
cross talking during learning (R. Jacobs, M. Jordan, A. Barto, 
(1991)). 
 A MNN classifier attempts to reduce the effect of these 
problems via a divide and conquer approach. It, generally, 
decomposes the large size / high complexity task into several 
sub-tasks, each one is handled by a simple, fast, and efficient 
module. Then, sub-solutions are integrated via a multi-
module decision-making strategy. Hence, MNN classifiers, 
generally, proved to be more efficient than non-modular 
alternatives (El-Bakry, H. M., (2001)). However, MNNs can 
not offer a real alternative to non-modular networks unless 
the MNNs designer balances the simplicity of subtasks and 
the efficiency of the multi module decision-making strategy. 
In other words, the task decomposition algorithm should 
produce sub tasks as they can be, but meanwhile modules 
have to be able to give the multi module decision making 
strategy enough information to take accurate global decision 
(G. Auda, M. Kamel, (1997)).  
In previous papers (El-Bakry, H. M., (2001), El-Bakry, H. 
M., (2002), El-Bakry, H. M., (October 2001) & El-Bakry, H. 
M., (2003)), it has been shown that this model can be applied 
to realize non-binary data. In this paper, it is proven that 
MNNs can solve some problems with a little amount of 
requirements than non-MNNs. In section 4, XOR function, 
and 16 logic functions on one bit level are simply 
implemented using MNN. Comparisons with conventional 
MNN are given. In section 5, another strategy for the design 
of MNNs is presented and applied to realize, and 2-bit digital 
multiplier.  

4. REDUCING HARDWARE REQUIREMENTS BY 
USING MNNs  

In the following subsections, we investigate the usage of 
MNNs in some binary problems. Here, all MNNs are 
feedforward type, and learned by using backpropagation 
algorithm. In comparison with non-MNNs, we take into 
account the number of neurons and weights in both models as 
well as the number of computations during the test phase. 

4.1 A simple implementation of XOR problem 
There are two topologies to realize XOR function whose truth 
Table is shown in Table 12 using neural nets.  The first uses 
fully connected neural nets with three neurons, two of which 
are in the hidden layer, and the other is in the output layer. 
There is no direct connections between the input and output 
layer as shown in Fig.1. In this case, the neural net is trained 
to classify all of these four patterns at the same time.  

Table 12. Truth table of XOR function. 

x y O/P 
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
0 

The second approach was presented by Minsky and Papert 
(Rumelhart, D. E., Hinton, G. E., and Williams, R. J., (1986)) 
which was realized using two neurons as shown in Fig. 2. 
The first representing logic AND and the other logic OR. The 
value of +1.5 for the threshold of the hidden neuron insures 
that it will be turned on only when both input units are on. 
The value of +0.5 for the output neuron insures that it will 
turn on only when it receives a net positive input greater than 
+0.5. The weight of -2 from the hidden neuron to the output 
one insures that the output neuron will not come on when 
both input neurons are on (31). Using MNNs, we may 
consider the problem of classifying these four patterns as two 
individual problems. This can be done at two steps:

1- We deal with each bit alone. 
2- Consider the second bit Y, Divide the four patterns

into two groups. 
The first group consists of the first two patterns which realize 
a buffer, while the second group which contains the other two 
patterns represents an inverter as shown in Table 13. The first 
bit (X) may be used to select the function. 

Table 13. Results of dividing XOR Patterns. 

X Y O/P New Function 
0 
0 

0 
1 

0 
1 

Buffer (Y) 

1 
1 

0 
1 

1 
0 

Inverter (Y ) 

So, we may use two neural nets, one to realize the buffer, and 
the other to represent the inverter. Each one of them may be 
implemented by using only one neuron. When realizing these 
two neurons, we implement the weights, and perform only 
one summing operation. The first input X acts as a detector to 
select the proper weights as shown in Fig. 3. In a special case, 
for XOR function, there is no need to the buffer and the 
neural net may be represented by using only one weight 
corresponding to the inverter as shown in Fig. 4. As a result 
of using cooperative modular neural nets, XOR function is 
realized by using only one neuron. A comparison between the 
new model and the two previous approaches is given in Table 
14. It is clear that the number of computations and the 
hardware requirements for the new model is less than that of 
the other models. 

Table 14. A comparison between different models used to 
implement XOR function. 

Type of 
Comparison

First model 
(three neurons)

Second model
(two neurons)

New model 
(one neuron)

No. of 
computations O(15) O(12) O(3) 

Hardware 
requirements

3 neurons, 
9 weights 

2 neurons, 
7 weights 

1 neuron, 
2 weights, 
2 switches, 
1 inverter 
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4.2 Implementation of logic Function using MNNs 

Realization of logic functions in one bit level (X,Y) generates 
16 functions which are (AND, OR, NAND, NOR, XOR, 

XNOR, X , Y , X, Y, 0, 1, X Y, X Y , X +Y, X+ Y ). So, in 
order to control the selection for each one of these functions, 
we must have another 4 bits at the input, thereby the total 
input is 6 bits as shown in Table 15. 

Table 15. Truth table of Logic function (one bit level) with 
their control selection. 

Function C1 C2 C3 C4 X Y O/p
0 0 0 0 0 0 0 
0 0 0 0 0 1 0 
0 0 0 0 1 0 0 

AND 

0 0 0 0 1 1 1 
       

1 1 1 1 0 0 1 
1 1 1 1 0 1 0 
1 1 1 1 1 0 1 

X+ Y

1 1 1 1 1 1 1 

Non-MNNs can classify these 64 patterns using a network of 
three layers. The hidden layer contains 8 neurons, while the 
output needs only one neuron and a total number of 65 
weights are required. These patterns can be divided into two 
groups. Each group has an input of 5 bits, while the MSB is 0 
with the first group and 1 with the second. The first group 
requires 4 neurons and 29 weights in the hidden layer, while 
the second needs 3 neurons and 22 weights. As a result of 
this, we may implement only 4 summing operations in the 
hidden layer (in spite of 8 neurons in case of non-MNNs) 
where as the MSB is used to select which group of weights 
must be connected to the neurons in the hidden layer. A 
similar procedure is done between hidden and output layer. 
Fig. 5 shows the structure of the first neuron in the hidden 
layer. A comparison between MNN and non-MNNs used to 
implement logic functions is shown in Table 16. 

Table 16.  A comparison between MNN and non MNNs used 
to implement 16 logic functions. 

Type of 
Comparison 

Realization 
using non 

MNNs 

Realization using 
MNNs 

No. of 
computations

O(121) O(54) 

Hardware 
requirements 

9 neurons, 
65 weights 

5 neurons, 51 
weights, 10 

switches, 1 inverter

5. IMPLEMENTATION OF MORE COMPLEX 
FUNCTIONS BY USING MNNS 

In the previous section, to simplify the problem, we make 
division in input, here is an example for division in output. 
According to the truth table shown in Table 6, instead of 

treating the problem as mapping 4 bits in input to 4 bits in 
output, we may deal with each bit in output alone. Non 
MNNs can realize the 2-bits multiplier with a network of 
three layers and a total number of 31 weights. The hidden 
layer contains 3 neurons, while the output one has 4 neurons. 
Using MNN we may simplify the problem as: 

CAW =                                  (1) 

)DCB+ABC)((AD=

)DABC()CBAD(=BCADX

+++

+++⊗=
         (2) 

    )D+CBABD()CABD(Y ++=+=       (3) 

ABCDZ =                              (4) 

Equations 1, 2, 3 can be implemented using only one neuron. 
The third term in Equation 3 can be implemented using the 
output from Bit Z with a negative (inhibitory) weight. This 

eliminates the need to use two neurons to representA  and 
D . Equation 2 resembles an XOR, but we must first obtain 
AD and BC. AD can be implemented using only one neuron. 
Another neuron is used to realize BC and at the same time 

oring (AD, BC) as well as  anding the result with (ABCD ) as 
shown in Fig. 6. A comparison between MNN and non-
MNNs used to implement 2bits digital multiplier is listed in 
Table 18. 

Table 17. Truth table of 2-bit digital multiplier. 

Input Patterns Output Patterns
D C B A Z Y X W
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 1 0 0 0 0 0 0 
0 1 0 1 0 0 0 1 
0 1 1 0 0 0 1 0 
0 1 1 1 0 1 1 0 
1 0 0 0 0 0 0 0 
1 0 0 1 0 0 1 0 
1 0 1 0 0 1 0 0 
1 0 1 1 0 1 1 0 
1 1 0 0 0 0 0 0 
1 1 0 1 0 0 1 1 
1 1 1 0 0 1 1 0 
1 1 1 1 1 0 0 1 

Table 18. A comparison between MNN and non-MNNs used 
to implement 2-bits digital multiplier. 

Type of 
Comparison 

Realization using 
non MNNs 

Realization using 
MNNs 

No. of 
computations O(55) O(35) 

Hardware 
requirements 

7 neurons, 
31 weights 

5 neurons, 
20 weights 
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Fig. 1.  Realization of XOR function using three neurons. 

Fig. 2. Realization of XOR function using two neurons. 

Fig. 3.  Realization of XOR function using modular neural nets. 
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Fig. 5. Realization of logic functions using MNNs (the first neuron in the hidden layer).

Fig. 4. Implementation of XOR function using only one neuron. 
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Fig. 6. Realization of 2-bits digital multiplier using MNNs. 

  2 

6. CONCLUSION 

A simple systematic method for generating the prime
Implicants set for minimization of the Boolean functions 
has been introduced. Such method is a very simple because 
there is no need to any visual representation such as 
Karnough map or arrangement technique such as 
Tabulation method. Furthermore, it is very easy for
programming. In addition, it is suitable for high variables 
(more than 4 variables) boolean function. Moreover, a new 
model for realizing complex function has been presented. 
Such model realies on MNNs  for classifying patterns that 
appeared expensive to be solved by using conventional 
models of neural nets. This approach has been introduced 
to realize different types of logic functions. Also, it can be 
applied to manipulate non-binary data. We have shown 
that, compared to non MNNS, realization of problems
using MNNs resulted in reduction of the number of 
computations, neurons and weights.  
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