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Abstract— In previous work (El-bakry, H. M., Mastorakis N2009)), a fast systematic method for
minimization of the Boolean functions was presenfagch method is a simple because there is no need
for any visual representation such as Karnough mamrrangement technique such as Tabulation
method. Furthermore, it is suitable for booleancfiom with large number of variables (more than 4
variable). Moreover, it is very simple to understaand use. In this paper, the simplified functians
implemented with minimum amount of components. Avpdul solution for realization of more complex
functions is given. This is done by using modulaunal nets (MNNSs) that divide the input space into
several homogenous regions. Such approach is dplienplement XOR functions, 16 logic function
on one bit level, and 2-bit digital multiplier. Cpred to previous non- modular designs, a clear

reduction in the order of computations and hardweggiirements is achieved.

Keywords Boolean Functions, Simplification, ImplementatitMiNNs

1. INTRODUCTION

The simplification of Boolean functions is mainlgad to
reduce the number of gates in a logic circuit. Lessiber of
gates means less power consumption, sometimesirthét c
works faster and also when number of gates is exjumost
also comes down (Marcovitz, A. B., (2007), Mano, M.,
and Ciletti, M. D., (2003) & Mano, M. M., (1984))here are
many ways to simplify a logic design, such as algieb
simplification, Karnough maps, Tabulation Methoddan
Diagrammatic technique using 'Venn-like diagramhsoof
them are discussed in detail in this introductibtalcovitz,
A. B., (2005), Arntson, A. E., (2005), Mano, M. MCjletti,
M. D., (2003), & Mano, M. M., (1984)).

In this paper, a new fast systematic method forimization
of the Boolean function is introduced. Such metiwd very
simple because there is no need to any visual septation

variable operators OR, AND, the operator NOT, ptreses,
and an equal sign. For a given value of these asa the
function can be either 0 or 1. Consider, for examphe
following Boolean function (Atwan, A. (2006), Mandtz, A.
B., (2007) & Mano, M. M., Ciletti, M. D., (2003)):
F=X+Y'Z , Fequall, when X=1 or Y=0, whilez=1.

1. Rules of Boolean Algebra:

The standard rules of Boolean algebra which repredor
simplicity are introduced in table 1:

Table 1: Rules of Boolean algebra

X+X=X X . X=X
X+0=X X.1=X
X+1=1 X.0=0
X+X=1 X.X=0

2. Canonical and Standard Form (Minterms)
A binary variable may come into view either in fisrmal

such as Karnough map or arrangement technique aschform, X, or in its complement formX'. Now consider two
Tabulation method and very easy for programmingis Thbinary variables X and Y combined with AND operato

method is very suitable for high variables (moranth4
variable) boolean function, and very simple for dstots
(Mano, M. M., and Ciletti, M. D., (2003) & Mano, MJ.,
(1984)). Furthermore, neural networks are usednfeément
Boolean functions because they can recognize patevren
with noise, distortion or deformation in shape. STk very
important especially in communication applications.

1.1 Boolean Functions
A Boolean function is an expression consisting ofaby
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Since each variable may appear in each form, therdour
possible combinations, namelyy, XY', X'Yand X'Y'. Each
of these four terms is called a Minterm or a statigmoduct.

In a similar way,N variables can be combined to foi2h
Minterms. The2" different Minterms may be determined by a
method similar to the one shown in Table 1 whicbvehthe
case of 3 variables (Marcovitz, A. B., (2007), Ao, A. E.,
(2005), Vahid, F., (2006) & Hayes, J. P. (1993)).

Table 2. Combination of Minterms for 3 variables

www.hypersciences.org
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D|e:<(:)|rr:1nal XY | Z | Term Desi?natio
0 0| 0] 0| XYZ mO
1 0| 0| 1| XYZ ml
2 0| 1| 0| XYZ m2
3 0| 1| 1| XYz m3
4 1] 0| 0] XYZ m4
5 10| 1| XYZ m5
6 11| 0] XYZ m6
7 11| 1| XYZ m7

A Boolean function may be expressed algebraicaliynfa
given truth table by forming a minterm
combination of the variable which produces a nlthe
function and then taking the OR of all those w®rror
example, the function ;Fin Table 2 is determined by

YZ
00 01 11 10
00 1 1
01 1 1
X
=
11 1
10 1

for each

Fig. 1. Karnough Map
F=WZ+WY'Z

expressing the combination 001, 100, and 111 aszx'y 2. Tabulation Method (QUINE AND MC CLUSKEY )

XY'Z', and XYZ. Each one of these minterms resuitdhe
expression, so;Fcan be expressed as:

F1 = Xyz + xyz +xyz = m1+m4+m7
It may be more suitable to express the booleartifumin the
following short notation:  F(x,y,z) =Y (1,4,7)

Table 3. Representation of F1

X|1Y|Z|HK
0 0[O 0
0 0f 1 1
0 1|10 0
0 1 1 0
1 0] O 1
1 0 1 0
1 110 0
1 1 1 1

1.2 Traditional
Functions
There are many Traditional Methods to simplifiBaolean

Methods for Simplification of Boale

Functions such as Algebraic Simplification, Karnough Maps

and Tabulation Method. This part discusses theufatly
used method such &arnough MapandTabulation Method

1. Map Method (Karnough Map)

Karnough Map is a visual representation diagramalbf
possible ways a function may be expressed. Map adeith
introduced by Veich and slightly modified by Karmbu.A
K-map consists of a grid of squares, each squamesenting
one canonical minterm combination of the varialdegheir
inverse. The map is arranged so that squares epiEs
minterms which differ by only one variable are adjat both
vertically and horizontally. Therefore XY'Z' woulde
adjacent to X'Y'Z' and would also adjacent to Xdhd XYZ'
(Marcovitz, A. B., (2007), Hayes, J. P. (1993), son, A.
E., (2005), & Mano, M. M., (1984)). Example : Siifpthe

boolean function:

F=W'X'Y'Z + WX'YZ + WXY'Z + WXYZ + WXY'Z'+

WX'Y'Z' or F(X,Y,ZW) =Y (1,3,5,7,8,12)

Solution:
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The Map method of simplification is convenient asd as
the number of variable is suitable number. The ssige
number of squares prevents a reasonable seledtadjacent
squares .The tabulation methods overcomes thiguliff. It
is a specific step by step procedure that is gtigcrto
produce a simplified standard -form expression fbe
function. the tabular method of simplification s@ts of
two parts. The first is to find by an exhaustivarsé of all
the term that are candidates for inclusion in thmepsfied
function. These terms are called Prime-Implicarithe.
second operation is to choose among the prime-tiaupis
those that give an expression with the least nurobkterals
(Mano, M. M., (1984), Floyd, T. L., (2006), Hayes, P.
(1993), Biswas, N. N., (1984) & Dueck, R., (2004)).

Example: Simplify the following Boolean function lsing

the tabulation methods: F(W,X,Y,2Z)
>(0,1,2,8,10,11,14,15)
SOLUTON:
Table 4. The Prime Implicants
a B c
WXyZ WXyZ WXYyZ
0 0000 0,1 000- 0,2,8,10 -0-0
1
0,2 00-0 0,8,2,10 -0-0
T
1 0001 0,8 -000
T 1
2 0010 10,11,14,15 1-1-
T
8 1000 2,10 -010 10,14,11,15 1-1-
1 1
8,10 10-0
1
10 1010
1
10,11 101-
1
11 1011 10,14 1-10
T 1
14 1110
I
11,15 1-11
T
15 1111 14,15  111-
I I
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2. ANEW METHOD FOR SIMPLIFICATION OF
BOOLEAN FUNCTIONS

Starting point is offering
terminology to be used throughout this method.
«  The number of Minterms equal$ @here n is the
number of variables.
e The maximum Minterm to be obtained equals 2.
e The 1's complement of any binary number turns
to 1 and vise versa, for instance 1's complérmen
110101 equals 001010 .

Definition 1:

the main definitons and®

¢ The minterm 3 is subtracted from the maximum mmter
7 to result in 4 that could not be divided.

The minterm 4 is subtracted from 7 to result 3 twitld

be divided into 1 and 2.

1. Each minterm X can be combined with each
minterm Y when Y equal X plus the numbers
resulted from the pervious division .

0 - Minterms 3 combined with minterm 7 which

result from 3+4 to form a new term 3,7(4) that

becomes one variable less than the two

combined minterms .

- The number between brackets is called

The combination of two Minterms is called "double "reference" that determine the position of the
minimization ".The smaller Minterm is called Tihase omitted variables.

and The other is called The follower. - at the same way; minterm 4 combined with
e e T comtiont v
The combination of four Minterms is called " duaple ' :

minimization " in which the smaller two Mintermseacalled
the base and the other two Minterms are the fatsw.

Theorem 1:
If X isthe number which represent any MinterhBoolean

minterm 6 to form the term 4,6(2) .

2. The probabilities of minimization of the minterms
included in the function are taken. This will letd
the probabilities of the double minimization.

function and Y is the binary number which represent the

maximum Minterm then The 1's complement of équal
Y - X.
Proof :

« 1's complement of X =2-1-X where n equal the

Example:

Determine the probabilities of the double minimiaatof the
following function:

number of digits of X which represent the number

of variables .
«  The maximum Minterm Y=2-1.
e From 1 and 2 ,the 1,s complement of X isXY-

2.1 The Method for generating The Prime Implicargsms

F(X)Y,2) =3(1,2,3,4,5)

Solution:

Table 6. The maximum minterm for 3 variable is 231

Procedure : Minterms (MAX- Initial SET
1. Minterms which are included in the function gmet in (Base) Minterm) | Value .
order from the smaller to bigger in a column way. 1 6 (2)11'53 T'set
2. Every Minterm included in the function is suloted from )1,
the maximum Minterm whether it (maximum Minterm) is ;
. . . . . 2 5 1)2,3 2'set
included in the function or not (For instance thaximum 4)-
. A : . 4
Minterm of a function include 3 variables equalswiich
resulted from 21). 3 4 @)- Jset
3. The result of step 2 should be segmented istanitial
values of digits but in a decimal form as showteinle 4. 4 3 (1)4,5 4'set
2)-
Table 5. Initial values of digits in a decimal form @
The maximum minterm(MAX) for 3 variablé S 2 2)- S'set
is 2%-1=7
Minterms (MAX- Initial | SET
(Base) Minterm) | Value
0 7 (1) | O'set Notice that the name of set is the name of base.
2
(4) Table 7. The probabilities of double minimization
1 6 (2) 1'set
(4) TERM [ X Y Z Name
2 5 (1) | 2'set 213 | 0 - 1 X'Z
(4) ,
3 4 (@) | 3set #HLs5 | - 0 1 Y'Z
4 3 (2) 4'set
) w23 | o] 1 - XY
5 2 (2) 5'set
6 1 (1) 6'set a5 | 1] O - XY
7 0 - -
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¢ Quadruple Minimization Minterms (Max- Double Quadruple | SET
If (a)k.L is a double minimization term whose its baseiset__(Base) | Minterm) | minimization | minimization
k and the follower set is,lto get the quadruple minimizatiof O 7 (1)0,1 (1,2)0,1,2,3| O'set
look at the two sets K, L if there are one termeath set (2)0,2 (1,40,1,4,5
equals in reference then its Minterm can be conubiwizh (4)0.4
the two minterm K, L to give quadruple minimization 1 6 (2)1,3 1'set
Example: (1)0,1 the base set is "0" s@id the follower set (4)1,5
is "1"setare observed and compared . If there are termal equ 2 5 12,3 2'set
in the reference included minterms will be taken. (4)-
This means that term (1)1,0 is combined with twaterims 3 4 (4)- 3'set
2&3 because of the equality of the reference ({&)two
terms  (2)0,2 &(2)1,3 to result the quadruplemnter 4 3 (1)4,5 A'set
(1,2)0,1,2,3 at the same way , the term (1)1@ommbined (2)-
with two minterms 4 and 5 because of the equatit the 5 2 (2)- 5'sef
reference (4) in two minterms (4)1,4 & (4)1,5r&sult a
quadruple term (1,4)0,1,4,5. Example:
Table 8. F(X)Y,ZW )=(1,23,5,7,10,11,15)
"0" set (1)0.1 Solution:
(2)0,2 . . .
(4)0,4 Table 11. The maximum minterm for 4 variable 451215
"1"set (2)1’3 M(Igtaesrgs M(il::ltz)r(m) mir?ir?ﬁLijzbellfion m?n?r?]?;:i)ilc?n SET
(4)1,5 1 14 (213 | (24)135,7]| 1se
"2"set (12,3 (4)1,5
(4)2,6 (8)-
But for the quadruple minimization for the terf) 0,2 in 2 13 ((14))2;‘3 (1’8)121’3’10’ Z'set
set "0", The term (1)0,1 neglected becausés before the (8)2,10
term (2)0,2 in the base set "0". the term (2) Gs2combined
with the two minterms 6&4 because of the equabtythe 3 12 @37 (4,8)3,7,11,] 3'set
reference (4) in the two minterms (4)2,6 &(4)0,4. (8)3,11 15
Table 9. 5 10 (2)5,7 5'set
(8)-
"0" set (1)0,1
(2)0,2 7 8 (8)7,15
(4)0,4 10 5 (1)10,11
"2"set 1)2,3 (4)-
(4)2,6
11 4 (4)11,15
15 0 -

Rules

1. The base which contain one term is neglectethguhe higher
minimization.
2. All the minimization higher than the quadruplenimization for
instance octal minimization is applied as the quphr
minimization.
3. It is taken in the consideration that the mim®ior terms which
are a part of higher minimization are neglectedhie final result
(The quadruple minimization for instance is highiean double
minimization).

Example:
F(X)Y,Z)=(0,12,3,45)

Solution:
Table 10. The maximum minterm for 3 variable 127
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3. IMPLEMENTATION OF BOOLEAN FUNCTION BY
USING MNNs

MNNs present a new trend in neural network archirec
design. Motivated by the highly-modular biologicedtwork,
artificial neural net designers aim to build arehttires which
are more scalable and less subjected to interfertran the
traditional non-modular neural nets (J, Murre, @99

There are now a wide variety of MNN designs for
classification. Non-modular classifiers tend taanluce high
internal interference because of the strong cogpéimong
their hidden layer weights (R. Jacobs, M. JordanBarto,
(1991)). As a result of this, slow learning or o¥iging can
be done during the learning process. Sometimendheork
could not be learned for complex tasks. Such téeskd to
introduce a wide range of overlap which, in turapses a
wide range of deviations from efficient learning the
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different regions of input space (G. Auda, M. Kamil

Raafat, (November, 1995)). Usually there are regionthe
class feature space which show high overlap duehéo
resemblance of two or more input patterns (class&sjhe

same time, there are other regions which showe latl even
no overlap, due to the uniqueness of the classesith High
coupling among hidden nodes will then, result ireroand
under learning at different regions. Enlarging tietwork,

increasing the number and quality of training saspland
techniques for avoiding local minina, will not stle the
learning capabilities of the NN classifier beyondcertain
limit as long as hidden nodes are tightly coupkaj hence
cross talking during learning (R. Jacobs, M. JordarBarto,
(1991)).

A MNN classifier attempts to reduce the effect thése
problems via a divide and conquer approach. Itegaly,

decomposes the large size / high complexity tagkseveral
sub-tasks, each one is handled by a simple, fadte#icient

Table 12. Truth table of XOR function.

X |y | OP
0|0 0
0|1 1
1|0 1
1)1 0

The second approach was presented by Minsky andrPap
(Rumelhart, D. E., Hinton, G. E., and Williams, R. (1986))
which was realized using two neurons as shown @ Ei
The first representing logic AND and the other tb@R. The
value of +1.5 for the threshold of the hidden neuirtsures
that it will be turned on only when both input wn#re on.
The value of +0.5 for the output neuron insureg thavill

turn on only when it receives a net positive ingrgater than
+0.5. The weight of -2 from the hidden neuron te tutput
one insures that the output neuron will not comewtren
both input neurons are on (31). Using MNNs, we may

module. Then, sub-solutions are integrated via atimulConsider the problem of classifying these fourerat as two

module decision-making strategy. Hence, MNN cléssf
generally, proved to be more efficient than non-oiacd
alternatives (El-Bakry, H. M., (2001)). However, MN can
not offer a real alternative to non-modular netvgotknless
the MNNs designer balances the simplicity of suktasnd
the efficiency of the multi module decision-makisiyategy.
In other words, the task decomposition algorithnousth
produce sub tasks as they can be, but meanwhilaule®d
have to be able to give the multi module decisicakimg
strategy enough information to take accurate gloleaision
(G. Auda, M. Kamel, (1997)).

In previous papers (El-Bakry, H. M., (2001), El-BakH.
M., (2002), El-Bakry, H. M., (October 2001) & El-Bgy, H.
M., (2003)), it has been shown that this model lampplied
to realize non-binary data. In this paper, it i®yaen that

individual problems. This can be done at two steps:

1- We deal with each bit alone.

2- Consider the second bit Y, Divide the four patser
into two groups.

The first group consists of the first two pattewtsch realize

a buffer, while the second group which containsadtiesr two

patterns represents an inverter as shown in Tabl@He first

bit (X) may be used to select the function.

Table 13. Results of dividing XOR Patterns.

X|lY O/ New Function
0|0 0

ol 1 1 Buffer (Y)
110 1 =
111 0 Inverter (Y )

MNNs can solve some problems with a little amoufit o

requirements than non-MNNSs. In section 4, XOR figmgt
and 16 logic functions on one bit level

So, we may use two neural nets, one to realizbtliffer, and

are simpl)}he other to represent the inverter. Each one erhtimay be

implemented using MNN. Comparisons with conventiond™Plémented by using only one neuron. When redjizirese

MNN are given. In section 5, another strategy fa tlesign
of MNNSs is presented and applied to realize, arut 2Hgital
multiplier.

4. REDUCING HARDWARE REQUIREMENTS BY
USING MNNs

In the following subsections, we investigate thexges of
MNNs in some binary problems. Here, all
feedforward type, and learned by using backpropagat
algorithm. In comparison with non-MNNs, we take oint
account the number of neurons and weights in battiets as
well as the number of computations during the pésise.

4.1 A simple implementation of XOR problem

There are two topologies to realize XOR functiorogd truth
Table is shown in Table 12 using neural nets. flise uses
fully connected neural nets with three neurons, d¢fvavhich
are in the hidden layer, and the other is in thpuulayer.
There is no direct connections between the inpdt @tput
layer as shown in Fig.1. In this case, the neuetlisitrained
to classify all of these four patterns at the séime.
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two neurons, we implement the weights, and perfonty
one summing operation. The first input X acts a@et@ctor to
select the proper weights as shown in Fig. 3.3pexial case,
for XOR function, there is no need to the buffed ahe
neural net may be represented by using only onghwei
corresponding to the inverter as shown in Fig. 4.aAresult
of using cooperative modular neural nets, XOR fiamcis

MNNs aréealized by using only one neuron. A comparisomvbeh the

new model and the two previous approaches is givaiable
14. 1t is clear that the number of computations ahe
hardware requirements for the new model is less that of
the other models.

Table 14. A comparison between different modelsluse
implement XOR function.

Type of First model | Second model New model
Comparisor|(three neurons)two neurons) (one neuron
No. of
computations 0O(15) 0(12) 0(3)
1 neuron,
Hardware | 3 neurons, | 2 neurons, | 2 weights,
requirements 9 weights 7 weights | 2 switches,
1 inverter
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4.2 Implementation of logic Function using MNNs
Realization of logic functions in one bit level {§,generates

treating the problem as mapping 4 bits in inpu#tbits in
output, we may deal with each bit in output alohin

16 functions which are (AND, OR, NAND, NOR, XOR MNNs can realize the 2-bits multiplier with a netkoof

XNOR, X,Y, X, Y,0,1, XY, XY, X+Y, X+Y). So, in
order to control the selection for each one of éhesictions,
we must have another 4 bits at the input, theréleytotal
input is 6 bits as shown in Table 15.

Table 15. Truth table of Logic function (one bitdd) with
their control selection.

Function| C1| C2 C3 C4 X Y Ol
0 0 0 0 0 0 0
0 0 0 0 0 1 0
AND 0 0 0 0 1 0 0
0 0 0 0 1 1 1
1 1 1 1 0 0 1
x+y 1] 1] 1[ 1] o] 1] 0
1 1 1 1 1 0 1
1 1 1 1 1 1 1

Non-MNNs can classify these 64 patterns using aaort of
three layers. The hidden layer contains 8 neurshile the
output needs only one neuron and a total numbe65of
weights are required. These patterns can be divittedtwo
groups. Each group has an input of 5 bits, whiéeNt&EB is O
with the first group and 1 with the second. Thetfigroup
requires 4 neurons and 29 weights in the hiddeer)ayhile
the second needs 3 neurons and 22 weights. Asult ods
this, we may implement only 4 summing operationghe
hidden layer (in spite of 8 neurons in case of NYNS)
where as the MSB is used to select which group aifjis
must be connected to the neurons in the hiddenr.laye
similar procedure is done between hidden and ougyer.
Fig. 5 shows the structure of the first neurontia hidden

layer. A comparison between MNN and non-MNNs used t

implement logic functions is shown in Table 16.

Table 16. A comparison between MNN and non MNNsdus

to implement 16 logic functions.

Type of Realization | Realization using

Comparison using non MNNs
MNNs
No. of

computations o(121) O(54)

Hardware 9 neurons, 5 neurons, 51
requirements 65 weights weights, 10

switches, 1 inverter

5. IMPLEMENTATION OF MORE COMPLEX
FUNCTIONS BY USING MNNS

In the previous section, to simplify the problemge wake

division in input, here is an example for divisionoutput.
According to the truth table shown in Table 6, éast of
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three layers and a total number of 31 weights. Midelen
layer contains 3 neurons, while the output oneasurons.
Using MNN we may simplify the problem as:

W = CA (1)
X =AD 0 BC=AD(B + C) + BC(A + D) ,
= (AD + BC)(A + B + C + D) @
Y=BD(A +C)=BD(A+B+C+D) (3)

Z =ABCD (4)
Equations 1, 2, 3 can be implemented using only one neuron
The third term in Equation 3 can be implemented using the
output from Bit Z with a negative (inhibitory) weight. This
eliminates the need to use two neurons to repreAernd

D . Equation 2 resembles an XOR, but we must first obtain

AD and BC. AD can be implemented using only one neuron.
Another neuron is used to realize BC and at the same time

oring (AD, BC) as well as anding the result withBCD ) as
shown in Fig. 6. A comparison between MNN and non-
MNNs used to implement 2bits digital multiplier is listed in
Table 18.

Table 17. Truth table of 2-bit digital multiplier.

Input Patterns | Output Pattefns
DIC|B|A|Z|Y|X|W
0/]0] 0] 0] O] O] OO0
0/]0[ 0] 1] 00 0 O
0/]0[1] 0/ 0]/ 0 00
0/0[1] 1 00 00
0/1{0] 0/ 00 00
0/1[{0] 1] 0] 0 O 1
0|11 0/ 0 0 14O
0O|1]1] 1,0 1 14O
110/0/, 0] 0] 0 0 ¢
110]0/ 1] 0/ 0 1 ¢
1/10]1/, 0] 0] 1 0 ¢
110110 1 11 O
111/ 0] 0] 0/ 0 0 0
1/1]0] 1] 0/ 0 11 1
111,00 1 110
1/1]1/1 1] 0 O 1

Table 18. A comparison between MNN and non-MNNs used
to implement 2-bits digital multiplier.

Type of Realization using| Realization using
Comparison non MNNs MNNs
No. of
computations O(55) O(35)
Hardware 7 neurons, 5 neurons,
requirements 31 weights 20 weights
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Fig. 2. Realization of XOR function using two neunso

X
Whp
] Wbuffer —)/—
Y_,| ‘ Activa’Fion
Function
— Winverter O/E—

Fig. 3. Realization of XOR function using moduteaural nets.
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Wp

Winverter

X
o/P
—»
Activation
Function

Fig. 4. Implementation of XOR function using onlyeoneuron.

C
2 Wig1

A 4

Wig2

\ 4

Y Wsg1

A 4

\

Wsgo

Ci

Activation
Function

Fig. 5. Realization of logic functions using MNNs (thestf neuron in the hidden laye

48



International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

A
B
C 15
15
15
1.5
D 1.5 1.5

2

W
—>
1.5
1 2
4
-6
-2

Fig. 6. Realization of 2-bits digital multiplier ingf MNNs.

6. CONCLUSION

A simple systematic method for generating the prime
Implicants set for minimization of the Boolean ftinas
has been introduced. Such method is a very singgdause
there is no need to any visual representation fagh
Karnough map or arrangement
Tabulation method. Furthermore, it is very easy for
programming. In addition, it is suitable for highriables
(more than 4 variables) boolean function. Moreoaengw
model for realizing complex function has been pnésg.
Such model realies on MNNs for classifying patsetimat
appeared expensive to be solved by using conveaition
models of neural nets. This approach has beendintexd

to realize different types of logic functions. Alsbcan be
applied to manipulate non-binary data. We have show
that, compared to non MNNS, realization of problems
using MNNs resulted in reduction of the number of
computations, neurons and weights.
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