
Simplification and Implementation of Boolean Functions

Hazem M. El-Bakry*, Ahmed Atwan**

* Department of Information Systems, Faculty of Computer Science
and Information Systems, Mansoura University, Mansoura, EGYPT

tel: +2 050 2349 340, fax: +2 050 2221 442
e-mail: helbakry20@yahoo.com

** Department of Information Technology, Faculty of Computer
Science and Information Systems, Mansoura University, Mansoura,

EGYPT

Submitted: 26/12/2009
Accepted: 10/01/2010
Appeared: 16/01/2010

HyperSciences.Publisher

Abstract— In previous work (El-bakry, H. M., Mastorakis N., (2009)), a fast systematic method for
minimization of the Boolean functions was presented. Such method is a simple because there is no need
for any visual representation such as Karnough map or arrangement technique such as Tabulation
method. Furthermore, it is suitable for boolean function with large number of variables (more than 4
variable). Moreover, it is very simple to understand and use. In this paper, the simplified functions are
implemented with minimum amount of components. A powerful solution for realization of more complex
functions is given. This is done by using modular neural nets (MNNs) that divide the input space into
several homogenous regions. Such approach is applied to implement XOR functions, 16 logic function
on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear
reduction in the order of computations and hardware requirements is achieved.

Keywords: Boolean Functions, Simplification, Implementation, MNNs

1. INTRODUCTION

The simplification of Boolean functions is mainly used to
reduce the number of gates in a logic circuit. Less number of
gates means less power consumption, sometimes the circuit
works faster and also when number of gates is reduced, cost
also comes down (Marcovitz, A. B., (2007), Mano, M. M.,
and Ciletti, M. D., (2003) & Mano, M. M., (1984)). There are
many ways to simplify a logic design, such as algebraic
simplification, Karnough maps, Tabulation Method and
Diagrammatic technique using 'Venn-like diagram' some of
them are discussed in detail in this introduction (Marcovitz,
A. B., (2005), Arntson, A. E., (2005), Mano, M. M., Ciletti,
M. D., (2003), & Mano, M. M., (1984)).
In this paper, a new fast systematic method for minimization
of the Boolean function is introduced. Such method is a very
simple because there is no need to any visual representation
such as Karnough map or arrangement technique such as
Tabulation method and very easy for programming. This
method is very suitable for high variables (more than 4
variable) boolean function, and very simple for students
(Mano, M. M., and Ciletti, M. D., (2003) & Mano, M. M.,
(1984)). Furthermore, neural networks are used to implement
Boolean functions because they can recognize patterns even
with noise, distortion or deformation in shape. This is very
important especially in communication applications.

1.1 Boolean Functions
A Boolean function is an expression consisting of binary

variable operators OR, AND, the operator NOT, parentheses,
and an equal sign. For a given value of these variables, the
function can be either 0 or 1. Consider, for example, the
following Boolean function (Atwan, A. (2006), Marcovitz, A.
B., (2007) & Mano, M. M., Ciletti, M. D., (2003)):
F=X+Y'Z , F equal 1, when X=1 or Y=0, while Z=1.
1. Rules of Boolean Algebra:
The standard rules of Boolean algebra which reproduce for
simplicity are introduced in table 1:

 Table 1: Rules of Boolean algebra

X + X = X X . X = X
X + 0 = X X . 1 = X
X + 1 = 1 X . 0 = 0
X + X' = 1 X . X' = 0

2. Canonical and Standard Form (Minterms)
A binary variable may come into view either in its normal
form, X, or in its complement form, X'. Now consider two
binary variables X and Y combined with AND operations.
Since each variable may appear in each form, there are four
possible combinations, namely, XY, XY', X'Y, and X'Y'. Each
of these four terms is called a Minterm or a standard product.
In a similar way, N variables can be combined to form 2n

Minterms. The 2n different Minterms may be determined by a
method similar to the one shown in Table 1 which shows the
case of 3 variables (Marcovitz, A. B., (2007), Arntson, A. E.,
(2005), Vahid, F., (2006) & Hayes, J. P. (1993)).

Table 2. Combination of Minterms for 3 variables

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

Copyright © 2010 HyperSciences_Publisher. All rights reserved 41 www.hypersciences.org

Decimal
 Form X Y Z Term Designatio

n
0 0 0 0 X'Y'Z' m0
1 0 0 1 X'Y'Z m1
2 0 1 0 X'YZ' m2
3 0 1 1 X'YZ m3
4 1 0 0 XY'Z' m4
5 1 0 1 XY'Z m5
6 1 1 0 XYZ' m6
7 1 1 1 XYZ m7

A Boolean function may be expressed algebraically from a
given truth table by forming a minterm for each
combination of the variable which produces a 1 in the
function and then taking the OR of all those terms. For
example, the function F1 in Table 2 is determined by
expressing the combination 001, 100, and 111 as X'Y'Z,
XY'Z', and XYZ. Each one of these minterms results in the
expression, so F1 can be expressed as:

F1 = xyz + xyz +xyz = m1+m4+m7
It may be more suitable to express the boolean function in the
following short notation: F1 (x,y,z) = ∑ (1,4,7)

Table 3. Representation of F1

X Y Z F1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

1.2 Traditional Methods for Simplification of Boolean
Functions
There are many Traditional Methods to simplify a Boolean
Functions, such as Algebraic Simplification, Karnough Maps
and Tabulation Method. This part discusses the frequently
used method such as Karnough Map and Tabulation Method.

1. Map Method (Karnough Map)

Karnough Map is a visual representation diagram of all
possible ways a function may be expressed. Map method is
introduced by Veich and slightly modified by Karnough .A
K-map consists of a grid of squares, each square representing
one canonical minterm combination of the variables or their
inverse. The map is arranged so that squares representing
minterms which differ by only one variable are adjacent both
vertically and horizontally. Therefore XY'Z' would be
adjacent to X'Y'Z' and would also adjacent to XY'Z and XYZ'
(Marcovitz, A. B., (2007), Hayes, J. P. (1993), Arntson, A.
E., (2005), & Mano, M. M., (1984)). Example : Simplify the
boolean function:

F=W'X'Y'Z + W'X'YZ + W'XY'Z + W'XYZ + WXY'Z'+
WX'Y'Z' or F(X,Y,Z,W) = ∑ (1,3,5,7,8,12)

Solution:

YZ

 00 01 11 10

00 1 1

01 1 1

11 1

W
X

10 1

 Fig. 1. Karnough Map

F = W'Z + WY'Z'

2. Tabulation Method (QUINE AND MC CLUSKEY)
The Map method of simplification is convenient as long as
the number of variable is suitable number. The excessive
number of squares prevents a reasonable selection of adjacent
squares .The tabulation methods overcomes this difficulty. It
is a specific step by step procedure that is guarantied to
produce a simplified standard -form expression for the
function. the tabular method of simplification consists of
two parts. The first is to find by an exhaustive search of all
the term that are candidates for inclusion in the simplified
function. These terms are called Prime-Implicants .The
second operation is to choose among the prime-Implicants
those that give an expression with the least number of literals
(Mano, M. M., (1984), Floyd, T. L., (2006), Hayes, J. P.
(1993), Biswas, N. N., (1984) & Dueck, R., (2004)).
Example: Simplify the following Boolean function by using
the tabulation methods: F(W,X,Y,Z) =
∑(0,1,2,8,10,11,14,15)

SOLUTON:
Table 4. The Prime Implicants

a B c
 wxyz wxyz wxyz
0 0000

↑

 0,1 000- 0,2,8,10 -0-0

 0,2 00-0
↑

 0,8,2,10 -0-0

1 0001
↑

 0,8 -000
↑

2 0010
↑

 10,11,14,15 1-1-

8 1000
↑

 2,10 -010
↑

 10,14,11,15 1-1-

 8,10 10-0
↑

10 1010
↑

 10,11 101-
↑

11 1011
↑

 10,14 1-10
↑

14 1110
↑

 11,15 1-11
↑

15 1111
↑

 14,15 111-
↑

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

42

2. A NEW METHOD FOR SIMPLIFICATION OF
BOOLEAN FUNCTIONS

Starting point is offering the main definitions and
terminology to be used throughout this method.

• The number of Minterms equals 2n where n is the
number of variables.

• The maximum Minterm to be obtained equals 2 n -1.
• The 1's complement of any binary number turns 0

to 1 and vise versa , for instance 1's complement f
110101 equals 001010 .

Definition 1:
The combination of two Minterms is called "double
minimization ".The smaller Minterm is called The base
and The other is called The follower.

Definition 2:
The combination of four Minterms is called " quadruple
minimization " in which the smaller two Minterms are called
the base and the other two Minterms are the followers .

Theorem 1:
If X is the number which represent any Minterm of Boolean
function and , Y is the binary number which represent the
maximum Minterm then The 1's complement of X equal
Y – X.
Proof :

• 1's complement of X = 2 n -1-X where n equal the
number of digits of X which represent the number
of variables .

• The maximum Minterm Y= 2 n - 1 .
• From 1 and 2 , the 1,s complement of X is Y- X.

2.1 The Method for generating The Prime Implicants Terms
Procedure :
1. Minterms which are included in the function are put in
order from the smaller to bigger in a column way.
2. Every Minterm included in the function is subtracted from
the maximum Minterm whether it (maximum Minterm) is
included in the function or not (For instance the maximum
Minterm of a function include 3 variables equals 7 which
resulted from 23-1).
3. The result of step 2 should be segmented into its initial
values of digits but in a decimal form as shown in table 4.

Table 5. Initial values of digits in a decimal form

The maximum minterm(MAX) for 3 variable
is 23-1=7

Minterms
 (Base)

(MAX-
Minterm)

Initial
Value

SET

0 7 (1)
(2)
(4)

0'set

1 6 (2)
(4)

1'set

2 5 (1)
(4)

2'set

3 4 (4) 3'set
4 3 (1)

(2)
4'set

5 2 (2) 5'set
6 1 (1) 6'set
7 0 - -

♦ The minterm 3 is subtracted from the maximum minterm
7 to result in 4 that could not be divided.

♦ The minterm 4 is subtracted from 7 to result 3 that could
be divided into 1 and 2.
1. Each minterm X can be combined with each

minterm Y when Y equal X plus the numbers
resulted from the pervious division .
- Minterms 3 combined with minterm 7 which

result from 3+4 to form a new term 3,7(4) that
becomes one variable less than the two
combined minterms .

- The number between brackets is called
"reference" that determine the position of the
omitted variables.

- at the same way; minterm 4 combined with
minterm 5 which result from 4+1 to from the
term 4,5(1). and minterm 4 also combined with
minterm 6 to form the term 4,6(2) .

2. The probabilities of minimization of the minterms
included in the function are taken. This will lead to
the probabilities of the double minimization.

Example:

Determine the probabilities of the double minimization of the
following function:

F(X,Y,Z) = ∑(1,2,3,4,5)

Solution:

Table 6. The maximum minterm for 3 variable is 23-1=7
Minterms

(Base)
(MAX-

Minterm)
Initial
Value

SET

1 6 (2)1,3
(4)1,5

1'set

2 5 (1)2,3
(4)-

2'set

3 4 (4)- 3'set

4 3 (1)4,5
(2)-

4'set

5 2 (2)- 5'set

Notice that the name of set is the name of base.

Table 7. The probabilities of double minimization

TERM X Y Z Name
(2)1,3 0 - 1 X'Z

(4)1,5 - 0 1 Y'Z

(1)2,3 0 1 - X'Y

(1)4,5 1 0 - XY'

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

43

♦ Quadruple Minimization
If (a)k,L is a double minimization term whose its base set is
k and the follower set is L, to get the quadruple minimization
look at the two sets K, L if there are one term in each set
equals in reference then its Minterm can be combined with
the two minterm K, L to give quadruple minimization.
Example: (1)0,1 the base set is "0" set and the follower set
is "1"set are observed and compared . If there are terms equal
in the reference included minterms will be taken.
This means that term (1)1,0 is combined with two minterms
2&3 because of the equality of the reference (2) in two
terms (2)0,2 &(2)1,3 to result the quadruple term
(1,2)0,1,2,3 at the same way , the term (1)1,0 is combined
with two minterms 4 and 5 because of the equality of the
reference (4) in two minterms (4)1,4 & (4)1,5 to result a
quadruple term (1,4)0,1,4,5.

Table 8.
"0" set (1)0,1

(2)0,2
(4)0,4

"1"set (2)1,3
(4)1,5

"2"set (1)2,3
(4)2,6

But for the quadruple minimization for the term (2) 0,2 in
set "0", The term (1)0,1 neglected because it is before the
term (2)0,2 in the base set "0". the term (2) 0,2 is combined
with the two minterms 6&4 because of the equality of the
reference (4) in the two minterms (4)2,6 &(4)0,4.

Table 9.

Rules

1. The base which contain one term is neglected during the higher
minimization.
2. All the minimization higher than the quadruple minimization for
instance octal minimization is applied as the quadruple
minimization.
3. It is taken in the consideration that the minterms or terms which
are a part of higher minimization are neglected in the final result
(The quadruple minimization for instance is higher than double
minimization).

Example:

F (X,Y,Z) = (0,1,2,3,4,5)

Solution:
Table 10. The maximum minterm for 3 variable is 23-1=7

Example:

F (X,Y,Z,W) = (1,2,3,5,7,10,11,15)

Solution:

Table 11. The maximum minterm for 4 variable is 24-1=15
Minterms

(Base)
(Max-

Minterm)
Double

minimization
Quadruple

minimization
SET

1 14 (2)1,3
(4)1,5
(8)-

(2,4)1,3,5,7 1'set

2 13 (1)2,3
(4)-

(8)2,10

(1,8)2,3,10,
11

2'set

3 12 (4)3,7
(8)3,11

(4,8)3,7,11,
15

3'set

5 10 (2)5,7
(8)-

 5'set

7 8 (8)7,15

10 5 (1)10,11
(4)-

11 4 (4)11,15
15 0 -

3. IMPLEMENTATION OF BOOLEAN FUNCTION BY
USING MNNs

MNNs present a new trend in neural network architecture
design. Motivated by the highly-modular biological network,
artificial neural net designers aim to build architectures which
are more scalable and less subjected to interference than the
traditional non-modular neural nets (J, Murre, (1992)).
There are now a wide variety of MNN designs for
classification. Non-modular classifiers tend to introduce high
internal interference because of the strong coupling among
their hidden layer weights (R. Jacobs, M. Jordan, A. Barto,
(1991)). As a result of this, slow learning or over fitting can
be done during the learning process. Sometime, the network
could not be learned for complex tasks. Such tasks tend to
introduce a wide range of overlap which, in turn, causes a
wide range of deviations from efficient learning in the

"0" set (1)0,1
(2)0,2
(4)0,4

"2"set (1)2,3
(4)2,6

Minterms
(Base)

(Max-
Minterm)

Double
minimization

Quadruple
minimization

SET

0 7 (1)0,1
(2)0,2
(4)0,4

(1,2)0,1,2,3
(1,4)0,1,4,5

0'set

1 6 (2)1,3
(4)1,5

 1'set

2 5 (1)2,3
(4)-

 2'set

3 4 (4)- 3'set

4 3 (1)4,5
(2)-

 4'set

5 2 (2)- 5'set

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

44

different regions of input space (G. Auda, M. Kamel, H.
Raafat, (November, 1995)). Usually there are regions in the
class feature space which show high overlap due to the
resemblance of two or more input patterns (classes). At the
same time, there are other regions which show little or even
no overlap, due to the uniqueness of the classes therein. High
coupling among hidden nodes will then, result in over and
under learning at different regions. Enlarging the network,
increasing the number and quality of training samples, and
techniques for avoiding local minina, will not stretch the
learning capabilities of the NN classifier beyond a certain
limit as long as hidden nodes are tightly coupled, and hence
cross talking during learning (R. Jacobs, M. Jordan, A. Barto,
(1991)).
 A MNN classifier attempts to reduce the effect of these
problems via a divide and conquer approach. It, generally,
decomposes the large size / high complexity task into several
sub-tasks, each one is handled by a simple, fast, and efficient
module. Then, sub-solutions are integrated via a multi-
module decision-making strategy. Hence, MNN classifiers,
generally, proved to be more efficient than non-modular
alternatives (El-Bakry, H. M., (2001)). However, MNNs can
not offer a real alternative to non-modular networks unless
the MNNs designer balances the simplicity of subtasks and
the efficiency of the multi module decision-making strategy.
In other words, the task decomposition algorithm should
produce sub tasks as they can be, but meanwhile modules
have to be able to give the multi module decision making
strategy enough information to take accurate global decision
(G. Auda, M. Kamel, (1997)).
In previous papers (El-Bakry, H. M., (2001), El-Bakry, H.
M., (2002), El-Bakry, H. M., (October 2001) & El-Bakry, H.
M., (2003)), it has been shown that this model can be applied
to realize non-binary data. In this paper, it is proven that
MNNs can solve some problems with a little amount of
requirements than non-MNNs. In section 4, XOR function,
and 16 logic functions on one bit level are simply
implemented using MNN. Comparisons with conventional
MNN are given. In section 5, another strategy for the design
of MNNs is presented and applied to realize, and 2-bit digital
multiplier.

4. REDUCING HARDWARE REQUIREMENTS BY
USING MNNs

In the following subsections, we investigate the usage of
MNNs in some binary problems. Here, all MNNs are
feedforward type, and learned by using backpropagation
algorithm. In comparison with non-MNNs, we take into
account the number of neurons and weights in both models as
well as the number of computations during the test phase.

4.1 A simple implementation of XOR problem
There are two topologies to realize XOR function whose truth
Table is shown in Table 12 using neural nets. The first uses
fully connected neural nets with three neurons, two of which
are in the hidden layer, and the other is in the output layer.
There is no direct connections between the input and output
layer as shown in Fig.1. In this case, the neural net is trained
to classify all of these four patterns at the same time.

Table 12. Truth table of XOR function.

x y O/P
0
0
1
1

0
1
0
1

0
1
1
0

The second approach was presented by Minsky and Papert
(Rumelhart, D. E., Hinton, G. E., and Williams, R. J., (1986))
which was realized using two neurons as shown in Fig. 2.
The first representing logic AND and the other logic OR. The
value of +1.5 for the threshold of the hidden neuron insures
that it will be turned on only when both input units are on.
The value of +0.5 for the output neuron insures that it will
turn on only when it receives a net positive input greater than
+0.5. The weight of -2 from the hidden neuron to the output
one insures that the output neuron will not come on when
both input neurons are on (31). Using MNNs, we may
consider the problem of classifying these four patterns as two
individual problems. This can be done at two steps:

1- We deal with each bit alone.
2- Consider the second bit Y, Divide the four patterns

into two groups.
The first group consists of the first two patterns which realize
a buffer, while the second group which contains the other two
patterns represents an inverter as shown in Table 13. The first
bit (X) may be used to select the function.

Table 13. Results of dividing XOR Patterns.

X Y O/P New Function
0
0

0
1

0
1

Buffer (Y)

1
1

0
1

1
0

Inverter (Y)

So, we may use two neural nets, one to realize the buffer, and
the other to represent the inverter. Each one of them may be
implemented by using only one neuron. When realizing these
two neurons, we implement the weights, and perform only
one summing operation. The first input X acts as a detector to
select the proper weights as shown in Fig. 3. In a special case,
for XOR function, there is no need to the buffer and the
neural net may be represented by using only one weight
corresponding to the inverter as shown in Fig. 4. As a result
of using cooperative modular neural nets, XOR function is
realized by using only one neuron. A comparison between the
new model and the two previous approaches is given in Table
14. It is clear that the number of computations and the
hardware requirements for the new model is less than that of
the other models.

Table 14. A comparison between different models used to
implement XOR function.

Type of
Comparison

First model
(three neurons)

Second model
(two neurons)

New model
(one neuron)

No. of
computations O(15) O(12) O(3)

Hardware
requirements

3 neurons,
9 weights

2 neurons,
7 weights

1 neuron,
2 weights,
2 switches,
1 inverter

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

45

4.2 Implementation of logic Function using MNNs

Realization of logic functions in one bit level (X,Y) generates
16 functions which are (AND, OR, NAND, NOR, XOR,

XNOR, X , Y , X, Y, 0, 1, X Y, X Y , X +Y, X+ Y). So, in
order to control the selection for each one of these functions,
we must have another 4 bits at the input, thereby the total
input is 6 bits as shown in Table 15.

Table 15. Truth table of Logic function (one bit level) with
their control selection.

Function C1 C2 C3 C4 X Y O/p
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

AND

0 0 0 0 1 1 1

1 1 1 1 0 0 1
1 1 1 1 0 1 0
1 1 1 1 1 0 1

X+ Y

1 1 1 1 1 1 1

Non-MNNs can classify these 64 patterns using a network of
three layers. The hidden layer contains 8 neurons, while the
output needs only one neuron and a total number of 65
weights are required. These patterns can be divided into two
groups. Each group has an input of 5 bits, while the MSB is 0
with the first group and 1 with the second. The first group
requires 4 neurons and 29 weights in the hidden layer, while
the second needs 3 neurons and 22 weights. As a result of
this, we may implement only 4 summing operations in the
hidden layer (in spite of 8 neurons in case of non-MNNs)
where as the MSB is used to select which group of weights
must be connected to the neurons in the hidden layer. A
similar procedure is done between hidden and output layer.
Fig. 5 shows the structure of the first neuron in the hidden
layer. A comparison between MNN and non-MNNs used to
implement logic functions is shown in Table 16.

Table 16. A comparison between MNN and non MNNs used
to implement 16 logic functions.

Type of
Comparison

Realization
using non

MNNs

Realization using
MNNs

No. of
computations

O(121) O(54)

Hardware
requirements

9 neurons,
65 weights

5 neurons, 51
weights, 10

switches, 1 inverter

5. IMPLEMENTATION OF MORE COMPLEX
FUNCTIONS BY USING MNNS

In the previous section, to simplify the problem, we make
division in input, here is an example for division in output.
According to the truth table shown in Table 6, instead of

treating the problem as mapping 4 bits in input to 4 bits in
output, we may deal with each bit in output alone. Non
MNNs can realize the 2-bits multiplier with a network of
three layers and a total number of 31 weights. The hidden
layer contains 3 neurons, while the output one has 4 neurons.
Using MNN we may simplify the problem as:

CAW = (1)

)DCB+ABC)((AD=

)DABC()CBAD(=BCADX

+++

+++⊗=
 (2)

)D+CBABD()CABD(Y ++=+= (3)

ABCDZ = (4)

Equations 1, 2, 3 can be implemented using only one neuron.
The third term in Equation 3 can be implemented using the
output from Bit Z with a negative (inhibitory) weight. This

eliminates the need to use two neurons to representA and
D . Equation 2 resembles an XOR, but we must first obtain
AD and BC. AD can be implemented using only one neuron.
Another neuron is used to realize BC and at the same time

oring (AD, BC) as well as anding the result with (ABCD) as
shown in Fig. 6. A comparison between MNN and non-
MNNs used to implement 2bits digital multiplier is listed in
Table 18.

Table 17. Truth table of 2-bit digital multiplier.

Input Patterns Output Patterns
D C B A Z Y X W
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 18. A comparison between MNN and non-MNNs used
to implement 2-bits digital multiplier.

Type of
Comparison

Realization using
non MNNs

Realization using
MNNs

No. of
computations O(55) O(35)

Hardware
requirements

7 neurons,
31 weights

5 neurons,
20 weights

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

46

X

Wbuffer

Winverter

ΣΣΣΣY Activation
Function

O/P

Wb

X

Y

O/P

 B1

 B2

B3

Fig. 1. Realization of XOR function using three neurons.

Fig. 2. Realization of XOR function using two neurons.

Fig. 3. Realization of XOR function using modular neural nets.

Y

X

O/P

0.5

 2.0 1.5

 1.0

1.0

1.0

 1.0

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

47

X

Y
Activation
Function

Winverter

O/P

ΣΣΣΣ

Wb

C1W1g1

W1g2

Y W5g1

 W5g2

C2

ΣΣΣΣ Activation
Function

Wb

Fig. 5. Realization of logic functions using MNNs (the first neuron in the hidden layer).

Fig. 4. Implementation of XOR function using only one neuron.

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

48

1.5 5.5

A

B

C

 D

W

Z

 Y

 X

1.5
1.5

4
-6

2

-2

1.5

1.5

1.5

2
1.5

2

2
1.5

1.5

1.5
1.5

1.5

Fig. 6. Realization of 2-bits digital multiplier using MNNs.

 2

6. CONCLUSION

A simple systematic method for generating the prime
Implicants set for minimization of the Boolean functions
has been introduced. Such method is a very simple because
there is no need to any visual representation such as
Karnough map or arrangement technique such as
Tabulation method. Furthermore, it is very easy for
programming. In addition, it is suitable for high variables
(more than 4 variables) boolean function. Moreover, a new
model for realizing complex function has been presented.
Such model realies on MNNs for classifying patterns that
appeared expensive to be solved by using conventional
models of neural nets. This approach has been introduced
to realize different types of logic functions. Also, it can be
applied to manipulate non-binary data. We have shown
that, compared to non MNNS, realization of problems
using MNNs resulted in reduction of the number of
computations, neurons and weights.

REFERENCES

Marcovitz, A. B., (2007) Introduction to Logic and
Computer Design, Hardcover.

Marcovitz, A. B., (2005) Introduction to Logic Design,
(2nd Economy Edition), Paperback.

Arntson, A. E., (2005) Digital Design Basics, Paperback.
Vahid, F., (2006) Digital Design, Hardcover.
Houghton, J. M., Houghton, R. S., Circuit Sense for

Elementary Teachers and Students: Understanding and
Building Simple Logic Circuits, Paperback, 1994.

Wakerly, J. F., (2005) Digital Design: Principles and
Practices Package (4th Edition), Hardcover.

Hayes, J. P. (1993) Introduction to Digital Logic Design,
Hardcover.

Mano, C. K., (2003) Logic and Computer Design
Fundamentals (Third Edition), Hardcover.

Mano, M. M., Ciletti, M. D., (2003) Digital Design (4th
Edition), Hardcover.

Mano, M. M., (1984) Digital Design, Hardcover.
Mano, M. M., (1992) Computer System Architecture (3rd

Edition), Hardcover.
Biswas, N. N., (1984) Computer aided minimization

procedure for boolean functions, Proceedings of the
21st conference on Design automation, Albuquerque,
New Mexico, United States, pp. 699 – 702.

Bryant, R. E., (1986) Graph-Based Algorithms for
Boolean Function Manipulation, IEEE Transactions on
Computers, C-35-8, August, pp. 677-691.

Katz, H. R., (1986) Contemporary Logic Design/Computer
Logic works Package, Hardcover.

Dueck, R., (2004) Digital Design with CPLD Applications
and VHDL(Digital Design: Principles and Practices
Package (2nd Edition), Hardcover.

Tomaszewski, S. P., CELIK, L. U., (1995) WWW-Based
Boolean Function Minimization, Int. J. Appl. Math.
Comput. Sci., vol. 13, no. 4, pp. 577–583.

Floyd, T. L., (2006) Electronics Fundamentals: Circuits,
Devices and Applications (7th Edition), Hardcover.

Floyd, T. L., (1994) Digital Fundamentals, Hardcover.
Nelson, V. P., Nagle, H. T., Carroll B. D., Irwin, D.,

(1995) Digital Logic Circuit Analysis and Design,
Paperback,

William Kleitz, (2002) Digital and Microprocessor
Fundamentals: Theory and Application (4th Edition),
Hardcover.

Crama, Y., Hammer, P. L., (January, 2006) Boolean
Functions Theory, Algorithms and Applications .

http://www.asic-world.com/digital/kmaps.html,
Simplification of Boolean Functions, 2006.

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

49

Atwan, A., (2006) A New Systematic Method For
Simplification of Boolean Functions, Mansoura
Journal for Computer Science and Information
Systems, December, vol. 3, no. 3.

El-bakry, H. M., Mastorakis N., (2009) A Fast
Computerized Method For Automatic Simplification of
Boolean Functions, Proc. of 9th WSEAS International
Conference on SYSTEMS THEORY AND SCIENTIFIC
COMPUTATION (ISTASC '09), Moscow, Russia,
August 26-28, pp. 99-107.

J, Murre, (1992) Learning and Categorization in Modular
Neural Networks, Harvester Wheatcheaf.

R. Jacobs, M. Jordan, A. Barto, (1991) Task
Decomposition Through Competition in a Modular
Connectionist Architecture: The what and where vision
tasks, Neural Computation 3, pp. 79-87.

G. Auda, M. Kamel, H. Raafat, (November, 1995) Voting
Schemes for cooperative neural network classifiers,
IEEE Trans. on Neural Networks, ICNN95, vol. 3,
Perth, Australia, pp. 1240-1243.

G. Auda, M. Kamel, (1997) CMNN: Cooperative Modular
Neural Networks for Pattern Recognition, Pattern
Recognition Letters, vol. 18, pp. 1391-1398.

Alpaydin, E., (1993) Multiple Networks for Function
Learning, Int. Conf. on Neural Networks, vol. 1 CA,
USA, pp. 9-14.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.,
(1986) Learning representation by error
backpropagation, Parallel distributed Processing:
Explorations in the Microstructues of Cognition, vol. 1,
Cambridge, MA:MIT Press, pp. 318-362.

El-Bakry, H. M., (2001) Automatic Human Face
Recognition Using Modular Neural Networks,
Machine Graphics & Vision Journal (MG&V), vol. 10,
no. 1, pp. 47-73.

El-Bakry, H. M., (2002) Human Iris Detection Using Fast
Cooperative Modular Neural Nets and Image
Decomposition, Machine Graphics & Vision Journal
(MG&V), vol. 11, no. 4, pp. 498-512.

El-Bakry, H. M., (October 2001) Fast Iris Detection for
Personal Verification Using Modular Neural Networks,
Lecture Notes in Computer Science, Springer, vol.
2206, pp. 269-283.

El-Bakry, H. M., (2003) Complexity Reduction Using
Modular Neural Networks, Proc. of IEEE IJCNN’03,
Portland, Oregon, July 20-24, pp. 2202-2207.

International Journal of Universal Computer Sciences (Vol.1-2010/Iss.1)
El-Bakry and Atwan / Simplification and Implementation of Boolean Functions / pp. 41-50

50

