What is the simplest form of the Boolean function x'y + x'y' + x?

1. 0

3.
$$y' + y$$

4.
$$x' + x$$

QUESTION 14

By applying de Morgan's theorem and involution, which of the following expressions represents the same Boolean function as [(A'B) + C]':

1.
$$(A + B') + C'$$

2.
$$(AB') + C'$$

3.
$$(A' + B) \cdot C'$$

QUESTION 15

What is the simplest form of the Boolean function y + x'yz + xyz?

- 1. yz
- 2. 1
- 3. y(1+z)
- 4. y 🥎

y+x'y2 +x)2
y + yz(x' + x)
7+72
web Wests

Rough Work

Rough work:

The following question refer to the incomplete truth table below for the expression

$$G = B'C + AC'$$

What is the expression G in sum of minterms form?

	A	В	С	G	minterms	m-notation			
	0	0	0	0		m_0			
	0	0	1	1		m_1			
	0		D	Q	A'BC'	N ₁ =			
	0	1	1	0		m_3			
	1	0	0	1		M			
		Ò	1			M _z —			
		1	0	1		Μ,			
	1	1	1	O		M_{7}			
n ₅	C = (A + A')B'(C + A(B') + B)C' $= AB'C + A'B'C + AB'C' + ABC'$								
n.	$m_{5+}m_{1+}m_{6+}m_{4}$								

1. $m_5 + m_1 + m_2 + m_0$

$$2. \quad m_{5} + m_{1} + m_{6} + m_{4}$$

- 3. $m_7 + m_3 + m_2 + m_0$
- 4. $m_7 + m_3 + m_6 + m_4$

Rough work:

ŀ	_
l	
I	
ŀ	_
ĺ	
ł	_
ĺ	
ŀ	_
I	
ŀ	_
Ì	
ŀ	_
I	
ı	

- 1. C
- 2. D'
- 3. CD'
- 4. BCD'

Which term represents Group 3?

- 1. BC
- 2. BD'
- 3. AB
- 4. BCD

Which of the Karnaugh diagrams below represents the expression X = A + BC + AB?

		B'C'	B'C	BC	BC'
1.	A'	1	1	1	1

A' 1 1 1 1 1 A 0 0 0 1 0

2		B'C'	B'C	BC	BC'	
3.	A'	0	0	1	0	
	A	0	1	1	1	

4.		B'C'	В'С	BC V	BC'	
	A'	0	0	1	0	
	A	1	1	1	1	~

Rough work:

1			
	·	·	
1			
1			

Which logic diagram presents the logic expression ((x \cdot y') \cdot z')' ?

1.

2.

3.

4.

Questions 21, 22 and 23 refer to the following combinational logic circuit:

QUESTION 21

Gate 4 is an example of a _____ gate.

- 1. AND
- 2. NAND
- 3. NOR
- 4. OR

QUESTION 22

What is the output of Gate 3?

- 1. $(x + y') \cdot (x \cdot z)$
- 2. $(x \cdot y') \cdot (x \cdot z)$
- 3. $(x + y') + (x \cdot z)$
- 4. $(x \cdot y') + (x \cdot z)$

QUESTION 23

What is the output of Gate 4?

- 1. $[((x \cdot y') + (x \cdot z)) \cdot y']'$
- 2. $[((x + y') + (x \cdot z)) \cdot y']'$
- 3. $[((\mathbf{x} \cdot \mathbf{y}') \cdot (\mathbf{x} \cdot \mathbf{z})) \cdot \mathbf{y}']'$
- 4. $[((x + y') \cdot (x \cdot z)) \cdot y']''$

Rough work:

Questions 24, 25, 26 and 27 refer to the following scenario:

A group of students are allowed to have a food stall at the upcoming soccer event at the university, only if they sell all of the following items at their stall:

- 1. Pancakes
- 2. Hamburgers
- 3. Pizzas
- 4. Chips

Student A can make items 1 and 2. Student B can make items 3 and 4. Student C can make items 2 and 4, and student D can make items 1 and 3.

A Boolean function F(A,B,C,D) is defined as follows: F(A,B,C,D) = 1 when all 4 items are available (and the food stall is therefore allowed) and F(A,B,C,D) = 0 when all 4 items are not available (and therefore the food stall is not allowed).

Different combinations inputs for A, B, C and D are given in the tables provided in the following FOUR questions. Which alternative shows the correct outputs for F in EACH of the following FOUR questions?

				Alternative 1	Alternative 2	Alternative 3	Alternative 4
A	В	C	D	F	F	F	F
1	0	0	0	7	0	0	†
0	1	1	0	0	0	1	1

QUESTION 25

				Alternative 1	Alternative 2	Alternative 3	Alternative 4
A	В	C	D	F	F	F	F
0	0	1	1	1	9	0	1
1	1	0	0	0	0	1	1

QUESTION 26

				Alternative 1	Alternative 2	Alternative 3	Alternative 4
A	В	C	D	F	F	F	F
1	1	0	0	1	0	0	+
0	0	0	1	0	0	1	1