
COS1521/102/3/2013

Tutorial Letter 102/3/2013
Computer Systems: Fundamental Concepts

Semesters 1 and 2

School of Computing

This tutorial letter also contains important
information about your module.

Bar code

COS1521

COS1521/102/3/2013

CONTENTS

Note that the Table of Contents for Parts I and II are on Page 3.

NB:

You should read each unit in this letter. PART I, as you study the corresponding unit in the textbook.

However, you are strongly advised to read the content of this latter from page 24 onwards, PARTS II

and III, since these parts contain simplified methods of dealing with:

1. Number systems

2. Boolean algebra

3. Creating logic circuits

4. Creating and simplifying Karnaugh maps

5. Minterms

6. Etc…

Please go through these pages before you contact the lecturer for further assistance. All the content in

these pages (and the rest of pages) is examinable.

 Part I
 Manual for the prescribed book (p.4)

 Part II
 Additional exercises and explanations/study material (p.24)

 Part III
 Solution of the self-assessment exercise (Sections A and B) (p.76)

 Appendix : Errata F&M (p.76)

 Appendix II: Eng / Afr. Woordelys (p.97)

COS1521/102/3/2013

2

PREFACE

This tutorial letter consists of two parts. In this letter, we provide the purpose, outcomes, assessment
criteria and ranges for this module, information regarding the study material covered in the prescribed
book, explanations on the study material covered in Appendix E and additional exercises with solutions
and explanations.

Part I of this tutorial letter contains the purpose, outcomes and ranges for this module (similar to what is
given is Tutorial letter 101, and notes on the study material for this module that is covered in the
prescribed book, namely,

Forouzan, Behrouz & Mosharraf, Firouz. Foundations of Computer Science, 2nd edition. Cengage
Learning (Thomson Learning), 2008. ISBN: 978-1-84480-700-0.

We refer to the prescribed book as F&M and all page references are to F&M throughout this tutorial
letter.

The preface in F&M provides information about the composition of the book. At the end of each
chapter the authors provide a list of key terms and a summary that should be handy for identifying
and revising all the important concepts discussed in the chapter. A list of review questions as well as
multiple-choice questions are also provided that should be used for testing your understanding of the
study material covered in each chapter. Solutions to odd-numbered review questions are provided at
the following URL:

http://www.cengage.co.uk/forouzan/students/stu_title.htm

Tutorial Letter 101 contains information regarding this tutorial letter and the chapters in the prescribed
book that you need to study in order to prepare for the assignments that should be done.

Chapters 12, 15-18 and Appendixes B-D, F-H of F&M do not form part of the syllabus for COS1521.
The topics in these chapters and appendixes are dealt with in detail in some other modules in the School
of Computing. Appendix A of F&M does not form part of the syllabus but it can be read together with
Section 3.3, Chapter 3.

Part II provides additional exercises with solutions and supplementary explanations and/or study
material for Chapters 2–4 and Appendix E of F&M.

The appendices provide a list of errata for F&M and a list of English - Afrikaans words.

Note to Afrikaans students: Hierdie studiebrief word slegs in Engels uitgestuur. Kontak ons asb. indien
iets vir u nie duidelik is nie.

http://www.cengage.co.uk/forouzan/students/stu_title.htm

COS1521/102/3/2013

3

 TABLE OF CONTENTS
 Page
Part I: Manual for the prescribed book .. 4
 Module purpose, outcomes, assessment criteria and ranges ... 4
 Unit 1: Introduction ... 7
 Unit 2: Number systems ... 8
 Unit 3: Data storage ... 9
 Unit 4: Operations on data ... 11
 Unit 5: Computer organisation ... 14
 Unit 6: Computer networks .. 15
 Unit 7: Operating systems .. 16
 Unit 8: Algorithms ... 17
 Unit 9: Programming languages ... 18
 Unit 10: Software engineering .. 19
 Unit 11: Data structures .. 20
 Unit 13: File structures ... 21
 Unit 14: Databases .. 22

Part II: Additional exercises and supplementary study material for F&M, Chapters 2-4 and Appendix E 24
 Chapter 2: Number systems: Conversions between number systems .. 24
 Chapter 3: Data storage ... 36
 Chapter 4: Operations on data ... 36
 Appendix E: Boolean algebra & Logic circuits .. 38
 1. Boolean algebra .. 38
 1.1 Binary logic expressions and operators .. 38
 1.2 Truth tables for Boolean functions ... 40
 1.3 Boolean rules ... 41
 1.4 Application of Boolean rules ... 42
 1.5 Algebraic simplification of Boolean functions ... 44
 1.6 Boolean function transformation to sum of products (minterms) form .. 46
 1.7 Karnaugh maps (diagrams) .. 49
 1.8 Forming groups in Karnaugh maps .. 52
 1.9 Simplification of Boolean functions by using Karnaugh maps .. 53
 2. Logic circuits ... 61
 2.1 Combinational logic circuits .. 61
 2.2 Logically equivalent circuits .. 62
 2.3 Designing logic circuits ... 63

Part III: Solution of the self-assessment exercise (Sections A and B) ... 76

Appendix I: Errata F&M.. 93

Appendix II: Eng./Afr. woordelys ... 97

PART I

Manual for the prescribed book

COS1521/102/3/2013

4

Module purpose, outcomes, assessment criteria and ranges

Purpose

COS1521 is one of a number of first-year Computer Science modules offered by the School of Computing at Unisa.
The purpose of this module is to introduce students to the computer as a system. The module covers
hardware concepts such as internal representation of numbers and characters and basic computer
architecture, and software concepts such as systems software and applications software. It also includes a
brief introduction to databases, and to systems analysis and design.

Module outcomes, assessment criteria and ranges

Learning outcomes
Students should be
able to:

Assessment Criteria
Evidence in the form of formative
assessment (assignments) and
summative assessment (examination)
will show that:

Range Statements

Demonstrate how
data are represented,
manipulated and
stored in a computer
using number
systems, Boolean
algebra, Karnaugh
maps, truth tables
and basic logic
circuits drawings, in
the context of given
problem statements,
drawings, in the
context of given
problem statements.

• Conversions between different number
systems (binary, octal, decimal and
hexadecimal);

• The application of different arithmetic
methods in the binary number system;

• The identification of computer data
includes the different internal
representations;

• Explanations include the basic restrictions
placed by computer architecture upon
numerical computations;

• The determination of outputs of basic
combinational logic circuits for given
inputs;

• Graphical representations of the
combinational circuits for given Boolean
functions;

Basic knowledge of internal data,
logic gates, and memory elements
will be demonstrated only in the
context of the design of basic
combinational and sequential logic
circuits.

Part I
Manual for the prescribed book

COS1521/102/3/2013

5

• The simplifications of Boolean functions
by implementing appropriate
rules/methods;

• The determination of a Boolean function
for a given problem statement using truth
tables (at most 4 variables);

• Boolean expressions and binary logic that
describe the behaviour of logic circuits;

• The descriptions of the functioning of
different types of combinational and
sequential logic circuits.

2. Demonstrate an
understanding of the
basic functions of
computers, the
software
development process
and units of
hardware and
software
components.

• Today’s computers are described in
context of some short historical
background, different architectures and
ethical scenarios/issues;

• Descriptions of software engineering and
operating systems include the
development of software in a historical
context;

• The description of a basic computer
includes the three basic hardware
subsystems and their interconnectig
functioning;

• The description of an operating system
includes the functioning of its
components;

• The descriptions of popular operating
systems with references to different
popular operating platforms;

• The definition of an algorithm includes its
relation to problem solving;

• Definitions of the three algorithm
constructs include descriptions of their
use in algorithms;

• Descriptions of basic algorithms include
their applications;

• Descriptions of the sorting and searching
concepts of algorithms include an
understanding of their mechanisms;

• Descriptions of subalgorithms include
their relations to algorithms;

• Descriptions of the development process
models in software engineering include
the concepts of the software life-cycle
phases and documentation.

The context is basic computer
hardware and systems software with
its relevant algorithms.

3. Demonstrate an
understanding of the
basics of data
communications and
networks.

• Descriptions of physical structures of
networks include references to network
criteria, physical structures and categories
of networks;

• The description of the Internet includes

The context is the basics of
Information Communication
Technologies.

COS1521/102/3/2013

6

the TCP/IP protocol suite with reference
to the characteristics of its layers and their
relationships;

• Descriptions of Internet applications in
the context of client-server
communications.

4. Describe
datastuctures and
how different
databases function.

• Descriptions of data structures include
references to the differentiation beween
different structures;

• Descriptions of file structures include
references to updating and access
methods, and categories of directories and
of files;

• Definitions of a database and some
traditional database models include the
relational database design;

• The definition of a database management
system (DBMS) includes its architecture;

• Descriptions include the steps in database
design.

The contexts are typical of the
demands of first-year undergraduate
study.

The specific assessment criteria for each chapter in F&M are listed on the first page of each chapter in the
prescribed book.

The paragraphs below show where COS1521 fits into first-year modules offered by the School of Computing:

• COS1511 deals with the basic concepts of programming, using the programming language C++. It is aimed
at students who have not done any programming before.

• COS1512 introduces the learner to objects and the object-oriented programming environment. COS1511 is
a corequisite for COS1512.

• COS1521 provides a general background to computer systems.
• COS1501 introduces discrete mathematics relevant to Computer Science.
• INF1511 is an introductory course in Delphi programming.
• INF1505 provides a general background to business information systems.
• INF1520 deals with human-computer interaction.

COS1521/102/3/2013

7

UNIT 1

Introduction

Purpose
This unit supplements Chapter 1 of F&M. It provides an introduction to the computer as a device used
for processing data.

Learning outcomes
The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Overview of the chapter

This chapter in F&M introduces the concept of considering the computer as a black box that processes data.
This principle is often used in Computer Science in the sense that, when we describe a computing entity,
whether it be a hardware device or a computer program, we are sometimes only interested in the output that
will be produced given certain inputs. What happens inside the black box may not be of interest to us. The
Turing model is used to illustrate this principle.

F&M describes the von Neumann model on which most modern computers are based. The concept of data
that can be processed by a computer is discussed. Some of the software concepts that will be considered in
ensuing chapters are introduced. A short history of the development of computers is given. The authors then
highlight some social and ethical issues that resulted from the emergence of the modern digital computer
and finally provide a short discussion of Computer Science (or Computing as we refer to it) as a discipline.

COS1521/102/3/2013

8

UNIT 2

Number Systems

Purpose

This unit supplements Chapter 2 of F&M. Different number systems and the way in which conversions
between these number systems can be done are discussed.

Learning outcomes
The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book. In addition to these outcomes, you must be able to convert a hexadecimal number to
octal and vice versa.
Note: The second outcome in the list involving non-positional number systems should be excluded
because Section 2.3 does not form part of the syllabus.

Overview of the chapter

The binary, octal, decimal and hexadecimal number systems are discussed in this chapter. The conversions
between the different number systems are explained.

Note: Section 2.3 (Non-positional number systems) does not form part of the syllabus.

COS1521/102/3/2013

9

UNIT 3
01100111
 1 4 7

 6 7
 ‘g’

Data Storage

Purpose

This unit supplements Chapter 3 of F&M. It introduces different data types and the way in which
these are represented in computers.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Note: Appendix A (Unicode) explains in some detail how text is stored by using ASCII and Unicode.
Please note that Appendix A does not form part of the syllabus but you can read through it.

COS1521/102/3/2013

10

Overview of the chapter

This unit considers the representation of different types of data in the form of bit patterns. We look briefly
at the different ways in which numbers, text, images, audio and video data are represented.

It is extremely important to remember the following:

All kinds of data are stored in the form of bit patterns, i.e. 0s and 1s.

The computer may use the hexadecimal number system, for example, to display the contents of memory on
the screen but this is only to make it easier for us to read. All data in memory is in binary form, i.e.
represented as 0s and 1s. Note that a bit pattern of length 4 is called a nibble.

Different ways in which integers can be represented are considered. These include the representation of
unsigned numbers as well as the representation of signed numbers in sign-and-magnitude, and one’s and
two’s complement format. The way in which real numbers are stored by using floating-point format, is
discussed.

In the previous unit we saw how a decimal numbers can be represented as a string of bits by means of a
combination of zeros and ones. We also said that a computer can only work effectively once all incoming
data (and, in fact, the computer instructions) have been translated into a binary form. This binary form is a
"natural" form for a computer, because it can very easily be implemented by internal electronic circuits. We
will be taking a closer look at this implementation in the following two units.

In this unit, we consider the way in which alphabetic, numeric and other characters are represented inside
the computer. We already know that these characters must be in binary form, but what, for instance, is the
binary form of an "A" or a ","?

Computer manufacturers generally make use of a grouping of bits in order to achieve this representation.
This grouping is done in accordance with some or other code. Just as octal and hexadecimal constitute a
shorter way of writing binary numbers, these codes constitute a shorter way of writing down what is
actually going on inside the computer.

The amount of data that can be stored in a computer depends on the size of the memory of the computer.
The size of the memory is usually described in terms of the number of addressable memory positions, also
known as computer words. The length or size of such a word is decided upon by the manufacturer and can
consist of 4, 8, 16, 32, 48, 64 or even more bits.

COS1521/102/3/2013

11

UNIT 4

Operations on Data

Purpose

This unit supplements Chapter 4 and Appendix E of F&M. Arithmetic and logical operations on data are
discussed. The basics of Boolean algebra and logic circuits are also covered.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book. The outcomes for Appendix E are listed below.

Learning outcomes for Appendix E

Once you have mastered the study material covered in Appendix E, you will be able to:

 determine the outcome of simple logic circuits when given the inputs,
 describe the effect of the NOT, AND, OR, NAND, NOR and XOR gates,
 use Boolean expressions to describe the behaviour of logic circuits,
 draw a logic circuit when given a Boolean expression or problem statement,
 determine whether or not two logic circuits are logically equivalent,
 use Karnaugh maps to simplify Boolean expressions,
 describe a combinational circuit,
 use a truth table to design a combinational circuit for a given circuit,
 distinguish between combinational and sequential circuits,

COS1521/102/3/2013

12

 describe how flip-flops are triggered, and
 explain how registers are constructed from flip-flops and how they function inside a computer.

Note: Please note that the ‘product of sums’ (pp. 534, 537) and Examples E.4; E.5 do not form part
of the syllabus.

4.1 Overview of Chapter 4 and Appendix E

Chapter 4 in F&M should be studied together with Appendix E in F&M, this Unit 4 and the relevant
material in Part II of this letter. Note: Part II provides additional study material and explanations that
should be studied. This is a very important part of the study material for this module and you should
pay particular attention to the concepts explained here.

In Chapter 4, operations on data such as logic operations, shift operations and arithmetic operations are
discussed. Logical operations such as AND, OR, NOT and XOR are explained as well as the use of these to
access individual bits within a byte or word. It is described how logical shift operations can be used to
move bits within a byte. Note the difference between a logical shift and an arithmetic shift operation.

In Appendix E, it is explained how Boolean algebra can be used as a means of representing information in a
computer. We briefly look at the two broad categories of logic circuits namely combinational and
sequential circuits.

4.2 Summary of Appendix E: Boolean Algebra and Logic circuits

• Computers are built with components that can be in one of two states: on or off. Boolean algebra is

used to represent information in a computer as it involves variables and constants that can only take on
the values 0 or 1.

• Boolean expressions are combinations of constants (0 or 1), variables (letters such as x, y or z, etc) and

basic operators (NOT, AND or OR respectively indicated by ′, · and +). In some cases we do not
indicate AND by ·, we simply write, for example, xy in stead of x · y.

• Logic gates are electronic devices that create one output for some inputs. Boolean expressions are used

to represent these inputs and outputs for which the logical values can then be determined. Logic gates
such as the buffer, NOT, AND, OR, NAND, NOR and XOR gates each creates a specific output for some
input(s) and these operations are described by using truth tables.

COS1521/102/3/2013

13

• Electronic switches are used in the implementation of logic gates. In these implementations, mostly
NOT, NAND and NOR gates are used. Switches open or close when appropriate voltages are applied to
inputs. In practice, switches are replaced by transistors that behave like switches when used in gates.
Input and output signals are interpreted in terms of 0s or 1s. A 0 indicates no current and a 1 indicates
that a current flows through the resistor.

• The NOT gate can be implemented by using an electronic switch, a voltage source and a resistor, the

NAND gate by using two electronic switches in series and the NOR gate by using two switches in
parallel. The behaviour of these circuits matches the values in the truth tables of the corresponding
logic gates.

• Rules are used in Boolean algebra. These rules are divided into three categories namely axioms,

theorems and identities. All the rules can be extended by using more variables (eg. ab + cd = cd + ab –
commutativity) and the rules can be used to simplify Boolean expressions. De Morgan’s rules play a
very important role in logic design.

• A Boolean function is a function with n Boolean input variables and one Boolean output variable that

can be represented by a truth table or an expression.

• To implement a Boolean function by using logic gates, an expression for its truth table must be found.

We implement the sum of products method where the function is expressed in terms of minterms. (Note
that ‘product of sums’ and Examples E.4 and E.5 are excluded from the syllabus.)

• The number of gates required for a Boolean function can be reduced if simplification is carried out by

means of the algebraic method (by applying Boolean algebra rules) or a Karnaugh map.

• Normally the standard components of a computer are logic circuits that can be divided into two

categories namely combinational circuits and sequential circuits.

• A combinational logic circuit consists of a combination of logic gates with n inputs and m outputs and

each output depends entirely on all inputs. Logic circuits can be logically equivalent. A half adder and
a multiplexer are examples of combinational circuits.

• A sequential circuit can remember its current state to be used in future, in other words, a future state

can be dependent on a current state. Flip-flops, registers and digital counters are examples of sequential
circuits. It is possible to change a flip-flop from an asynchronous device to a synchronous device by
adding a clock input.

COS1521/102/3/2013

14

UNIT 5

Computer Organisation

Purpose

This unit supplements Chapter 5 of F&M. The internal organisation of a modern digital computer is
considered.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Note: The last two outcomes in the list involving pipelining and parallel processing should be excluded
because these two subsections of Section 5.6 do not form part of the syllabus. You can read through
Section 5.7 where a simple computer is introduced to illustrate the concepts covered in this chapter, but
this section need not be studied for examination purposes.

Overview of the chapter

This is a very important part of the study material for this module and you should pay particular attention to
the concepts explained here. The internal organisation of a stand-alone computer is explained, starting with
the identification of three subsystems. The internal organisation of each of these subsystems, as well as the
way in which they can be interconnected, are explained. We also look at different ways in which I/O
operations to and from memory can be handled.

The authors describe the way in which instructions within a computer program are executed. Different ways
in which I/O operations to and from I/O devices can be synchronised with CPU operations are also
discussed.

COS1521/102/3/2013

15

This chapter provides a discussion on the different approaches to computer architecture and organisation
used on CISC and RISC machines.

Note: Read through the subsections of Section 5.6 (Different architectures) on pipelining and parallel
processing, and Section 5.7 (A simple computer) where a simple computer system is used to illustrate
the concepts covered in this chapter. Please note that these parts are beyond the scope of this module
and need not be studied for the examination.

UNIT 6

Computer Networks

Purpose

This unit supplements Chapter 6 of F&M. Network principles as well as some devices and protocols
used in networks.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Overview of the chapter

Different criteria that are relevant in computer networking are discussed first. F&M then describes some
physical structures applicable to networks and discusses different network topologies. The different
categories in which networks can be divided are also explained.

COS1521/102/3/2013

16

The way in which the popular TCP/IP network protocol suite is used to establish communication between
different nodes on a network is explained. F&M provides a lay-out of the different layers within this
protocol and gives an explanation of the role played by each layer.

Since the Internet plays such an important part in our daily lives, the authors discuss some applications that
provide service to Internet users. These include email, the File Transfer Protocol (FTP) and the World Wide
Web (WWW). Different components of the WWW are also described as well as the different kinds of
documents that can be found within this environment.

UNIT 7

Operating Systems

Purpose

This unit supplements Chapter 7 of F&M. An introduction to the most important operating system
concepts is provided.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Overview of the chapter

The evolution of operating systems is described. We also consider the different components comprising an
operating system and discuss the main function of each component.

Finally, we look at a number of popular operating systems, namely Unix, Linux and Windows.

COS1521/102/3/2013

17

UNIT 8

Algorithms

Purpose

This unit supplements Chapter 8 of F&M. The concept of an algorithm is introduced.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book. Note: The last outcome in the list involving iterative and recursive algorithms should be
excluded because Section 8.7 does not form part of the syllabus.

Overview of the chapter

The concept of an algorithm is introduced. The three main constructs used in algorithms, namely a
sequence, a decision and a repetition are explained. We also look at two different ways in which an
algorithm can be presented and at the concept of a subalgorithm.

By using several examples, such as sort and search algorithms, the textbook illustrates how algorithms can
be used to provide a description of how a problem could be solved.

Work through all the examples of algorithms in Section 8.5 and make sure you understand how they work.
You need not memorise any of these algorithms.

Note: Please note that Section 8.7 (Recursion) does not form part of the syllabus and will be dealt with in a
second year module.

COS1521/102/3/2013

18

UNIT 9

Programming Languages

Purpose

This unit supplements Chapter 9 of F&M. Programming languages and different programming
paradigms are discussed and compared.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book. Note: The last outcome in the list involving common concepts in languages should be
excluded because Section 9.4 does not form part of the syllabus.

Overview of the chapter

An introduction of the evolution of computer languages is given. Translation methods by which high-level
programming languages are converted to machine language are described. Different programming
paradigms are compared and contrasted.

Note: Note that Section 9.4 (Common concepts) does not form part of the syllabus.

COS1521/102/3/2013

19

UNIT 10

Software Engineering

Purpose

This unit supplements Chapter 10 of F&M. The reader is introduced to software engineering.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Overview of the chapter

The software lifecycle is introduced. Two different process models for systems development are examined.

The software lifecycle consists of four phases. We consider the activities that occur and the tools that are
used in each of these phases.

In the analysis and design phases, object- and procedure-oriented approaches are described. Software
quality factors in the implementation phase are discussed. The attributes that determine the quality of a
software product are examined and different types of testing are explained. Finally we look at the
importance of documentation during each phase of the software lifecycle.

COS1521/102/3/2013

20

UNIT 11

Data Structures

Purpose

This unit supplements Chapter 11 of F&M. Different ways in which data can be stored by using data
structures are considered.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Overview of the chapter

Different data structures such as arrays, records and linked lists are studied. We look at one- and two-
dimensional arrays and describe how operations on these are handled. The way in data in which two-
dimensional arrays are stored, is explained.

The concepts of a record and of fields within a record are discussed and the way in which individual records
and fields are accessed is considered.

Finally, we look at linked lists, a data structure which you will frequently come across during your
Computer Science studies. The use of pointers in such a list and operations on nodes within a linked list is
explained and the way in which a linked list is traversed is discussed.

COS1521/102/3/2013

21

Note: Chapter 12 of F&M is not included in the syllabus for this module. Abstract data types will be
dealt with in detail in some of the second-year modules. So, nothing to be studied here!

UNIT 13

File Structures

Purpose

This unit supplements Chapter 13 of F&M. The concepts of files, file structures and file access methods
are considered.

Learning outcomes

The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book.

Overview of the chapter

Different files structures are discussed. We first look at sequential files and how these are accessed and
updated. Then we consider types of file that can be accessed randomly. These include indexed files and
hashed files. We look at the way in which indexed files are accessed and explain what an inverted file is.
The concepts of hashed files and different hashing methods are then discussed, as well as the way in which
hashing collisions could be handled. The importance of the use of directories for systematically organising
your files is described.
Finally, the differences between text files and binary files are high-lighted.

 22 COS1521/102/3/2013

UNIT 14

Databases

Purpose

This unit supplements Chapter 14 of F&M. The reader is introduced to the most important database
concepts.

Learning outcomes
The learning outcomes for this unit are listed on the first page of the corresponding chapter in the
prescribed book. Note: The three outcomes (before the last outcome) involving database design should
be excluded because Section 14.7 does not form part of the syllabus.

Overview of the chapter

The components comprising a Database Management System (DBMS) are introduced. We look at the
three-level DBMS architecture proposed by the American National Standards Institute / Standards Planning
and Requirements Committee (ANSI/SPARC). Three different database models, namely the hierarchical
model, the network model and the relational model, are then introduced.

We look in detail at the relational model, a model that is commonly used. The concept of a relation is
explained and different operations on relations are shown. The way in which Structured Query Language
(SQL) is used to perform operations on a database is also illustrated.

Note: Please note that you need not know the syntax of SQL statements.

 23 COS1521/102/3/2013

Note: Section 14.7 (Database design) of F&M does not form part of the syllabus.

Finally, we consider two other types of database that are commonly used in industry today, namely
distributed databases and object-oriented databases.

The theory and practice of databases are further studied in some third-year modules.

Chapters 12 and15 - 18 of F&M are not included in the syllabus for this module. These topics are dealt with in
detail in some other modules in the School of Computing.

Part II

Additional exercises and/or explanations for
F&M, Chapters 2-4 and Appendix E

 24 COS1521/102/3/2013

Part II
Additional exercises and/or explanations for F&M, Chapters 2-4 and Appendix E

All page references are to the prescribed book, Forouzan & Mossaraf.

Chapter 2

Number systems: Conversions between number systems

Exercise 2.1
Consider Table 2.2, p. 25. Convert the binary and octal numbers to decimal.

Solution:

Binary to decimal:

(0)2 = 0x20 = (0)10
(1)2 = 1x20 = (1)10
(10)2 = 1x21 + 0x20 = 2+0 = (2)10
(11)2 = 1x21 + 1x20 = 2+1 = (3)10
(100)2 = 1x22 + 0x21 + 0x20 = 4+0+0 = (4)10
(101)2 = 1x22 + 0x21 + 1x20 = 4+0+1 = (5)10
(110)2 = 1x22 + 1x21 + 0x20 = 4+2+0 = (6)10
(111)2 = 1x22 + 1x21 + 1x20 = 4+2+1= (7)10
(1000)2 = 1x23 + 0x22 + 0x21 + 0x20 = 8+0+0+0 = (8)10
(1001)2 = 1x23 + 0x22 + 0x21 + 1x20 = 8+0+0+1 = (9)10
(1010)2 = 1x23 + 0x22 + 1x21 + 0x20 = 8+0+2+0 = (10)10
(1011)2 = 1x23 + 0x22 + 1x21 + 1x20 = 8+0+2+1 = (11)10
(1100)2 = 1x23 + 1x22 + 0x21 + 0x20 = 8+4+0+0 = (12)10
(1101)2 = 1x23 + 1x22 + 0x21 + 1x20 = 8+4+0+1 = (13)10
(1110)2 = 1x23 + 1x22 + 1x21 + 0x20 = 8+4+2+0 = (14)10
(1111)2 = 1x23 + 1x22 + 1x21 + 1x20 = 8+4+2+1 = (15)10
One more example: (10000)2 = 1x24 + 0x23 + 0x22 + 0x21 + 0x20 = 16+0+0+0+0 = (16)10

 25 COS1521/102/3/2013

Octal to decimal

 (0)8 = 0x80 = (0)10
 (1)8 = 1x80 = (1)10
 (2)8 = 2x80 = 2x1 = (2)10
 (3)8 = 3x80 = 3x1 = (3)10
 (4)8 = 4x80 = (4)10
 (5)8 = 5x80 = (5)10
 (6)8 = 6x80 = (6)10
 (7)8 = 7x80 = (7)10
(10)8 = 1x81 + 0x80 = 8+0 = (8)10
(11)8 = 1x81 + 1x80 = 8+1 = (9)10
(12)8 = 1x81 + 2x80 = 8+2 = (10)10
(13)8 = 1x81 + 3x80 = 8+3 = (11)10
(14)8 = 1x81 + 4x80 = 8+4 = (12)10
(15)8 = 1x81 + 5x80 = 8+5 = (13)10
(16)8 = 1x81 + 6x80 = 8+6 = (14)10
(17)8 = 1x81 + 7x80 = 8+7 = (15)10

Exercise 2.2
Convert the following numbers to decimal:

a) (11111)2 ; (110010.1)2 ; (10001.1010)2

b) (203)8 ; (102.1)8 ; (20.101)8

c) (A01)16 ; (C.A)16; (100A)16

Solution:

a) Binary to decimal:

(11111)2 = 1x24 + 1x23 + 1x22 + 1x21 + 1x20
 = 16 + 8 + 4 + 2 + 1
 = (31)10

 26 COS1521/102/3/2013

(110010.1)2 = 1x25 +1x24 +0x23 +0x22 + 1x21 + 0x20 + 1x2-1
 = 32 +16 + 0 + 0 + 2 + 0 + ½
 = (50.5)10

(10001.1010)2 = 1x24 + 0x23 + 0x22 + 0x21 + 1x20 + 1x2-1 + 0x2-2 + 1x2-3 + 0x2-4

 = 16 + 0 + 0 + 0 + 1 + ½+ 0 + ⅛ + 0
 = (17.625)10

b) Octal to decimal:

(203)8 = 2x82 + 0x81 + 3x80 = 128 + 0 + 3 = (131)10

(102.1)8 = 1x82 + 0x81 + 2x80 + 1x8-1 = 64 + 0 + 2 + ⅛
 = (66.125)10

(20.101)8 = 2x81 + 0x80 + 1x8-1 + 0x8-2 + 1x8-3

= 16 + 0 + ⅛ + 0 + 1/512
= (16.126953125)10

c) Hexadecimal to decimal:

(A01)16 = Ax162 + 0x161 + 1x160
 = 10x256 + 0 + 1x1
 = 2560 + 1
 = (2561)10

(C.A)16 = Cx160 + Ax16-1
 = 12x1 + 10x16-1

 = 12 + 10x 1/16
 = 12 + 0.625
 = (12.625)10

(100A)16 = 1x163 + 0x162 + 0x161 + Ax160

 = 4096 + 0 + 0 + 10x160
 = 4096 + 10
 = (4106)10

 27 COS1521/102/3/2013

Exercise 2.3
Convert the following decimal numbers to binary (fractional part up to 5 binary digits):

a) 91; b) 0.55; c) 0.6875; d) 32.125

Solution:

a) 91 to binary:

0←1←2←5←11←22←45←91 Decimal (Divide repetitively by 2; remainders appear below.)
 ↓ ↓ ↓ ↓ ↓ ↓ ↓
 1 0 1 1 0 1 1 Binary

The result is (91)10 = (1011011)2.

Alternative method:

 91 / 2 = 45 remainder 1
 45 / 2 = 22 remainder 1
 22 / 2 = 11 remainder 0
 11 / 2 = 5 remainder 1
 5 / 2 = 2 remainder 1
 2 / 2 = 1 remainder 0
 1 / 2 = 0 remainder 1. ↑ Write down the reverse order of the binary digits:
 Thus (91)10 = (1011011)2.

 These remainders in reverse order give the binary digits of the number. In the first method, the binary
digits appear in the correct order in which the number is represented.

Another (preferred) method:

Break 91 into packets that are of the same sizes as the binary place values:

91 = 64 + 16 + 8 + 2 + 1. These numbers are represented as binary numbers:

 27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1
0 1 0 1 1 0 1 1. Thus (91)10 = (1011011)2.

 28 COS1521/102/3/2013

b) 0.55 to binary:

Decimal 0.55→0.10→0.2→0.4→0.8 (Multiply repetitively by 2; integer parts appear below.)
 ↓ ↓ ↓ ↓ ↓
Binary · 1 0 0 0 1 (5 binary digits)

The result is (0.55)10 = (0.10001)2.

Alternative method:

0.55 x 2 = 1.10 = 0.1 + 1
0.1 x 2 = 0.2 + 0
0.2 x 2 = 0.4 + 0
0.4 x 2 = 0.8 + 0
0.8 x 2 = 1.6 = 0.6 + 1. Thus (0.55)10 = (0.10001)2.

c) 0.6875 to binary:

Decimal 0.6875→0.375→0.75→0.5→0.0 (Multiply repetitively by 2; integer parts appear below.)
 ↓ ↓ ↓ ↓
Binary · 1 0 1 1

The result is (0.6875)10 = (0.1011)2.

Alternative method:

0.6875 x 2 = 1.3750 = 0.375 + 1
0.375 x 2 = 0.75 = 0.75 + 0
0.75 x 2 = 1.5 = 0.5 + 1
0.5 x 2 = 1.0 = 0.0 + 1. Thus (0.6875)10 = (0.1011)2.

Note that the binary digits of the integer part are written in reverse order to that in which they were
calculated. This is not true for the fractional part.

 29 COS1521/102/3/2013

d) 32.125 to binary:

Integer part:
0←1←2←4←8←16←32 Decimal (Divide repetitively by 2; remainders appear below.)
 ↓ ↓ ↓ ↓ ↓ ↓
 1 0 0 0 0 0 Binary

The result is (32)10 = (100000)2.

Alternative method:

32 / 2 = 16 remainder 0
16 / 2 = 8 remainder 0
 8 / 2 = 4 remainder 0
 4 / 2 = 2 remainder 0
 2 / 2 = 1 remainder 0
 1 / 2 = 0 remainder 1. Thus (32)10 = (100000)2

Fractional part:
Decimal 0.125→0.25→0.5→0.0 (Multiply repetitively by 2; integral parts appear below.)
 ↓ ↓ ↓
Binary · 0 0 1

The result is (0.125)10 = (0.001)2.

Alternative method:

0.125 x 2 = 0.25 = 0.25 + 0
0.25 x 2 = 0.5 = 0.5 + 0
0.5 x 2 = 1.0 = 0.0 + 1. Thus (0.125)10 = (0.001)2.

The final result is (32.125)10 = (100000.001)2.

Note again that the binary digits of the integer part are written in the reverse order to that in which it
was calculated. This is not true for the fractional part.

 30 COS1521/102/3/2013

Exercise 2.4
Convert the following decimal numbers to octal (truncated to 6 places):

a) 273; b) 958; c)10.36

Solution:

a) 273 to octal:

273 / 8 = 34 remainder 1
 34 / 8 = 4 remainder 2
 4 / 8 = 0 remainder 4. Thus (273)10 = (421)8.

b) 958 to octal:

958 / 8 = 119 remainder 6
119 / 8 = 14 remainder 7
 14 / 8 = 1 remainder 6
 1 / 8 = 0 remainder 1. Thus (958)10 = (1676)8.

c) 10.36 to octal:

Integer part:
10 / 8 = 1 remainder 2
 1 / 8 = 0 remainder 1. Thus (10)10 = (12)8.

Fractional part:
0.36 x 8 = 2.88 = 0.88 + 2
0.88 x 8 = 7.04 = 0.04 + 7
0.04 x 8 = 0.32 = 0.32 + 0
0.32 x 8 = 2.56 = 0.56 + 2
0.56 x 8 = 4.48 = 0.48 + 4
0.48 x 8 = 3.84 = 0.84 + 3. Thus (0.36)10 = (0.270243)8 (to 6 octal digits).

The final result is (10.36)10 = (12.270243)8.

 31 COS1521/102/3/2013

Exercise 2.5
Convert the following decimal numbers to hexadecimal:

a) 255; b) 128; c) 412

Solution:

a) 255 to hexadecimal:

255 / 16 = 15 remainder 15 = 15 remainder F16
 15 / 16 = 0 remainder 15 = 0 remainder F16. Thus (255)10 = (FF)16.

b) 128 to hexadecimal:

128 / 16 = 8 remainder 0
 8 / 16 = 0 remainder 8. Thus (128)10 = (80)16.

c) 412 to hexadecimal:

412 / 16 = 25 remainder 12 = 25 remainder C16
 25 / 16 = 1 remainder 9
 1 / 16 = 0 remainder 1. Thus (412)10 = (19C)16.

Exercise 2.6
Convert the following binary numbers to octal:

a) (101110.11)2; b) (10110.101001)2; c) (10.1011)2

Solution:

c) (101110.11)2 to octal:

101 110.11 = (101 110.110)2
 = (5 6 . 6)8
 = (56.6)8

(Form groups of 3 digits; add a 0 at the end of the given number to form a group of 3 digits; convert
each group to an octal number.)

 32 COS1521/102/3/2013

b) (10110.101001)2 to octal:

10110.101001 = (010 110.101 001)2
 = (2 6 . 5 1)8
 = (26.51)8

c) (10.1011)2 to octal:

10.1011= (010.101 100)2
 = (2 . 5 4)8
 = (2.54)8

Note: the grouping of the fractional part must be done in such a way that the last group forms a
complete octal number. Had this not been done, we would have written 2.51 instead of 2.54.

Exercise 2.7
Convert the following octal numbers to binary:

a) (703)8; b) (403.06)8; c) (3.305)8

Solution:

a) (703)8 to binary:

(703)8 = (7 0 3)8 (Convert each octal number to binary, e.g. (7)8 = (111)2, etc.)
 = (111 000 011)2
 = (111000011)2

b) (403.06)8 to binary:

(403.06)8 = (100 000 011.000 110)2
 = (100000011.00011)2

c) (3.305)8 to binary:

(3.305)8 = (011.011 000 101)2
 = (11.011000101)2

 33 COS1521/102/3/2013

Exercise 2.8
Convert the following binary numbers to hexadecimal:

a) (1011111.0011)2; b) (111111.11)2; c) (10000.00011)2

Solution:

a) (101 1111.0011)2 to hexadecimal:

(101 1111.0011)2 = (0101 1111.0011)2

= (5 F . 3)16
= (5F.3)16

(Form groups of 4 digits; add a 0 to the beginning of the given number to form a group of 4 digits;
convert each group to a hexadecimal number.)

b) (111111.11)2 to hexadecimal:

(11 1111.11)2 = (0011 1111.1100)2
 = (3 F . C)16
 = (3F.C)16

(Form groups of 4 digits; add 0s to the beginning and end of the given number to form groups of 4
digits; convert each group to a hexadecimal number.)

c) (10000.00011)2 to hexadecimal:

(1 0000.0001 1)2 = (0001 0000.0001 1000)2
 = (1 0 . 1 8)16
 = (10.18)16

Exercise 2.9
Convert the following hexadecimal numbers to binary:

a) (3F.C)16; b) (50.72)16; c) (62.A)16

 34 COS1521/102/3/2013

Solution:

a) (3F.C)16 to binary:

(3F.C)16 = (0011 1111.1100)2 (Convert each hexadecimal number to binary, e.g. (3)16 = (0011)2, etc.)
 = (111111.11)2

b) (50.72)16 to binary:

(50.72)16 = (0101 0000.0111 0010)2
 = (1010000.011100)2

c) (62.A)16 to binary:

(62.A)16 = (0110 0010.1010)2
 = (1100010.101)2

Exercise 2.10
Convert the following hexadecimal numbers to octal:

a) (3F.C)16; b) (50.72)16; c) (62.A)16

Solution:

a) (3F.C)16 to octal:

(3F.C)16 = (0011 1111.1100)2 (Convert each hexadecimal number to binary.)

= (111 111.110)2 (Regroup to form groups of 3.)
= (7 7 . 6)8 (Convert each binary group to octal, e.g. (111)2 = (7)8.)
= (77.6)8

b) (50.72)16 to octal:

(50.72)16 = (0101 0000.0111 0010)2

= (001 010 000.011 100 100)2
= (1 2 0 . 3 4 4)8
= (120.344)8

 35 COS1521/102/3/2013

c) (62.A)16 to octal:

(62.A)16 = (0110 0010.1010)2

= (001 100 010.101)2
= (1 4 2 . 5)8
= (142.5)8

Exercise 2.11
Convert the following octal numbers to hexadecimal:

a) (7123)8; b) (213.56)8; c) (23.02)8

Solution:

a) (7123)8 to hexadecimal:

(7123)8 = (111 001 010 011)2 (Convert each octal number to binary.)
 = (1110 0101 0011)2 (Regroup to form groups of 4.)
 = (E 5 3)16 (Convert each binary group to hexadecimal, e.g. (1110)2 = (E)16.)
 = (E53)16

b) (213.56)8 to hexadecimal:

(213.56)8 = (010 001 011 . 101 110)2
 = (1000 1011 . 1011 1000)2 (Add two 0s at the end to form a group of 4 digits.)
 = (8 B . B 8)16
 = (8B.B8)16

c) (23.02)8 to hexadecimal:

(23.02)8 = (010 011 . 000 010)2
 = (0001 0011 . 0000 1000)2 (Add two 0s at the beginning and end.)
 = (1 3 . 0 8)16
 = (13.08)16

 36 COS1521/102/3/2013

Chapter 3

Data Storage

Exercise 3.1

Write the following numbers in normalised form:

a) 1235.8 (dec.); b) 0.056 x 102 (dec.); c) (1111.01)2 d) (0.0111001)2

Solution:

a) 1235.8 = 1.2358x103

b) 0.056x102 = 5.6

c) (1111.01)2 = (1.11101)2 x (23)10 (Sign: +; Exponent: 3; Mantissa: 11101)

d) (0.0111001)2 = (1.11001)2 x (2-2)10 (Sign: -; Exponent: -2; Mantissa: 11001)

Chapter 4:

Operations on data

Exercise 4.1
Calculate:

a) (101)2 + (101)2 b) (1100)2 + (1010)2 c) (1111)2 + (1001)2

(These are unsigned numbers.)

Solution:

 37 COS1521/102/3/2013

First look at a simple example in decimal: 19 + 2 = 21 (The base is 10, i.e. ten.)

Explanation:
Column 100: 9 + 2 = 1 + 10 (i.e. 1 + carry of 1 to the next column. The base is 10, so a carry takes

 place when we get a 10.)
Column 101: (carry of 1) + 1 + 0 = 2

Addition in binary is similar to addition in decimal - the base of the number system in which the
addition is being done must be taken into account.

Addition in binary (the base is 210, i.e. two):

a) 101
 + 101
 1010

b) 1100
 + 1010
 10110

c) 1111
 + 1001
 11000

Example:

Place values: 23 22 21 20

Carry: 1 1 1
Augent: 0 1 1 1
Addent: 0 1 0 1
Sum: 1 1 0 0

Explanation:
Column 20: 1 + 1 = 210 = 0 + (10)2 (i.e. 0 + carry of 1 to the next column. When we get a 2, a

carry takes place.)
Column 21: (carry of 1) + 1 + 0 = 210 = 0 + (10)2 (i.e. 0 + carry of 1 to the next column)
Column 22: (carry of 1) + 1 + 1 = 310 = 1 + 210 = 1 + (10)2 (i.e. 1 + carry of 1 to the next

column)
Column 23: (carry of 1) + 0 + 0 = 1

Place values:

101

100

Carry:

1

Augend:

1

9

Addend:

 0

2

Sum:

2

1

 38 COS1521/102/3/2013

Supplement to Appendix E:

Boolean algebra & Logic circuits

1. Boolean algebra (pp. 527 - 538)

Exercises and/or explanations material are provided in the following sections:

1.1 Binary logical expressions and operators
1.2 Truth tables for Boolean functions
1.3 Boolean rules
1.4 Application of Boolean rules
1.5 Algebraic simplification of Boolean functions
1.6 Boolean function transformation to sum of products (minterms) form
1.7 Karnaugh maps (diagrams)
1.8 Forming groups in Karnaugh maps
1.9 Simplification of Boolean functions by using Karnaugh maps

1.1 Binary logical expressions and operators (pp. 527 – 529)

Exercise E.1

Consider the following binary variables:
A = 1, B = 0, C = 1, D = 0

Calculate the logical values of the following expressions:

a) A·B; b) A+B; c) A+C; d) A′; e) D′; f) A·C; g) B+D. (Refer to the tables in Figure E.1, p. 528)

Solution:

a) A·B = 1·0 = 0
b) A+B = 1+0 = 1
c) A+C = 1+1 = 1
d) A′ = 1′ = 0
e) D′ = 0′ = 1
f) A·C = 1·1 = 1
g) B+D = 0+0 = 0

 39 COS1521/102/3/2013

Exercise E.2

Given that A = 0, B = 1, C = 1 and D = 0, evaluate the following expressions:

a) (A + B)A
b) A′ + B·D

c) A′ + A′
d) (A + B)′
e) AB′ + (B + D)

Solution:

A = 0, B = 1, C = 1, D = 0

a) (A+B)A b) A′+BD (c) A′+A′

=(0+1)0 =0′+1·0 =0′+ 0′
=1·0 =1+0 =1+1
=0 =1 =1

d) (A+B)′ e) AB′+(B+D)

=(0+1)′ =0·1′+ (1+0)
=1′ =0·0 + 1
=0 =0 + 1=1

f) Evaluate the expression (AB+AC') ⋅ (A' BC+AC)', for A=1, B=1, C=0.

Solution:

(AB + AC') ⋅ (A' BC + AC)'
= (1⋅1 + 1⋅0') ⋅ (1'⋅1⋅0 + 1⋅0)'
= (1 + 1) ⋅ (0 + 0)'
= 1 ⋅ 0'
= 1 ⋅ 1
= 1

 40 COS1521/102/3/2013

1.2 Truth tables for Boolean functions (p. 535)

Exercise E.3

a) Use a truth table to show that x + x'y = x + y.

Solution:

x

y

x + x'y

x + y

0

0

0 + 1 ⋅ 0 = 0

0 + 0 = 0

0

1

0 + 1 ⋅ 1 = 1

0 + 1 = 1

1

0

1 + 0 ⋅ 0 = 1

1 + 0 = 1

1

1

1 + 0 ⋅ 1 = 1

1 + 1 = 1

The results in the final two columns are equivalent, hence x + x'y = x + y.

b) Use truth tables to show that the following Boolean expressions are equivalent:

X = A′B′C + AB′C′ + AB′C and Y = AB′ + B′C

Solution:
Boolean expressions are equivalent if their final outputs are the same. This means that the final
columns in the truth tables of these expressions must have identical inscriptions.

Let X = A′B′C + AB′C′ + AB′C

A B C

A′B′C

AB′C′

AB′C

X

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

 0
 1
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 1
 0
 0
 0

 0
 0
 0
 0
 0
 1
 0
 0

0
1
0
0
1
1
0
0

 41 COS1521/102/3/2013

Let Y = AB′ + B′C

A B C

AB′

B′C

Y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
0
0
0
1
1
0
0

0
1
0
0
0
1
0
0

0
1
0
0
1
1
0
0

The entries in the two final columns are identical, so X is equivalent to Y.

This means that A′B′C + AB′C′ + AB′C = AB′ + B′C.

1.3 Boolean rules (p. 532)
F&M divide Boolean rules into three categories: axioms, theorems and identities. Not all Boolean
algebra rules are named in F&M. We provide the following table with Boolean rules:

BOOLEAN RULES

(i) Associative rule

(a) x + (y + z) = (x + y) + z

(b) x(yz) = (xy)z (We usually write xy instead of x⋅y)

(ii) Commutative rule

(a) x + y = y + x

(b) xy = yx

(iii) Distributive rule

(a) x + (yz) = (x + y)(x + z)

(b) x(y + z) = xy + xz

(iv) Identity rule

There exist two elements 0 and 1 such that:

(a) x + 0 = x

(b) x⋅1 = x

(v) Complement rule

(a) x + x′ = 1

(b) xx′ = 0

(vi) Idempotence

(a) x + x = x

(b) x⋅x = x

(vii) Absorption

(a) x + (xy) = x (Not provided in F&M.)

(b) x (x + y) = x (Not provided in F&M.)

(c) x (x′+ y) = xy OR x′(x+ y) = x′y

(d) x + (x′·y) = x + y (Similar to (e).)

(e) x′ + (x·y) = x′ + y (Not provided in F&M.)

(viii) Null (Zero) or Boundedness

(a) x + 1 = 1

(b) x⋅0 = 0

 42 COS1521/102/3/2013

(ix) De Morgan

(a) (x + y)′ = x′y′
(b) (xy)′ = x′ + y′

(x) Double negative or Involution

(x′)′ = x

1.4 Application of Boolean rules (p. 535)

Boolean rules can be expanded. Note: It is not necessary to provide the names of rules that you apply in
your solutions. We discuss a few rules provided in the above table.

(ii) Commutative

(a) x + y = y + x

(b) xy = yx

Commutativity identity Rule (a) applied:
xy + yw = yw + xy

(ix) De Morgan

(a) (x + y)′ = x′y′
(b) (xy)′ = x′ + y′

De Morgan's theorem applied:

Example: Apply De Morgan’s theorem to the following Boolean expression: (VWT + V′ T′)′

De Morgan’s theorem, Rule (a): (a + b)′ = a′ b′

Let VWT = a, and V′T′ = b,
then (VWT + V′ T′)′

= (a + b)′
= a′b′ De Morgan
= (VWT)′ (V′ T′)′.

It is possible to apply De Morgan’s theorem again:

De Morgan’s theorem, Rule (b): (mn)′= m′+ n′. Note: (mn)' ≠ m'n'.

We can expand this theorem: (mns)′= m′+ n′ + s′

 43 COS1521/102/3/2013

Back to the example: Simplify (VWT)′ (V′ T′)′
Consider (VWT)′: (VWT)′ = V′ + W′ + T′ _1

Consider (V′ T′)′: Let V′ = m and T′ = n, then

(V′ T′)′
= (mn ′
= m′+ n′
= (V′)′ + (T′)′
= V + T _2 Involution

From _1 and _2 it follows that (VWT + V′ T′)′ = (VWT)′ (V′ T′)′ = (V′ + W′ + T′)(V + T).

It is possible to simplify the final expression - try this!

(vii) Absorption

(a) x + (xy) = x (Not provided in F&M.)

(b) x (x + y) = x (Not provided in F&M.)

(c) x (x′+ y) = xy

(d) x + (x′· y) = x + y

(e) x′ + (x·y) = x′ + y (Not provided in F&M. Similar to (d).)

We look at Rule (a): x + xy = x
(x stands alone and is present in the second term xy . The second term falls away.)

Absorption rule applied:
(vw' + vw'yu) + vw'u = vw' + vw'u = vw' (Apply the rule twice.)

We look at Rule (e): x′ + (x·y) = x′ + y (The x disappears from the second term.)

The absorption rule applied:
 x' + xuv'w + xy' (x' stands alone and x is present in the other terms.)
= x' + x(uv'w + y') distributive
= x' + uv'w + y' (The x disappears from the second term.)

 44 COS1521/102/3/2013

1.5. Algebraic simplification of Boolean functions (p. 535)

Exercise E.4

Simplify the following Boolean functions algebraically:

a) xy′z′ + xy′z + x′yz + x′yz′
b) A′B′C + AB′C′ + AB′C + ABC′ + ABC
c) ((x′+y′+z)′ + (x+y′) + z′)′
d) (x' + y)(y' + z)(x + z')'
e) ((A′ + B′ + C) ′ + (A + B′)′ + C′)′
f) xyz + xy′z + x′yz′ + x′y′z′
g) (s + pq'r)' + r' + rp' + rp's
h) (pqr' + rs)' + (p'r + prs)'

Solution:

a) xy′z′ + xy′z + x′yz + x′yz′
 = xy′ (z′ + z) + x′y(z + z′) Distributive
 = xy′ + x′y Complement

b) A′B′C + AB′C′ + AB′C + ABC′ + ABC
= A′B′C + AB′(C′+C) + AB(C′+C) Distributive

 = A′B′C + AB′ + AB Complement
 = A′B′C + A(B′ + B) Distributive
 = A′B′C + A Complement
 = A + A′B′C Commutative
 = A + A′(B′C) Associative
 = A + B′C Absorption

c) ((x′+y′+z) ′ + (x+y′) + z′)′
 = ((x′+y′+z) ′)′ ⋅ (x+y′)′ ⋅ z′′ De Morgan
 = (x′+y′+z)⋅(x+y′)′⋅z Double negative
 = (x′+y′+z)⋅x′y′′⋅z De Morgan and double negative
 = x′x′yz + y′x′yz + zx′yz Distributive

= x′yz + y′yx′z + x′yz Idempotence, commutative
 = x′yz + 0⋅x′z + x′yz Complement
 = x′yz + 0 + x′yz Null
 = x′yz + x′yz Identity

= x′yz Idempotence

 45 COS1521/102/3/2013

d) (x' + y)(y' + z)(x + z')'
 = x' y' + x' z + y y' + yz) (x' z) Distributive, De Morgan, involution
 = (x' y' + x' z + 0 + yz) (x' z) Complement
 = x' y' z + x' z + x' zy Distributive, idempotent
 = x' z (y' + 1 + y) Distributive
 = x' z Null, identity

e) ((A' + B' + C)' + (A + B')' + C')'
 = (A' + B' + C) ⋅ (A + B') ⋅ C De Morgan, involution
 = (A' + B' + C) ⋅ (AC + B'C) Distributive
 = A'AC + A'B'C + B'AC + B'B'C + CAC +CB'C Distributive
 = 0 +A'B'C + B'AC + B'C + AC + B'C Complement, null, idempotence, commutative
 = A'B'C + AB'C + B'C + AC Distributive, idempotence
 = B'C ⋅ (A' + A + 1) + AC Distributive, commutative
 = B'C + AC Null, identity

f) xyz + xy′z + x′yz′ + x′y′z′
 = xz(y+y′) + x′z′ (y+y′) Distributive
 = xz(1) + x′z′ Complement
 = xz + x′z′ Identity

g) (s + pq'r)' + r' + rp' + rp's
 = s' ⋅ (pq'r)' + r' + rp' + rp's de Morgan.
 = s' ⋅ (pq'r)' + r' + r(p' + p's) Commutative (Consider r' + r(p' + p's: r' stands alone
 and r is present in the other term, so we can use the
 absorption rule (e).)
 = s' (p' + q'' + r') + r' + p' + p's de Morgan, absorption
 = s'p' + s'q + s'r' + r' + p' + p's Distributive, involution
 = (s'p' + p'+ p's) + (s'r' + r') + s'q Associative (Consider s'p'+ p'+ p's: p' stands alone and p'
 is present in the terms, s'p' and p's, and consider
 s'r' + r': r' stands alone and r' is present in another term,
 s'r', so we can apply the absorption rule (a) in both cases.)
 = p' + r' + s'q Absorption

h) (pqr' + rs)' + (p'r + prs)'
 = (pqr')' ⋅ (rs)' + (r ⋅ (p' + ps))' de Morgan, distributive
 = (p' + q' + r'') ⋅ (r' + s') + (r ⋅ (p' + s))' de Morgan, absorption rule (e)

 46 COS1521/102/3/2013

 = (p'r' + p's' + q'r' + q's' + rr' + rs') + (r' + (p' + s)') Involution, distributive, de Morgan
 = p'r' + p's' + q'r' + q's' + 0 + rs' + r' + p''s' Complement, de Morgan
 = p'r' + q'r' + r' + p's' + ps'+ q's' + rs' Commutative, involution, identity
 = (p'r' + q'r' + r') + s'(p' + p + q' + r) Distributive, associative
 = r' + s'(1 + q' + r) Absorption rule (a), complement
 = (r' + s') ⋅ 1 Null
 = r' + s' Identity

1.6 Boolean function transformation to sum of products (minterms) form (p. 534)

 Note: The product of sums method (p. 534) is excluded from the syllabus.)

We can use the algebraic method using Boolean rules or a truth table to transform a Boolean function
into an expression consisting of minterms. A minterm is a product of all variables in a Boolean function in
which each variable appears only once (the variables may occur in complemented form).

We first transform a Boolean function algebraically to a sum of products (minterms). (This is
additional study material.)

We write Boolean expressions in sum of minterms form with the aid of Boolean rules discussed earlier.
Consider the expression F(A,B,C) = A′C + AB′. This expression is not in sum of minterms form because
three variables are present in the function and each variable must occur in every minterm. We see
that the variable B (or B′) does not occur in the first term and C (or C′) does not occur in the second term.
We can use the complement rule (x + x′ = 1) to incorporate these variables.

F = A′C + AB′
= A′(B+B′)C + AB′(C+C′) (B+B′=1 and C+C′=1)
= (A′B+A′B′)C + AB′C + AB′C′
= A′BC + A′B′C + AB′C + AB′C′ (sum of minterms form)
= m3 + m1 + m5 + m4 (m-notation) (m-notation is described on the next page.)

Note that the order in which the variables appear in each minterm of F(A,B,C) must be the same for
all minterms. That is, A (or A′) occurs first, then B (or B′) and then C (or C′).

 47 COS1521/102/3/2013

Secondly we use a truth table to transform a Boolean function to a sum of products (minterms).

We use the sum of products (minterms) method to change a truth table into a Boolean expression in
which each term is called a minterm.
Consider the following table:

x y

F

minterms

m-notation

0 0
0 1
1 0
1 1

0
1
1
0

x′y′
x′y
xy′
xy

m0
m1
m2
m3

The entries in the table called minterms were obtained in the following way: Each minterm contains both
variables x and y (Order is important: first x then y.). How did we decide whether to write xy, x′y′, x′y or
xy′? The variables occur in complemented form if the value of the variable is 0 in the row concerned; the
variable is not complemented if its value is 1 in the row concerned. The minterm in the case where x=1
and y=0 is thus xy′, and x′y′ where x=0 and y=0, et cetera.

We give the minterms names: m0, m1, m2, and m3 i.e. m-notation:

x′y′ = m0 (the x = 0, y = 0 row; (00)2 = 0)
x′y = m1 (the x = 0, y = 1 row; (01)2 = 1)
xy′ = m2 (the x = 1, y = 0 row; (10)2 = 2)
xy = m3 (the x = 1, y = 1 row; (11)2 = 3)

m0, m1, m2 and m3 are assigned as follows:
For the x′y′ minterm, x=0 and y=0. This is the m0 minterm. For the xy minterm, x=1 and y=1. This is the
m3 minterm because (11)2 = (3)10. The subscript of a minterm is derived from the binary value of x and y.

The expression F is obtained by writing down the sum of the minterms where F is equal to 1:

F = x′y + xy′ (row 2 and row 3).
 = m1 + m2 (m-notation)

F is now in sum of minterms or sum of products form.

Note: Four (22) minterms are formed for two variables. In general there are 2n minterms for n variables.

 48 COS1521/102/3/2013

Minterms for 4 variables (A, B, C and D):

A

B

C

D

Minterms m-notation

0

0

0

0

A′B′C′D′ m0

0

0

0

1

A′B′C′D m1

0

0

1

0

A′B′CD′ m2

0

0

1

1

A′B′CD m3

0

1

0

0

A′BC′D′ m4

0

1

0

1

A′BC′D m5

0

1

1

0

A′BCD′ m6

0

1

1

1

A′BCD m7

1

0

0

0

AB′C′D′ m8

1

0

0

1

AB′C′D m9

1

0

1

0

AB′CD′ m10

1

0

1

1

AB′CD m11

1

1

0

0

ABC′D′ m12

1

1

0

1

ABC′D m13

1

1

1

0

ABCD′ m14

1

1

1

1

ABCD m15

For example, for the ABCD minterm, A=1, B=1, C=1 and D=1. It is therefore the m15-minterm
because (1111)2 = (15)10.

Exercise E.5

Write the following expressions in sum of products (minterms) form by using Boolean algebra:

F1(A,C) = A+C; F2(A,B,C,D) = ABC + CD; F3(X,Y,Z) = XY + XZ

Solution:

F1(A,C) = A+C
 = A(C+C′) + (A+A′)C
 = AC + AC′ + AC + A′C
 = AC + AC′ + A′C
 = m3 + m2 + m1

 49 COS1521/102/3/2013

F2(A,B,C,D) = ABC + CD

 = ABC(D+D′) + (A+A′)(B+B′)CD
 = ABCD + ABCD′ + (AB+AB′+A′B+A′B′)CD
 = ABCD + ABCD′ + ABCD + AB′CD + A′BCD + A′B′CD
 = ABCD + ABCD′ + AB′CD + A′BCD + A′B′CD
 = m15 + m14 + m11 + m7 + m3

F3(X,Y,Z) = XY + X′ Z
 = XY(Z+Z′) + X′ (Y+Y′)Z
 = XYZ + XYZ′ + X′YZ + X′Y′Z
 = m7 + m6 + m3 + m1

1.7 Karnaugh maps (diagrams) (pp. 535 – 537)

Now that we know how to write Boolean functions in sum of minterms (products) form, we can proceed
with the simplification of these functions by using Karnaugh maps.

A Boolean function can be written in sum of minterms form and we can make use of this property to draw a
Karnaugh map (diagram) with which to simplify the function. A Karnaugh map is a graphic
representation of a Boolean function where squares are used to represent minterms. If a particular square in
the map contains a ‘1’, it means that the minterm represented by that square is included in the
function. In other words, the Boolean function consists of the ‘sum’ of the minterms indicated by the
squares.

The Karnaugh maps for two, three and four variables are as follows:

 A two-variable Karnaugh map

 A three-variable Karnaugh map

B′

B

A′

m0

m1

A

m2

m3

B′C′

B′C

BC

BC′

A′

m0

m1

m3

m2

A

m4

m5

m7

m6

 50 COS1521/102/3/2013

 A four-variable Karnaugh map

We already know that there are 2n minterms for n variables. The two, three and four-variable Karnaugh
maps therefore consist of 4, 8 and 16 squares respectively. Each square represents a minterm. In order to
find the minterm that corresponds to a specific square, one has to write down the product of the variables to
the left of the row and at the top of the column indicating the square.

Any two adjacent squares in a Karnaugh map differ only in respect of one variable, which is complemented
in one square and not complemented in the other. It is clear that, for example, B′C and BC′ cannot be two
adjacent column headings since they differ in two respects.

The ‘wrap-around’ principle:

Note that m0 and m2, m4 and m6, m12 and m14, m8 and m10, as well as m0 and m8, m1 and m9, et cetera,
are adjacent. One has to visualize the diagram as a ‘round’ one, as depicted in the following figure:

C′D′

C′D

CD

CD′

A′B′

m0

m1

m3

m2

A′B

m4

m5

m7

m6

AB

m12

m13

m15

m14

AB′

m8

m9

m11

m10

 51 COS1521/102/3/2013

Karnaugh maps on horizontal and vertical axes

Different notations can be used for Karnaugh maps. Look at the notations used in F&M, pp. 536, 537.

The following four-variable notation for a Karnaugh map is not provided in F&M:

The rows/columns for x, y, z and w are shown in the map. It is also the case that in the top two rows, x′ is
represented, in the top and bottom rows, y′ is represented, in the two left hand side columns, z′ is
represented, and in the leftmost and rightmost two columns, w′ is represented.

Exercise E.6

Draw Karnaugh maps for:

(a) F1(X,Y) = X′Y + XY′ + XY; (b) F2(A,B,C) = AB′ + ABC;
(c) F3(X,Y,Z) = X′YZ + XYZ′ + X′YZ′ + X′Y′Z′; (d) F4(A,B,C,D) = m7 + m13 + m11 + m3 + m2 +
m0

Solution:

 (a) F1(X,Y) = X′Y + XY′ + XY

(b) F2(A,B,C) = AB′ + ABC

 = AB′(C + C′) + ABC
 = AB′C + AB′C′ + ABC

 Y′

 Y

X′

1

X

1

1

B′C′

B′C

BC

BC′

A′

A

1

1

1

x

y

w

z

 52 COS1521/102/3/2013

(c) F3(X,Y,Z) = X′YZ + XYZ′ + X′YZ′ + X′Y′Z′

d) F3(A,B,C,D) = m7 + m13 + m11 + m3 + m2 + m0
 = A′BCD + ABC′D + AB′CD + A′B′CD + A′B′CD′ + A′B′C′D′

1.8 Forming groups in Karnaugh maps

Minterms can be grouped in some way in a Karnaugh map and then the simplified terms for a Boolean
function can be derived from the groups in the map. The following rules must be followed when groups are
formed:

• Group the marked squares (1s) in a map into groups of 8, 4, 2 or 1. (3, 5, 6 or 7 ones are not

permissible.) Groups are formed by grouping adjacent squares, in other words groups are formed
horizontally or vertically. We cannot put only m1 and m7 together in a group, for example.

• Make the groups as large as possible to obtain the simplest expression.

• With each new group that is formed, one or more minterm(s) that was/were not grouped before, must

be included. (In this way we try to form the least number of groups.)

• The ‘wrap-around’ principle: The minterms m0, m4, m2 and m6 in the 3-variable Karnaugh map are

seen as adjacent. The same principle applies for the 4-variable Karnaugh map. For example, we may
group m1 and m9 together.

 53 COS1521/102/3/2013

• A minterm may be included in more than 1 group [x + x + .. + x = x (idempotence)].
1.9 Simplification of Boolean functions by using Karnaugh maps

Two methods can be used:

• Algebraic simplification of groups of adjacent terms.
• Derive simplified terms directly from the Karnaugh map.

We look at these two methods.

Algebraic simplification of adjacent terms in a Karnaugh map:

Look at a three-variable map:

m3 = A′BC and m2 = A′BC′ differ only in respect of the variable C. C is not complemented in m3, whilst in
m2 it is. It follows from the rules of Boolean algebra that the sum of two minterms in adjacent squares can
be simplified algebraically to a single product. Look at m2 and m3 again:

m3 + m2 =A′BC + A′BC′
=A′B (C+C′) Distributive
=A′B Complement

In a four-variable Karnaugh map the following holds:

• If two adjacent squares are marked with a 1, these squares reduce to a single term with three variables;
• If four adjacent squares are marked, these squares reduce to a single term with two variables;
• If eight adjacent squares are marked, they reduce to a single term with one variable;
• And naturally, if all sixteen squares are marked, the expression is equal to 1.

Derive the simplified term of a group of adjacent minterms directly from a Karnaugh diagram:

It is possible to group adjacent minterms of a Karnaugh map and then algebraically determine the
simplified form as shown in the previous example. We look at an alternative method whereby we group

B′C′

B′C

BC

BC′

A′

m0

m1

m3

m2

A

m4

m5

m7

m6

 54 COS1521/102/3/2013

adjacent minterms in a Karnaugh map together in groups of 1, 2, 4, 8 or 16 and then derive the terms of
the simplified expression directly from the map without using Boolean algebraic manipulations.

Suppose you are asked to determine (without using algebraic manipulations) the simplified form of the
function represented in the following Karnaugh diagram:

Two possible methods can be used to find the representative term of a group of minterms:

• Determine the intersection of the variable domains. (pp. 536, 537)

• Determine which variables in the map should be present in the representative term. If a whole group

occurs in the domain of a variable, the variable is included in the representative term. If a group
occurs partly in the domain of a variable (say A) and partly in the domain of its complement (A′), the
variable or its complement cannot be part of the representative term.

Solution:

First method: Determine the intersection of the variable domains.

We highlight the two domains in which the group lies:

A

B

D

C

1

1 1

1A'

A'

B'

B'

C' C'

D'D'

A

B

D

C

1

1 1

1A'

A'

B'

B'

C' C'

D'D'

 55 COS1521/102/3/2013

The top two rows represent domain A′ and the leftmost two columns represent domain C′. The group of 1s
in the map is the intersection of A′ and C′ domains, which is represented as A′C′.
Thus the simplified term representing the group is A′C′.
Second method: Determine which variables in the map should be present in the representative term.
All the variables in the diagram must be considered in order to decide whether the variable or its
complement or neither must be part of the representative term.

Consider domain A:
Domain A is represented in the bottom two rows and domain A′ in the top two rows.

The group is in domain A′, so A′ is part of the representative term.

Consider domain B:
Domain B is represented in the middle two rows and domain B′ in the top and bottom rows.

A

B

D

C

1

1 1

1A'

A'

B'

B'

C' C'

D'D'

A

B

C

1

1 1

1A'

A'

B'

B'

C' C'

D'D'
D

 56 COS1521/102/3/2013

The group is partly in domain B and partly in domain B′, so neither B nor B′ is part of the representative
term.

 57 COS1521/102/3/2013

Consider C:
Domain C is represented in the rightmost two columns and domain C′ is in the leftmost two columns.

The group is in domain C′, so C′ is part of the representative term.

Consider D:
Domain D is represented in the middle two columns and domain D′ in the leftmost and rightmost
columns.

The group is partly in domain D and partly in domain D′, so neither D nor D′ is part of the representative
term.
Finally, only A′ and C′ is part of the term, thus the term representing the group is A′C′.

A

C

1

1 1

1A'

A'

B'

B'

C' C'

D'D'
D

A

B

C

1

1 1

1A'

A'

B'

B'

C' C'

D'D'
D

 58 COS1521/102/3/2013

In summary:

In order to simplify Boolean functions with the aid of Karnaugh maps:

• Write the function in sum of minterms form.

• Draw the Karnaugh map.

• Place a 1 in all the squares that represent minterms which occur in the function.

• Arrange adjacent squares into groups of 1, 2, 4, 8, et cetera, but form the biggest and least possible

number of groups.

• Apply some method of simplification described above.

Exercise E.7

Simplify the following Boolean functions with the aid of Karnaugh maps:
(Derive the terms of the functions directly from the relevant maps without making use of algebraic
manipulations or truth tables.)

 (a) F1(x,y,z) = x′y′z′ + x′yz′ + xyz′ + xyz;
 (b) F2(x,y,z,w) = xy + x′yz′w + x′yzw + xy′z′w′;
 (c) F3(x,y,z) = m0 + m2 + m3 + m4 + m6 + m7;
 (d) F4(A,B,C,D) = m0 + m1 + m2 + m4 + m5 + m6 + m8 + m10;
 (e) F5(A,B,C,D) = m0 + m1 + m2 + m4 + m5 + m6 + m8 + m9 + m12+ m13 + m14;

 (f) F6(A,B,C,D) = m0 + m1 + m6 + m8 + m13 + m14 + m15;
 (g) F7(A,B,C,D) = B′ + ABC′D + A′BD.

Solution:

(a) F1 = x′y′z′ + x′yz′ + xyz′ + xyz

Note: When you place the variables in the Karnaugh map in a different order, the 1s in the
diagram will appear in some other positions, so it therefore advisable to stick to the given order.

Determine the simplified terms of the expression F1 directly from the Karnaugh map (without
using algebraic manipulations).

 59 COS1521/102/3/2013

x

y'z'

x'

1

1

1

1 Group 1

Group 2

y'z yz yz'

Group 1

Note: We number the groups in no particular order so that we can refer to them in the
explanations.

Find the term that represents Group 1:
Group 1 lies in the leftmost and rightmost columns of the diagram. The group lies partly in
domain y and partly in domain y' so y or y' cannot be part of the term. The group lies in domains
x' and z', so x' and z' must be included in the term. Group 1 is thus represented by the term x'z'.

Find the term that represents Group 2:
Group 2 lies in the bottom row and in the two rightmost columns. The group lies in the
intersection of domain x and domain y. However, it lies partly in domain z and partly in domain
z', so z or z' cannot be part of the term. Group 2 is thus represented by the term xy.

The simplified form of F1 derived directly from the Karnaugh map: F1 = x′z′ + xy

(b) F2 = xy + x′yz′w + x′yzw + xy′z′w′ (F2 is not in sum of minterms form.)
 = xy(z + z′) + x′yz′w + x′yzw + xy′z′w′
 = xyz + xyz′ + x′yz′w + x′yzw + xy′z′w′
 = xyz(w + w′) + xyz′(w + w′) + x′yz′w + x′yzw + xy′z′w′
 = xyzw + xyzw′ + xyz′w + xyz′w′ + x′yz′w + x′yzw + xy′z′w′ (Sum of minterms form.)

Group 1 gives the term yw. Group 2 gives the term xy. Group 3 gives the term xz′w′.

x

y

w

z

1 1

Group 1

Group 3

Group 21

1

1

1

1

 60 COS1521/102/3/2013

Directly from the map: F2 = yw + xy + xz′w′
(c) F3 = m0 + m2 + m3 + m4 + m6 + m7

Group 1 gives the term z′. Group 2 gives the term y.
Directly from the map: F3 = z′ + y

 (d) F4 = m0 + m1 + m2 + m4 + m5 + m6 + m8 + m10

A

B

D

C

1 1

1

1

1

1 Group 1
Group 3

1

1

Group 2

Group 1 gives the term A′D′. Group 2 gives the term B′D′. Group 3 gives the term A′C′.
Directly from the map: F5 = A′D′ + B′D′ + A′C′

(e) F5 = m0 + m1 + m2 + m4 + m5 + m6 + m8 + m9 + m12+ m13 + m14

Group 1 gives the term A′D′. Group 2 gives the term BD′. Group 3 gives the term C′.

A

B

D

C

1 1

1

1

1

1

Group 1

Group 3 1

1

Group 2111

x

y'z'

x'

1

1

1

1 Group 1

Group 2

y'z yz yz'

Group 1

1

1

 61 COS1521/102/3/2013

Directly from the map: F6 = A′D′ + BD′ + C′
(f) F6 = m0 + m1 + m6 + m8 + m13 + m14 + m15

Group 1 gives the term A′B′C′ . Group 2 gives the term BCD′. Group 3 gives the term ABD.
Group 4 gives the term B′C′D′.

Directly from the map: F7 = A′B′C′ + BCD′ + ABD + B′C′D′

(g) F7 = B′ + ABC′D + A′BD = (A + A′)B′ (C + C′)(D + D′) + ABC′D + A′B(C + C′)D

 = AB′CD + AB′CD′ + AB′C′D + AB′C′D′ + A′B′CD + A′B′CD′ + A′B′C′D + A′B′C′D′ +
 ABC′D + A′BCD + A′BC′D

 = m11 + m10 + m9 + m8 + m3 + m2 + m1 + m0 + m13 + m7 + m5

Group 1 gives the term B′. Group 2 gives the term C′D. Group 3 gives the term A′D.

Directly from the map: F8 = B′ + C′D + A′D

A

B

D

C

1

1 1

1

1

Group 1

Group 3

1

1

Group 2

Group 4

Group 4

A

B

D

C

1

1

1

1 1

Group 3

Group 2

1

1Group 1

Group 1

1

111

 62 COS1521/102/3/2013

2. Logic circuits (p. 538 - 544)

2.1 Combinational logic circuits
2.2 Logically equivalent circuits
2.3 Designing a logic circuit

2.1 Combinational logic circuits (p. 538)

A combinational circuit is constructed by using a combination of logic gates. The outputs of a
combinational circuit at any given time are determined by the current inputs. The operation executed by the
combinational circuit is fully specified by a set of logical expressions. (The term ‘logical expression’ is
often used when we refer to the Boolean function that describes a logic circuit.)

Exercise E.8

Draw the logic circuit for the following Boolean function (do not simplify the expression):

F(A, B, C) = [(A ⊕ B) ⋅ C']' + (C + A')' (⊕ denotes the XOR gate, see p. 78.)

Solution:

Exercise E.9

Provide the outputs for Gates 1 - 4 of the following logic circuit:

A

B

A

C

C
F

1

2

4

3

x
y

z

x

y

z

 63 COS1521/102/3/2013

Solution:

Outputs: Gate 1: (x + y + z')';
 Gate 2: (x + y);
 Gate 3: ((x + y) ⋅ z)';
 Gate 4: (x + y + z')' ⋅ ((x + y) ⋅ z)'.

2.2 Logically equivalent circuits

Different circuits can be equivalent, in other words, the outputs of the circuits are equal. This is a
very important concept when logic circuits are designed because a more simple circuit can be used if its
output is the same as the output of a more complicated circuit.

Exercise E.10

Are the following two logic circuits logically equivalent? Motivate your answer.

Solution:

The output for F is (v + (xv'))' + x' and the output for H is x'.
We can simplify F:
 F = (v + (xv'))' + x'
 = v'·(xv')' + x' de Morgan

 = v'(x' + v'') + x' de Morgan
 = v'x' + v'v + x' Associative, involution
 = v'x' + 0 + x' Complement
 = x' Absorption
 = H

1X

V

X

F

V

X H

 64 COS1521/102/3/2013

The two logic circuits are indeed logically equivalent because they have the same outputs.

2.3 Designing logic circuits

We look at some aspects to consider when designing a logic circuit for some given a problem
statement.

The procedure for designing a logic circuit is as follows:

• State the problem.

• Determine the number of input variables that are available and the number of output variables that are
required.

• Identify the input and output variables by means of names or symbols.

• Compile the truth table stating the relationships between the inputs and the outputs.

• Derive the simplified Boolean expression for each output.

• Draw the logic circuit diagram.

In practice, our objectives for simplifying a logic circuit are:

• The minimum number of gates.

• The minimum number of interconnections.

• The minimum number of inputs to a gate.

These requirements have the following advantages:

• Cost saving owing to fewer physical components.

• Greater reliability, because with fewer physical components there is less chance of errors.

• A smaller number of interconnections and gates yield a faster circuit.

 65 COS1521/102/3/2013

We look at a few exercises where the above mentioned principles are applied.
Exercise E.11

Using a truth table, determine the Boolean expression F(A, B, C) if F = 1 whenever the input
contains only one 1.

Solution:

A B C

Minterms

F

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

m0 = m000 = A'B'C'
m1 = m001 = A'B'C
m2 = m010 = A'BC'
m3 = m011 = A'BC
m4 = m100 = AB'C'
m5 = m101 = AB'C
m6 = m110 = ABC'
m7 = m111 = ABC

0
1
1
0
1
0
0
0

Determine the output for each row in the table.
E.g. In row 2: A = 0, B = 0 and C = 1, which means that the input contains exactly one 1, so F = 1.

From the truth table: F(A, B, C) = m1 + m2 + m4 (m-notation)
 = m001 + m010 + m100
 = A'B'C + A'BC' + AB'C'

(Note: e.g. m001 = A'B'C because the variable is complemented when we have a 0 and not
complemented when we have a 1.)

Exercise E.12

Consider the Boolean expression F(x, y, z) = x'z + x'y + xy'z + yz.

(i) Draw the truth table for F.
(ii) Derive the sum-of-minterms expression for F from the truth table.
(iii) Draw the Karnaugh diagram for F.
(iv) Derive the simplified expression directly from the Karnaugh diagram.
(v) Determine the simplified form of F algebraically.
(vi) Draw the logic circuit for the simplified F.

 66 COS1521/102/3/2013

Solution:

(i)

x

y

z

x'z

x'y

xy'z

yz

F

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
1
0
0
0
0

0
0
1
1
0
0
0
0

0
0
0
0
0
1
0
0

0
0
0
1
0
0
0
1

0
1
1
1
0
1
0
1

(ii) F = m1 + m2 + m3 + m5 + m7 = x'y'z + x'yz' + x'yz + xy'z + xyz

(iii)

(iv) F = x'y + z, because: Group 1 gives the term x'y.

Group 2 gives the term z.

(v) F = x'z + x'y + xy'z + yz

= x'y + z(x' + xy' + y) Distributive
= x'y + z(x' + y' + y) Absorption Rule (e)
= x'y + z(x' + 1) Complement
= x'y + z⋅1 Null
= x'y + z Identity

x

y'z'

x' 11

1 1

1 Group 1

Group 2

y'z yz yz'

 67 COS1521/102/3/2013

Exercise E.13

Four smoke sensors are placed in a room. The fire alarm must be activated as soon as three or more
of the sensors detect smoke in the room. Follow the design procedure described before to design the
logic circuit for the alarm.

Solution:

Number of input variables: 4; Number of output variables: 1.
Input variables: A, B, C, D representing the sensors. (If a sensor detects smoke, the input is 1.)
Output variable: S (S is equal to 1 if at least three sensors detect smoke.)

Truth table:

A B C D S
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1 m7 (Three sensors detect smoke.)
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1 m11 (Three sensors detect smoke.)
1 1 0 0 0
1 1 0 1 1 m13 (Three sensors detect smoke.)
1 1 1 0 1 m14 (Three sensors detect smoke.)
1 1 1 1 1 m15 (Four sensors detect smoke.)

S = m7 + m11 + m13 + m14 + m15

Karnaugh map:

Group 1: BCD; Group 2: ACD; Group 3: ABD; Group 4: ABC.

The simplest expression: S = BCD + ACD + ABD + ABC.

A

B

D

C

1

1

1

Group 1

Group 4
Group 3

Group 2

1

1

 68 COS1521/102/3/2013

Logic circuit:

B

D

C
D

S

C

A

B
D

A

C
B
A

Exercise E.14

There are 4 different processes involved in the production of bricks in a brick factory and one person
is able to handle 2 different processes. The 4 processes are:
Process 1: mix clay
Process 2: mould clay
Process 3: bake bricks
Process 4: package bricks

The 4 employers of the brick factory handle a combination of the processes in the following way:
Person A handles processes 1 and 3
Person B handles processes 2 and 4
Person C handles processes 2 and 3
Person D handles processes 1 and 4

(i) Draw a truth table to derive the sum of minterms expression for a Boolean expression (in m-
notation) that will output a 1 when the brick factory is in full production, i.e. when all four different
processes are executed, and a 0 otherwise.
(ii) Use a Karnaugh map to simplify the expression in (i) to its simplest form. (Do not use algebraic
simplifications.)
(iii) Draw a logic circuit for the expression in (ii).
(iv) What is the minimum number of persons that must be present to keep the factory in full
 production?

 69 COS1521/102/3/2013

(i) Truth table:

A

B

C

D

F

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1 m3
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1 m7
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1 m11
1 1 0 0 1 m12
1 1 0 1 1 m13
1 1 1 0 1 m14
1 1 1 1 1 m15

Consider row 4 in the table:
The bispatern is 0011, i.e.only persons C and D are active in the factory. C handles processes 2 and 3,
and D handles processes 1 and 4. This means that the factory is in full production, i.e. all four different
processes are being executed. Thus the ouput is 1.

Consider all the rows in the table in a similar way to determine the outputs.

F = m3 + m7 + m11 + m12 + m13 + m14 + m15

(ii) Karnaugh map:

The simplest expression: F = CD + AB

A

B

D

C

1

1

Group 2 1

1

Group 1

1

1

1

 70 COS1521/102/3/2013

(iii) Logic circuit:

(iv) Two people. This is determined by looking at all the rows in the truth table where the output is
 equal to 1. At least 2 people are required to handle all four processes.

Exercise E.15

A logic circuit has 4 input variables P, Q, R and S. X represents the decimal equivalent of the
binary representation of the 4 input lines. (E.g. when P=0, Q=0, R=1 and S=1, then X=3.)

(i) By using a truth table, determine the Boolean expression F(P, Q, R, S) (in m-notation), if

 F = [(X MOD 3 = 2) or (X MOD 5 = 2)].

(ii) Use a Karnaugh map to obtain the simplest form of F(P, Q, R, S). Find the simplified terms
 of F directly from the Karnaugh map. (Do not use algebraic simplifications.)

Solution:

(i) The output will be 1 under the following condition:

F = [(X MOD 3 = 2) or (X MOD 5 = 2)].

If we look at row 3 in the following truth table, we see that

X = 2, so 2 ÷ 3 = 0 remainder 2, i.e. X MOD 3 = 2, so the output is 1.

Also: 2 ÷ 5 = 0 remainder 2, i.e. X MOD 5 = 2, so the output is 1.

Hint: What does x MOD y = z mean? When x is divided by y, the remainder is z.
For example: 13 ÷ 5 = 2 remainder 3, so 13 MOD 5 = 3.

F

A

B

C

D

 71 COS1521/102/3/2013

The result is F = 1 + 1 = 1.
Row 6: 5 MOD 3 = 2, so the output is 1. Also 5 MOD 5 = 0, so the output is 0.

This result is F = 1 + 0 = 1.

In this way we investigate all the rows to determine the outputs.

P Q R S X X MOD 3=2 X MOD 5=2 F
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 2 1 1 1
0 0 1 1 3 0 0 0
0 1 0 0 4 0 0 0
0 1 0 1 5 1 0 1
0 1 1 0 6 0 0 0
0 1 1 1 7 0 1 1
1 0 0 0 8 1 0 1
1 0 0 1 9 0 0 0
1 0 1 0 10 0 0 0
1 0 1 1 11 1 0 1
1 1 0 0 12 0 1 1
1 1 0 1 13 0 0 0
1 1 1 0 14 1 0 1
1 1 1 1 15 0 0 0

F = m2 + m5 + m7 + m8 + m11 + m12 + m14

ii) Karnaugh map:

P

Q

S

R

1

1

Group 1

Group 4

Group 3

Group 21 1

1

1

1

Group 4

Group 5

 72 COS1521/102/3/2013

Group 1: P'Q'RS'; Group 2: P'QS; Group 3: PR'S'; Group 4: PQS'; Group 5: PQ'RS.

The simplest expression: F = P'Q'RS' + P'QS + PR'S' + PQS'+ PQ'RS

Exercise E.16

Draw a logic circuit that accepts a decimal number between 0 and 15 as input and provides an
output of 1 if the number is 0 or 1 or a prime number.

Solution: Step 1: We need 4 variables (A, B, C, D) to represent the binary equivalent of the

decimal number (11112 = 1510).
Step 2: Truth table: (This step is not necessary if you are able to draw the Karnaugh

diagram directly from the problem statement.)

The truth table for F:

A

B

C

D

F Interpretation

minterm

s

0

0

0

0

1 (0000)2 = (0)10 The number is 0, thus the output is 1.

m0

0

0

0

1

1 (0001)2 = (1)10 The number is 1, thus the output is 1.

m1

0

0

1

0

1 (0010)2 = (2)10 2 is a prime number, thus the output is 1.

m2

0

0

1

1

1 (0011)2 = (3)10 3 is a prime number, thus the output is 1.

m3

0

1

0

0

0 (0100)2 = (4)10 4 is not a prime number, thus the output is

0.

m4

0

1

0

1

1 etc.

m5

0

1

1

0

0

m6

0

1

1

1

1

m7

1

0

0

0

0

m8

1

0

0

1

0

m9

1

0

1

0

0

m10

1

0

1

1

1

m11

1

1

0

0

0

m12

1

1

0

1

1

m13

1

1

1

0

0

m14

1

1

1

1

0

m15

 73 COS1521/102/3/2013

From the truth table:

F = m0 + m1 + m2 + m3 + m5 + m7 + m11 + m13
Step 3: Karnaugh diagram:

Step 4: F = A'B' + A'D + BC'D + B'CD because: Group 1 gives the term A'B'.

Group 2 gives the term A'D.
Group 3 gives the term BC'D.
Group 4 gives the term B'CD.

Step 5: Logic circuit:

A

B

D

C

1

1

1

1

1

1

1

1 Group 1

Group 3

Group 4

Group 2

Group 4

A

B

D

A

C

C

F
B

D

B

D

A'B'

A'D

BC'D

B'CD

 74 COS1521/102/3/2013

Exercise E.17
A person will be interested in buying a house with any one of 3 sets of features x, y or z. Possible
sets of features of a house in which he/she will be interested:
x) face brick exterior and flat roof
y) pitched roof, carpeted floors and the house bigger than 250 square metres
z) plastered exterior walls, pitched roof, tiled floors and the house smaller than 250 square
 metres.

Suppose the input variables A, B, C and D take on the value 1 or 0 in the following cases:

A = 1 if the house has a face brick exterior, or A = 0 if the house has plastered exterior walls
B = 1 if the house has a flat roof, or B = 0 if the house has a pitched roof
C = 1 if the house has carpeted floors, or C = 0 if the house has tiled floors
D = 1 if the house is smaller than 250 square metres, or D = 0 if the house is bigger than 250 square metres

Construct a truth table to determine the Boolean function F(A, B, C, D) which will give a 1 whenever the
person is interested in buying a house. Give F as a sum-of-minterms in m-notation.

Use a Karnaugh diagram to find the simplest form of F(A, B, C, D)

Solution:
Determine F in the truth table in the following way:
Consider the cases when a person is interested in buying the house:
First we look at the set of features x:
Face brick exterior (A = 1) and flat roof (B = 1). (The values of C and D do not matter.)
In the last 4 rows of the table we have A = 1 and B = 1, thus F is 1 in these 4 rows.

Look at the set of features y:
Pitched roof (B = 0), carpeted floors (C = 1) and the house bigger than 250 square metres
(D = 0). (The value of A does not matter.)
In the third and eleventh rows we have B = 0, C = 1, D = 0, thus F is 1 in these 2 rows.

Look at the set of features z:
Plastered exterior walls (A = 0), pitched roof (B = 0), tiled floors (C = 0) and the house smaller than
250 square metres (D = 1).
In the second row we have A = 0, B = 0, C = 0, D = 1, thus F is 1 in this row.
In short: F = 1 whenever (A = 1, B = 1) or (B = 0, C= 1, D= 0) or (A = 0, B = 0, C = 0, D = 1)
In all the rows of the table which are not mentioned above, F has an output of 0 because the person is
not interested in buying the house (e.g. where A = 0, B = 0, C = 0 and D = 0).

 75 COS1521/102/3/2013

A

B

C

D

F

minterms

0

0

0

0

0

0

0

0

1

1

m1

0

0

1

0

1

m2

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

1

m10

1

0

1

1

0

1

1

0

0

1

m12

1

1

0

1

1

m13

1

1

1

0

1

m14

1

1

1

1

1

m15

From the table we derive F in m-notation: F = m1 + m2 + m10 + m12 + m13 + m14 + m15.

Karnaugh diagram:

Group 1 gives B'CD'; Group 2 gives AB; Group 3 gives A'B'C'D.
The simplest form of F: F = B'CD' + AB + A'B'C'D.

A

B

D

C

1

1 111

1

1 Group 1
Group 3

Group 1

Group 2

 76 COS1521/102/3/2013

PART III

Solution of the self-assessment
exercise

 77 COS1521/103/3/2013

Solutions of the Self-assessment: Section A

 QUESTION 1

(a) List the four subsystems comprising a machine based on the von Neumann model.

A machine based on the von Neumann model consists of the following 4 subsystems:
 memory in which both data and the computer program are stored,
 an Arithmetic Logic Unit (ALU) that performs calculations and logical operations,
 an input/output subsystem that accepts input from outside the computer and outputs the results,

and
 a control unit that controls the operation of the other three subsystems.

(F&M, pp. 4, 5)

(b) What does the concept ‘a stored program’ mean?

The program instructions are stored in memory and are not wired into the hardware.
(F&M, p.5)

(c) What are the two important aspects of programming that must be understood when we consider the

von Neumann model?
 Both the computer program and the data are stored in memory.
 A computer program consists of a sequence of instructions.

(F&M, pp. 5, 6)

(d) Why does it make sense that data and program instructions have the same format?

If data and programs have the same format, i.e. they are both represented by a binary pattern, both
can be stored in the same computer memory.
(F&M, p. 5)

 78 COS1521/103/3/2013

(e) What is a computer program?
A computer program consists of a sequence of instructions written in a computer programming
language, telling the computer what to do with data.
(F&M, p. 2)

(f) Describe in your own words what an algorithm is.

An algorithm is a step-by-step description of a method that can be used to solve a particular
problem.
(F&M, p. 8)

(g) What is meant by the term ‘software engineering’ as defined in the context of the textbook?

Software engineering is regarded as the process of designing and writing structured computer
programs using a set of strict rules and principles.
(F&M, p. 8)

(h) List some of the main functions of an operating system.
 tell the computer program where to obtain input
 tell the computer program where to present the output
 memory management

There are many more but we will consider those in Chapter 7 of F&M.
(F&M, p. 8)

(i) Compare and contrast the memory contents of early computers with the memory contents of a

computer based on the von Neumann model.
In early computer systems, the memory of a computer was used exclusively for data storage and the
computer program was hardwired into the computer itself, i.e. the program formed part of the
computer hardware. In a von Neumann model, both data and the computer program are stored in
memory.
(F&M, p. 5)

(j) According to the von Neumann model, can the hard disks of today be used as input or output?

Explain.
According to the von Neumann model, the hard disks of today can be used for both input and output
since output data can be written to the hard disk and input data can be read from the hard disk.
(F&M, p. 5)

 79 COS1521/103/3/2013

 QUESTION 2

(a) (10101.1)2 = 1x24 + 1x22 + 1x20 + 1x2-1

= 1x16 + 1x4 + 1x1 + 1x0.5
= 16 + 4 + 1 + 0.5
= (21.5)10

(b) (1010011.01)2 = 1x26 + 1x24 + 1x21 + 1x20 + 1x2-2

 = 1x64 + 1x16 + 1x2 + 1x1 + 1x0.25
 = 64 + 16 + 2 + 1 + 0.25
 = (83.25)10

(c) (517)8 = 5x82 + 1x81 + 7x80

= 5x64 + 1x8 + 7x1
= 320 + 8 + 7
= (335)10

(d) (710.01)8 = 7x82 + 1x81 + 1x8-2

= 7x64 + 1x8 + 1x0.015625
= 448 + 8 + 0.015625
= (456.015625)10

(e) (A9F)16 = Ax162 + 9x161 + Fx160

= 10x256 + 9x16 + 15x1
= 2560 + 144 + 15
= (2719)10

(f) (B08.4)16 = Bx162 + 8x160 + 4x16-1

= 11x256 + 8x1 + 4x0.0625
= 2816 + 8 + 0.25
= (2824.25)10

(F&M, pp. 21-24, 26-27)

 80 COS1521/103/3/2013

 QUESTION 3

 (a) (613.625)10 to binary:

First write down the powers of 2 until a number bigger than the one we want to convert, is reached.
These numbers are used as ‘column headers’:

210 29 28 27 26 25 24 23 22 21 20

.........1024 512 256 128 64 32 16 8 4 2 1

Ignore the biggest number (1024), because this number is bigger than 613. Now divide 613 into
‘packages’ the sizes of which are the numbers of the column headers.

First we make a package of 512. Now this part of the original number (613) is represented as a
binary number:

512 256 128 64 32 16 8 4 2 1
 1

613 - 512 = 101, so 101 of the original number still remains.

From 101 we cannot make a package of 256 or 128. Thus we put 0s in the corresponding columns.
We can, however, use 64 and thus we write a 1 in the 64-column:

512 256 128 64 32 16 8 4 2 1
 1 0 0 1

101 - 64 = 37, so 37 of the original number remains.

Continuing in this way, we get 37 = 32 + 4 + 1.

So we have 512 256 128 64 32 16 8 4 2 1

(1 0 0 1 1 0 0 1 0 1)2

Thus (613)10 = (1001100101)2

 81 COS1521/103/3/2013

For the fractional part:
0.625 x 2 = 0.25 + 1
0.25 x 2 = 0.5 + 0
0.5 x 2 = 0.0 + 1

So (0.625)10 = (0.101)2

Thus (613.625)10 = (1001100101.101)2

(1001100101.101)2 to octal:

(1001100101.101)2 = (1 001 100 101. 101)2

= (1 1 4 5. 5)8

(1001100101.101)2 to hexadecimal:

(1001100101.101)2 = (10 0110 0101. 1010)2 (add a zero to form a group of 4.)
= (2 6 5. A)16

(b) (120.25)10 to binary:

The integer part to binary:
120 / 2 = 60 rem. 0
60 / 2 = 30 rem. 0
30 / 2 = 15 rem. 0
15 / 2 = 7 rem. 1
 7 / 2 = 3 rem. 1
 3 / 2 = 1 rem. 1
 1 / 2 = 0 rem. 1

Thus (120)10 = (1111000)2

The fractional part to binary:

0.25 x 2 = 0.5 + 0
0.5 x 2 = 0.0 + 1

 82 COS1521/103/3/2013

Thus (0.25)10 = (0.01)2
Thus (120.25)10 = (1111000.01)2

(120.25)10 to octal:

(1111000.01)2 = (001 111 000. 010)2 (Add a zero to form a group of 3.)

 (1 7 0 . 2)8

(120.25)10 to hexadecimal:

(1111000.01)2 = (0111 1000. 0100)2 (Add two zeros to form a group of 4.)
 = (7 8 . 4)16

(F&M, pp. 27-31)

 QUESTION 4

The number 845.3 is not an octal number because we only use the digits 0 to 7 in the octal system. The
digit 8 occurs in the given number.

(F&M, p. 25)

 QUESTION 5

(Subtraction in binary does not form part of the syllabus, but you can try to do it by first looking at the
principles by which subtraction in decimal is executed. For example, borrow a 2 instead of a 10 as is
the case in decimal.)

(a) 10111
 + 1111
 100110

(b) 110100
 - 10011
 100001

(F&M, p. 87)

 83 COS1521/103/3/2013

 QUESTION 6

The most important disadvantage of using sign-and-magnitude representation is that there are two ways
of representing zero, namely -0 and +0. When testing to see whether a result is equal to zero or not, one
has to test for -0 as well as for +0. Another disadvantage is the fact that the sign is not an integral part
of the number and has to be treated separately in arithmetic operations.
(F&M, p. 47)

 QUESTION 7

(a) (78.43)10 to binary.

The integer part:
64 32 16 8 4 2 1

 1 0 0 1 1 1 0

So (78)10 = (1001110)2

The fractional part:
0.43 x 2 = 0.86 + 0
0.86 x 2 = 0.72 + 1
0.72 x 2 = 0.44 + 1

So (0.43)10 = (0.011)2 to 3 binary places

From the above it follows: (78.43)10 = (1001110.011)2

 = (1.001110011)2 x (26)10

 (b) (1.39 x 102)10 = (139)10 to binary:

139 / 2 = 69 remainder 1
 69 / 2 = 34 remainder 1
 34 / 2 = 17 remainder 0
 17 / 2 = 8 remainder 1

 84 COS1521/103/3/2013

 8 / 2 = 4 remainder 0
 4 / 2 = 2 remainder 0
 2 / 2 = 1 remainder 0
 1 / 2 = 0 remainder 1

Thus (139)10 = (10001011)2

= (1.0001011)2 x (27)10
(F&M, pp. 55-57)

 QUESTION 8

A logical right shift operation is applied to the bit pattern 11001111.
The operation shifts each bit one position to the right, so the result is:

 01100111

(F&M, p. 83)

 QUESTION 9

Using an 8-bit allocation, use two’s complement arithmetic to determine -15 + 12.

To obtain the two’s complement number: Copy the bits from the right until a 1 is copied, then flip the
rest of the bits.

15 in binary: 00001111. Apply two’s complement because -15 is a negative number: 11110001

 0 0 0 0 1 1 0 0 binary number for 12

 + 1 1 1 1 0 0 0 1 two’s complement applied on 15

 1 1 1 1 1 1 0 1 negative number

 0 0 0 0 0 0 1 1 two’s complement applied

Convert 00000011 to decimal: 3. Sign is added: -3
(F&M, pp. 49-52)

 85 COS1521/103/3/2013

Solutions of the Self-assessment: Section B

NOTATION IN THIS SOLUTION: Two different fonts in this model solution are used. The steps for
the model solutions are in normal font, while the extra bits of explanation are in Italics like this.

QUESTION 1
 [4]
(a) Use the XOR operator on the bit patterns 100110101 and 101010011.
 (Determine 100110101 XOR 101010011.)
(b) Determine 1101101 + 1000110 in binary.
(c) A 6-bit digital counter can be made up of ______ T flip-flops. At the start the counter

represents _________.

Solution:

(a) 100110101 Input 1

XOR 101010011 Input 2
 001100110 Output

F&M, pp. 83, 528, 529

(b) Addition in binary (the base is 2, i.e. two):

 1101101
 + 1000110
 10110011

 Explanation:

Place values: 27 26 25 24 23 22 21 20

Carry: 1 1 1
Augent: 0 1 1 0 1 1 0 1
Addent: 0 1 0 0 0 1 1 0
Sum: 1 0 1 1 0 0 1 1

F&M, p. 87; Table 4.1; Tutorial Letter 102 pp. 36, 37

 86 COS1521/103/3/2013

(c) A 6-bit digital counter can be made up of 6 T flip-flops. At the start the counter represents
000000.

F&M, p. 544

QUESTION 2 [4]
Draw the logic circuit for the following Boolean expression (do not simplify the expression):

F(x, y, w) = [(x' + y + w) + xy]' ⊕ w'

Solution:

Output Gate 1: x' + y + w; Output Gate 2: xy; Output Gate 3: [(x' + y + w) + xy]'

Final output at F using gate XOR and w’ (starting with input w at the bottom): [(x' + y + w) + xy]' ⊕ w'

F&M, pp. 528-531, 538 – 544; Tutorial Letter 102, pp. 61-63.

QUESTION 3 [8]
Use only Boolean algebra to simplify the Boolean expression F. (First determine F1 and F2, then
simplify F1 + F2, showing all the steps. You need not provide the names of the Boolean rules that you
apply.

F1 = x'(wy')' + x'wy'
F2 = (xw + w')'
F(w, x, y) = F1 + F2.

Solution:

F1 = x'(wy')' + x'wy'

= x'[(wy')' + wy'] Distributive: a(b + c) = ab + ac
 = x'(1) Complement: a' + a = 1 (Let a = wy')

= x' Identity: a⋅1 = a

1

2

3

w

x

x

y

w

F

y

 87 COS1521/103/3/2013

F2 = (x⋅w + w')'
= (x⋅w)' ⋅ w'' de Morgan: (a + b)' = a'⋅b'
= (x' + w') ⋅ w de Morgan: (a ⋅ b) ' = a' + b'; Involution: a'' = a
 = x'w + w'w Distributive

 = x'w + 0 Complement: aa' = 0
 = x'w Identity: a + 0 = a

F = x' + x'w

= x' Absorption: a + ab = a (Tut. Lettter 102, p. 38)

Make sure that you understand how to apply de Morgan's theorem. Look at the explanation on pp. 42 & 43
in Tutorial Letter 102.

Note: The Boolean-algebra rules, given on pp. 41 & 42 in Tutorial Letter 102, can be expanded. We look at
a few examples:

Distributive: x + (yz) = (x + y)(x + z)
Rule applied: vw + mnz = (vw + mn)(vw + z)

Complement: x + x' = 1
Rule applied: v'wy + (v'wy)' = 1
Null: x + 1 = 1
Rule applied: (vbr + gde + nm) + 1 = 1

Absorption: x + (xy) = x
Rule applied: x + (xyw + xvtg + xde + xm) = x (x stands alone and is present in each of the other terms.)

F&M, pp. 532 – 535; Tutorial Letter 102, pp. 41 - 46

QUESTION 4 [5]
Use a Karnaugh map to find the simplest form of
H(A, B, C, D)) = m0 + m1 + m2 + m3 + m5 + m6 + m8 + m9 + m13.

Derive the terms of H directly from the Karnaugh map without making use of algebraic
manipulations or truth tables. Clearly show the groupings.
Use exactly the same order for the variables as given in the following diagram:

Solution:

First draw the Karnaugh diagram for H. Keep to the rules that are given on page 48 in Tutorial Letter 102
when you indicate the groups clearly in the diagram.
The 1s in the following Karnaugh diagram may not be placed in any other way.

 88 COS1521/103/3/2013

Karnaugh diagram for H:

Note: We can assign the variables A, B, C and D in other ways to the rows and columns of the diagram,
but then we must be careful to place the 1s in the relevant positions.

The expression must be derived directly from the Karnaugh diagram. The minterms must not be grouped
together and then be simplified algebraically.

Determine the terms of the expression H:

Group 1 gives A'B'.
Group 2 gives A'CD'.
Group 3 gives B'C'.
Group 4 gives C'D.

We derive the simplified expression directly from the diagram: H = A'B' + A'CD' + B'C' + C'D.

F&M, pp. 535 – 537; Tutorial Letter 102, pp. 49 - 60

QUESTION 5 [9]
Four types of package (A, B, C and D) with chemicals are supplied to research laboratories. Each
package contains unique types of chemicals.
Package A contains 3 different types of chemicals,
Package B contains 6 different types of chemicals,
Package C contains 5 different types of chemicals and
Package D contains 2 different types of chemicals.

Suppose the input variables A, B, C and D in a truth table take on the value 1 whenever a laboratory
receives a package with chemicals. For example, if A = 0, B = 1, C = 0 and D = 1, it means that a

A

B

D

C

1

1

1

1

1

1

1

Group 4
Group 2

Group 3

Group 3

1

1

Group 1

 89 COS1521/103/3/2013

laboratory receives packages B and D.

Construct a truth table (use the same order for the variables as in the table given here) to determine
the Boolean function F(A, B, C, D) that gives a 1 whenever a laboratory receives more than 11
different types of chemicals.

Solution:
NB: The Numbers of different types of chemicals are shown in brackets (2). This is optional.

A (3)

B (6)

C (5)

D (2)

F

minterms

0

0

0

0

0

m0

0

0

0

1

0

m1

0

0

1

0

0

m2

0

0

1

1

0

m3

0

1

0

0

0

m4

0

1

0

1

0

m5

0

1

1

0

0

m6

0

1

1

1

1

m7 Laboratory receives packages B, C and D, i.e. 13
types of chemicals, i.e. more than 11 types of chemicals.

1

0

0

0

0

m8

1

0

0

1

0

m9

1

0

1

0

0

m10

1

0

1

1

0

m11

1

1

0

0

0

m12

1

1

0

1

0

m13

1

1

1

0

1

m14 Laboratory receives packages A, B and C, i.e. 14
types of chemicals, i.e. more than 11 types of chemicals.

1

1

1

1

1

m15 Laboratory receives packages A, B, C and D, i.e. 16
types of chemicals, i.e. more than 11 types of chemicals.

From the table we obtain F in m-notation: F = m7 + m14 + m15.

Tutorial Letter 102, pp. 66 – 74

 90 COS1521/103/3/2013

Multiple choice questions (solution)

QUESTION 6 Alternative D

The XOR-gate has an output of 1 only if it has two inputs that are not equal (i.e. inputs 0 and 1). If the
inputs are both 0 or both 1, the output is 0.

F&M, p. 528

QUESTION 7 Alternative C

Two adjacent minterms must be grouped together in a four variable Karnaugh map to derive a simplified
term consisting of three variables.

Tutorial Letter 102, p. 53

QUESTION 8 Alternative B

Logic circuits are divided into two categories: combinational circuits and sequential circuits. A flip-flop
falls in the category of sequential circuits.

F&M, p. 540

QUESTION 9 Alternative D

A n-bit digital counter counts from 0 to 2n – 1. Thus a 3-bit digital counter counts from 0 to 23 – 1 = 7.

F&M, p. 544

QUESTION 10 Alternative B

A multiplexer is a combinational circuit that has n inputs and only 1 output.
F&M, p. 539

QUESTION 11 Alternative D
Consider the following logic circuits:

F

H

w

y

w

2
1

w

y

3

 91 COS1521/103/3/2013

The outputs of the given logic circuits are F = (w'y) '+ w and H = y'w. One of the four gates must be
changed in order for the circuits to become equivalent.

Solution:
Simplify: F = (w'y) '+ w = w'' + y' + w = w + w + y' = w + y ' de Morgan; Involution; Idempotence
Simplify: H = y' · w

The outputs F and H of the two circuits are not equal, so they are not logically equivalent.

In the given question, Gate 3 is an AND-gate and its output is y' · w. If Gate 3 changes to an ‘OR’-gate,
the output for Gate 3 becomes w + y'. As a result, let K = w + y':

Because F = K, the circuits are logically equivalent.

Tutorial Letter 102, pp. 44 - 46, 62

QUESTION 12 Alternative B

We use a Karnaugh map to find the simplest form of the following sum-of-minterm expression:

F(A, B, C, D) = m1 + m6 + m7 + m9 + m10 + m14 + m15

A

B

D

C

1 1

1

1

1

Group 2

Group 1

Group 1 1

Group 3

1

F

K

w

y

w

2
1

w

y

3

 92 COS1521/103/3/2013

Group 1 gives B'C'D; Group 2 gives ACD'; Group 3 gives BC.

So F = B'C'D + ACD' + BC.

Tutorial Letter 102, pp. 49 - 60

QUESTION 13 Alternative D
Consider the following logic circuit:

Output Gate 1: x + y + z'; Output Gate 2: x + y; Output Gate 3: (x + y) ⋅ z

The final output is T = [(x + y + z') ⋅ ((x + y) ⋅ z)]'.

Tutorial Letter 102, pp. 61, 62

QUESTION 14 Alternative A

Consider the expression F = (xy')' ⋅ [x'z] + (x'' + y').
We determine the values of (xy')', [x'z], (x'' + y') and F if x = 1, y = 0 and z = 1:

F = (xy')' ⋅ [x'z] + (x'' + y')
 = (1⋅0')' ⋅ [1'⋅1] + (1'' + 0')
 = (1⋅1)' ⋅ [0⋅1] + (1 + 1)
 = (1)' ⋅ [0] + (1)
 = 0 ⋅ [0] + (1)
 = 1

i.e. (xy')' = 0; [x'z] = [0]; (x'' + y') = (1) and F = 1.

F&M, pp. 527 - 529; Tutorial Letter 102, pp. 38, 39

x
y

z

x

y

z

T(x,y,z)

1

2
3

 93 COS1521/103/3/2013

QUESTION 15 Alternative D

We use only Boolean algebra to simplify the following Boolean expression: F(v, w, x) = vxw' + (vxw')'

F = vxw' + (vxw')' = 1 Complement

(Let y = vxw' then vxw' + (vxw')' = y + y' = 1.)

F&M, pp. 532 – 535; Tutorial Letter 102, pp. 41 – 46


~~~~~~~~~~~~~~~~~~~~~~~~~~End of self- assessment solution~~~~~~~~~~~~~~~~~ 
 
 
 
 
 
 



 94  COS1521/103/3/2013 
   
 

 

 
  

 

Appendix I 
Errata F&M 

 

 
 

Transformation of a Boolean function to a sum of products (minterms)  
 

 
Please note that only the sum of products method is included in the syllabus. (E&C, pp. 534, 536; examples E.2 and 
E.3; E&C, pp. 537, 538; Tutorial Letter 102, Section 1.6, p. 46) 
The product of sums method explained in E&C, pp. 534, 537 is excluded. This means that the product of sums 
functions in Figure E.7 and examples E.4 and E.5 (E&C, pp. 535, 537, 538) are also excluded. 
 
 

Updated errata list for E&C (An incomplete errata list is given in Tutorial Letter 102) 
 

 
If you come across any mistakes in E&C that are not included in the list provided, please let us know. 
 
Solutions to odd-numbered end-of-chapters exercises are provided by Cengage Learning at:  
 

http://www.cengage.co.uk/forouzan/students/stu_title.htm  
 or Google the book’s student solutions.  
 

Please do the following corrections in your prescribed book: 
 
Chapter 2 

Page Location Correction 
 

20 Example 2.2 Add parentheses to N = − 7 × 1000 + … value to read as 
N = − (7 × 100 + …) value 

21 Example 2.4 Change 24 in the first line to 25 
29 Figure 2.9 Add D_3 after D_2 
32 Example 2.19 (1100 1110 0010)2 must be converted to hexadecimal. In the solution the binary 

number is arranged in 4-bit patterns, but the first 1 is left out. 
The solution should be: 
(1100 1110 0010)2 = (CE2)16. 

  
 
 

 

 

http://www.cengage.co.uk/forouzan/students/stu_title.htm


 95  COS1521/103/3/2013 
   
 

 

Chapter 3   
Page Location Correction 

 
44 Note box Add a dot at the end of the sentence. 
48 Solution 

Example3.7 
Change 17 to 33 and -17 to -33. 

49 Two’s 
complement 
Representation, 
line 6. 

Change 0110 to 0111 & change 0111 to 1000 

54 Storing reals, 
line 2  

Change 27 to 23 

55 Example 3.18 Change 7,452,0… to 7,425,0… 
56 Example 3.20 Change number to decimal point in the first line of solution. 
57 Example 3.21 Change number to decimal point in the second line of solution. 
60 Example 3.23 

solution 
In line c, change (1.1011)

2 
to (1.0111)

2
 

In line d, change M=1011 to M= 0111  
In line e, M = 10110… to M = 01110…  
The number is stored in the computer as 01000000101110000000000000000000 

62 Truncation 
errors, line 7 

Change 27 to 26 

63 Line 1  Change nine to ten  
64 Figure 3.15 Add 1 at the end of the curve (on horizontal axis). 
65 Figure 3.16 Add 1 at the end of the curve (on horizontal axis). 
67 True-Color, line 

4  
Change 256 to 255  

72 Question 17 Change one or more bit patterns to a bit pattern 
   
Chapter 4   

Page Location Correction 
 

79 Second note box Change AND to OR. 
92 Solution 

Example 4.23 
Change Change Change S

B 
= S‾

B  
to B

S 
= B‾

S 
 

92 Solution 
Example 4.23 

In the black box B
S 

= 1 shoud be changed to B
S 

= 0 (i.e .the sign of B‾
S
) 

92 Last line 1.11101 x 24 + 0.00101 x 24 should change to 1.11101 x 24 + 0.0101 x 24 
93  Third line from 

below 
Change 1.00010 to 1.000111  

95 3rd box Change denormalized M from  001010001100000000000000 to 
1 10011000110000000000000 

   
Chapter 5   

Page Location Correction 
 

102 Line 4  Change Figure 5.2 to Figure 5.1  
111  Format, line c  Change 96 to 98  
130 The fifth line 

after the figure 
Change ‘the second operand of the STORE instruction.’  
To         ‘the first operand of the STORE instruction.’ 

133  Cycle 1, nr 2  Change (1040)
 16 

 to (40)
16 

 
137  Read Operation  Change M

EF 
to M

FE 
& Change EF 

16 
to FE

16 
 

142 Exercise 43 Change add to Instruction (in the last line). 
  

 
 

 



 96  COS1521/103/3/2013 
   
 

 

Chapter 8   
Page Location Correction 

 
238 Question 26 Change Use to We use. 
238 Question 27 Change Use to We use. 
220  Example 8.2, 

solution, line 4  
Change Algorithm 8.3 to Algorithm 8.2  

221 Algorithm 8.3 The ‘if’ statements should read as follows: 
 
if (100  ≥ score ≥ 90)    grade ← ′A′ 
if (89  ≥ score ≥ 80)      grade ← ′B′ 
if (79  ≥ score ≥ 70)      grade ← ′C′ 
if (69  ≥ score ≥ 60)      grade ← ′D′ 
if (59  ≥ score ≥ 0)        grade ← ′F′ 

   
Chapter 9   

Page Location Correction 
 

269 Exercise 30 Add a semi-colon (;) after the last line. 
   
Chapter10   

Page Location Correction 
 

272  Figure 10.1  Change absolete to obsolete  
279 Second line Change Chapter 10 to Chapter 9. 

 
 
Chapter 11 

  

Page Location Correction 
 

294  Solution, line 7  Change i is 3 and j is 5 to i is 5 and j is 3  
304 Algorithm 11.3 Add pre, cur, flag inside the parentheses in the first line 
304 Algorithm 11.3 Delete the line before the last line, return (…) 
307 Algorithm 11.4 In line 11, Change (list ! = null) to (list = null). 
308 Figure 11.19  There are mistakes in this figure. The correct figure is on the web. 
313 Question 15 Change part d to d. all of the above. 
 
 

  

Chapter 13   
Page Location Correction 

 
357 Figure 13.9 Change direct to modulo (title under the shadowed box) 
365 Question 15 Change e. f. g. h. to a. b. c. d. 
365 Question 16 Change e. f. g. h. to a. b. c. d. 
 
 

  

Chapter 14   
Page Location Correction 

 
370  Data Integrity Change (see Chapter 6) to (see Chapter 16). 
379  Union, line 7  Change on the lower left to on the upper right  
381  Figure 14.15  Change result of operation from  

 
Student-ID F-Name  L-Name  



 97  COS1521/103/3/2013 
   
 

 

145-67-6754  
232-56-5690  

John  
George 

Brown  
Yellow  

to  
 

Student-ID F-Name  L-Name  
345-89-6580  
459-98-6989  

Anne  
Ted  

Green  
Purple 

 

382  Figure 14.16  Change STUDENT P-ID to S-ID  
Change PROFESSOR S-ID to P-ID  

 
Appendix A: 

  

Page Location Correction 
 

500  A.1 Planes, 
line 4  

Change 65,536 to 65,535  

501  Table A.1  Change All instances of (##)16 to (##)
16 

 
 

Appendix E:   
Page Location Correction 

 
532 Table E.1, 

Row nr 5 
Change 1 + 0 = 0 + 1 = 0 to 1 + 0 = 0 + 1 = 1 

532 Table E.3, 
Row nr 3 

Change x + yz = (x + y)(y + z) to x + yz = (x + y)(x + z) 

533 Table E.6, 2nd 
row  

Change F1= x.y′ to F1= x+y′ 

 
 
 



 98  COS1521/103/3/2013 
   
 

 

  
 

Appendix II 
Engels / Afrikaans woordelys 

 

 

WOORDELYS: ENGELS - AFRIKAANS 
 
AC adapter wisselstroom aansluitstuk 
access control  toegangsbeheer 
access privileges  toegangsvoorregte 
access time  toegangstyd 
address adres 
address bus  adresstam 
Analog analoog 
analysis phase  ontledingsfase 
anti-spam program  anti-spamprogram / anti-sproeiposprogram 
antivirus  antivirus 
applet miniprogram 
application generator or program generator   programgenerator 
application service provider (ASP)  toepassingdiensvoorsiener 
application software  toepassingsagteware 
arithmetic/logic unit (ALU) rekenkunde en logika-eenheid (RLE) 
arrays skikkings 
arrow keys pyltjies 
artificial intelligence (AI)  kunsmatige intelligensie 
assembler saamsteller 
assembly language  saamsteltaal 
asymmetric digital subscriber line (ADSL)  asimmetriese digitale intekenaarlyn 
asynchronous asinchrone 
audio  oudio 
Authentication waarmerk 
back up  rugsteun 
backbone  ruggraat 
backup procedures  rugsteunprosedures 
backup utility   rugsteunnutsprogram 
bandwidth  bandwydte 
batch processing bondelverwerking 
binary binêr 
biometric identifier  biometriese identifiseerder 
bit or binary digit  bis of binêre syfer 
bitmap biskaart 
black box swartkis 
booting  selflaai 
browser routine blaaier-roetine 
bubble borrel 
bucket hashing houerhutsing 
buffer   buffer 
bugs  foute 
bus   bus of stamlyn 



 99  COS1521/103/3/2013 
   
 

 

bus width  busgrootte 
byte  greep 
capacity kapasiteit 
cathode ray tube (CRT)  katode straalbuis 
CD-R (compact disc-recordable)   kompakte skyf (skryfbaar) 
CD-ROM  (read only memory)  kompakte skyf (lees alleen geheue) 
CD-ROM drive or CD-ROM player kompakte skyf aandrywer of speler 
CD-RW (compact disc-rewritable) compakte skyf (herskryfbaar) 
central processing unit (CPU) or processor  sentrale verwerkingseenheid (SVE) 
check digit  kontrolesyfer 
chip vlokkie 
CISC-type computers (Complex Instruction Set Computers) CISC-tipe rekenaars 
ciphertext syferteks 
clock cycle  kloksiklus 
clock speed or clock rate  klokspoed 
coaxial cable or Coax  koaksiale kabel 
commands bevele 
common gateway interface (CGI)  gemeenskaplike deurgangspoortkoppelvlak 
communications software  kommunikasiesagteware 
compact disc (CD)   kompakte skyf 
complementary metal-oxide semiconductor or CMOS  komplimentêre metaaloksied-halfgeleier KMOH 
computer-aided design (CAD) software rekenaar-gesteunde ontwerp sagteware 
computer-aided software engineering (CASE) rekenaargesteunde sagteware-ingenieurswerk 
connector aansluiter 
construct konstruk 
control structure or construct  konstruk 
control unit  beheereenheid 
controller beheerder 
cookie  koekie 
coupling koppeling 
coprocessor  medeverwerker 
cracker or hacker  kraker of inbreker 
CRT monitor or monitor katodestraalbuis (KSB) 
custom software doelgemaakte sagteware 
data bus datastamlyn 
data conversion  data-oorskakeling 
data-link layer dataverbindingslae 
data processing   dataverwerking 
data transfer rate   data-oordragtempo 
data type   datatipe 
data warehouse   datastoor 
database management system (DBMS)  databasisbestuurstelsel 
database server  databasisbediener 
database software or a database management system (DBMS)   databasissagteware of 'n databasis bestuurstelsel (DBBS) 
deadlock dooiepunt 
debug utility or debugger  ontfouter 
decision support system (DSS)  besluitnemingsondersteuningstelsel 
decision table  beslissingstabel 
decision tree  beslissingsboom 
declarative deklaratiewe 
decrypt  ontsyfer 
default value  verstekwaarde 
deliverable afgelewerde item 



 100  COS1521/103/3/2013 
   
 

 

design phase  ontwerpfase 
design tool ontwerphulpmiddel 
desk checking   handontfouting 
desktop  skerm oppervlakte 
desktop computer tafelrekenaar 
desktop publishing (DTP) software tafelpublikasie sagteware 
device driver or driver  toesteldrywer 
digital digitaal 
digital certificate or public-key certificate digitale sertifikaat of openbare-sleutel sertifikaat 
digital divide digitale kloof 
digital signature or digital ID  digitale merkteken of digitale ID 
disk   skyf 
disk controller   skyfkontroleerder 
disk defragmenter   skyfdefragmenteerder 
distributed verspreide 
DNS server  DNS-bediener 
documentation  dokumentasie 
domain name   domeinnaam 
domain name system (DNS)  domeinnaamstelsel 
do-until control structure  doen-tot beheerstruktuur 
do-while control structure doen-terwyl beheerstruktuur 
download aflaai 
drive bays aandrywer gleuwe (skyf gleuf) 
DVD-ROM (digital video disc-ROM)   digitale videoskyf-LAG 
dynamic RAM or DRAM dinamiese LAG  
e-mail or electronic mail  e-pos of elektroniese pos 
encryption key enkripsie sleutel 
entity  entiteit 
entity-relationship diagram (ERD)  entiteitsverhoudingsdiagram 
execute verwerk of uitvoer 
expansion slot uitbreidingsvak 
expert system  ekspertstelsel 
field  veld 
file lêer 
floating-point coprocessor wisselpuntverwerker 
fragmented  gefragmenteer 
frame raam 
FTP (File Transfer Protokol) server lêer-oordrag-protokol bediener 
Gantt chart  Gnatt kaart 
graphic or graphical image  grafikabeeld 
graphical user interface or GUI  grafiese gebruikerskoppelvlak 
groupware  groepware 
hard disk   harde skyf 
hardware hardeware 
host computer gasheerrekenaar 
hub nodus; spil 
hyperlink or link  hiperkoppeling of koppeling 
hypertext markup language (HTML)  hiperteksmarkeertaal 
hypertext transfer protocol hiperteks protokol 
icon  ikoon 
image editing  beeldredigering 
image processing or imaging  beeldverwerking  
implementation phase  implementeringsfase 
indexed files geïndekseerde lêers 



 101  COS1521/103/3/2013 
   
 

 

information  inligting 
information hiding  inligtingsverskansing 
information processing cycle inligtingsverwerkingsiklus 
information system  inligtingstelsel 
inheritance  oorerwing 
Input toevoer 
input device  toevoertoestel 
instance instansie 
instant messenger  onmiddellike boodskapper 
instruction time or i-time instruksietyd of i-tyd 
integrated circuit (IC)  geïntegreerde stroombaan 
Internet service providers (ISPs) or online service providers (OSPs) 
or content portals or online malls 

Internet diensvoorsieners of gekoppelde diensvoorsiener of 
inhoudelike poorte of gekoppelde koopsentrums  

join operation verbindingsbewerking 
IP address or Internet protocol address  IP adres of Internetprotocol adres 
kernel  kern 
key field or primary key sleutelveld of primêre sleutel 
keyboard  sleutelbord 
keyword sleutelwoord 
laptop computer or notebook computer  skootrekenaar 
linked list geskakelde lys 
log on  aanlog (aanteken) 
logic logika 
logical design  logika ontwerp 
machine cycle or instruction cycle  masjiensiklus of instruksietyd 
machine language masjientaal 
macro  makro 
mainframe hoofraam 
management information system or MIS  bestuursinligtingstelsel 
memory  geheue 
memory cache kasgeheue 
message board or discussion board  boodskapbord of besprekingsbord 
metropolitan area network (MAN)  metropolitaanse area-netwerk 
microbrowser or minibrowser  mikroblaaier of miniblaaier 
modularity modulariteit 
monitoring  monitering 
motherboard or system board moederbord of stelselbord 
mouse pad muiskussing  
multimedia  multimedia 
multimedia authoring software  multimedia-outeursagteware  
multiplexer or MUX multiplekser 
multiplexing  multipleksering 
multiprocessing  multiverwerking 
multitasking  multitaakverwerking 
nonrepudiation nie-repudiëring 
object objek 
object code or object program  objekkode 
object query language (OQL) objeknavraagtaal 
object-oriented  objekgeoriënteerd  
object-oriented programming (OOP) language  objek-georiënteerde programmeringstaal 
object-relational data model objekrelasionele datamodel 
OCR devices optiese karakterherkennings toestelle 
operability werkbaarheid 
operating system bedryfstelsel 



 102  COS1521/103/3/2013 
   
 

 

output  afvoer 
output device afvoertoestel 
paging  paginering 
parallel processing  parallelle verwerking 
parity bit pariteitsbis 
partitions   partisies (afbakenings) 
physical design  fisiese ontwerp 
pie-chart sirkelgrafiek 
pipelining  pyplynwerking 
pixel  beeldelement 
plaintext privacy gewone teks-privaatheid 
planning phase  beplanningsfase 
port poort 
portability oordraagbaarheid 
private key encryption or symmetric key encryption  private sleutelenkripsie of simmetriese sleutelenkripsie 
procedural prosedurele 
programmable read-only memory (PROM) programmeerbare lees-alleen geheue 
public key encryption or Asymmetric key encryption  openbare sleutelenkripsie of Assimetriese sleutelenkripsie 
public switched telephone network (PSTN)  publiekgeskakelde telefoonnetwerk 
public-domain software  publieke domein sagteware 
quality review kwaliteitsoorsig 
queue Tou 
raster graphics rastergrafika 
RISC-type computers (Reduced Instruction Set Computers)  RISC-tipe rekenaars 
registers registers 
repeater herhaler 
reset terugstel 
resolution   resolusie 
resources hulpbronne 
ROM - read-only memory lees-alleen geheue (LAG) 
router roeteerder 
saved gestoor 
scope  bestek 
screen saver  skermskut of skermbespaarder 
search engine  soekenjin 
secure server  veilige bediener 
secure site  veilige tuiste 
selection sort seleksiesortering 
server  bediener 
signature kenteken 
signature verification system kenteken verifikasiestelsel 
single user or single tasking  enkeltaakwerking 
software  sagteware 
source document brondokument 
source program  bronprogram 
speech recognition or voice recognition  spraakherkenning 
stand-alone  alleenstaande 
starvation uithongering 
state diagram toestandsdiagram 
static RAM or SRAM  statiese ETG 
storage  stoor 
storage device  stoortoestel 
streaming audio or Streaming sound stromende oudio of stromende geluid 
structure chart struktuurkaart 



 103  COS1521/103/3/2013 
   
 

 

structured design  gestruktureerde ontwerp 
Structured Query Language (SQL) gestruktureerde navraagtaal 
syntax  sintaksis 
tape drive   bandaandrywer 
terminal terminaal 
test data toetsdata 
usability bruikbaarheid 
video capture card  video-vaslê kaart 
video card or video adapter or graphics card videokaart of video aansluitstuk of grafika kaart 
video digitizer video-versyferaar 
video editing software webblaaier of blaaier 
video editing software video-redigeringsagteware 
video input or video capture  video-toevoer 
video conference  videokonferensie 
virtual memory (VM) virtuele geheue 
walking pointer navolgingswyser 
Web appliances or Internet appliances Web-toestelle of Internet-toestelle 
Web bar codes  Web strepieskode 
Web browser or browser Webblaaier of blaaier 
Web filtering software or Internet filtering software  Web filtreringsagteware of Internet filtreringsagteware 
Web hosting services   Webgasheer dienste 
Web page authoring software   Webbladsy outeursagteware 
Web page authors  webbladsy-outeurs 
Web publishing   Webpublisering 
Web server   Webbediener 
Webmaster  Webmeester 
Webware or a Web application Webware of 'n Webtoepassing 
word processing software  woordverwerkingsagteware 
word size   woordlengte 
World Wide Web (WWW) or Web   Wêreldwye Web (WWW) of Web 
World Wide Web Consortium (W3C)  World Wide Web Consortium (W3C) 
World Wide Web or WWW or Web wêreldwye web 
zipped file  kompaklêer 

 
 
 

© 
Unisa 2013 


	From the truth table:

