Solutions to Practical questions on sampling

Question 1

1. Monetary unit sampling (MUS)

Monetary unit sampling (MUS) is a statistical sampling method in which each rand (monetary value) in an accounting population stands an equal chance of being selected for a sample. $\sqrt{}$ The probability of an item being included in the sample is thus directly linked to the monetary value of that item. $\sqrt{}$ The definition of a sample unit is therefore changed from a physical unit (invoice, stock item) to an individual rand (R1,00). $\sqrt{}$ (3)

2. Calculation of the number of sample items

Use table A to process the confidence level to a reliability factor: 90% = 2,3 (R) $\sqrt{}$

Calculate the J-factor:

$$J = P/R = R69 000/2.3 = R30 000 \sqrt{}$$

Calculate the sample size:

Sample size = Total value of population / J-factor = R7 350 000 / 30 000 $\sqrt{}$ = 245 items $\sqrt{}$

3. Selection of the first three invoices for the sample

Invoice No	Invoice amount R	Accumulated amount R	Selected	Invoice selected
101	11 100	11 100		
102	9 500	20 600	12 700	102 √
103	21 000	41 600		
104	14 600	56 200	42 700	104 √
105	17 200	73 400	72 700	105 √

•

Question 2

a) Sampling technique

Estimation sampling for variables vs. monetary unit sampling $\sqrt{}$ Choose monetary unit sampling as you do not want to determine the standard deviation $\sqrt{}$

b) Sampling process

- Determine the total value of the debtor"s population. $\sqrt{}$
- Decide on a confidence level after the system of internal control has been evaluated.√
- Decide on a level of monetary precision.√
- Process the confidence level to a reliability factor using a table. $\sqrt{}$
- Calculate the J-factor (monetary precision divided by the reliability factor).√
- Calculate the sample size (population value divided by the J-factor).√
- Draw the sample.√
- Carry out an audit of the sample.√
- Reach a conclusion.√
- Consider if other additional steps must be taken.√

(c) Reasons for stratification

- It is used to get a group of sampling units which have more or less the same attributes. $\sqrt{}$
- It is used when the population has large variability or is not homogeneous.√
- Stratification allows the internal auditor to give special attention to certain categories in the population, such as high-value items. $\sqrt{}$
- This procedure reduces the variation of all the items in the stratum.√
- Stratification should result in a smaller sample size.√

Question 3

Calculation of adjusted monetary precision

Error value	J-factor	Item value	Estimated value of error
Errors of overstaten	nent		
(1) 1 600	1 000	1 700	1 600
(2) <u>200</u>	1 000	500	400* √
1 800 √			

^{*} Estimated value of error = J-factor/Item value x Error value = 1000/500 x 200 = 400

Error value	J-factor	Item value	Estimated value of error
Errors of understate	ment		
(1) 840	1 000	1 100	840
(2) <u>195</u>	1 000	150	1 300 * √
1 035 √			

^{*} Estimated value of error = J-factor/Item value x Error value = 1000/150 x 195 = 1 300

$$1\ 800 - 1\ 035 = 765\ \sqrt{}$$

Estimated value	Precision adjustment factor	Adjusted estimated value
Overstatement		
1 600		1 600
(1) 400	1.75 ½	700
		2 300 √
Understatement		
(2) 840		840
(1) 1 300	0.05 ½	65
		905 √
		1 395 √