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Memo for Assignment 1 52 2015

Special relativity basics (§ 1.1 - 1.2)
Consequences of Lorentz transformations (§ 1.3)

Question 1: Lorentz transformation

Aliee sees an explosion happening and measures the spacetime coordinates of the explosion
to be (¢, z, ¥y, z) = (1.5ns, 2m, 1m, Om). Bob isriding past in a train at a constant speed of
V' = 0.4c in the positive z-direction. Use the Lorentz transformation equations to determine

what time Bob measures the explosion taking place. (Hint: 1ns (nanosecond) = 107%).

e 1518

1.407 x 107"

—1.17 % 107 %s

e 158

e —1.41ns*

The train is moving at V = 0.4e, so the Lorentz factor hetween Alice’s frame (5) and Bob's
frame (57) 15
L
1
V1—(04c)” /e
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The Lorentz transformation equation for the time coordinate is
, vr
= y(t——=
I I.":z

Using this, we transform Alice’s measurements into Bob's frame as follows

g ( t‘.r)

10 (1 . {]-lf)(ij)

2
= 1.09 (1 Sns — 04) (Qm))
C
(0.4)(2m)
= 1.09]1.5
( R 1{l°rm‘1)

= (1 ns — 2.27 x 10~%)
19(1.5ns — 2.27ns)

= 1.09(—1.17ns)

= —14lns

The negative time coordinate just means that Bob sees the explosion happening at a time

before the arbitrarilv chosen zero time,

Question 2: Time dilation

A group of astronants take on a mission to travel to a nearby planet. According to the people
on Earth, the spaceship takes 100 vears to reach its destination, but the astronauts on the
spaceship only aged 30 vears during the journey, How fast was the spaceship travelling,
assuming that it was moving at a constant velocity?

e 0.83¢

e 0.95¢*

e 3.48¢

e 0.01¢
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e 1.04c

The astronauts measure their own proper time, Then the time that the people on Earth
measure for the journey (Afg) will be related to the time that the astronants measure ( Afy)

by the time dilation formnola so that

Atp = ﬁr‘ﬂt‘q

100 years = = x 30years
v o= 3.33
—; = 3.33
V61— V3/e? ‘

11—V = 0.09
Vet = 001
V = 0.95¢

Remember, nothing with mass can travel faster than the speed of light e If vou ever get an

answer where a H]J[‘[‘[l 15 gl'[‘ilt[‘l' than e Vil made a mistake somewhere,

Question 3: Summation

The s
3

B, = Z ?]ﬁQBﬁ
F=0

written ont in full is

e B, =3ns,B"

o By =mngB’

o B, = n3aB° +nsaB® + 1o B? + 15, B?
¢ B, = 70.B? + 1B + 72,B? 4 553, B**
o By =noB" +nuB' + 1y B + 33 B
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Question 4: Velocity addition

Two alien races, the Klingons and the Romulans are having a battle in space. During the
battle, two of the spaceships approach each other head on at a speed of 0.4e. The Klingon
ship shoots a torpedo in the divection of the Romulan ship,  The Klingons measure the
torpedo leaving their ship at a speed of 0.6e. How fast does the Romulans measure the

torpedo to be approaching them?

e (0.26c

0.81c*

e 1.32¢
e 0.73c
When in doubt, draw a picture! It will help vou to disentangle the problem and organise

vour thoughts, It can also show the marker that vou have insight into the problem. Below

15 a rough sketeh of the situation.

= —
Klingons — Romulans
0.6c

(as measured in )

The two spaceships are approaching cach other, moving with a speed 0.4e relative to each
other, We can interpret this in a few wayvs mathematically, where the physical situation
remains unchanged, For example, we can say that the Klingon ship is moving at 0.2¢ in the

positive z-direction, while the Romulan ship is moving at 0.2¢ in the negative z-direction.
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Or we can say that the Romulan ship is stationary, with the Klingon ship moving at 0.4e in

the positive z-direction.

As indicated in the figure above, we will approach this problem by taking the Klingon ship
as being stationary, and the Romulan ship travelling towards in at 04de in the negative x
direction, If we call the frame in which the Klingon ship is stationary S (if the figure above
were a photograph, the “photographer”™ would also be stationary in this frame), and the
frame in which the Romulan ship is stationary S’ Considering the standard configuration,

we can now identifv the speed between the frames as V = —0.4ec.

Now the Klingon ship shoots a torpedo towards the Romulan ship (in the positive z-direction)
and they (in the S frame) measures its speed as v, = 0.6c. The question requires vou to
calculate the speed of the torpedo as measured by the Romulans (in 8. So we use the

velocity transformation equation for the z-direction to transform v, to vl

vy — V
1 — v, V/c?
(0.6¢) — (—0.4¢)
1 —(0.6¢) (—0.4c) /2
C

1+0.24
= 0.81c

So the Rommlans measure the speed of the torpedo to be 0.81e in the positive z-direction.
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Memo for Assignment 2 52 2015
Minkowski spacetime (§ 1.4)

Physical laws in relativity (§ 2.1 - 2.2.3)

Questions 1 - 3: Spacetime diagrams

Consider the spacetime diagram below to answer the following questions

H

1. Inthe S’ frame, the following two events occur at the same position

Aand B

Aand E

Aand D

e D and C*

D and E

The S’ frame is indicated by the blue coordinate axes. For two events to occur at the same position, they
must occur at the same space coordinate. With the help of the dashed line that is parallel to the 2 axis, it

is clear that events C and D have the same 2’ coordinate.

2. To which point would observers in both the S and S’ frame assign the same spacetime coordinates?
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e B

e None of the points
The only point to which observers in both 8 and 87 will assign the same spacetime coordinates is the origin,
event A where (z, cf) = (2', et') = (0, D).

3. Which of the following statements are true for all fromes?

¢ Event A happens before event C*

o Events E and F oare cansally related

o Events A and B ovear at the same position
o Bvents A and B ocear at the same time

o Event C cansed event F

Event A will happen at time of = o’ = (0. It is not possible to draw a coordinate axes where Event C will
he helow the space axis. The spacetime diagram will have to look something like the fipure below, which is
not a valid Lorentz transformation. The axes of a Lorentz transformation will alwavs be svmmetric abont

the line of = x [shown as a dashed line in the figure).

ctA ct'

xy

Figure 1@ Not a correct Lorentz transformation!

Events E and F will be cansallv related if they can be related by a signal that travels slower than the speed
of light, or equivalently, if the two events are in each others lightcones. From the figure below it is clear that
thev are not in each others lighteones {or, a signal connecting the two events will have to move faster than

the speed of light), so one event cannot cause the other and they are not cansally related.
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Events A and B ocenr at the same position in § {z = 0), bat this is not troe for all frames. In 8 [and all
other inertial frames with a positive V relative to 5, A will oceur at the origin and B will oceur at some

negative value of x.

Events A and B do not ovear at the same time in 8. so they do not ocear at the same time in all frames,

since vou can give a counter example.
Events C and F are cansally related, since theyv can be connected with a signal that moves slower than ¢, or

are in each others light cones. But, event F will oceur before C in all frames, so there is no way in which C

could canse F, although it would be possible for F to cause C.

Question 4: Mass energy
What is the mass energy of a proton with rest mass my = 1.67 = 10727 kg?

¢ 5.01 x 107" joules

¢ 1.50 x 10710 joules*
o 1.50 x 10% joules

s 1.67 x 10727 joules

s 0% 10 joules
The mass energv for the proton is

E=mc = (167 x 107 kg) (3 x 10%)° = 1.50 x 10-10 ]

Question 5: Momentum

How fast must a body be travelling so that its correct relativistic momentum is 1% greater than the classical

momentium?
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e 0.04c
e 0.42¢
e 0.14c"
e 1.41c

¢ 1.35¢c

For the relativistic momentum to be 1% greater than the classical momentum, we must have

Pret = 1.01peias

rmu = 1.0lmu
v = 101
VI=VI/E = 099
11—V = 0980
VidE = 0.02

V o= 0.l4le

Question 6: Collisions

A proton and nentron collide in an elastic collision.  Before the collision, the nentron is stationary and
the proton has momentum p, = (0.4, —0.2, 0.8) MeV /e and the proton’s momentum after the collision is

(—0.2, —0.5, 0.6) MeV /e, What is the nentron’s momentum after the collision?

(0.2, 0.5, —0.6) MeV/c

(0.2, —0.7, 1.4) MeV/c

(0.6, 0.3, 0.2) MeV /c*

(0,0, 0) MeV/c

(—0.6, 0.7, 0.2) MeV/c

The collision is elastic so that the kinetic energy is conserved. This is not really relevant to solve this problem,
but be sure to know what it means. Total energy and momentum is alwavs conserved. This means that the
total momentum before the collision should be equal to the total momentum after the collision. A stationary

ohject has no speed, and therefore no momentum. We can write this as

p:.llcfore +p€::fclre — p?‘fter_‘_p;ﬂer
piﬂ.cr _ piﬂfﬂd"e + p:::_;fnre _ p:_fter

= (0,0,0)+ (0.4, —0.2, 0.8) — (—0.2, —0.5, 0.6)
= (0.6,0.3,0.2) MeV/c



Question 7: Kinetic energy

A proton [mass my,

frame. What is its kinetic energy?
o 7.6 < 108 MeV
s 1023 MeV
s 178.7MeV
s 273 MeV

s 3539 MeV*

APMAITIZ 20222015

= 038.3MeV /c?) is moving with speed 0.4c along the z-axis relative to the laboratory

Take the laboratory frame to be § and let the proton be stationary in the S frame. The Lorentz factor for

the two frames is

The kinetic energy is then

Eg

Il

-
=
=
=

(v — 1) mc?
(1.091 — 1) (938.3 MeV)
85.30 MeV
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Memo for Assignment 3 52 2015

Four vectors and tensors (§ 2.2.4 - 2.3.5 (excluding 2.3.1 -
2.3.1))

Question 1: Tensor notation

Consider the following in Minkowski spacetime

'}IG}HJ’
o

. ox¥

How many equations does this represent?

Four equations are represented, one for each possible value of g The other index. » is a
dummy index and is being swmmed over in each of the equations. Written out it full. the

four equations are

oG 9G™ ac"  8e"  9G"

% o~ o0 ot T T e 0
aGY  ac®  act  agt? Gt

% o = 00 ot oz o 0
G 9GP aGY  aGT oG

% o~ 00 o T T 0
G 9GP  AGM G  oGH

o o ot "o T !

Now VOl eall see how much more condensed tensor notation is.
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Question 2: Tensors, vectors and scalars

The fonr momentum is given by

[P] = (P°, P', P*, P*) = (E/e, p) .

Clonsider the following quantities from the equation:

a) [P
h) P*

[1 (}'_:01 pl‘ 11-_;21 p.‘%}
il E

) (E/e, p)

£ P

Which of the following statements are true?

e a and ¢ are tensors, bois a vector and d 15 a scalar

e ¢ and e are tensors,  is a vector and b is a scalar®

e o and b are tensors, Fis a vector and d is a sealar

e o and e are tensors, d is a vector and [ is a scalar

e ¢ and [ are tensors, e 15 a vector and b is a scalar
The differences between tensors, vectors and scalars ave important. In the same way that
vour can’'t equate a matrix to a munber, vou can’t equate a tensor to a scalar, From the given
list. (a). (¢) and (e) ave all tensors. [P#] is delinitely a tensor. so anything equal to it will
also be a tensor. The components of [PF], namely P P'. P? and P?. are all scalars, just

like the components of a veetor are scalars. The energy (d) is a scalar, The normal three

momentum pis a vector with 3 components.
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Question 3: Energy-momentum relation

An electron (mass m, = 0.511 MeV /¢?) is has an energy of 0.850 MeV. What is its momen

tum’?

e 0.850MeV /e

0.461 MeV /e

0.339 MeV /e

0.582MeV /e

0.679 MeV /c*

Using the energyv-momentum relation

E? = (mc‘z)?+(-p(:j2
2 = (0.511MeV)? + (pe)?

(0.850 MeV)
pc)’ = (0.850MeV)? — (0.511 MeV)*
pe)

(%]

2 — 0.461MeV?
p = 0.679MeV/c

Question 4: Transformation of energy

An electron (mass me = 0.511 MeV/c?) is moving along the z-axis of an inertial reference
frame S with speed v = 0.8c. momentum 0.682MeV /e and total energy 0.852 MeV. What
is its total energy in an inertial frame S7 that 15 moving in the standard confignration with

speed 0.6¢ relative ta S7

0.852 MeV

e (L7383 MeV

0.554 MeV*

0.511 MeV
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o (0.443 MeV

The Lorentz factor for the two frames is

Using the transformation equation for the total energy in 8" gives

E = y(E—Vp,)
= 3(0 852 MeV — (0.6¢) (0.682 MeV /c))
= E (0.852 MeV — 0.409 MeV)
= 0.554MeV

Question 5: Four momentum

A photon with measured momentum 0.210 MeV /e is moving along the y-axis relative to the

laboratory frame. What is the value of the its four-momentum [P#] in MeV /¢?

e (0.21,0,0.21, 0)*

(0, 0.21, 0, 0)

(0.21, 0.21, 0, 0)

(0,0, 0.21, 0)

(0.21, 0.21, 0.21, 0.21)

The four momentum is given by

[‘P#] = (EI;E p) = {E‘.-;(" Pz, Py, pﬁ} .
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From the question we know that p, = p. = 0 and p, = 0.21 MeV /e It remains to caleulate
. " s o
the energy of the photon. Sinee photons are massless, we cannot use the equation E = yme”,

We therefore use the energy momentum relation with m = 0 to get

B2 = (mtz)z + (pr_‘}?'
E = pe
EF = 0.21MeV

The four momentum is then given by

[PH] = (0.21, 0, 0.21, 0) MeV /e

Question 6: Transformation of tensors

Using equation (2.110) in the textbook., how would a contravariant tensor of rank 1 AY

transform in general?

A w3 ar'™ au
o AM =300 A

g~

L 3 grH
. .'4. # = Ey:{] - ;"L,.

oz

A w3 arH Aw
o A =3 ,55A

az'

mo__ 3 ax'™ oA vk
o A =3x8 2N

. ‘4,!“ — Ei:{ i AH

) Gz’
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Memo for Assienment 4 52 2015

Chapters 1 & 2

Question 1

Bob, standing at the rear end of a railvoad car, shoots an arrow toward the front end of
the car. The velocity of the arrow as measured by Bob is 1/5e. The length of the car as
measured by Bob 15 150 meters, Alice, standing on the station platform observes all of this
as the train passes by her with a velocity of 3/5e. What values does Alice measure for the

following quantities:

(a) The length of the railroad car.

(1) The velocity of the arrow,

() The amount of the time the arrow is in the air.
() The distance that the arrow travels.
Solution

Part A

Let's call the frame where Bob is at rest 8" and the frame where Alice is at rest S, The

Lorentz factor hetween the two frames are
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Since Bob is at rest with respect to the railroad car, he will measure the proper length Lp.

The length that Alice measures L owill be contracted according to

Lp

~

L =

4
= —150m
)

= 120m

S0 Alice will measure the railvoad car to be 120m long,

Part B

To determine the speed of the arrow as measured by Alice » [rom the speed as measured by
Bob o', we use the velocity transformation equation. The velocity transformation equations

given in the textbook on p30 is given as

vV
C1—oV/e?

!
(4

where Vois the relative speed bhetween the two frames (V= 3/5¢ in this case) and v is the
speed of the moving object (arrow) as measured in the S frame and ©" is the the speed of

the moving object as measured in the S frame. where the two frames are in the standard

configuration.

To solve this problem. we are actually looking for the inverse velocity transformation, since
we know o and want to caleulate v You can argue that S is moving in the negative
direction wrt S’ so we can just replace Vowith =V and v with o (similar to obtaining the

inverse Lorentz transformation equations ). We can check this approach with a little algebra:

; o — 1-"
v - 59
1 —vV/c?
o' (1 - -E'I—"_,f’r:z) = v—-V
v — Vi = v—V
v+v'vV/id = V4o
v (1 + V_ff:z) = V4
Vo
I —

141 "'Vfcfg
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From here it is simple to determine the speed that Alice measures for the arrow by plugging

i the known values

v

V + o
1+vV/e2
e/5+¢/5

1+ (1¢/5) (3¢/5) /c*
4c/5
28 /25

[y §

*

ol
IZ\J|IZ\J
[w.a)

]

=I| wt

So Alice measures the arrow’s speed to be v = 5/7e.

Part C

The important thing to recognise when doing this question is that the arrow is moving in

the same direction as the arvow, so the arrow will travel further than just the length of the

train car. The figure below illustrates this from Alice’s point of view,

-—

O O

%}H

O

%._.
O O

| I

t,

t,

The markers at the bottom of each panel in the figure shows the length of the train car, The

arrow will stop travelling once it hits the far wall of the car. As the arrow travels to the

right. the far wall of the car is also moving to the vight, so the arrow will eventually travel

further than the length of the car.

The total distance that the arrow will travel, will be equal to the length of the car plus the

distance the car has travelled in the in the time the arrow 15 10 the air. We write this as (all

guantities as measured in S)

distance arrow travels

(length of car) + (distance car travels)
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Wi use the formula

which is alwavs valid in a single

froome 1 the speed 1s constant,
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= L+ -&-Itrain

_;-j-r
At

this formula is only valid for intervals of = and ¢, not for single coordinates.

Both of the intervals of distance

which is the time that the arrow is in the air, Afgpow. Now we can w

S0, according to Alice,

Part D

we are considering is travelled in the

'l'arrcru“‘ﬁtarfmw = L + ?-]Ira,fn.-'ﬁtarrou'
'l'arrcru'&tarmw = L+ V&tarroul
&f‘arrow {'i'arrou' - LF} = L
L
ﬂ"tarmw = o — V.
B 120m
~ 5e/T—3¢/5
35 % 120m

Again we use the definition of speed

We have already

according to Alice,

calculated the speed and the time interval that the arrow

4% 3% 108ms™1?
= 35x107%s

the arrow is in the air for 3.5 x 107% seconds.

Az
p ==

At

soowe get for the distance the arrow travels

Az arrow

VarrowAtarrow

(7

/,.—.,_‘

) x 107s)

% %3 % 10° ms ) (35 x 107°s)
i

751

m

It is important to note that

sate amount of time,

rite

15 in the air
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Or vou could use the formula constructed in Part

Arprrow = L+ VAt
3 .
120m + - (3.5 x 107°5)

]

— 120m+ % (3 x 10° ms_l) (3.5 x 1078 s)

= T50m

Question 2

Maxwell's wave equation for an electrie field propagating in the z-direction is

PE 1 05°E

dr? 2 0?7
where E (z, t) 15 the amplitude of the electric field. Show that this equation is invariant
under a Lorentz transformation to a reference frame moving with relative speed v along the

T-aX1H,

Solution

The relevant Loventz transformations are given by

where v = (1 — .E.ijc-z}—l,f-ll

Note that ' = 2 (x, t) and ¢ = ' (z, ). so that we use the chain rule to obtain for a wave

function

OE  OEOr  OEO  OE v e

or  Ordr  oror 'or 2or
0B _ 0Eox OEO¢ __ OE OF
ot oot oror . ar o



Therefore we have
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#PE [ OE wdE\ ( OE ywdE
o2~ \Var 2o )\Tor T or
_ 2PE 29WOEIE | VOE
"or2 T T2 aror | A o2

PE _ ( 0E, OE\( 0E, OE

2 - 1 .5_1:’ i B i e T("}fz’
_ 2 2PE 5 OEOE | LOE
I O T T

Substituting this into the wave equation

rr_ 1o
dr?2 2 g2

and rearranging gives

L0'E ROPE | RPE PE . (W IEJE 24 OEJE
Por? T2 gr? A a2 2 a? 2 O ot 2 dr' ot
2O F v? ~* OPE v?
2 ! )
i 1—2) = o
7 b ks ( cz) o G2 ( ,:2)
PE 1K
dz2 2 ot

Therefore, the wave equation is invariant under a Lorentz transformation,

Question 3

272015

A physics professor elaims in court that the reason e went through the red light { A = 650 nm)

was that, due to his motion, the red color was Doppler shifted to green (A = 550 nm). How

must he have been going for his story to be true?  Hint: The relation between frequency f

and wavelength A of light is given by e = Af
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Solution

We use the relativistic Doppler formula. It is clear from the problem that the professor is
approaching the traffic light. The receiver in this case is the professor’s eves and the emitter
i5 the light of the traffic light. So for the professor to receive green light when ved light was

emitted, we have

c+V
f?‘ec = fEJH]vI ﬁ
M _ C fm
)‘-?"EC B )\EmV C— "f
o B C [e+V
550nm 650nm\ c—V
650nm e+ V
S50nm Ve—V
1332 c+V
(H) - c—V
169¢ 169 i
1 —m'lf = c+V
/169 160
V(1) = e
R 121 48¢
v = ~(m0) (-121)
= 0.17¢

The professor must have been travelling at 0.17¢ for his story to be troe,

Question 4

Prove that the interval between two events in 2-dimentional spacetime is Lorentz invariant.,
that is. prove that

A heo_ At
Z .-l.r“.ﬁr = Z Ar,Ax
h “

where Az =3, ABAzY,
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Solution

The spacetime interval in the S frame is given by

Z :”_"I.J::L Ax™

I

Substituting the Lorentz transformations gives

S AL A = (Y ANAz | (3 ALA
| = 3 (AjAL) (Az,Az”)
_ ia;;{m,,m**}
= i,ﬁrwﬂr“
m

Question 5

In the context of special relativity, a contravariant four-vector can be constructed from
the charge density p and the cirrent density j as follows [J¥] = (ep, jr, Jy. J=) where g
gy and 7. are the components of j in the z. y and z directions, respectively.  Hint: To
answer the questions below, use the properties of four-vectors. Do not try to solve this using

electromagne tism.

(a) Determine the transformation equations of J# to a frame S that is moving with a

constant speed Voin the positive z-direction,

() Construct a quantity using the components of J¥ that is a Lorentz invariant in

Minkowski spacetime,

() Lagine vou are in a reference frame in which p = 2/c and 5, = 5, = j. = 2.
Determine [J%] as measured by someone moving at a velocity Vo= \V 3/4c along the x

direction with respect to vour reference frame,
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Solution

Part A

[.;”‘] 15 a contravariant four-vector and the relative movement of S deseribes the standard
configuration in special relativity, So it’s components transform as
JU = (Jﬂ — F—Jl,/r:)
= v(ep—Viz/ec)

IV =y (JP=VI)
= 7 I:JJ' —Vp)

2 2 .
.I-f = 4] = Jy
JB = P = I

Part B

The quantity
3

i
T,
=0

will be invariant under a Loventz transformation. (Can vou show this explicitly for each of

its components?)

Part C

First we caleulate the Lorentz factor 4 for V= 4/ 3/4c

1
T — ﬁ

-

gt

1
-2
v 4

1
NA
Vi

i
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We use the transformation equations from Part A and substitute v =2, p=2/e, j, = j, =

Js = 2aml V = v!g/—“l‘" to get

Jv = v(ep—Vie/c)

= 9 Z_EVFE

3

_ 9(2-9,/2
V1

= 0.54

J? = j,=2

.IIS — __}'3:2

So that we have [J%] = (0.54, 0.54, 2, 2).

Question 6

An clectron e with kinetic energy 1 MeV makes a head-on collision with a positron e™ that
15 atb rest, (A positron is an antimatter particle that has the same mass as an electron, but
opposite charge. ) In the collision the two particles annihilate each other and are replaced by
two photons v of equal energy, The reaction can be written as

e +et = 2y.

Determine the energy, momentum and speed of each photon,

10
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Solution

By conservation of energy, the energy of the system before and after the collision will be the

SeL 1T,

E.+E, = 2E,

The total energy of the electron and positron before the collision is

E.+E, = Eg.+m, 4+ n'a-pr.‘2
= 1MeV +2(0.511 MeV/c?) &
= 2.02MeV

By conservation of energy, we find

E.+ E
g, = Leth
: 2
_ 2.02MeV
B 2
= 1.01 MeV
The momentum of the photons will then be
E
p.}. p— —_—
-

1.01 MeV /c
The speed of both photons will be o, = ¢

Note: It might be tempting to use conservation of momentum to solve this

problem, rather than conservation of energy, 1o,
Pe+Pp = 2p,

In this case, this approach wouldn't work, becanse we only know the directions
of the photons velocities, and therefore their momenta. Since the energies of the
photons are the same, the magnitudes of their momenta will be equal, but not
their momenta in vector form. since they will move in different directions, thus

Py1 7 Py2-

11
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Question 7

In special relativity, the energy, momentum and mass of a particle are all closely related to
one another,

(a) Derive the relation E? = ¢%p? +m?c' by starting from the relativistic definitions of

E and p. i.e. E =~mc® and p = ymu.

(1) Use the equation derived in part (a) to show that the mass of a particle can he
expressed as
c*p? — E}
m=——
2Ec?

where Ey is the kinetic energy of the particle,

Solution

Part A
Squaring the definitions of £ and p

E? = ".r'zmzr:'d’

p* = ¥'miu?

Multiplving the last equation by ¢ and subt racting gives

E? — p-z(__z = ".r"zi'ri%{.‘d — '}fzm{%uzcg

2
. . u
= -m%r:i (".r"z — ".r'2 _r 5 )

[Using

we show that




1—u?/e
1 —u?/e?
= 1

It follows that
E? = pzr_‘z + -mgr:d

Part B

The total energy is equal to the kinetic energy plus the mass energy

E=F.+ mec?

Squaring both sides gives

E? = E}f + 2Emet + m?c!

Using the result from the previous question we get
2 2 12 N, 2
cp” = Ey + 2Eyme
Solving for m gives

c?-p2 — Ef
QEk(.'?

m =

as required.

13
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Memo for Assignment 5 52 2015

Basics of differential geometry (§ 3)

Question 1: Arc length
The equation for a length of a curve in an Enclidean plane can easily be generalized to give

the length of a curve that exists in Enclidean (normal) three dimensional space, The length

of such a space curve is given by

? a [ dz\? dy : dz\ v
L(P, Q):ﬁ .ﬂ:L ((E) +(E) +(£)) du

Consider the circular helix deseribed by = = sinw. y = cosu and z = u/10 with the points P

and Q defined by the points where up = 7/2 and wg = 157/4 as shown in the figure below.

What is the length of the curve between points Poand Q) in arbitrary units?

e 1870
e 13.42

e 10.26*
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e 10.31

e 1.02

First we calculate the derivatives of the Cartesian coordinates with respect the the parameter

U,
de 4 (sinu) = cosu
du  du B '
dy d .
. a(cusu} = —sinu
= d (i) L
du — du\10/ 10

The length of the helix is then given by

dr . dz\? v
L(P, Q) ( _u) (a) +(£)) du

14 /4 1/2
cosu + sin?u + — du
-r,@ ( 1(}(})
].J”‘IM
(15tq)
”r,"?
15w /4 1( 1/2
( ) du
x/ 100

f
_ ]]u";‘! mdu
[
N 10 (14) TG)

13m+/101
40
= 10.26

Question 2: Metric tensor
The line element for a certain two dimensional Riemann space is given by

di? = dr® + 2r sin ddrdd + rd¢” .



What is the metric tensor of this space?

(

1 2rsin ¢
L]
\ 2rsing 1
[ 1 rsin g
. L
\ 7sing r
[ rsin g 1
L]
1 TSI ¢
[ 2 2rsing
L]
\ 0 1
(10
¢ 2

The line element for a general Riemann space is given by

\ 2rsing r

mn

ig=1

APMSBTLS 205 22015

Since we are considering a two dimensional space (n = 2], we can can expand this to

Choosing x

-

di* = gpdzr'ds' + giode'dz® + goyda’da’ + gopdr®da?

rand 27 = ¢, we get

di* = gudr® + giadrde + gaidddr + gadd®

The metrie tensor must be symmetrie, (This ensures that the distance from the point P to

the point Q) will be the same as the distance from point Q) to point P.) This means that

we must have g2 = go1. From the given line element, we can see that we have g = 1

g1z = g21 = rsing and goo = r2, Putting this in array format gives

1 rsing

rsing =
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Question 3: Kronecker delta

The sum

3
20
i=1
15 equal to...
e ()
e ]
e 2
e 3F
e 4
The definition of the Kroneker delta 1s
1 if 1=74
5y = ’
0 if i1#7

[t 15 & very common mistake to say that this sum is equal to 1. Buat it is a sum over number
of components equal to 1 and the answer will depend on the munber of dimensions voun are

working in. In this case

3
D b = O+ 0+ 0
i=1

= 1+1+1
= 3

Question 4: Covariant and contravariant forms of vectors

Equation 2.70 in the textbook is written for fonr dimensional Minkowski space and gives
a rule to determine the covariant form of a vector if the metric and contravariant form is

known., This same equation written for a general two dimensional space is

2

Aj = Z _t}f_g';'lf .

i=1

4
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Use this to determine the covariant form of [AY] in two dimensional space described by the

sirface of a unit sphere. The metric tensor (with z' = 6 and 22 = @) for this space is

lgis] = 1 0
=\ 0 sin?e
and let
(A= "
/4

»

[3

NN
5

»

[

NN
&

Expanding the given equation for determining the covariant components of [A'] gives

2
A = ) guA
i=1

= g Al + gy A

From the information given in the question. we know that gy = 1. gia = go1 = 0. gop = sin® 4.

Al = 7 and A2 = /4. The covariant components are then given by

A = gnA'+ gn A’
= (1)(m) +(0)(x/4)

—
—_ "
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Ay = gpA'+ gnd’®
= (0) (7) + (sin#) (7/4)

™

— —sin®f
4
You could also have computed it with

[Ai] = [g4] [-ﬂ

10 m
0 sin®6 z
m

%singﬁ

Question 5: Riemann tensor

Caleulate Ry, of the right helicoid shown below that is parametrized as

r = ucoswv
y = wusinv
z = cv
where ¢ is a constant and ! = w and 2% = v if it is given that the only non-zero Christoffel
coeflicients for the surface are
2 _ o2 _ U
I 12 — FQI — _9 2
us + ¢
1 — 1
I o
2 u? + 2
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o (€2 —2u?) (u? 4 c2)
~(u+2)7°
2 (u?+ )7

o —u(c®+u+u?)(u?+ 62)_2

—u? (u? + 02]_2

Using equation 3.35 in the textbook. the element RL,, of the Riemann tensor is given by
’ 221 o

ort, o N i
Ry = a_,_;‘— 3;2 +Erz1rlm2—zrzzrlml

oy, dly 1t 2 1 1t 2 1
= .2 —W+(F21I‘12+I‘21F22)—(F22F11+F22F21)

Substituting all the zero Christoffel symbols. this reduces to

Ay,

R, = —2
221 d:rl

Substituting the given values for the non-zero Christoffel syimbols and using o' = u gives

R (e Y G U
= = p\wre) Tlere) \Ere

B & —u? u?

T (@24 2)? (u2+ )
B 2 — 22
(242

=1
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Memo for Assignment 6 52 2015

Equivalence and Tensor Algebra (§ 4)

Question 1: Tensor transformations

The transformation equations for transforming a contravariant tensor of rank one from polar

to Clartesian coordinates are

A = Alcosf — A’rsing
A? = Alsinf 4+ A?rcosé

where ' = (r, @) (derived in Exercise 4.2 in the textbook), Use these to transform the tensor

deseribed by [AY] = (1/cosf, r) to Cartesian coordinates = = (z, y). What is the value of
4!20

cos? @ (1 4+ 12)

tanf + r2 cos 6*

e 1 —risind
e cosf — rsind

reosfl —rtand

The transformation equations for transforming a contravariant tensor of rank one from polar

to Cartesian coordinates are

A = Alcosf — A’rsinf

A% = Alsinf + A%rcos#
The components of the tensor we want to transform is given as A' = 1/cos@ and A? = r.
Substituting this into the above equations give

cos .
AT = —r?sin#
cos
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— 1 —r%sing
. sin f .
A? = +1r2cosf
cosf

— tanf + r°cosf

Question 2: Tensor expressions

Which of the following tensor expressions is incorrect?

o A= > gijfij =2k 9ij§jk“1k

Ai Azt dx” dr7 gp

® Ay = prs b ek o As
1 dgn, 950 B9+

'Tﬂﬁ_i( +e’:‘rr_<':irf=)
. E‘?‘ § =3

i=1%i =

i _ord %
. rjk = [Uik

Option (1): Correct. The rules of raising and lowering an index is followed. We can also

write

Zgijgjk—ﬁlk — Z él:k‘q.k
j. k k

= 5 A +5,AT+ L+ EA G AT

In the last step the sum has been expanded and sums k from 1 to n. Remember that 6% is
defined so that it is equal to 1if 4 = k. and zero if ¢ # ko So all the terms will be equal to

zero, except the terin where @ = k. and in that case we have 85 = 1 so that we can write

ngjgjkfik — A
ik

Option (2): This is the correct transformation for a tensor of this form. Here bars were
nsed in stead of primes to indicate the other coordinate frame. The textbook uses primes,
but this can sometimes become unelear, especially when writing by hand. Using either is

fine, as long as vou are consistent,
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Option (3):  This is correct. Lowering the fivst index of the Christoffel coefficient gives

Fc:.ﬁ';r — gm;rrr}ﬁrr
1 ve [ P9y Ogae  Ogg,
_ - 13 ) k -l
ng]zg (a:cﬁ T T ar
1] é}‘?m b‘gﬁc é'lgﬁ’v 1—|1 E}QH a‘}"ﬁc a‘:"ﬁ'\r
= - A R [ R S ) (i AR - Loa R
2« (51.‘*5 dx fxt 2%\ gf oz dz*

In the last step we nsed
13 E
.‘ij-gq = ‘541

The only non-vanishing term will be the one for which 5 = @ so that

- l (agcr';r ‘ﬂgﬁu agﬁ'}r)
2

dzf oY Oz
Option (4):  This is correct. Expanding the sum gives

3
Zéi — 511 + 622 +633
i=1

1+1+1
= 3

Option (5): This is incorrect. The Christoffel coeflicients are svonmetric in their lower

indices, but not in the upper and lower index,

The symmetry in their lower indices 15 a consequence of the symmetry of the metrie tensor.

i 1 a [ Oq | Oga  Ogg
i, == il SR e L ¥
k=9 ;g (::Jx: Tk ol

We ran write

SINCEe gog = aa. we can interchange the indices of all the metrics within the sam.

; 1 1 (g Ogy;  Ogy;
]'\l_l i il S Jid o HAk]
*= 5 Z!:g (axs T

The first two terms can also be switched to give

i1 a (09  Ogu  Ogr;
U =32.9 (arf« T B0 ol
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which s exactly the definition for ikj. S0 therefore ["':j.;C = ['ikj.. but it does not hold that
i o 7d
e = T

Question 3: Contraction
Which of the following expressions are correct?

® > 0 Gkm = 3Gkm
o X &7 grm = g

g L A
® Dm0 Bkom = Bl

. Zm athkm = Gk

In the st
e
E :JE Gkem
b

all the terms in the sim where m £ Lo will be zero (since 87 = 0if m # 1), The term where

m = [ will be equal to gu. ie.

Zé‘?gkm = 6%9;;0 - ﬁlzgm +...+ rfr'!f_q;;; + ...+ 5‘?93‘::\:
Liis

= Mg+ (Mg +...+(Dgu+...+(0) grn
= Gul

So the Kronecker delta can effectively be used to replace one index with another,

Question 4: Einstein field equations
How many equations does the following expression represent?

1
Ry, — ER_(;W = —kT),
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[ ]
o

e 16%

The expression represents 16 different equations, One for each possible combination of g
and . where both indices can have values from 0 to 3. since this equation is written for four

dimensional spacetime, The 16 possible combinations are

9 (210 13| 310
10 2|1 14| 3 |1

[uig |
—

Lo ba | =
=]

013 81113 1212 (3 16 | 3 | 3

[I=N
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Memo for Assignment 7 52 2015

Chapters 3 & 4

Question 1

The right helicoid can be parametrized as

r(u, v) = wucosv
y(u, v) = wusinv
z(w, v) = av
where a is a constant,
(a) Find the line element for the surface,
(h) What is the metric tensor and the dual metric tensor?
() Determine the values of all the Christoffel coefficients of the surface.
(d) What is the value of the component R, of the Riemann curvature tensor?
(] What 15 the Ricel tensor for the surface?
(f) What is the curvature sealar B for the surface?
(&) What 15 the Gaussian curvature of the surface?
(h) [5 the surface Enclidean? Explain vour answer,
(1) Suppose that the surface is filled with non-interacting particles, or duast, Use the two

dimensional version of the enerevomomentum tensor for dust and Einstein’s feld equation

to find an expression for the Einstein constant s for this surface.



Solution

Part A

APM3713,207 2

In Cartesian coordinates, the line element is given by

We have

50 that

Similarly, we get

(dD)? = (dz)* + (dy)* + (dz)*.

r(u, v) = wucosv
y(u, v) = wusinwv
2(,v) = v
dr Ox
dr = LawrZa
* du ut duv !
= % (wcosv) du + c% (wcosv) du

= cosvdu — usinvdv

dy dy
dy = —du+ —=dv
Y e + v v

d e}
= 3 (usinv) du + . (usinwv) dv
= sinvdu+ ucosvdv

Oz iz
dz = —d —d
z du 4+ T v

d
= — {m,} du + F» (av) dv

= ad?,-

Substituting this into the Cartesian line element and simplifving gives

(d)* = (dz)” + (dy)* + (d=)”
= (cosvdu—usinvdv)® + (sinvdu + ucosvdv)® + (adv)”

2015



APNATLIZ 207 2,2015

= cos’vdu® — ucosvsinw dudv + v’ sin’ v dv® + sin® v du® + u cos v sinv dudv
t+u? cos® vdv? + a® dv?
= (cosz v + sin? v) du® + [ug (5'111zr v + cos® v) - a.z] dv?

= du’+ (uz + az) dv?

Part B

Wi know that the line element has the form

di* =Y gda‘ds’

ig=1
If we choose ' = w and 22 = v, this reduces to
0 2 - -
d{z = E _gi-jd:r%dl'j
ijg=1
= gud;rld-.i:] + legd;r.ld£2 + gg—zd.r.zd-rz
= gu1 (du)® + 2g1adudv + g (dv)’

Above we nsed the fact that the metric tensor 15 symmetric g; = gy Comparing this to the

line element calenlated in Part A allows us to identify
2 2
gu=1 giu=0 gn=u +a

so that the metrie tensor for the surface is

1 0

9wl = 0 u?+a?

We know that woe must have
ik _ s
29" =0
k

so that the dual metric [g¥] is just the matrix inverse of [g;;]. We find

i 1 0
[gj}: 0 ?—’-1;-?
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Part C

The Christoffe]l coeflicients are defined by

|
]—‘!:j = Z 59'“ [gj.;i__j + Giki — gij,kj
k

12(

1 1
Yy, = =g (911 + 9111 — gua) + 59 (9211 + g12.1 — Gi1.2)

2
All the g and g™ where ¢ # k will be zero, so their derivatives will also be zero, Remem

bering this will reduce the caleulations a lot. So we have

1 1
”t-‘rlu = 59“ (9111 + 9111 — g111) + 5912 (g21.1 + 9121 — 9112)

1 11
= 59 J11.1

1 d
= —(1)—(1
S0 ()
=0
Using the syvimmetric property of the Christoffel coeflicients Fij = Fhﬁ will also cut down on
calculations
1 1 1 11 1 12
Fo=Ty = 59 (9112 + g21.1 — G121) + 29 (9212 + g22.1 — g12.2)

1 11
= 59 g11.2
_ 1 d 2 2
= 0

1 1
'y, = 59“ (gi22 + g212 — g2o1) + 591? (gooa + goaa — goo2)

1

_ _ -1
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1 1.
iy = 5921 (9111 + 9111 — gua) + 5922 (9211 + 12,1 — g1 .2)
1
= —55'22911__2
1 1 a9 5
) (u2 -I—a?) E(H Ta )
=0
2 2 L o L o
Fo=1% = 59 (g12.1 + g2 — ga11) + 99 (9221 + g122 — g21.2)
1.
= 5922922_.1
1 1 8 ;9
= 3(2) ()
— .H-
- ul4a?
1 1.
% = 5921 (G122 + g212 — g22.1) + 5922 (G222 + g222 — g22.9)

1 .

= 5522922.2

= () 2 (4 a?)
2 \u? +a/ dv

=0

In summary. the only non-zero Christoffel coefficients that we have are T'hy, = —u and

[y =T% = u/ (v +a?)

Part D

The Riemann Curvature tensor is defined by

_orty ory

R = 5~ okt St =S
m m

|
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2005

since we are dealing with a two dimensional surface, the only independent entry will be Rl.zm.

so it will be sufficient to only calenlate this.

Wi

+Zr

i have

_ZF?JI

B B art, dI‘]?l
e ar?
_ ar, d]"]gl
du du
= W —T 21F12-2
i
- E(_“’J (124—-:12){ —u)
P!
u
= ltare
B —u? —a? +u?
B u? + a?
- ulta?

For the Riemann curvature tensor we have

1 2 —a’
Ry, =R, =
212 121 HE —I—a2
2
a
RL,, = RY 5 =
221 112 u? _|_a2
With all other entries equal to zero,

Part E

The Ricei tensor is defined by

Z ijk

ke

Using the fact that the Ricei tensor is svimmetric we find the 4 entries of

Rn =

Ris = Ry

Ry + Ry,

a?

u? + a?

Ry + Ry
]

+ FIZZ!FIII +T ZQF 21 F]21F11'2 - FZEIF]QE

the Ricel tensor
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Ry = Ry + Ry,
u? + a?
Part F

The Ricei scalar is defined by

— ij
R = Zq .!]?pfj
ij
So owe have for the helicoiud

R = Q”RU +§]2R12 +92]R21 +922R22
= QHRH +9?2R22

= (1) (.li_g_fza?) + (u?iaz) (uz’_j;)

—aZu? —at — a2
(u? + a-zf
—a® (u? +a® + 1)

(u? + az)z

— " —

Part G

The Ganssian curvature of a two dimensional surface is given by

R
= a2z
g

where g = det [gy;] (see Exercise 3.16 pl03).

The determinant of a diagonal matrix is just the produoct of its diagonal entries so that
g = Hgit'
i

(1) (u,2 - az)

= L:2+a2

Ri212 15 the element of the Riemann carvature tensor with an index lowered, 1.e.

Rigts = > gulyp
i



APMABTLS 207 /22015

u-+a
a?
u? + a?
S0 owe have Tor the Ganssian curvature
Ri912
K = 2
g
u? +a? ) \u? + a?
(u? + a?)

Part H

No. the helicoid is not Enclidean (Hat). The necessary and sufficient condition for a surface
to be Hat is that the Riemann curvature tensor (all its components) should vanish (be equal

to zero) at all points on the surface, This is not true for all values of u and .

Part I

Einstein's field equation for two dimensions is

1
Ry — 5Rgyy = —rTy
where 2 and 7 can take the values of 1 or 2, as with the rest of the caleulations regarding the
surface above. The only non-zero component of the energy-momentum tensor [T9] for dust
is T = pe?.

[T] is related to [T;,] by

-T;'j — ZgimgjﬂTmn

m.n
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Clearly, the only non-zero component of [T5;] will be Ty We find

T]I — Zglmglﬂ-Tmﬂ

m,n

= gugnT™ + 9119127 + grognT?* + g12g912T%

= .ﬁ’]l.@]lT“

— p("?

Now all the guantities in the Einstein field equation are known, We substitute and solve for

I

1
R1|—§Rg|1 = —xTh;
a2 1 {— 2 (3,2 2 1
I {1_: +a2—|— ) (1) = —npc?
u?+a® 2 (u® + a?)

—2a%u® — 2a* + a?u® + ot + &®

2 (u? + a?f = —xpe
—a’u? — a* + a? B 9
2 (u? + agjz -
a® (u® 4+ a? — 1)
P

2pc2 (u? + a?)’

Question 2

Show that the contracted Christoffel symbol 32, T is given by

i gim Ejgmi
2 Tw=2.0 5%

Solution
The Christoffel coeflicients are defined by

i J‘ im
ij = Z 59 (gmj,k + Flm,j — gjk.m)

m
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If we contract the Christoffel coeficients we have

Z Fim Z Z e me.k + Gkmi — gfk.m}
: -

Since 1 and moare just dummy indices being summed over the same range. they can be
interchanged without changing the meaning of the expression. We interchange them in the

last term in brackets to get

Z Fifk Z Z o me.k + Geemi — gmk.zﬁ)
i

i

The metrie is symmetric, so that gem = gmk.

) 1 .
Z Flﬁc — Z Z Eylm {E}'mi.k + Gkm,i — Q’km,i)
1 .
- Z Z Eglmgmi.k
_ deJ,
N Z Z 2 Ok

m

Question 3

Verify that if a tensor is symmetric in one frame, it will be syvimmetrie in all coordinate

[rames, That is. show that if it is given that X% = X% in frame S, then it will be true that

X7 = X7 in a coordinate frame S.

Solution

If XY = X7 then
Sinee XY is a tensor. we know that it transforms as follows

dre d‘r

Xﬂb
Azt dr-i'

iy
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On the RHS both ¢ and 3 are just dummy indices, Le. they ave being summed over. This
means that the two ndices can be replaced by any other indices without changing the

meaning of the expression. since they are just counters to be swmmed over, ie,

oz® d.r ozt ()‘I ar” dr
At dJ‘J

A 9P oz’ dr

In particular, we can replace 7 with ¢ and 2 with 7. so that

Tt ()1

Ot dr—’
o Oz"

- ZZ Azl ci.r

az* oz"

Z Axd drt”

In the last step we nsed the symmetry of property X9 = X7° This is the transformation

expression for a second order contravariant tensor where =@ — 2% and 27 — 7 s0 we have

az® oz®
Azl f},r

}:rab Z Z

— xbﬂ

Thus we have shown that if a tensor 15 symmetric in one coordinate frame, e, X9 = X7

in S, then it is also symmetric in any other arbitrary coordinate frame 5.

Question 4

Suppose that Ripm = K (gagem — Gimgi) on some four dimensional Riemannian space. Show

that for the curvature scalar we have R = —12K,

11
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Solution

From tensor contraction we can write

Ru = >.Y ¢™Rikim
i m
= > Y Kg™(gugkm — Gimr1)
[ m

— Z Z K (gimgﬁgkm - gimgt'mg.fci)
i m

Remember that tensors are not conmmmutative, so be mindful of the order of the multiplication.
We use the property of the metric tensor 355 ¢™gi, = 8™ to get
propert i 9 Hin n g
— - T m
Ry = Y K (07 gkm — 0gu)
m

= K (g —4g9u)
= —3Kgy

In the second step above we used the definition the Kronecker delta, If we have
m
z 07 Grkm
m

all the terms in the sum where m £ I will be zero, where the term where m = 1 will be

equal to gg. 1e.

N 6T gkm = gk + 1k + ...+ 8gr 4 o+ ) g
m
= l:(]}gch-F(D:IgM-I-,..+(1\}gk5+,..+(0}gk;\;
= g
So the Kronecker delta can effectively be used to replace one index with another. On the

other hand. if the two indices of the Kronecker delta are the same, ie. 32, 67 the result is

not equal to one becanse of the summation. Then we have

Z Mg = Ohgm+O0igu ...+ g+ ...+ N gn

m

12
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= Dgw+Wgu+...+(Vgu+...+ (1) grn
= Ngu

In this case we are working in a4 dimensional space, so that N =4 and ¥, 07 g = dgu

For the curvature scalar. we contract onr result for Ry

R = %Z{:Qkiﬁks
= —SKZZQMQM
= —3Kiaj;\,
= —IQKk

Question 5

Two N-dimensional Riemann spaces M oand M have the metric tensors gg; and gi; respee
tively, and

i = kgi

where & is a constant.,  What are the relationships between the curvatore tensors, Ricel

tensors, curvature scalar and Einstein tensors of the two spaces?

Solution

Wi have

Jii = k.";'ij
and therefore _
—ij __ iq‘fj
=

The transformation of an arbitrary Christoffel symbol from M to M gives
e L he
o= 2 59" (gkig + giki — gisk)
k

13
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I 1 1

= ? 55’ (E.‘;’ki.j + Egjk.i — Egij:k)
1
2

7" (Grig + Giki — Giik)

Using this we get for the curvature tensor

R = T —Tn +) T 0 =Y T LT

= T = Thn 20 Dol — 2 Tl
m m

i
— R;‘hk

Then Ricel tensor becomes

Rjk: =

For the Cuarvature scalar

And the relationship between the Einstein tensors is

1

Gij = HRij—59u5R
_ 11 _
— R, —=—g,kR

J ngj

1

= My —50ul

_ @,

14
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Memo for Assignment 1 S1 2016

Special relativity basics (§ 1.1 - 1.2)
Consequences of Lorentz transformations (§ 1.3)

Question 1: Lorentz factor

What is the Lorentz factor (+) when the relative speed between two coordinate frames is

60 % the speed of light?

A frame moving at 609% the speed of light is moving at V' = 0.6c. Therefore. the Lorentz
factor 1s

1
‘l.l"'ll -V _}._’, (..2
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Question 2: Lorentz transformation

Alice travels past Bob in a spaceship at a speed of 0.6c. Take S to be the coordinate frame
where Bob is stationary and S to be the coordinate frame that moves with the Alice, Using
the standard configuration, Alice is traveling in the positive = (and ") direction. Bob sets
off an explosion and in his frame it explodes at time £ = 5s at the point = = 10%km in his
frame. Use the Lorentz transformation equations to determine the coordinate = that Aliee

measures in her frame for the explosion,

For the position of the explosion. Alice measures 2" equal to

108 km

—1.12 x 10°m

10° m

e 1.25 x 10° km*

e 0m

If we want to use ¢ = 3% 10%ms ™. we need to convert all the quantities to SI anits. Thos we
[} . P " - a
use # = 10°km = 10" m. The Lorentz factor () has already been caleulated in the previons

question. Using the appropriate Lorentz transformation gives

= y(z—Vi)
= 1.25(10° = 0.6 (3 x 10°) (5))
= 1.25(10° — 9 x 10%)
= 125 x10°m
= 1.25 x 10°km

Question 3: Time dilation

A group of astronauts take on a mission to travel to a nearby planet at a constant speed of
0.8¢c. According to the people on Earth, the spaceship takes 88 vears to reach its destination,

How long did the jouwrney take according to the astronauts?
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e 52.7 years®

o A7 vears
e 393 vears
e [O7.1 vears

e 1.7 vears

The Loventz factor bhetween the Earth's reference frame and the reference frame of the

astronauts is given by

1
1
V1 —(08¢)% /2
1
— 167

The astronauts measure their own proper time, The time that the people on Earth measure
for the journey (Adég) will be related to the time that the astronauts measurve (Af4) by the

time dilation formula so that

Atp = vAt,
88vyears = 1.67 x Aty
Aty = 52.Tyears
Question 4: Summation
The sum
3 -
AD: — Z Nias o
B=0

written out in full is
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o A, = 3 AP

o Ay =naA”

o Ay =150 A% +15a AP + 15 AP + gy AP

o A =70aA% + oAl +1oa A% 4 g, AT

e A, = n{]oz‘ln + A + ?}22‘42 + ?333.43

Question 5: Relativistic Doppler shift

A spaceship moving toward the Earth at a speed of 0.35¢ communicates with Earth by
transmitting on a frequency (measured in the spaceship rest frame) of 100 MHz, To what

frequency must Earvth receivers be tuned to receive these signals?

69.4 MHz

144 MHz*

48.1 MHz

e 207 MHz

167 MHz

Since the source of the radiation is approaching the receiver we use

. [e+V
frec — femVC—l’r

-+ (0.35¢
100 MHz x | S22

1\/ c— 0.35¢
B . [1.35¢
= 100 MHz x v 0650
= 100MHz x v2.077
= 144 MHz
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Memo for Assignment 1 52 2016

Special relativity basics (§ 1.1 - 1.2)

Consequences of Lorentz transformations (§ 1.3)

Question 1: Lorentz factor

What is the Lorentz factor (v) when the relative speed between two coordinate frames is
90 % the speed of light?

2.29%

e 3.16
e (.44
e 526

e (.74

A frame moving at 90 % the speed of light is moving at V' = 0.9¢c. Therefore, the Lorentz

factor 1s

1

L iovye
1
- 7
V1—(0.9¢)% /&
1
T—0.81

B 1

0.19
29

Il
[
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Question 2: Lorentz transformation

Alice sees an explosion happening and measures the spacetime coordinates of the explosion
to be (t, =, y, z) = (1.5ns, 2m, 1m, O0m). Bob is riding past in a train at a constant speed of
V = 0.4¢ in the positive z-direction. Use the Lorentz transformation equations to determine

what time Bob measures the explosion taking place. (Hint: 1ns (nanosecond) = 10~"s.)

e 1.5ns

141 x 107 %s

—1.17x 10 %s

e 158

e —1.41ns*

The train is moving at V' = 0.4c, so the Lorentz factor between Alice’s frame (5) and Bob’s

frame (') is

1

LT ioveye
1

V1= (0.4c)% /2

1
v1—0.16
1
0.84
09

Il
—

The Lorentz transformation equation for the time coordinate is
t! N (f i’I)

Using this, we transform Alice’s measurements into Bob's frame as follows
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(0.4¢) (2
_ 109(15115— Ciz( m))
- 109(15115— 04}(2“”))
[
(0.4)(2m)
— 100(15
( SXIOEmS—)

= 1.09(1.5ns — 2.27ns)
= 1.09(—1.17ns)
= —141ns

= 1.09(15115—22?>< 10- )
(
(—

The negative time coordinate just means that Bob sees the explosion happening at a time

before the arbitrarily chosen zero time.

Question 3: Length contraction

A spaceship is moving at such a speed past the Earth that the people on Earth measure its
length to be one third of its proper length. How fast is the spaceship moving relative to the
Earth?

o 2.67 % 10°ms™!

—2.67 x 10° ms!

8 x 1010 ms!

849 % 10° ms™!

2.83 x 108 ms 1%

The measured length of the spaceship is one third of its proper length, so we have

L[-"

LZB

We also know from the length contraction formula that

Lp

.

Y

L =
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so that we can conclude that v = 3 between Alice’s and Bob’s frames. From this we can
easily get the relative speed between the frames (and thus the speed of the spaceship).

y =3
1 _ 4
1-V2/c?
. 1
1-Vv2%/2 = =
[e 9
8
V2 2 — =
/e 9
22
V = \3/_0
2v2 &

= 2.83 x 10°ms™!

Remember, nothing with mass can travel faster than the speed of light ¢. If you ever get an
answer where a speed is greater than ¢, you made a mistake somewhere.

Question 4: Summation

The sum i
=Y Ak
v=0

written out in full is

o ' = AV z¥ + AF ¥ + A¥ 2¥ + AF, z

& %= ARGET £ AN £ AR AP
o2/ = Azt - ALyt 4 A%z + N2t

o ' = 3A* z¥

o =’ = A¥ ¥
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Question 5: Velocity addition

A spaceship moves at a speed of (.95¢ away from the Earth. It shoots a torpedo toward the
Earth at a speed of 0.9¢ relative to the ship. What is the velocity of the torpedo relative to

the Earth? (Take the direction in which the spaceship moves is the positive direction.)

o —0.345¢

0.345c%*

e 0.06¢
e —(0.06c
e 0.9¢
When in doubt, draw a picture! It will help you to disentangle the problem and organise

your thoughts. It can also show the marker that you have insight into the problem. Below

is a rough sketch of the situation.

S S'A
V=0.95¢c

In the figure, we have chosen the reference frame of Earth to be S and the spaceship’s
reference frame to be S’, which is moving at V' = 0.95¢ in the positive z-direction with
respect to S’. The torpedo shot from the spaceship moves at v = —0.9¢ in the negative
a-direction as measured in S'. We what to calculate the speed of the torpedo measured by
the people on Earth, that is the speed of the torpedo in S. We call this speed v. We use the
velocity transformation equation given in the textbook to obtain
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o v—V
o 1—wV/e
_09s — v — (0.95¢)

1 —v(0.95¢) /2
(—0.9¢) (1 — v (0.95¢) /e*) = »—0.95¢
—0.9¢ +0.855v = v —10.95¢
0.1450 = 0.05¢
v = 0.345¢

Even though the spaceship shot the torpedo towards Earth, since the speed of the torpedo in
their frame was slower than their speed with respect to Earth, it will never reach the Earth

and the planet is safe.

This might seem strange at first, but this is not some strange relativistic effect, but one we
know from everyday experience. Suppose you are in a car driving on the highway in the
positive z-direction. If you drive past a car moving slower than yourself, the car will appear
to move in the negative z-direction as you go past it from your perspective. But to a person

standing next to the highway, both of you will be moving in the same direction.
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Memo for Assignment 2 S1 2016
Minkowski spacetime (§ 1.4)

Physical laws in relativity (§ 2.1 - 2.2.3)

Questions 1 - 3: Minkowski diagrams

An observer in S measures two sitmultancous events, Event A and Event B, Another observer
is at rest in frame S’ which moves in the standard configuration with respect to S at a speed
comparable to the speed of light. The situation is indicated in the Minkowski diagram below,

Refer to the diagram to answer questions 1 to 3.

Question 1
Would an observer in S’also observe Events A and B to be simultancous?

e Yos,
e No. he would observe Event A before Event B.

e No. he would observe Event B before Event A.*
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o [t depends on the exact relative speed of S and S°

e [t depends on the exact time measurement that the observer in S measures for the two

evenks,

From the diagram. we can see that Event B has a negative time value in S (it is below the
x'axis). whereas Event A has got a positive value of et’. Therefore, the two events are not
sitmmltaneons, and Event B oceurs first in frame 8" Event Cis an example of an event that
would be observed to ocenr simultaneonsly with Event A in 87, sinee they will have the same

value on the ot axis.

Question 2

According to the observer in S’ which event indicated on the diagram will ocenr at the same

position as Event BY

There 15 no such event indicated on the diagram

For the two events to have the same position in S, they must have the same 2’ value, Event
D meets this eriteria, as indicated by the dotted line in the diagram below. Event 0 oceurs

at the same position in S, but not in S’
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Question 3

According to the observer in S, which event indicated on the diagram will oceur at the same
B B

time as Event F?

o [

More than one of the above

There is no such event indicated on the diagram

For an event to occur at the same time as Event F in S, the event has to have the same value
of et as Event F. As indicated in the diagram below. none of the indicated events meets this

criteria.

Question 4: Mass energy
What is the mass energy of 1g of matter?

e 3 x 10% joules

e 9 x 10! joules*
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e 3 x 10”7 joules
e 9 x 10" joules

e 9 x 10'%joules

The mass energy of g of matter is

E=me = (1x10 *kg) (3 10°)° =0 x 10 ]

This is about the energy generated by a large power plant in one vear. In muelear power
plants, it 15 the mass energy that is being converted to heat so that it can be utilized. If the
lump of metal in this question were uraninm 235, about 1 part in 1000 of the rest energy

can be converted by nuclear fission. Therefore, 1Tkg of U can vield 9 x 10" joules.

Question 5: Momentum

At what speed is the relativistic momentum of a particle twice as great as the result obtained

from the non-relativistic expression?

e 0.50¢c

For the relativistic momentum to be twice as great than the classical momentum, we must

have

Prel. = 2pelas
ymu = 2mu
v = 2
J1-vZe = 05
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11—V = 025
Ve = 0.5

V= 0.87¢

Question 6: Collisions

A proton and neatron collide in an elastic collision.  Before the collision, the neutron is
stationary and the proton has momentum p, = (—0.3, 0.1, —=0.5) MeV /e and the proton’s
momentum after the collision is (0.2, —0.2, 0.3) MeV /e, What is the neutron’s momentuim

after the collision?

(—0.5, 0.3, —0.8) MeV /c*

o (0.1, —0.1, —0.2) MeV/c

(0, 0, 0) MeV /e

(0.5, —0.3, 0.8) MeV /e

(0.1, 0.1, 0.2) MeV /¢

The collision is elastic so that the kinetic energy is conserved. This is not really relevant
to solve this problem., but be sure to know what it means, Total energy and momentum is
alwavs conserved., This means that the total momentum before the collision should be equal
to the total momentum after the collision. A stationary object has no speed. and therefore

no momentum. We can write this as

prfore_i_l}ieforr: _ piﬂer_‘_p;j'ter
pij'te'r' _ pzefcwe_‘_l}gej'orﬁ_piﬂﬁf

(0,0, 0) + (—0.3, 0.1, —0.5) — (0.2, —0.2, 0.3)
— (=05, 0.3, —0.8) MeV/c

Question 7: Kinetic energy

What is the kinetic energy of an electron (mass m, = 0.511 MeV /¢?) that has a total rela

tivistic energy of 2 MeV?
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2.511 MeV

2MeV

1.739 MeV

1.489 MeV*

0.511 MeV

The total energy is the sum of the mass energy and the kinetic energy:

E = Ey+Eg
Ex = E—md
= 2MeV — [0..511 MeV/c?) ¢*
— 1.480 MeV
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Memo for Assignment 2 52 2016
Minkowski spacetime (§ 1.4)

Physical laws in relativity (§ 2.1 - 2.2.3)

Questions 1 - 3: Minkowski diagrams

Consider the spacetime diagram below to answer the following questions

1. In the S’ frame, the following two events occur at the same position

e Aand B

A and E

A and D

D and C*

D and E
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The S’ frame is indicated by the blue coordinate axes. For two events to occur at the same
position, they must occur at the same space coordinate. With the help of the dashed line

that is parallel to the z’ axis, it is clear that events C and D have the same z’ coordinate.

2. To which point would observers in hoth the S and S’ frame assign the same spacetime

coordinates?

e AF

None of the points

The only point to which observers in both S and S” will assign the same spacetime coordinates
is the origin, event A where (z, of) = (', et') = (0, 0).

3. Which of the following statements are true for all frames?

Event A happens before event C*

Events E and F are causally related

Events A and B occur at the same position
e Events A and B occur at the same time

e Event C caused event F

Event A will happen at time ¢t = ¢t’ = 0. It is not possible to draw a coordinate axes where
Event C will be below the space axis. The spacetime diagram will have to look something
like the figure below, which is not a valid Lorentz transformation. The axes of a Lorentz
transformation will always be symmetric about the line ¢ = = (shown as a dashed line in
the figure).
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Figure 1: Not a correct Lorentz transformation!

Events E and F will be causally related if they can be related by a signal that travels slower
than the speed of light, or equivalently, if the two events are in each others lightcones. From
the figure below it is clear that they are not in each others lightcones (or, a signal connecting
the two events will have to move faster than the speed of light), so one event cannot cause

the other and they are not causally related.

Events A and B occur at the same position in S (z = 0), but this is not true for all frames.
In S (and all other inertial frames with a positive V' relative to S, A will occur at the origin

and B will occur at some negative value of x.

Events A and B do not occur at the same time in S, so they do not occur at the same time

in all frames, since you can give a counter example.

Events C and F are causally related, since they can be connected with a signal that moves
slower than ¢, or are in each others light cones. But, event F will occur before C in all frames,

so there is no way in which C could cause F, although it would be possible for F to cause C.
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Question 4: Mass energy

What is the mass energy of a litre of water? (One litre of water weighs 1kg.)

3 x 10% joules

9 x 10% joules

3 x 10 joules

9 x 10'€ joules*

9 x 10" joules

The mass energy of a 1kg of water (or 1kg of any material) is

E=mc=(1kg) (3% 10°)" =9 x 10 ]

This is about the energy used by South Africans in a month. In nuclear power plants, it is
the mass energy that is being converted to heat so that it can be utilized. All of the mass
energy cannot be used as in the question above. In the case of uranium 235, about 1 part
in 1000 of the mass energy can be converted to energy by nuclear fission. Therefore, 1 kg of
U235 can yield 9 x 101 joules.

Question 5: Momentum

At what speed is the magnitude of the relativistic momentum of a particle three times the
magnitude of the nonrelativistic momentum?

e ic

e 1.05¢

e 0.94cx

e (.87¢c

e (1.33¢
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For the relativistic momentum to be three times as great than the classical momentum, we
must have

Pret = 3pclas

ymu = 2mu
y =: 3
1-V%P = g
Vr“’/c2 = 9

V. = 0.94c

Question 6: Collisions

A proton and neutron collide in an elastic collision. Before the collision, the neutron is
stationary and the proton has momentum p, = (0.4, —0.2, 0.8) MeV/c and the proton’s
momentum after the collision is (—0.2, —0.5, 0.6) MeV /e. What is the neutron’s momentum
after the collision?

o (0.2,0.5, —0.6) MeV/c
e (0.6, 0.3, 0.2) MeV /c*
e (0.2, —0.7, 1.4) MeV/c
e (0,0,0) MeV/c

o (—0.6,0.7,0.2) MeV/c

The collision is elastic so that the kinetic energy is conserved. This is not really relevant
to solve this problem, but be sure to know what it means. Total energy and momentum is
always conserved. This means that the total momentum before the collision should be equal
to the total momentum after the collision. A stationary object has no speed, and therefore
no momentum. We can write this as

be fore

p> be fore after

+Pp = Pn

after

+ Pp
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after be fore be fore after

pn — pn +pp _pp
— (0,0, 0)+ (0.4, —0.2, 0.8) — (—0.2, —0.5, 0.6)
— (0.6, 0.3, 0.2) MeV /e

Question 7: Kinetic energy

A proton (mass m, = 938.3 MeV/¢?) is moving with speed 0.4¢ along the z-axis relative to

the laboratory frame. What is its kinetic energy?

7.6 x 101 MeV

1023 MeV

273 MeV

178.7 MeV

85.39 MeV*

Take the laboratory frame to be S and let the proton be stationary in the S* frame. The

Lorentz factor for the two frames is

The kinetic energy is then

Ex = (y—1)md
(1.091 — 1) (938.3 MeV)
— 85.39MeV
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Memo for Assignment 3 S1 2016

Four vectors and tensors (§ 2.2.4 - 2.3.5 (excluding 2.3.1 -
2.3.4))

Question 1: Tensor notation

Consider the following equation in Minkowski spacetime

A, = Z N A"

1A

How many equations does this represent?

e |0

Minkowski space time is four dimensional, so that we have g = 0, 1, 2, 3. Therefore, four
equations are represented, one for cach possible value of g The other index, 15 a dummy
index and is being summed over in each of the equations. Written out it full, the four

poations are

Ag = Y noA” = A’ + A"+ npeA” 4 g A3

14

Ar = ) meA” = oA + A" + m1 A 4 gy A3
2

Ay = 3 mA” = A’ + AT+ AT 4 g A
2

Ay = Z ?}:-]VAV = 130 A[} + ?}31-‘41 + i’jggr‘-'xz + 733 AH

I

Now VOl cal see how muoch more condensed tensor notation is.
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Question 2: Tensors, vectors and scalars

The four velocity is given by

[U+] = (U“. Ul {.-'3) — (e, V) .

Consider the following quantities from the equation:

i) [U#]

1) e

¢) (U°, U, U2, U?)
i) v

¢) (cy, yV)

) YV

Which of the following statements are true?

and b oare tensors, is a vector and o 15 a scalar

.
j=H

and o are tensors, bois a vector and d 15 a sealar

.
=4

and o are tensors, d 15 a veetor and s a sealar

.
=5

e ¢ and e are tensors, [ is a vector and b is a scalar®

e ¢ and [are tensors, e 15 a vector and b is a scalar

The differences between tensors, vectors and scalars ave important, In the same way that
vou can’t equate a matrix to a mumber, vou can’t equate a tensor to a scalar. From the
siven list, (a). () and (e) are all tensors, [L-”‘] 15 a four-vector and therefore a tensor. and
anything equal to it will also be a tensor. The components of [UF], namely U Ut U2 and
U3, are all sealars, just like the components of a vector are scalars. The Lorentz factor (d)
is of course a scalar, since it 15 just a number, The normal three-veloeity v is a vector with

3 components, and a vector multiplied by a scalar as in () is a vector,
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Question 3: Energy-momentum relation

A mnon is a subatomic particle with a rest mass of m = 105.7MeV /¢?. Consider a mnon

with a momentim of 50 MeV /e, What is its energy?

e 50MeV

116.9 MeV*

13.7GeV

e 105.7TMeV

12.5MeV

Using the energyv-momentum relation
E? = (m:‘.‘z)z-l-{}’sz
E* = (105.7 I\-‘ICVJ?'-I—{SUI\-I{.‘V}Q
E* = 13672.5MeV*
E = 116.9MeV
Question 4: Massless particles

A photon 15 measured to have an energy of 14 MeV, What is its momentum?

14 MeV /c*

0 MeV /e

196 MeV /e

42MeV /e

3.7MeV /e
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The momentum and energy of any massless particle is related by E = pe. This is a direct
consequence of putting m = 0 into the energyvemomentum relation used in the previons
guestion. A common mistake of students is to say that a massless particle has no momentum,
citing the equation p = ~moe as the reason.  This equation does not work for massless
particles. To see why, consider caleulating the Loventz Factor for a massless particle. All
massless particles move at the speed of light o, in all veference frames. So the Lorentz factor

wonld be

]

As vou can see, this leads to division by zero, which renders the equation p = ymo mean

ingless for massless particles,

The idea that massless particles have momentum withont having mass might seem odd, but
this is very real and measurable. One application is solar sails, which is a cost effective form
of propulsion where photons form the Sun is used to move spacecraft. Basically, photons
from the Sun collide with the sails and are reflected in the opposite direction, The photons
transfor some of their momentum to the sails (conservation of momentum) and cause the

spacecralt to move,

Getting back to the question at hand, the actual momentum of the photon is simply

p = Efe
= 14MeV/c

Question 5: Transformation of momentum

An electron (mass me = 0.511 I\I{?\-";"c-z] 15 moving along the z-axis of an inertial reference
frame S with speed v = 0.8¢, momentum 0,682 MeV /e and total energy 0.852 MeV, What
15 its momentum as measured in an inertial frame S that is moving in the standard config

]

uration with speed 0.6e relative to 57
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0.682MeV /e

0.593 MeV /e

0.285MeV /e

0.214 MeV /c*

0.046 MeV /e

Iu this scenario. vou have two observers in S and S respectively observing a particle that
is moving in both frames, Since S and S is moving with respect to each other, they will
measure different speeds ['zmtl therefore momenta and energies) for the particle, The observer
in S measures the speed of the particle as v = 0.8¢c. The speed of the particle o as measured
in S is related to the speed vomeasured in S by the velocity transformation equation (1,43

in the textbook],

When using equations like p = 5 (v)mv and E = v (v)me®. the Lorentz factors depend on
the relative speed between the observer's frame and the rest frame of the particle. That is
why vou use the speed of the particle v as measured by the observer to determine . In this
case. the energy and momentum as measured by the observer in S'would be p = 4 {t.' ) ma’
and E' = v (v")mc®. You can solve this problem by getting o from the velocity transfor
mation equation and then nsing it in p’ = v (") mo'. but there is a much simpler way, The
momentum in the z-direction is a component of the four-momentum. The transformation

for the components of the four-momentum is given in equations 2,34 - 2,37 in the textbook,

We know what one observer measures for the momentum in his frame (8). and want to
transform this quantity to the other observer's frame of reference (S"). To to this. we need
the Lorentz factor that relates S and S, we therefore need to caleulate the Lorentz factor

using the relative speed between S and S'. V' = 0.6¢.

The Lorentz factor relating the two frames is
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Since the electron s moving in the z-divection, p, 15 the only non-zero component of the

momentum vector. The appropriate transformation equation is

p;’ = % (pr - I’rEJ.f‘{~2)
.
_ % [0.682MeV /e — (0.6¢) (0.852MeV) /c?]
B
= % [{].682 MeV /e — 0.511 MeV }xc;z]
= 0.214MeV/e

Question 6: Four-momentum

A proton (mass mp = 938.3MeV /c?) is moving with speed 0.4c along the zaxis relative to
the laboratory frame. What is the value of the first component of the four-momentun PP

for the proton?
e 1210MeV /e
e 84.45MeV /e
e 409.1 MeV /e
e 1117MeV/e

e 1023 MeV /c*

The Loventz factor relating the laboratory frame and the rest frame of the proton is

1

1047
= 1.09

1
v r:

The value of P is given by E/e. where E is the total energy of the proton. For the total

ernergy, we g’[‘i

E = ymd
= (1.09) (938.3MeV/c?) ¢
— 1023 MeV

i
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Therefore. we have PY = 1023 MeV /c.

Question 7: Transformation of tensors

Using equation (2.110) in the textbook, how would a covariant tensor of rank 1 Ay transform

i general?

. ZE/-U ";;f: TR
. EB—O ﬁm
o _4; =y g
. Zv—ﬂ 3;: y

. Zv—D r.h::#
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Memo for Assignment 3 52 2016

Four vectors and tensors (§ 2.2.4 - 2.3.5 (excluding 2.3.1 -
2.3.4))

Question 1: Tensor notation

Consider the following equation in Minkowski spacetime

> =0
m
How many equations does this represent?

o]

o 2

o 4%

o 6

e 16

Minkowski space time is four dimensional, so that we have ¢ = 0, 1, 2, 3. Therefore, four
equations are represented, one for each possible value of g. The other index, v, is a dummy
index and is being summed over in each of the equations. Written out it full, the four

equations are

acgm g™ aGg"M  aG™  oG™

= e D
% v AzY Ox! A2 O3
Z aGw B acl  actt pat?t o pghs — 0
m o Al 2 drd
z oG B ac* g aa® N G — 0
m v A" ! A2 drd
Z oG - aG30  aE3t e aas _ 0
m v OV ! A2 drd

Now you can see how much more condensed tensor notation is.

1
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Question 2: Tensors, vectors and scalars

The four momentum is given by

(P! = (P°, P, P*, P*) = (E/c, p) .

Consider the following quantities from the equation:

a) [PH]

b) P

c) (P, P!, P? P
d) E

e) (E/e, p)

£) P

Which of the following statements are true?

e a and c are tensors, b is a vector and d is a scalar

e ¢ and e are tensors, f is a vector and b is a scalar*

a and b are tensors, fis a vector and d is a scalar

e a and e are tensors, d is a vector and f is a scalar

c and f are tensors, e is a vector and b is a scalar

The differences between tensors, vectors and scalars are important. In the same way that
you can’t equate a matrix to a number, you can't equate a tensor to a scalar. From the given
list, (a), (¢) and (e) are all tensors. [P*] is a four-vector and therefore a tensor, and anything
equal to it will also be a tensor. The components of [P*], namely P" P!, P? and P*, are
all scalars, just like the components of a vector are scalars. The energy (d) is a scalar. The

normal three-momentum p is a vector with 3 components.
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Question 3: Energy-momentum relation

An electron (mass m, = 0.511 MeV /c?) is has an energy of 0.850 MeV. What is its momen-

tum?

0.850 MeV /e

0.461 MeV /e

0.339MeV /e

0.582MeV /e

0.679 MeV /c*

Using the energy-momentum relation

B = (me)’ 4 (e
(0.850MeV)® = (0.511MeV)? + (pc)?
(pc)? = (0.850MeV)? — (0.511 MeV)?
(pc)? = 0.461 MeV?
p = 0.6T9MeV/c

[E~]

Question 4: Massless particles

A photon is measured to have an energy of 9 MeV. What is its momentum?

e 9NMeV /c*

e OMeV/c

81 MeV /¢

42MeV /e

3MeV/c
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The momentum and energy of any massless particle is related by E = pe. This is a direct
consequence of putting m = 0 into the energy-momentum relation used in the previous
question. A commom mistake of students is to say that a massless particle has no momentum,
citing the equation p = ~mv as the reason. This equation does not work for massless
particles. To see why, consider calculating the Lorentz factor for a massless particle. All
massless paticles move at the speed of light ¢, in all reference frames. So the Lorentz factor
would be

As you can see, this leads to division by zero, which renders the equation p = ymwv mean-

ingless for massless particles.

The idea that massless particles have momentum without having mass might seem odd, but
this is very real and measurable. One application is solar sails, which is a cost effective form
of propulsion where photons form the Sun is used to move spacecraft. Basically, photons
from the Sun collide with the sails and are reflected back. The photons transfer some of

their momentum to the sails (conservation of momentum) and cause the spacecraft to move.

Getting back to the question at hand, the actual momentum of the photon is simply

p = Ejc
— OMeV/e

Question 5: Transformation of energy

An electron (mass m. = 0.511 MeV /c?) is moving along the r-axis of an inertial reference
frame S with speed v = 0.8¢, momentum 0.682 MeV /e and total energy 0.852 MeV. What
is its total energy in an inertial frame S’ that is moving in the standard configuration with
speed 0.6¢ relative to 57
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0.852MeV

0.738 MeV

0.554 MeV*

0.511 MeV

0.443 MeV

In this scenario, you have two observers in S and S’ respectively observing a particle that
is moving in both frames. Since S and S’ is moving with respect to each other, they will
measure different speeds (and therefore momenta and energies) for the particle. The observer
in .S measures the speed of the particle as v = 0.8¢c. The speed of the particle v’ as measured
in S’ is related to the speed v measured in S by the velocity transformation equation (1.43
in the textbook).

When using equations like p = ~ (v) mwv and E = ~ (v) mc?, the Lorentz factors depend on the
relative speed between the observer’s frame and the rest frame of the particle. That is why
you use the speed of the particle v as measured by the observer to determine ~. In this case,
the energy and momentum as measured by the observer in S'would be p’ = ~ (v") mv’ and
E' = ~(v")mc. You can solve this problem by getting «' from the velocity transformation
equation and then using it in E' = ~ (v') mec?, but there is a much simpler way. The energy
(multiplied by a constant) is a component of the four-momentum. The transformation for

the components of the four-momentum is given in equations 2.34 - 2.37 in the textbook.

We know what one observer measures for the energy in his frame (5), and want to transform
this quantity to the other observer’s frame of reference (S'). To to this, we need the Lorentz
factor that relates S and S’, we therefore need to calculate the Lorentz factor using the
relative speed between S and S', V' = (0.6e.

The Lorentz factor for the two frames is

—

—
|
rgjl‘ft

—

v1—0.62

=]
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Using the transformation equation for the total energy in 5" gives

E = y(E=Vp)
5
= 5 (0.852MeV — (0.6¢) (0.682 MeV /c))

5
= 1 (0.852 MeV — 0.400 MeV)
= 0.554 MeV

Question 6: Four-momentum

A photon with measured momentum 0.210 MeV /c is moving along the y-axis relative to the

laboratory frame. What is the value of the its four-momentum [P*] in MeV /c?

o (0.21,0.21, 0, 0) MeV/c

(0, 0, 0.21, 0) MeV /¢

(0, 0.21, 0, 0) MeV /¢

(0.21, 0, 0.21, 0) MeV/c*

(0.21, 0.21, 0.21, 0.21) MeV /e

The four-momentum is given by

[P“l = (Elfc“-' p):(E)'ic'.PI:p'y'-P:}‘

From the question we know that p, = p. = 0MeV/c and p, = 0.21 MeV /e, It remains to
calculate the energy of the photon. Since photons are massless, we cannot use the equation

E = yme?. We therefore use the energy-momentum relation with m = 0 to get

: . .
E? = (-mcz) + (pe)?
E = pe
E = 021 MeV

The four-momentum is then given by

[P¥] = (0.21, 0, 0.21, 0) MeV /c

6
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Question 7: Transformation of tensors

Using equation (2.110) in the textbook, how would a contravariant tensor of rank 1 A"

transform in general?

o 3 gz
o A¥ = Zv:ﬂ Er A

. Jq!p, — ZE drH Av

p=0 Fpr

3 drH
o AP =TI ZA

! .
AR — Zg=[} %xx:‘ AV

Ar =33 Dz gn

p=0 Fzre
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Memo for Assienment 4 51 2016

Chapters 1 & 2

Question 1

Two astronants, Alice and Bob, leave the Earth and travel to a distant planet 12 lightvears
away, as measured from Earth, Assume that the planet and Earth are at rest with respect
to each other, The astronants depart at the same time on different spaceships. Alice travels
at a speed of 0.9¢, and Bob travels at 0.5¢. (Hint: A lightvear is the distance traveled by
licht in one vear, which is just e multiplied by one vear. or 9.46 % 102 km. In many problems

it is simpler to write it as le - year, since ¢ often cancels out. )

(a) What is the distance of the journey according to Alice?

(h) What is the duration of Alice’s journey according to the people on Earth?
(] What is the duration of the journey according to Alice?

() What is the speed of Alice’s spaceship. as measured by Bob?

Solution

Part A

The Lorentz factor between the frame where the planets are stationary {8 and Alice’s frame

(S") is

1

¥ — —_—

\l'l,-'!l - (%) 2
1

V1097

1

v1— 0381
= 2.29
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The proper distance of the journey is the one measured by the people on Earth. since they
are stationary with respect to the beginning and end points of the distance, We call this
distance Ax = 12¢-year. To get the distance as measured in 8" Az’ we use the length

contraction formmla

Ar
ﬂ;i"r = TT

i
12 ¢ - years
2.29
= bH.24¢- years

You can call these quantities L and Lp if that makes more sense to vou, But nsing primed
and unprimed symbols (Az. Ar" At andA#) helps vou keep track of who measures what in

a natural way,

Part B

We want to know the duration of the journey Af as measured in S, We alveady know the
distance measured in that frame (Az = 12¢- years). Since Az and At is measured in the

same frame S, we can nse

Ax
At =
1V
_ 12¢-years
- 0.9¢

= 13.3¢- years

This equation is only valid if all the quantities 15 measured in the same reference frame. This
is not the proper time. but the diluted time. Any observer measures his own proper time,
so the proper time will be A7 = At which we will calenlate in the next question. So for
questions like these, the proper length is measured in one frame, and the proper time in the

other,
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Part C

At this point. we have enough information to caleulate the duration according to Alice in

two wavs, Since we already know the distance of the journey in S (Part A). we can use

Az’
At =
V
~ 5.24c-years
B 0.9¢

= 5.8 years

We can also nse the duration as measured in S (Part B) and use the time dilation formuola

AT
.."'J_\‘LT = —
]?;.3 ¢ - years
2.29
= 5.8 years

Part D

The two spaceships are moving in the same direction, so we nse the velocity transformation
formula for the z-direction. Bob's velocity as measured in S is 0.5¢ 50 that V = 0.5¢. Alice’s

speed as measured in S is vq = 0.9¢, 50 in 8" (Bob's frame) it is

, vV
1 —wvaV/e?
0.9c — 0.5¢
1 —(0.9¢) (0.5¢) /2
0.4c

1 —045
= (.73c

Question 2

The space and time coordinates of two events as measured in an inertial frame S are as

follows:
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Event A | zq=a | ta=a/(2c) |yg=24=0

Event B | zp =2a | tg = 5a/ (6¢) | yp = zp = 0

where a is some constant., There 15 an inertial frame S in the standard configuration with

S, i which these two events are sunultancons,

(a) Draw a rongh Minkowski diagram to indicate these two events in both the S frame.

Also indicate the " and of axes on vour diagram.

i(b) Use the Lorentz transformation equations to find the speed of the 8" frame relative
to S,

(c) At what time do these events oceur in the S frame?

() Caleulate the spacetime separation between these two events,

(o) [s the spacetime separation between the two events time-like, space-like or light-like?
(£ s there a frame where Event A cansed Event BY

: .

Solution

Part A

I[f the two events are simmltancons in S”, it means that they will have the same ¢ coordinate,
Similar to a frame where the coordinate axes arve represented by perpendicular axes, all equal

values of # will lie on a line parallel to the z'axis.



Part B

Since the two events oceur simultancously in 87, we have

Part C

For the Lorentz factor we have

We can caleulate either £ or

th = tp
%) <2
vite =
va 5_a 2va
2 6e c?
el I— %—2'1.'
o e ¢
YT %9
e
3
B 1
= ﬁ
yi-(2)
1

APMATLS 204 /12016
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OR
/ , VT g
‘s = T(tﬁ_ r:'2>
B 3 (5& Qa.r_‘)
22 \6e 32
B 3 (Ea 4{1)
22 \6e 6
B a
42
Part D

The spacetime separation is given by

(As)? = (cAt)® — (Az)?

2 2
= (ctp —cta)” — (zp — xa)

Part E

Space-like [3’111['[‘[&5}2 < ()

Part F

No. Events that have space-like spacetime separations are not causally related, This means
that any particle (light signal, information, anyvthing) that is a result of the first event would
have had to travel faster than the speed of light to be at the later event and to canse it
in some way, This is not possible according to the postulates of special relativity, so it is

impossible for the two events to have cansed each other in any frame,
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Question 3

Using the Lorentz transformation equations for intervals, show that the spacetime separation

is invariant. That is, show that (As)® = (As")

Solution

2

The Lorentz transformations are

At = y(At—(V/e?) Ax)
Ar' = v (Az - VAL

Ay = Ay

A = Az

The spacetime separation in some frame S" 15 given by

(As)? = (cAt)’ — (AZ')" — (Ay)" — (AZ)?

Substituting the Loventz transformations gives

(As")?

Now

(C‘}" (ﬂ.t - (L’fcz) s"l\.r.))z — (v(Az — VA)? — (Ay)® — (Az)?
22 (m'z —2(V/2) Azt + (V/2) mﬂ) — 22 (As? - 2VAZAL + V2AL) — (Ay)® — (Az)

(,TZ _ szvz) (cAt)” — (.},2’ — 2 (Vfcg)-z) Az? — (Ay)” — (Az)’

o2

c2

s V2 2 o YV L A2 2
o) eany - (o — T=) A — (ay) - (A)
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50 that

{ﬁsrjz = {{_:\sz — ﬁ.]‘,'-z — [La'f_\lyjz — {.._J"'.’. }2

Question 4

A positron of mass m, = 0.511 MeV /2 moves in the o direction at speed vy = 0.6e. It
collides head-on with an electron (also of mass m. ) whose speed is v9 = —0.4e. The two

particles combine to form a larger particle called positroninm.

(a) 17se the law of conservation of momentum to determine the momentum of the positro

ninm particle.

(1) Use the law of conservation of energy to determine the total relativistic energy of the

positroninm particle,
() What is the contravariant four-momentum [P“] of the electron?

() Assuming Minkowski spacetime, determine the covariant counterpart of the four

momentum [F,] of the electron

(e) Transform the four-momentum of the electron that von wrote down in Part (¢) to

the rest frame of the positron

Solution

Part A

First we calculate the momenta of the two initial particles, For the positron we find

m= ! = ! ~1.25

V-fl — v} [c? V 1~ (0.6¢)* /c?

1 = mev
(1.25) (0.511 MeV /c?) (0.6¢)
— 0.383MeV/c



And for

the electron
S L 100
1 —wvi/c? \/1 — (—0.4¢)* /2
p2 = “yamev
= (1.09) (0.511 MeV /c?) (—0.4c)
= —0.223MeV /e

APNABTLS 204 712016

Let the momentum of the positronium particle be ps. By conservation of momentum. we

have

Part B

P3s = pr1+p2
0.383 MeV /e — 0.223 MeV /e
0.160 MeV /e

The energies of the positron particle is

Ey = ym.
= (1.25) (0.5111»-1{_«&*7.:2) ¢
— 0.639 MeV

and for the electron we have

Ey = ~yam.

= (1.09) (0.511 MeV/c?) ¢*
= 0.557MeV

Call the energy of the positronium Es. By conservation of energy we find

Ey = B+ E
= 0.639 MeV + 0.557 MeV
= 1.196 MeV
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Part C

The four-momentum is given by

[P*] = (E/e, p)
= {Ef(:,_ Pz PyPz)
= (0.557, 0.383, 0, 0) MeV /e

Part D

We can determine the covariant connterpart of the fonr-momentum [P,] by lowering the
index of [P#].

We use

3
Py=3% "

=0
to get
.P# = 'T}#DPP—I-'T]P]P#—I—T}#-gpp—l-?}“gpp

We use the fact that 5y, = 0if p # v and gop = 1. g1y = 1722 = 733 = —1 to get

Py = npP®=P"=0.55TMeV/c

P, = nuP'=—P'=—-0.383MeV/c
P = qP'=—-P'=0

Py = npuP?=—-P=0

So that we have

[P.] = (0.557, —0.383, 0, 0) MeV/c

Part E

In this question we transform the fonr-momentim of the electron from the laboratory frame

(the one we've been working in so implicitly up to now, let’s call it S to the rest frame of

10
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the positron, which we call 8 We already know the relative speed between the frames is
vy =V = —04de. And the Lorentz factor velating the S and 87, which we caleulated in Part

Aas y=1.25

The four-momentum is a contravariant four-vector, and therefore its transformation equa
tions are given by 2.56 - 2.59 in the textbook (vou can also refer to equations 2,34 - 2.37),

We get

P? = y(P"-VP'/c)
= 7(E/c—Vps/c)
—  1.25[0.557MeV /e — (—0.4c) (—0.223MeV /c) /c]
— 0.585MeV/c

P o= y (P —VPe)
= o (peVE/S)
= 125 [—0.223 MeV /e — (—0.4¢) (0.557 MeV) jcﬂ
= —25x107*"MeV/c

P:Q — P?:G
PP = PP=0

So that we have [P*®] = (0.585, —2.5 x 1074, 0, 0) MeV /c.

Question 5

Use the energy-momentum relation ( £2 = ¢2p® + m?c?) to show that the mass of a particle
can be expressed as

22 2
c'p — Ej

2ELe?

where Ep is the kinetic energy of the particle.

7 =

11



Solution

The total energy is equal to the kinetic energy plus the mass energy

E=F.+ me?

Squaring both sides gives
E? = Eg + 2Eme® + me!

Substituting the energy-momentum relation we get
p? = EE + 2Emc®

Solving for m gives
c*p? — E2
zE;_-CQ

7 =

as required,

APMABTLIS 204 712016
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Memo for Assignment 4 52 2016

Chapters 1 & 2

Question 1

In the future, NASA launches its first manned mission to Pluto. The distance between the
Earth and Pluto is about 4 lighthours. This means that it takes a photon (travelling at
speed ¢) 4 hours to travel from the Earth to Pluto. The spaceship departs from Earth and
travels at a constant speed of 0.4c to Pluto. Assume that Earth and Pluto is stationary with
respect to each other.

(Hint: A lightyear is the distance traveled by light in one year, which is just ¢ multiplied
by one year, or 9.46 x 10" km. In many problems it is simpler to write it as 1 ¢ - year, since
¢ often cancels out. In this case, you can write the distance between Earth and Pluto as

4 ¢ - hour.)

(a) How long does the journey to Pluto take according to the people on Earth?

(b) How long does the journey take according to the astronauts on the spaceship?

(c) According to the astronauts in the spaceship, what will the distance of their journey
be?

(d) During the journey, the astronauts communicate with the control centre on Earth by

sending signals at a frequency (measured in the spaceship rest frame) of 300 MHz. To what
frequency must Earth receivers be tuned to receive these signals?

Solution
Part A

Let’s call the rest frame of the Earth S and the rest frame of the spaceship S’. The distance

between Earth and Pluto given in the question measured in S, so that Ax = 4¢ - hour.

1
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This is also the proper length, since it was measured in the frame where the beginning and
end points are stationary. We want to know the time that the people in S measure for the
duration of the journey At. Since Ax and At is measured in the same frame S, we can use

Ax
v
4 ¢ - hour

0.4c
= 10hours

At =

So as measured in S, it takes the spaceshipl0 hours to reach Pluto.

Part B

Now we want to know the duration of the journey as measured by the astronauts in S’
namelyA#'. The astronauts will measure the proper time of the spaceship’s travels, since
any observer always measures his own proper time. First, we calculate the Lorentz factor

relating the two frames.

1 1 1
= = 1.09.

TS Z T VIoE VoS

We use the time dilation formula and the answer from the previous question:

At
¥
10 hours

1.09
= 0,17 hours

Al =

So the astronauts will experience 9.17 hours of travel time before they reach Pluto.

Part C

There is two ways in which you can calculate this. You can use the length contraction
formula to get
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4 ¢ - hour

1.09
= 3.67c-hour

Or, since you already know the duration of the journey in S’, you can also use

Ar' = VAY
(0.4¢) (9.17 hours)
= 3.67¢-hour

Part D
Since the source of the signal (the spaceship) is moving away from the receiver (Earth) we

use

c—V
c+V

ff‘E’(_‘ =

— 300 MHz/——

c+

= 300 MHz 1,!0

= (300 MHz) (
= 196.5MHz

Question 2

In frame S, event B occurs 2 us (2 x 107 %s) after event A and at xg = 1.5km from event A.

Take event A to occur at time ¢4 = 0 and position x4 = 0 in frame 5.

(a) How fast must an observer in frame S’ be moving along the positive r-axis so that

events A and B occur simultaneously in his frame?
(b) Is it possible for event B to precede event A for some observer?

(e) Roughly draw a Minkowski diagram below for frames S and S'. Indicate events A

and B on your diagram. If you answered “yes” to part (b) indicate the axes et” and =" of an

3
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inertial frame S” for which event B occurs before event A. If you answered “no” to part (b),

use the diagram to explain why.
(d) Compute the spacetime separation (2‘.3}2 between the events.

(e) Are the two events causally related? Explain your answer.

Solution
Part A

These kinds of questions may seem a bit confusing on the first read, but they are usually
very simple. Always start by writing down what you know and work from there. From the
question, we know that At =tg —t4 =2pus and Az = zp — x4 = L5 km.

Part A of the question introduces an observer in frame S’ that moves past frame S at an

unknown speed V.

The origin of the frames are always arbitrary, so we can choose that to be anything. It is
almost always simplest to choose the origins to be at the an event, or Event A in this case.
Remember that an “event” is just something that happens that we can assign a specific set
of coordinates to. With these kinds of problems that have only one spatial dimension, the
sets of coordinates will consist of one spatial and one temporal coordinate. In this case we
will choose the origin of both frames to coincide with Event A. This means that we assign
(za, ta) = (24, ty) = (0, 0).

Part A of this question mentions that in 5’, Events A and B occur simultaneously so that
th = tp.

We can now construct a table with all the known spacetime coordinates.

Event A Event B

Frame S | x4 =0km; tq4 =0s | zp = 1.5km; tg = 2 us

Frame S' | 2/, = Okm; ¢/, = 0s 'y =7ty =0s

With some problems, it will also make sense to draw a picture of the situation to help

visualize it.
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This part of the question requires us to determine the speed V of S’ relative to S. From the
transformation rules for intervals, we have

At = v(At—VAz/P)
tg—ta = v((ts—ta) =V (zp —za) /c?)
0 = ')(QXIO —V (1500m) /c*)

V (1500m) /¢ = 2x 1076
(2 x 10‘6 s) ¢
1500 m
(2 x 107%s) (3 x 108 ms™!)
1500m
= 1.2x108ms™!

= 04ec

2

Note that the coordinates were converted to SI units (seconds and metres) so that we get
an answer in ms~! (meters per seconds). If you kept them in the original units, you had to
convert 3 x 10°ms~! to kilometers per millisecond first.

So S is moving with a speed V = 0.4¢ relative to S.

Part B

Yes.

Part C

Event A should be at the origin of both sets of coordinates and Event B should be above
1500 km on the zr axis and on the z’ axis, as it occurs at t' = 0.

The axes of the frame S” has to “inside” the axes of S’, indicating that S” travels at a speed
greater that 0.4c relative to S. Event A is still on the origin of 5", so that occurs at time
t" = 0s. Event B is below the z”axis, so that it will occur at a negative time, i.e. before
t" = 0s. (Remember that the z” axis indicates the line for which " = 0s)
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ct

| | 1
500 1000 1500 x

Part D

The spacetime separation is given by

(As)? = (cAt) — (Az)?
= [(3%10°ms ) (2x 10°5)]" — (1500 m)’
= 3.6 x10°m? — 2.25 x 10°m?
= —1.80 x 10°m?

Part E

No. The spacetime separation between the two events is negative. You can also argue that
in the calculations above we have shown that there exists a frame where Event A precedes
Event B () and a frame where Event B precedes Event A (5”). So the one event could not

have caused the other one.

Question 3

Maxwell's wave equation for an electric field propagating in the z-direction is

PE  10°E

dr2 2 o
where E (x, t) is the amplitude of the electric field. Show that this equation is invariant
under a Lorentz transformation to a reference frame moving with relative speed v along the

6
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T-axIs,

Solution

The relevant Lorentz transformations are given by

¥ = v(x—vt)

v
t = (t — —)
! CQ
R 2 22
where v = (1 —v?/c?) "
Note that ' = 2’ (x, t) and ¢’ = ' (, t), so that we use the chain rule to obtain for a wave
function
OFE OE 0z OEOY  OE v de

O oror Toror Jar T 2ow

0B OBOx OB OE OF
ot or ot oror ar  Tar

Therefore we have

PE JFE ~vOE JFE ~vdE

£l ('}’ax* a2 af) (’E T -‘:Pt’)
2 PE 29w dE0E %0 0PE
Yot T2 odar T A o

?E ( oE OE ) ( oF oE )

= —— + Yo | v + =
BYE ar T Tar aor T Tor

2 . o o
A.E_Uzd E 2r};vdE dE A{.zdzE

dr"? dz’ ot o2
Substituting this into the wave equation

PE 1 PE
a2 2 o2

and rearranging gives

LOPE POPE | AOPE P O0PE (Q'yzvr‘jEtiE Qn,-%aEaE)

"or? 2 arn A a2 R 2 o o 2 Or ot

7
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’E 1 °E
O’ o Ot

Therefore, the wave equation is invariant under a Lorentz transformation.

You can follow the same approach using the Galilean transformation equations and you will
find that the equation has a different form in S’than in S . Therefore, the equation is not

mvariant under a Galilean transformation.

Question 4

A particle is measured in an inertial frame S to have a total energy of E =5GeV (1GeV =
10%eV) and momentum of p = 3 GeV /c.
(a) What is the mass of the particle, in GeV/c*?

(b) What is the speed of the particle?

(c) What is the energy E' of the particle in another inertial frame S’ in which the
particle’s momentum is p’ = 4 GeV /c?

(d) What is the kinetic energy of the particle in S'?

(e) What is the maximum momentum this particle can have, according to the limits set
by special relativity?
Solution

Part A
Solution 1 Rearranging the equation
E? = pzcz + m2et

8
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Substituting the given values for E and p gives

> (57 (3GeV/e)

T = —

ct c?
_ 25GeV?  0GeV?
N fie T
16 GeV?

ol

m = 4GeV/c

APM3713/204/2/2016

Solution 2 If you prefer, you can convert all the quantities to SI units, but this tends

to be unnecessarily tedious as the ¢’s don’t cancel and the numbers are huge. We use the

conversion factor 1eV = 1.60 x 10717

2 2

,» _ E P
T = —1——2
[ [

ol

_ (8x 1071 (48 x 10717’
- c ot
C(8x 10719 (4.8 x 10710
(3 x 10%)* (3 x 108)*

641071 23 x 107"
8.1 x 103 8.1 x 10%
= T7.00% 1075 — 284 x 1075

= 5.06 x 1073
m = 7.11x10 kg

Part B

(5 x 109 x 1.60 x 10-19)> (3 x 10° x 1.60 x 10-19/¢)*

Solution 1 The Lorentz factor v depends only on the speed, so if we can calculate ~, we

can get V.
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B
b ?TECE
_ 5GeV
C (4CeV/e2)e2
5
4
15
1 —V2/e 4
: 16
Vit = =
1-V=/e 5F
: 16
Ve = 128
/ 25
_ 0
25
3
V- = EC

Solution 2 Or, if you insist on using SI units, you can get the Lorentz factor as follows

.
meZ
8 x 1010

(7.11 x 10-27) (3 x 108)°
8 % 10710

6.4 x 10710
5

4

The rest of the solution 1s the same as for Solution 1.

Part C

In any single inertial frame, the equations of special relativity hold, so we can calculate the
energy E' in the frame where the momentum is equal to p'as follows.

E? = p?2 4 m2!
= (4CeV/e) @+ (4Cev/e?) et
= 32GeV?

E = 4V2GeV

10
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Remember that the mass of the particle is invariant, so it is the same in all inertial frames.

Part D

The kinetic energy of the particle is given by
Ee = (f —1)md

At this point we do not know the speed of the particle in S', so we do not know the value
of o'. The Lorentz factor is not invariant. You can calculate the value of 4" for S'using a
similar method as we did in Part B, and substitute it into the above equation. Or you can

so 1t like this:

Ex = (Y -1)m
v'me? — me?
= E —md
= 4V2GeV — (4GeV/c?)
= 4(V2-1) GeV

= 1.66GeV

Part E

Special relativity places no upper limit on momentum. Below is a graph showing the classical
(blue) and relativistic (red) momenta for a object at different speeds. In classical (Newtonian)
mechanics, the momentum increases linearly with the speed. In special relativity, the Lorentz
factor ensures that the momentum goes to infinity as the speed approaches c. Form the graph
you can also see that the relativistic momentum approaches the Newtonian momentum at

speeds much smaller than c.

11
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relativistic

Momentum

classical

SpeedV

Question 5

Derive the energy-momentum relation E? = ¢?p? + m?c* by starting from the relativistic

definitions of E and p, i.e. E = ~yme? and p = ymo.

Solution

Squaring the definitions of £ and p

Multiplying the last equation by ¢ and subtracting gives

E? g2 = 2wl 2l

2
_ 24 2 U
= mc (f — ?)

Using
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we show that

9 gu’ B 1 u?/c?
P T IowE T 1-we
1—u?/c?
= Twye
=1

It follows that

B2 = 2 4 mid

13
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Memo for Assignment 5 S1 2016

Basics of differential geometry (§ 3)

Question 1: Metric tensor

The line element for a certain two-dimensional Riemannian space is given by
2 g2 i . 2
dl” = df” + 2 cos Bdfdd + dev™ .

Putting ' = # and 2 = &, what is the metric tensor of this space?

( cosf 1
L]
\ 1 cos ¢

.f/ 1 oS (1 .
u\cc}sﬁ 1

[ 1 2eosf
\ 2cosf 1

1 2cosd
0 1

1 0
2cosf 1

The line element for a general Riemann space is given by

di* =Y giydr'ds’

ig=1

Since we are considering a two dimensional space (n = 2], we can can expand this to

dl* = gud-r'd-r] + glgd:r.]d-rz + g:g1d$2d:r] - gfgzd;r.zd-rg
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Putting ' = @ and 22 = ¢. we get

dI* = g1y d6® + g12d0d¢ + go1dpdb + goode”

The metric tensor mnst be symmetric, (This ensures that the distance from the point P to
the point Q) will be the same as the distance from point Q) to point P} This means that
we must have grg = gor. From the given line element, we can see that we have gy = 1,

g2 = go1 = cosf and goo = 1. Putting this in array format gives

1 cosé
cosfl 1
Question 2: Arc length
Clonsider the curve described by
T = oS t, y=sin’t

with the points P and Q defined by the points where ¢p =0 and g = 7/2.

What is the length of the curve between points P oand Q in arbitrary units?

o LD

First we calculate the derivatives of the Cartesian coordinates with respect the the parameter

L.,
dr d . .
- = 7 (::{)'c;‘i t} — —3cos’t sint
o' d ... .
d—'i: = = (sin®t) = 3cost sint
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We find that

dr\* dy : 2 2 12
( )+( ) = (—3cos’t sint)” + (3cost sin®¢)

= 9cost sin®t + 9cos’ ¢t sin't
= 0Ocos?t sin’¢ (cos® t + sin ¢)

= Ocos’t sin’t
The length of the curve is then given by
gy L2
fq dr\? dy :
ra = [*((E) (@)
w2 .
= / v/ 9cos? t sin? tdt
0
w/

/2
= [ Jeost sintdt
0

0
3.2l 2
= §sm §—§&=111 0
_ 3
2
Question 3: Kronecker delta
The sum
3
> G
i=1

15 equal to..,
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The definition of the Kroneker delta 1s

1 il i=j
0 if i#j

(S@_;r —

(The components of 8%
j

two tensors are not strictly equal sinee they are of diflerent tvpes.) It is & very common

and d;; are the same for similar values of ¢ and 7. even thongh the

mistake to say that this siun is equal to 1. But it is a sum over number of components equal
to 1 and the answer will depend on the number of dimensions vou are working in. In this

Case

§ii = 011+ dag + das

= 1+1+1
= 3

Question 4: Christoffel coefficients

Clonsider a surface with a metrie tensor

1+ 4u® 4w

9 = duwv 1+ 402

where 78 = v and 22 = v. What is the value of the connection coefficient F'Q.z'.’

e 0

o (1+4u)/(u+4u?)

4u/ (1 +4u? + 4v?)«

v/ (1+u? + v?)

du (1 4+ 40%) /(1 + 4u® + 407)

To compute the connection coeflicients, we need the dual metric tensor, Since we must have

3 3
Z Qijgij = Z 51‘

i,j=1 i=1
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this is just the inverse matrix of the metrie tensor given by
i | 1+ 40 —duw
T Tl 07 | dww 144 )

The Christoffel {or connection) coefficients arve defined by

1
Fj:':j = Z E.‘?hk (Grig + Giki — Gisk)
k

To compute Ty, we let A — 1, i — 2 and j — 2 in the above equation to get

1
My = > 59”“ (gr22 + gar2 — go2.k)
k

Expanding the sum over k=1, 2 (since we are working in a 2 dimensional space) gives
Fl _ 1 11 1 12
2 = 39 (G122 + g212 — g22.1) + 59 (ga2.2 + g222 — g22.2)
1 1

11 12
= 39 (29122 = g21) + 59 922
It will always be the case that gg 15 svmmetric, We used this above to simplify the equation,

Now we just substitute the values from the metric and dual metrie tensor

1 1
My, = 55’“ (29122 — g221) + 5912922:2

_ Lufod o d N, 1wd
= 25’ d:rgglz dI1922 29 dmggzz

1 1+ 4o? d d 2 1 —duw d 9
=3 (m) [ga (4uv) — o (1 + 4o )] t3 (m) o 1+ 4)

o du (14 407) 16uv?
14 4u? 440?14 du? 4P
du

14+ 4u? + 402
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Memo for Assignment 5 52 2016

Basics of differential geometry (§ 3)

Question 1: Metric tensor

The line element for a certain two dimensional Riemannian space is given by
dI? = dr® + 2rsin ¢ dr do + r°d¢” .

Putting z' = r and z*> = ¢, what is the metric tensor of this space?

1 2rsing
2rsing 1’
rsin ¢ 1

. K
1 T sin ¢

. [ 1 T 8in ¢ )*

rsing  r?

[ 1 0
. _
orsing 1’

( 2 2rsin ¢
0 1

The line element for a general Riemann space is given by

di* =" gyda'ds’

ij=1

Since we are considering a two dimensional space (n = 2), we can can expand this to

di* = gndz'dz' + grode'dz® + gnde’dzs' + godrds?
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Choosing ! = r and z° = ¢, we get

di* = gudr? + giadrdd + gordédr + gard®

The metric tensor must be symmetric. (This ensures that the distance from the point P to
the point €) will be the same as the distance from point ) to point P.) This means that
we must have g3 = g2;. From the given line element, we can see that we have gy = 1,

g2 = go1 = rsing and g9y = r2. Putting this in array format gives

1 7 SN ¢
rsing 12

Question 2: Kronecker delta

The sum

2
Z 959"

ij=1
is equal fo...
o 0

e 1

We have (see Equation 3.24 in your textbook, and use symmetry)

2 2 2 2
90" =) ) gug? =) 4
i=1

ig=1 i=1 j=1

[t is a very common mistake to say that this sum is equal to 1. The definition of the Kroneker
delta is

1 if i=3

0 if i#7
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(The components of 5‘] and d;; are the same for similar values of 7 and j, even though the two
tensors are not strictly equal since they are of different types.) The sum in the question is
a sum over number of components all equal to 1 and the answer will depend on the number
of dimensions you are working in. In this case (N = 2)

2
Y & = 8+8
i=1
= 1+1
=

Question 3: Curvature of a curve

Consider the curve with parametric equations

r = tcost

y = tsint

The curve is shown below for 0 < ¢ < 3x.
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o (1+2t)/(1+1¢)°

o (2483 (AL t2)V e

We will use equation 3.32 in the textbook. Computing the derivatives of the parametric

equations give

T = cost—tsint
T = —tcost—2sint
y = tcost+sint
y = 2cost—tsint
Using this, we get
Ty —yr = (cost—tsint)(2cost—tsint)— (tcost+sint)(—tcost —2sint)

= (2cos®t —3tcost sint + t*sin®t) — (—t cos® t — 3tcost sint — 2sin’t)
= 2(cos’t +sin’t) +#* (sin? ¢ + cos®t)
= 2+

and

i+ 9% = (cost—tsint)® + (tcost +sint)?
= cos’t — 2tcost sint + t>sin’t + t* cos® t + 2t cost sint + sin ¢
= (cos®t +sin®t) +¢* (sin® ¢ + cos®t)
= 1+¢

Thus, for the curvature we get

|2y — y|
(&2 + y2)*?
242
(1 +¢2)%2



Question 4: Christoffel coefficients

Coonsider a surface with a metric tensor

1+v?  wv
Gij = )
uv 1+u

APM3713/205/2/2016

where z! = w and 2 = ». What is the value of the connection coefficient 14,7

v/ (1 +u? +0%)

u/ (1 +u?+v2)«

—uv?/ (1 +u® +v?)

e ()

(1+2u?) [ (u+u?)

To compute the connection coefficients, we need the dual metric tensor. Since we must have

3 3
Z 9ii9" = Z 2
i=1

ij=1

this is just the inverse matrix of the metric tensor given by

i 1 1+u? —ww
9= ——— :
1+ u? 4+ 02 —uv 1+ 02

The Christoffel (or connection) coefficients are defined by

1
Fhi;f = Z Eghk (Grig + Giki — Gijk)
k

To compute ['%,, we let b — 2, i — 1 and j — 2 in the above equation to get

1.
[-212 = Z §§2k (gr12 + g2r1 — Gi12.k)
k
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Expanding the sum over & = 1, 2 (since we are working in a 2 dimensional space) gives

1 1.

= 5921 (9112 + 9211 — g12.1) + 5922 (ga1.2 + 9221 — G12.2)
L o 1 9
29 J11.2 29 G221

[t will always be the case that g;; is symmetric. We used this above to simplify the equation.

Now we just substitute the values from the metric and dual metric tensor

I'

2
12

1 1

21 22
— _|_ —
QQ g2 25’ g22.1

1 — d ) 1 1+'L'2 d
1 — 1 2 -y _ T 1 ._2
2(1+'H-2+'U2)d;1.‘2( +L)+2(1+u2+.y2)d$1{ —I—u:}
L —uv d 1 1402 d :
— - _ 1 _2 - o 1 2
2(14—-11—24—1-'2)&1-'( +v}+2<1+u2+v2)du( +u?)
—uv? 2

1+u?+0?
u

1+u? 402

n U -+ uv
1+ u? + 02
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Memo for Assignment 6 51 2015

General Relativity and Tensor Algebra (§ 4)

Question 1: Tensor transformations

The transformation equations for transforming a contravariant tensor of rank one from polar

to Clartesian coordinates are

A = Alcosf — A’rsind
A? = Alsinf + A%rcosf

where ' = (r, 8) (derived in Exercise 4.2 in the textbook), Use these to transform the tensor
described by [AT] = (2, 1/sin#) to Cartesian coordinates ' = (z, y). What is the value of
qf})

o 1 +7r%cosf

1+ rcotd

r(cosf — 1)

r(sinf + cot 6)*
e cotf —r’sinf

The transformation equations for transforming a contravariant tensor of rank one from polar

to Clartesian coordinates are

AT = Alcos@ — A?rsing
A? = Alsinf + A%rcosf
e components of the tensor we want to transform s given as A = r= and A° = 1/sind.
Tl ts of the t totot [ g Al = 7% and A? = 1/sinf
Substituting this into the above equations give

. rsinf
AT = yleosf —

sin#
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= r(cosfl —1)

. . T COsf
A? = PPsingr ———
sin
— r(sinf + cotf)

Question 2: Tensor expressions

Which of the following tensor expressions is incorrect?

o A= > 9”—43' =ik gijgjkﬂk

qi ' dr” dx°

: — AP
o A kl — £ep.r, s Brr 9zF O] A T
. 3950 g5-
¢ F“ﬁT — 2 ( éi:r:-'ir + arv e’:i'z'”r)

. E?:l & =1"

i T

Option (1): Correct. The rules of raising and lowering an index is followed, We can also

write

> igadt = Y A"
ik k

= A 4+ 5AT 4 LA AT

In the last step the swm has been expanded and smns & from 1 to no Remember that 67 is
defined so that it 15 equal to 1if @ = k. and zero if ¢ £ k& So all the terms will be equal to

zero, except the term where 1 =k, and in that case we have ' = 1 so that we can write

3 glgppAk = A
ik

Option (2): This is the correct transformation for a tensor of this form. Here bars were
nsed in stead of primes to indicate the other coordinate frame. The textbook uses primes,
but this can sometimes become nnelear, especially when writing by hand, Using either is

fine, as long as vou are consistent,
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Option (3): This is correct. Lowering the first index of the Christoffel coeflicient gives

Faﬁ’}r = ';’mjrr}f
_ q Z q?}t dgt"‘f dqﬁt N agﬁ':f
i r‘:};r."-‘ dz*

1 d‘}m d Jae 5§ﬁw 1_ d Jey 6‘?& 5'(},3—»,
S — - — . R — — —
2 “ (b’:ﬂj + dz ozt + + 2%\ 928 + oz Jz* +

In the last step we used
e __ ge
Jong" =04
The only non-vanishing term will be the one for which 7 = a so that

1 (090y  Ogsa IG5y
Do = = | 22 _ 2k
S (a-r.ﬁ "o B

Option (4): This is incorrect. Expanding the sum gives

B
Y& = 6+ 65+ 8

1+1+1
= 3

Option (5): Correct. This is a consequence of the svinmetry of the metric tensor. We can

_ —Z a (P9  Ogn _ Ogie
O ﬁ.l‘k !

SICe gag = §ga. we can interchange the indices of all the metries within the sum.

write

; 1 2 (Ogt | Og;  Ogry
]'\;L_l _ - il il L It
k=9 ;g (b’IJ T

The first two terms can also be switched to give

; 1 a (O | Ogu Ogi;
]-\1_. - _ il e L] A J
i* =9 szg (ax* T

which is exactly the definition for T% . So therefore T = T .
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Question 3: Raising and lowering indices
Which of the following expressions is correct?

o RO =3, 9" R, 5"

Raﬁﬁ'\ﬁ =2y gm 1 Fyd

R = X0 g R%s
R Qﬁﬁ'\}j =20 g" Raﬁ}-é

R =20 g™ R%.s

You can use the metric tensor to lower indices and the dual metrie tensor to raise indices,
In this case we want to raise the index v, so we multiply B9 ; with the doal metric tensor

where one index is . and sum over it:

R ;‘1‘-?-0' = ngﬂﬂ:ﬁ;ﬁ

Ui

Question 4: Covariant and contravariant forms

Equation 2.70 in the textbook is written for four dimensional Minkowski space and gives
a rule to determine the covariant form of a vector if the metrie and contravariant form is

known. This same equation written for a general two dimensional space is
2
1. — Ai
r'lj = ZgijA .
i=1
Use this to determine the covariant form of [A7] in two dimensional space described by the

surface of a paraboloid, The metrie tensor for this space is

14+a?? 0

[gi.ﬂ'] = 0 2

and let
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14 a? a’
1+ a?
Expanding the given equation for determining the covariant components of [A*] gives

2
A = ) guA’
i=1
= gy A" + g A°

From the information given in the question. we know that gy = 1+ a’r? g1z = gn = 0,

gaa = 2. A = 1 and A2 = a2 The covariant components are then given by

Ay = gnA'+gnA
= (1 - a?rz) (1) + (0) (a.z)

= 1+4a%?

Ay = gpA + gpnA®

(0) (1) + (r?) (a?)

a’r?

You will notice that we conld also have computed it with

A = [gu] [AT]

B 1+a%? 0 1
B 0 re a?
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3 9
1 +are

o o9
aTr

Question 5: Einstein field equations

How manv equations does the following expression represent?

THY — (Jﬁ 4 pllr.-'t.__'_},) [THITY _ pgﬂw

e 16%

The expression represents 16 diflerent equations. One for each possible combination of p
and . where both indices can have values from 0 to 3, since this equation is written for four

dimensional spacetime. The 16 possible combinations are

v Flp | colp | v Slp v
11010 5010 9 (210 13|50
2101 6 1|1 10 21 14 3|1
3102 T112 11212 15| 4|2
4 (03 013 12| 213 16 | 4|3

§
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Memo for Assignment 6 52 2015

General Relativity and Tensor Algebra (§ 4)

Question 1: Tensor transformations

The transformation equations for transforming a contravariant tensor of rank one from polar
to Cartesian coordinates are

A" = Alcosh — A’rsing
A? — Alsing + A%rcos#

where z* = (r, #) (derived in Exercise 4.2 in the textbook). Use these to transform the tensor
described by [A'] = (r2, 1/sin @) to Cartesian coordinates =" = (z, y). What is the value of
A?

1+ rdcosf

1 +rcotd

r(cosf —1)*

r(sin# + cot f)
e cotf —risinf

The transformation equations for transforming a contravariant tensor of rank one from polar
to Cartesian coordinates are

AT = Alcosf — Arsind
A? = Alsin# 4+ A’rcoséd

The components of the tensor we want to transform is given as A! = r? and A% = 1/siné.

Substituting this into the above equations give

. rsinf
A = rPeosh — —
sinf
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= r{cosf —1)
T cosf

A” = ylsing+ —
sin#

= r(sinf + cot#)

Question 2: Tensor expressions

Which of the following tensor expressions is incorrect?

A =%,09A; =%, 1 97 g A

i az! 8z" 9r° ap
o Ay =2, s mrorarAis

_ 1 {88ay Fdga agﬁ‘r)
® Tagy =3 ( a7 T Fre

L ]
7
t s
L
]
I

[ ]

H
5

|
-

Option (1): Correct. The rules of raising and lowering an index is followed. We can also

write

Y giguAt = Y oAk
k

ik
= A &AL L&A LS AT

In the last step the sum has been expanded and sums k from 1 to n. Remember that &% is
defined so that it is equal to 1 if + = k, and zero if ¢« # k. So all the terms will be equal to
zero, except the term where ¢ = k, and in that case we have &, = 1 so that we can write

Y gigAr = A
ik

Option (2): This is the correct transformation for a tensor of this form. Here bars were
used in stead of primes to indicate the other coordinate frame. The textbook uses primes,
but this can sometimes become unclear, especially when writing by hand. Using either is

fine, as long as you are consistent.
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Option (3): This is correct. Lowering the first index of the Christoffel coefficient gives

ch_.ﬁ"}r = Hay Fqﬁ‘w
Z 09ey  O9s _ 098y
= e — -
ga'q g ( A 5T A dx*

1 Oger  Ogz.  Ogay 1, {99+ gz O
= 5‘(9' 75 9-5')+....+—o (g'+ 7 gﬁ"‘)+...

ozl ax" Ot

9 @ 2 2\ 928 " grr Oxt

In the last step we used
Gong™ =8
The only non-vanishing term will be the one for which 5 = o so that

1 (t‘?‘gm 0950 agm)
2

—
afh AP dx dr®™

Option (4): This is correct. Expanding the sum gives

3

252 = 5} +0%+8%
= 14141
=3

Option (5): This is incorrect. The Christoffel coefficients are symmetric in their lower

indices, but not in the upper and lower index.

The symmetry in their lower indices is a consequence of the symmetry of the metric tensor.

; 1 a (O | dgu  Ogk
i, == il : Je J
k=9 ;g (5‘1‘3 T ok Bl

We can write

Since gos = gsa, We can interchange the indices of all the metrics within the sum.

; 1 1 [ Og  Ogiy  Ogy;
]'\1_ R il : 7 J
k=3 ;g (aﬂ T

The first two terms can also be switched to give

i 1 a (095 | Ogu  Ogi;
Fk=32.9 (axk T e o

3
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which is exactly the definition for I'";;. So therefore I'";, = I";, but it does not hold that
Fijk = rjik-

Question 3: Kronecker delta tensor

Which of the following expressions are correct?

L Em 5?9&:771 = ngm
® Y0 8 Gkm = g™

>om O Gm = g™

om0 gkm = ga*

Em ‘5?%5'1&:?11 = Gkm

In the sum
> 0% Grm
m

all the terms in the sum where m # [, will be zero (since 67 = 0 if e # [). The term where

m = [ will be equal to gy, 1.e.

ZéTka = 539::0 + 51;9:c1 +...+ '5Ee§f.-: +...+ 5’?r§k.w
m

= 0)gro+0) g1+ ...+ (D g+ ...+ (0) gn
= i

So the Kronecker delta can effectively be used to replace one index with another.

Question 4: Covariant and contravariant forms

Equation 2.70 in the textbook is written for four dimensional Minkowski space and gives
a rule to determine the covariant form of a vector if the metric and contravariant form is

known. This same equation written for a general two dimensional space is

2
Aj =3 giA'
i=1

4
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Use this to determine the covariant form of [A'] in two dimensional space described by the

surface of a unit sphere. The metric tensor (with ' = ¢ and 2 = ¢) for this space is

0
l9:] = ( 0 sin26 )
4= 7,)

and let

L ]
B
Il
~
=
|
1=
——

Expanding the given equation for determining the covariant components of [A'] gives
2 .
Aj = Z gij ;“1t
i=1
= giA' + gy A

From the information given in the question, we know that gi1 = 1, g12 = go1 = 0, gea = sin” 6,
A' = 7 and A% = 7/4. The covariant components are then given by

Ay = gnA' 4 gnA’
= (1)(w) +(0) (7 /4)

= T



As

giaA' + gap A®

(0) (m) + (s;in2 9) (n/4)

m .
" sin’d
4

You could also have computed it with

[Ai]

Question 5: Einstein field equations

How many equations does the following expression represent?

e B

e 16*

Ru —

1
2

R.‘?}w —

- H'Tjw

APM3713/206/2/2016

The expression represents 16 different equations. One for each possible combination of g

and v, where both indices can have values from 0 to 3, since this equation is written for four

dimensional spacetime. The 16 possible combinations are

u|lv | v v
100 5110 9 |20 13|30
2|01 6 1|1 10|21 14 | 3 |1
3102 7112 11|22 15| 3|2
4 103 8113 12|23 16 | 3 | 3
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Memo for Assignment 7 52 2016

Chapters 3 & 4

Question 1

he right helicoid can be parametrized as

r(u, v) = wucosv
y(u, v) = wusinv
z(u,v) = av
where a is a constant.
(a) Find the line element for the surface.
(b) What is the metric tensor and the dual metric tensor?
(c) Determine the values of all the Christoffel coefficients of the surface.
(d) What is the value of the component RY;, of the Riemann curvature tensor?
(e) What is the Ricci tensor for the surface? (Hint: R, is the only independent com-
ponent of the Riemann tensor when working with a two dimensional space. It has the
symmetries Ry, = R%,, = —R%,, = —R.,, with all other components equal to zero.)
(f) What is the curvature scalar R for the surface?
(g) What is the Gaussian curvature of the surface?
(h) Is the surface Euclidean? Explain your answer.
(1) Suppose that the surface is filled with non-interacting particles, or dust. Use the two

dimensional version of the energy-momentum tensor for dust and Einstein's field equation

to find an expression for the Einstein constant « for this surface.
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Solution
Part A

In Cartesian coordinates, the line element is given by

(d)? = (dz)* + (dy)* + (d2)*.

We have

T(u, v) = wucosv

y(u, v) = wusinv

Z('H-., t,‘} = av
so that

dr i
d' p— —d d 1
’ Ju wt v ! _
= i (uwcosv) du+ E (ucosv) dv
U v

= cosvdu —usinvdv

Similarly, we get

dy Jy
dy = Zagut+
y Ju u+ﬁv !

o b5
= 3 (usinv) du + B0 (usinwv) dv
= sinvdu+ wucosvdv
iz iz
N Ju Ut O Y
i 5]
e a {{I'L‘] d‘H— —+ a [:CE.'L'] dU

= adv
Substituting this info the Cartesian line element and simplifying gives

(d)’ = (dz)* + (dy)’ + (dz)

= (cosvdu —usinvdv)® + (sinvdu + ucosvdv)® + (adv)®

2
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= cos’vdu’® — ucosvsinw dudy + v’ sin® v dv® + sin® v du® + u cos v sin v dudv
t+u? cos? v dv? + a® dov?
= (c052 v + sin® 'L) du® + [—u.z (5'1112 v+ cos® v) - a.z] dv?

= du®+ (u2 + -:12) dv?

Part B

We know that the line element has the form

m
di* =Y gidatde’

ig=1

1

If we choose z' = u and z = v, this reduces to

2
d* = Y gydr'de’
igj=1

= gnd:r-ldﬂsl + 291212’;1"-1(.’,3:2 + gggd;r-?d-r?
= gi1 (du)® + 2gradudv + go (dv)’

Above we used the fact that the metric tensor is symmetric g;; = g;;. Comparing this to the

line element calculated in Part A allows us to identify
gi=1 gp=0 gp=1u"+a’

so that the metric tensor for the surface is
[g ] !
N 0 'H-E + ﬂ.2

> 9% g =5}
k

so that the dual metric [¢¥] is just the matrix inverse of [g;;]. We find

(i )

We know that we must have
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Part C

The Christoffel coefficients are defined by

L,
Fj:j - Z 59’“‘ (i + Giki — Gisk)
13

1 1
r, = 59“ (9111 + 9111 —gn11) + 5912 (@211 + 9121 — g112)

All the gy, and ¢'* where i # k will be zero, so their derivatives will also be zero. Remem-
bering this will reduce the calculations a lot. So we have

1 1
Urln = 59“(5’11.1+5’11__1—911,1)+§§12(9’21,1+912,1—911,2}

1

= 59“5‘11:1
1 d

- (>
5= (1)

=10

Using the symmetric property of the Christoffel coefficients I"}.-J- = [‘;}i will also cut down on

calculations
1 1
Fllz = F]m = 59“ (g112 + 9211 — Gi21) + 5912 (g21.2 + g22.1 — g12.2)
1
= 59“9’11__2
_ 1 J 9 9
= 0
1 I 4 L
[y = 29 (gi22 + g212 — g22.1) + 29 (gooo + goaa — gao2)
1
= —59”922,1
1 I, 2 9
= —u
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1 1.
an = 5921 (g11.1 + 9111 — gu1a) + 5922 (g21.1 + g12.1 — g11.2)
1
= —55’22911,2
1 1 d ;o 5
= 3 (mva) (2 + )
= 0
. 1. 1.
lez = F221 = 592] (G121 + 9112 — ga1.1) + 5922 (22,1 + 122 — g212)
.
1 1 d o, 5
= 3(mra)m ()
- u?ta?
2 L 5 1 5
% = 59 (9122 + g212 — g22.1) + 59 (g222 + g22.2 — g22.2)

1 .

= 59229’22.2
1 1 d o, 5

- E (u2+a-2) E("’ _HI')

=0

In summary, the only non-zero Christoffel coefficients that we have are I',, = —u and

Part D

The Riemann Curvature tensor is defined by

art, or;
Riijk =& L+ ZFTkFImj - Z ]—‘T;irimk

Had Ak
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since we are dealing with a two dimensional surface, the only independent entry will be R%,,,

so it will be sufficient to only calculate this. We have

ort,  ort
Ry, = 3;12 - ﬁ + ; R ; [
gl Or'Y
= ou ov T R T e B T T
Oy 2
= Tou 9115
d u
= 0= (F5a) v
2
u
= ltura
B —u? — a® + u?
B u? + a?
- ul+a?

For the Riemann eurvature tensor we have

2
LA P—
212 121 = 7 2
2
s
R, =R%., = :
221 12~ 3 2

With all other entries equal to zero.

Part E

The Ricei tensor is defined by
R, =Y R,
k

Using the fact that the Ricei tensor is symmetric we find the 4 entries of the Ricei tensor

Rll — Rllll + Rzl-lg

Ris= Ry = RYyy+ Rin
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Ry = R1221 + H2222

w4 a?
Part F
The Ricci scalar is defined by
R= Z g7 R;;
i,

so we have for the helicoid

R = g¢"Ry +g"Rys+ ¢ Roy + " Ray
= QHRH +§?2Rgz

= (1) (uz— _:_12&2) + ( 2 Jlr a.?) (u?_—fza.?)

—a?u? — gt — a?
{.u_? 1 ﬁ-2)2
—a® (u? +a® + 1)

(u? + az)Z

—

Part G

The Gaussian curvature of a two dimensional surface is given by

R
o= a2z
9

where g = det [gi;] (see Exercise 3.16 p105).

The determinant of a diagonal matrix is just the product of its diagonal entries so that

g = Hﬁ'ﬁ
= (1}(u2—|—a.2)

= o’ + a’

Ri212 is the element of the Riemann curvature tensor with an index lowered, i.e.
i
Rists = > guRyp
i

7
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= gnRy+ 9'21R2212

_a?
= & (ﬁ)

2

. —
- ul4a?
So we have for the Gaussian curvature
K Ri219
g

- (752) 220
N2+ a? ) \u2 + a2
 (u? 4+ a?)

Part H

No, the helicoid is not Euclidean (flat). The necessary and sufficient condition for a surface
to be flat is that the Riemann curvature tensor (all its components) should vanish (be equal
to zero) at all points on the surface. This is not true for all values of » and v.

Part I

Einstein’s field equation for two dimensions is

1

Ri_) 2Rgij = —h'Tij

where 7 and j can take the values of 1 or 2, as with the rest of the calculations regarding the
surface above. The only non-zero component of the energy-momentum tensor [T%] for dust
is: TW= pc2

[T"] is related to [Tj;] by

Tfj = ZgimgjnTmn
mmn
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Clearly, the only non-zero component of [T};] will be Ty;. We find

Ty = Y gimguT™
m.n

= guguT™ + g11g1sT2 + grognT? + giag1aT?
= guguT"

= pf‘z

Now all the quantities in the Einstein field equation are known. We substitute and solve for

27

1
Ru—g5Rgu = —rTy
—a2 1/ —a2(u? 211
(e D) ) o e
'H-2 + az 2 (uz -+ {12)
—2a’u® — 2a* + a®u® + a' + d* 2
: > = —rkpc
2 (u® + a?)
—atu? —at +a? 9
= —kKpc
2 (u® + a.?}2 !
- a® (u? +a® — 1)
T 202 (u? +a?)’
Question 2
sShow that 5
_ Y8k
Cijk + Tijs = Dt

Solution

Lowering the contravariant index of I}, gives

B2 =

ng r;k =
n

22 Gind"™" (Gmik + Gkmg — Gikm)
n m

)
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e = 507 (gmgk + Gkms — Gikm)
m

b — B3] =

rijk - (Qij,k + Grij — gjk.i}

In the second step we used the property of the metric tensor Y-, gimg™™ = 67 (equation 3.24
in the textbook).

In the third step above we used the definition of the Kronecker delta. Consider the multi-

plication of the Kronecker delta and a general tensor
3 st xe

all the terms in the sum where a # b, will be zero, where the term where e = b will be equal
to X ie.

Y3t Xt = X X L+ XL+ XY

= X"+ X + .+ ()X P+ +(0) XY
— Xxb

So the Kronecker delta can effectively be used to substituted one index for another.

Similarly,

1
iji = § {gkj,i + Gikj — gji.k)
Summing the above gives
1
Uik +Thsi = < (gijk + gkig — Giki + Grji + Gikg — Giik)

2

1
= § (S’tj_.k + Gri; — Giki t Gkji T Gikg — S'jﬁ,k}

1
= 3 (0+0+ 2gir)

Ogik
i

10
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Question 3

Verify that if a tensor is symmetric in one frame, it will be symmetric in all coordinate
frames. That is, show that if it is given that X7 = X7 in frame S, then it will be true that

XY = X7 in a coordinate frame S.

Solution

If X% = X7 then
Since X% is a tensor, we know that it transforms as follows

dr" dl.‘

Z Z dxt d.I.‘J

On the RHS both ¢ and 7 are just dummy indices, i.e. they are being summed over. This
means that the two indices can be replaced by any other indices without changing the
meaning of the expression, since they are just counters to be summed over, i.e.

ozt d.r dr® d.'r

a,ﬁ _
Z Z dzt d.ri’ Z Z d:r'f’ d:r;ﬁ Z Z dxr Ch:s

In particular, we can replace j with  and « with j, so that

dr" dl.‘
Ot d:::—’

Tt ci‘.i:

- Zz Oxi .-:3‘1'iL

dr" dl.‘
i d:..""

Xab —

In the last step we used the symmetry of property X% = X7, This is the transformation
expression for a second order contravariant tensor where z' — z° and =7 — 7 so we have

dr® dj:

Z E i d:f'*l

11
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— Xbe

Thus we have shown that if a tensor is symmetric in one coordinate frame, i.e. X7 = X7

in S, then it is also symmetric in any other arbitrary coordinate frame S.

Question 4

Using the definition of the Riemann curvature tensor (equation 3.35 in the textbook), prove
the identity

R+ Ry +R.=0.
Solution
Equation 3.35 in the textbook gives
ariik C}FI m T
B =0 ~ o+ LTl — 2T

Since the labels of indices has no intrinsic meaning, we can write

art..  ark.
P k ki m il m i
Ry, = 53:%_3‘ e Sa DN N RS N R
and :
(o] :‘;’
l m il m il
R_il'k‘i dIL - Z F r z F Jkr i
Using the fact that the Christoffel coefficients are symmetric in the lower indices, i.e. I, =
[y, we get
art, o'y " . . .
RIU* + Hikf:f |t Z I ikrimj - Z r Ici]—‘im_i Z I T!mk + Z r kjr!m:'
dzd dxd — — —
5Fi dFEk m ol m i
= 0- axk J+0 ZF rmk+§rkjr
I i I I
and it fDllD“’S that Ri%’jk-'_Rtk"j = ( = I} + ar )+ (a;ﬂrtj - 6;1" ) ( Em F%]‘—‘Imk + Em F?:'Fimk) +
(Cn T s = T T ) = 0

12



