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Question 1

Use the simple Euler method for the differential equation.

dy

dx
=

x

y
, y(0) = 1,

with

(a) h = 0.2,

(b) h = 0.1

to get y(1). Compare your numerical solution with the analytical solution,

y2 = 1 + x2.

SOLUTION

QUESTION 1

For the simple Euler method, the algorithm is

yn+1 = yn + hf (xn, yn) = yn + hy′n

where x0 = 0, y0 = y (0) = 1 and

f (x, y) =
x

y
.

We will arrange the calculations in the form of a table with columns for xn, yn, y
′

n, hy
′

n. The table
will be filled one row at the time: We use xn and yn to find

y′n = f (xn, yn) ,

then multiply by h to get hy′n, and add this to yn to get yn+1 for the next row.
(a) h = 0.2
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xn yn y′n hy′n
0.0 1.0 0.0 0.0
0.2 1.0 0.2 0.04
0.4 1.04 0.384615384 0.076923076
0.6 1.116923077 0.537190082 0.107438016
0.8 1.224361094 0.65340201 0.130680402
1.0 1.355041496

(b) h = 0.1

xn yn y′n hy′n
0.0 1.0 0.0 0.0
0.1 1.0 0.1 0.01
0.2 1.01 0.198019802 0.0198019802
0.3 1.02980198 0.291318142 0.0291318142
0.4 1.058933794 0.37773844 0.037773844
0.5 1.096707638 0.455910018 0.0455910018
0.6 1.14229864 0.525256687 0.0525256687
0.7 1.194824309 0.585860192 0.0585860192
0.8 1.253410328 0.638258662 0.0638258662
0.9 1.317236194 0.683248762 0.0683248762
1.0 1.38556107

The analytical solution is

y2 = 1 + x2

⇒ y = ±
√
1 + x2

of which only the “+” sign gives a solution to the initial value problem with y (0) = 1. So,

y =
√
1 + x2.

At x = 1, this gives y (1) =
√
2 = 1.414213562. Let us compare our results with this:

Exact solution: 1.414213562 error
Euler with h = 0.2: 1.355041496 0.059172066
Euler with h = 0.1: 1.38556107 0.028652492

Note that halving the step size from h = 0.2 to h = 0.1 has halved the error. This is as expected,
since the global error in the Euler method is O (h), that is, proportional to h.

Question 2

Solve the differential equation given below by means of the Taylor-series expansion to get the value
of y at x = 1.1. Use terms up to x6 and ∆x = 0.1.

d2y

dx2
= xy2 − 2yy′ + x3 + 4,

y(1) = 1, y′(1) = 2.
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SOLUTION

Given
dy2

dx2
= xy2 − 2yy′ + x3 + 4, y (1) = 1, y′(1) = 2

We approximate y (1.1) by the truncated Taylor series

y (1.1) ≃ y (1) + (0.1) y′ (1) +
(0.1)2

2
y′′ (1) + . . .+

(0.1)6

6!
y(6) (1) (1)

The derivatives at x = 1 are calculated in the way illustrated on p. 453 [398] of Gerald :

y
′′

(x) = xy2 − 2yy′ + x3 + 4,
∴ y′′ (1) = 1 · 12 − 2 · 1 · 2 + 13 + 4 = 2

y′′′ (x) = y2 + 2xyy′ − 2 (y′)2 − 2yy′′ + 3x2 + 4,
∴ y′′′ (1) = 1 + 4− 8− 4 + 3 = −4

y(4) (x) = 2yy′ + 2yy′ + 2x
(

(y′)2 + yy′′
)

− 4y′y′′ − 2y′y′′ − 2yy′′′ + 6x
= 2 [y (2y′ + xy′′ − y′′′) + y′ (xy′ − 3y′′) + 3x] ,

∴ y(4) (1) = 2 [1 (4 + 2 + 4) + 2 (2− 6) + 3] = 10

y(5) (x) = 2
[

y′ (2y′ + xy′′ − y′′′) + y
(

2y′′ + y′′ + xy′′′ − y(4)
)

+ y′′ (xy′ − 3y′′) + y′ (y′ + xy′′ − 3y′′′) + 3]

= 2
[

y
(

3y′′ + xy′′′ − y(4)
)

+ y′ (3y′ + 3xy′′ − 4y′′′)− 3 (y′′)2 + 3
]

,

∴ y(5) (1) = 2 [1 (6− 4− 10) + 2 (6 + 6 + 16)− 3 (4) + 3] = 78

y(6) (x) = 2
[

y′
(

3y′′ + xy′′′ − y(4)
)

+ y
(

3y′′′ + y′′′ + xy(4) − y(5)
)

+−6y′′y′′′

y′′ (3y′ + 3xy′′ − 4y′′′) + y′
(

3y′′ + 3y′′ + 3xy′′′ − 4y(4)
)]

= 2
[

y
(

4y′′′ + xy(4) − y(5)
)

+ y′
(

12y′′4xy′′′ − 5y(4)
)

+ y′′ (3xy′′ − 10y′′′)
]

∴ y(6) (1) = 2 [1 (−16 + 10− 78) + 2 (24− 16− 50) + 2 (6 + 40)] = −152

Substituting these values in (1) we get

y (0.1) ≃ −1.209381289.

The exact value, rounded to 10 significant numbers, can be calculated by adding more terms of the
Taylor series to (1) until it is clear that further addition of terms will not be alter the tenth digit.
Note that we have here calculated y′ (0) from y (0) , y′′ (0) from y′ (0) , and so on. Alternatively we
could continue further to derive an expression for y′, y′′ etc. in terms of y and x only, as follows:

y′ (x) = 3x+ (2 + x) y,

y′′ (x) = 3 + y + (2 + x) y′ = 3 + y + (2 + x) (3x+ (2 + x) y)
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and so on. However, this is unnecessary in this particular problem, and in more complicated differential
equations can lead to quite complicated expressions, hence increasing the possibility of errors creeping
into the manual calculations.

When implementing the Taylor methods in a computer program, we would of course want to find the
expressions in terms of x and y for y′ (x) , y′′ (x) and so on, since we would need to evaluate these
functions at many different x and y points.

Question 3

Consider the system of coupled second-order differential equations

u′′ − (t + 1) (u′)
2
+ 2uv − u3 = cos t

2v′′ + (sin t) u′v′ − 6u = 2t+ 3

with initial conditions
u(0) = 1, u′(0) = 2, v(0) = 3, v′(0) = 4.

Use the second-order Runge-Kutta method with h = 0.2 and a = 2/3, b = 1/3, α = β = 3/2, to find
u, u′, v and v′ at t = 0.2.

SOLUTION

Given

u′′ − (t+ 1) (u′)
2
+ 2uv − u3 = cos t

2v′′ + (sin t) u′v′ − 6u = 2t+ 3

u (0) = 1, u′ (0) = 2, v (0) = 3, v′ (0) = 4

First, we convert the system of second–order differential equations to a system of first–order differential
equations, by introducing two new variables which equal the derivatives of the original variables. Let

u′ = w,

v′ = x,

then the original differential equations can be written as

w′ = (t+ 1)w2 − 2uv + u3 + cos t

x′ = 3u− 1

2
(sin t)wx+ t+

3

2

Therefore, the corresponding system of first–order differential equations is















u′ = w u (0) = 1
v′ = x v (0) = 3
w′ = (t+ 1)w2 − 2uv + u3 + cos t w (0) = 2
x′ = 3u− 1

2
(sin t)wx+ t+ 3

2
x (0) = 4

(1)
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A system of first–order ordinary differential equations, such as (1), can be solved by any of the
methods in Chapter 6 [Chapter 5] of Gerald (although the algorithms will become very complicated
if the system is large and one of the higher order method is used.)

To see how the algorithms can be adapted to systems such as (1), note first that the system (1) can
be written as















u′ = U (t, u, v, w, x) u (0) = 1
v′ = V (t, u, v, w, x) v (0) = 3
w′ = W (t, u, v, w, x) w (0) = 2
x′ = X (t, u, v, w, x) x (0) = 4

(2)

where














U (t, u, v, w, x) = w,
V (t, u, v, w, x) = x,
W (t, u, v, w, x) = (t + 1)w2 − 2uv + u3 + cos t,
X (t, u, v, w, x) = 3u− 1

2
(sin t)wx+ t + 3

2
.

The basic idea is to adapt the algorithm for solving problems of the form

y′ = f (t, y) , y (t0) = y0 (3)

to solving problems of the form (2), by replacing y by u, v, w, and x, and replacing f by U, V, W
and X. Note that the algorithm is not carried out separately for each unknown, but simultaneously
for all four.

In this case of the second–order Runge–Kutta method with a =
2

3
, b =

1

3
, α = β =

3

2
, the algorithm

for (3) is

yn+1 = yn +
2

3
k1 +

1

3
k2,

k1 = hf (tn, yn) ,

k2 = hf

(

tn +
3

2
h, yn +

3

2
k1

)

.

Adapted to the system (2), this gives us the algorithm

un+1 = un +
2

3
ku1 +

1

3
ku2

vn+1 = vn +
2

3
kv1 +

1

3
kv2

wn+1 = wn +
2

3
kw1 +

1

3
kw2

xn+1 = xn +
2

3
kx1 +

1

3
kx2
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ku1 = hU (tn, un, vn, wn, xn)

kv1 = hV (tn, un, vn, wn, xn)

kw1 = hW (tn, un, vn, wn, xn)

kx1 = hX (tn, un, vn, wn, xn)

ku2 = hU

(

tn +
3

2
h, un +

3

2
kv1, vn +

3

2
kv1, wn +

3

2
kw1, xn +

3

2
kx1

)

kv2 = hV

(

tn +
3

2
h, un +

3

2
kv1, vn +

3

2
kv1, wn +

3

2
kw1, xn +

3

2
kx1

)

kw2 = hW

(

tn +
3

2
h, un +

3

2
kv1, vn +

3

2
kv1, wn +

3

2
kw1, xn +

3

2
kx1

)

kx2 = hX

(

tn +
3

2
h, un +

3

2
kv1, vn +

3

2
kv1, wn +

3

2
kw1, xn +

3

2
kx1

)

.

Hence, with h = 0.2, we calculate u (0.2) , v (0.2) , u′ (0.2) and v′ (0.2) from the given initial values as
follows:

ku1 = (0.2) U (0, 1, 3, 2, 4) = (0.2) (2) = 0.4

kv1 = (0.2) V (0, 1, 3, 2, 4) = (0.2) (4) = 0.8

kw1 = (0.2) W (0, 1, 3, 2, 4)

= (0.2)
[

(0 + 1) 22 − 2 · 1 · 3 + 13 + 1
]

= 0

kx1 = (0.2) X (0, 1, 3, 2, 4)

= (0.2) (3 · 1− (0.5) · 0 · 2 · 4 + 0 + 1.5) = 0.9
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ku2 = (0.2) U

(

0 +
3

2
(0.2) , 1 +

3

2
(0.4) , 3 +

3

2
(0.8) , 2 +

3

2
(0) , 4 +

3

2
(0.9)

)

= (0.2) U (0.3, 1.6, 4.2, 2.0, 5.35)

= (0.2) · 2 = 0.4

kv2 = (0.2) V (0.3, 1.6, 4.2, 2.0, 5.35)

= (0.2) · 5.35 = 1.07

kw2 = (0.2) W (0.3, 1.6, 4.2, 2.0, 5.35)

= (0.2)
[

(0.3 + 1) 22 − 2(1.6)(4.2) + (1.6)3 + cos (0.3)
]

= −0.6377

kx2 = (0.2) X (0.3, 1.6, 4.2, 2.0, 5.35)

= (0.2) [3(1.6)− (0.5) · sin(0.3) · 2 · (5.35) + 0.3 + 1.5]

= 1.0038

u (0.2) = 1 +
2

3
(0.4) +

1

3
(0.4) ≈ 1.4

v (0.2) = 3 +
2

3
(0.8) +

1

3
(1.07) ≈ 3.89

u′ (0.2) = w (0.2) = 2 +
2

3
(0) +

1

3
(−0.6377) ≈ 1.79

v′ (0.2) = x (0.2) = 4 +
2

3
(0.9) +

1

3
(1.0038) 9 ≈ 4.93

Question 4

Consider the boundary value problem

d2y

dx2
+ 2xy = 2, 0 ≤ x ≤ 2.

Set up the set of equations to solve this problem by the method of finite differences when h =

∆x =
1

2
is used, in each of the following cases of boundary conditions. (You do not have to solve the

equations.)

(a) y(0) = 5,

y(2) = 10.

(b) y′(0) = 2,
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y(2) = 0.

SOLUTION

To solve the boundary value problem

d2y

dx2
+ 2xy = 2, 0 ≤ x ≤ 2,

by the method of finite differences we convert the differential equation into a difference equation. This
is achieved by replacing derivatives by appropriate finite-difference formulas at chosen grid points. The
following rules should be taken into account:

• Central-difference formulas should be used, since they are more accurate than forward or back-
ward approximations.

• We are using the difference equation to approximate the differential equation at some grid
point. Remember that each difference formula approximates the value of a derivative at a
certain grid point. Accordingly, all the terms of the differential equation must be replaced by
the corresponding difference quantities consistently, such that they all approximate the original
quantities at the same given grid point.

Let xi denote the grid points, h = xi+1 − xi, and let yi denote the approximate value of y(xi). We will
use the following approximations:

∂2y

∂x2

∣

∣

∣

∣

x=xi

≈ yi+1 − 2yi + yi−1

h2

y|x=xi
≈ yi

(and of course x|x=xi
= xi).

Thus the differential equation can be approximated at a grid point xi by the difference equation

yi+1 − 2yi + yi−1

h2
+ 2xiyi = 2.

When h =
1

2
, we get

2yi−1 + (xi − 4) yi + 2yi+1 = 1. (∗)

The grid in this problem consists of following the points:

x0 = 0, x1 = 0.5, x2 = 1.0, x3 = 1.5, x4 = 2.0.

Equation (∗) needs to be applied at all grid points at which the value of the function y is unknown.
This usually includes all grid points in the interior of the region, but whether the values of y at the
boundaries of the region are known or not depends on the boundary conditions.
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(a) Boundary conditions y(0) = 5, y(2) = 10 :
In this case, y0 = 5 and y4 = 10 are both know, and therefore we only need to apply (*) at the
interior grid points x1, x2 and x3. We get the three equations







2y0 + (x1 − 4) y1 + 2y2 = 1
2y1 + (x2 − 4) y2 + 2y3 = 1
2y2 + (x3 − 4) y3 + 2y4 = 1

which, after substituting the values of x1, x2, x3, y0 and y4 give






−3.5y1 + 2y2 = −9
2y1 − 3y2 + 2y3 = 1
2y2 − 2.5y3 = −19

(b) Boundary conditions y′(0) = 2, y(2) = 0 :
Now, y4 = 0 but y0 is not known, and therefore we need to apply (*) at x0 as well as at the
interior grid points x1, x2 and x3. Since the equation (∗) refers to the value of yi−1 at a grid point
xi−1to the left of the “current” grid point xi, to be able to apply (∗) at the grid point x0 we need
to also include the value for y at x−1 = −0.5, which is outside the domain of the differential
equation. To handle this problem, we will introduce a fictitious point, y−1 to represent the value
y(−0.5). We will write out the set of equations using this extra point, and then use the derivative
boundary value to eliminate it.

The application of (∗) at x0, x1, x2 and x3 gives the set of equations














2y−1 + (0− 4) y0 + 2y1 = 1
2y0 + (0.5− 4) y1 + 2y2 = 1
2y1 + (1.0− 4) y2 + 2y3 = 1
2y2 + (1.5− 4) y3 + 2y4 = 1

⇔















2y−1 − 4.0 y0 + 2y1 = 1
2y0 − 3.5 y1 + 2y2 = 1
2y1 − 3.0 y2 + 2y3 = 1

2y2 − 2.5 y3 = 1

(∗∗)

Next, we apply the boundary condition

y′(0) = 2. (1)

Using central differences to approximate the derivative y′(0) at x0 = 0, (1) can be expressed as
the difference relation

y1 − y−1

2h
= 2

⇔ y−1 = y1 − 2.

We substitute this into (∗∗), and get the set of equations














−4 y0 + 4y1 = 5
2y0 − 3.5 y1 + 2y2 = 1
2y1 − 3 y2 + 2y3 = 1

2y2 − 2.5 y3 = 1
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Question 5

The predictor and corrector formulas of the Adam-Moulton method are:

yn+1 = yn +
h
24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) +

251
720

h5y5 (ζ1)
yn+1 = yn +

h
24
(9fn+1 + 19fn − 5fn−1 + fn−2)− 19

720
h5y(5) (ζ2) .

Apply the Adams-Moulton method to calculate the approximate value of y (0.8) and y (1.0) from the
differential equation

y′ = t+ y

and the starting values
t y(t)
0.0 0.95
0.2 0.68
0.4 0.55
0.6 0.30

Use 3 decimal digits with rounding at each step.

SOLUTION

y′ = t + y = f (t.y): The given starting values are

n = 1 t1 = 0.0 y1 = 0.95 f1 = 0.95

n = 2 t2 = 0.2 y2 = 0.68 f2 = 0.88

n = 3 t3 = 0.4 y3 = 0.55 f3 = 0.95

n = 4 t4 = 0.6 y4 = 0.30 f4 = 0.9

At t = 0.8, the predictor is

y5 = y4 +
0.2

24
(55f4 − 59f3 + 37f2 − 9f1)

= 0.3 +
0.2

24
(55 (0.9)− 59 (0.95) + 37 (0.88)− 9 (0.95))

= 0.4455, f5 = 1.2455

and the corrector is

y5 = y4 +
h

24
(9f5 + 19f4 − 5f3 + f2)

= y4 +
0.2

24
(9 (1.2455) + 19 (0.9)− 5 (0.95) + 0.88)

= 0.5037, f5 = 1.3037.
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1. (a) At t = 1.0, the predictor is:

y6 = y5 +
0.2

24
(55f5 − 59f4 + 37f3 − 9f2)

= 0.5037 +
0.2

24
(55 (1.3037)− 59 (0.9) + 37 (0.95)− 9 (0.881))

= 0.8856, f6 = 1.8856

and the corrector is:

y6 = y5 +
h

24
(9f6 + 19f5 − 5f4 + f3)

y6 = 0.5037 +
0.2

24
(9 (1.8856) + 19 (1.3037)− 5 (0.9) + 0.95)

= 0.822.

Question 6

(a) Given the truncated power series

p(x) = 1− x+
x2

2
− x3

3
+

x4

4
− x5

5

and the Chebyshev polynomial

T5(x) = 16x5 − 20x3 + 5x.

(i) What is the purpose of economizing a power series?

(ii) Economize the power series p(x).

(iii) What is the maximum value of |T5(x)| in the interval

[-1; 1]?

(iv) If q(x) denotes the economized series obtained in (ii), what is the maximum value of
|p(x)− q(x)| in the interval [-1; 1]?

(b) We want to find a Padé approximation R6(x), with denominator of degree 3, to the function

ex
2

= 1 + x2 +
x4

2
+

x6

6
+ ...

(i) Why is it often preferred to approximate a function by a rational function rather than by
a polynomial?

(ii) Write down R6(x) with coefficients ai and bi.

(iii) Set up the equations to find the coefficients, but do NOT solve the system.

12
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SOLUTION

(a)(i) An economized power series gives almost the same accuracy as the original one, with fewer
terms.

(ii) p(x) = 1− x+ x2

2
− x3

3
+ x4

4
− x5

5

The economized power series is

p(x)− 1

5 · 16T5(x)

= 1− x+
x2

2
− x3

3
+

x4

4
− x5

5
+

1

5 · 16
(

16x5 − 20x3 + 5x
)

= 1− 15

16
x+

x2

2
− 7x3

12
+

x4

4

(iii) max
[−1,1]

|T5(x)| = 1

(iv) q(x) = p(x)− 1
5·16

T5(x) = p(x)− 1
80
T5(x)

∴ |p(x)− q(x)| = 1
80
|T5(x)| ≤ 1

80
= 0.0125

when −1 ≤ x ≤ 1.

(b)(i) A rational approximation can give greater accuracy for the same number of coefficients (or, the
same accuracy with fewer coefficients).

(ii) R6 with denominator of degree 3 is

R6(x) =
a0 + a1x+ a2x

2 + a3x
3

1 + b1x+ b2x2 + b3x3

(iii) ex
2 − R6(x)

=

(1 + x2 + x4

2
+ x6

6
+ . . .)(1 + b1x+ b2x

2 + b3x
3)−

(a0 + a1x+ a2x
2 + a3x

3)

(1 + . . .+ b3x3)

In the numerator, set the coefficients of terms 1, x, . . . up to x6 equal to zero:

1 : 1− a0 = 0
x : b1 − a1 = 0

x2 : b2 + 1− a2 = 0
x3 : b3 + b1 − a3 = 0
x4 : b2 +

1
2
= 0

x5 : b3 +
1
2
b1 = 0

x6 : 1
2
b2 +

1
6
= 0.
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