APM3713/107/1/2018

Solutions for Assignment 7, Semester 1, 2018

Chapters 3 & 4

Question 1

A paraboloid can be parametrized as

x(u, v) = aucosv
y(u,v) = ausinv
z(u,v) = u?
(a) Find the line element for the surface.
(b) What is the metric tensor and the dual metric tensor?
(c) Determine the values of all the Christoffel coefficients of the surface.
(d) What is the value of the component R, of the Riemann curvature tensor?

(e) What is the Ricci tensor for the surface?

(f) What is the curvature scalar R for the surface?
(g) What is the Gaussian curvature of the surface?
(h) Is the surface Euclidean? Explain your answer.
(i) Suppose that the surface is filled with non-interacting particles, or dust. Use the two

dimensional version of the energy-momentum tensor for dust and Einstein’s field equation

to find an expression for the Einstein constant x for this surface.
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Solution

Part A

In Cartesian coordinates, the line element is given by

(dl)? = (dz)* + (dy)* + (dz)* .

We have
x(u, v) = aucosv
y(u, v) = ausinv
z(u,v) = u?
so that
Ox Ox
dr = %du—i-%dv

0 0
= 2 (aucosv) du + P (aucosv) dv

= qcosvdu— ausinvdv
Similarly, we get

Oy oy
dy = %du—l—%dv

= asinvdu+ aucosv dv

0z 0z
dz = %du + %dv
= 2udu

Substituting this into the Cartesian line element and simplifying gives

(d)* = (dz)* + (dy)” + (d2)”

= (acosvdu — ausinvdv)’ + (asinv du + aucosv dv)® + (2u du)?

2 2,2

= a?cos® v du?® — 2a’u cos v sin v dudv + a*u? sin® v dv? + a? sin® v du® + a®u cos v sin v dudv + a*u? ¢

= a® <C082 v + sin? v) du® + (2a2u cos v sin v dudv — 2a*u cos v sin v dudv) + a*u? (Sin2 v + cos? v) d
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= a®du® + d>uldv® + 4® du?

= (a2 + 4u2) du? + a*u’dv?

Part B

We know that the line element has the form

di* = Z gijdxidxj

ij=1
If we choose ' = v and 2% = v, this reduces to (for this case)
2 . .
> = Z gijdx'dx’
ij=1
= gndrtdet + 2giadatda? + gooda?da®
= g11 (du)® + 2g1odudv + goy (dv)®

Above we used the fact that the metric tensor is symmetric g;; = g;;. Comparing this to the

line element calculated in part A allows us to identify

g =a’+4u? ga=0, gy =a’u’

so that the metric tensor for the surface is
B a® + 4u? 0
[ng] - 0 a2u2

We know that we must have
> g% g =0
k

so that the dual metric [¢%] is just the matrix inverse of [g;;]. We find



Part C
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The Christoffel coefficients are defined by

L
F11 -

1
F’;j = Z §gh’c (Grij + Gjki — Gijk)
k

1

1
5911 (9111 + 9111 — q111) + 5912 (9211 + 9121 — G11.2)

All the g;, and ¢g** where i # k will be zero, so their derivatives will also be zero. Remem-

bering this will reduce the calculations a lot. So we have

L
Fll -

1 1

5911 (9111 + 9111 — g111) + 3 (0) ((0) + (0) — g11.2)

1

1
29 g11,1

1 1 0 /4 9

2 (a2—|—4u2> ou (a +du )
4

a? + 4u?

h

Using the symmetric property of the Christoffel coefficients I';; = F};i will also cut down on

calculations

1 _ 1l
F12_1-‘21

L
F22 -

1

911 (g112+ 9211 — G121) + 5912 (G212 + 9221 — G12.2)

11
g 9112

1 0
(a2 + 4u2) B <a2 + 4U2)

SN =N =N =

1 1
5911 (122 + G212 — g221) + 5912 (g22.2 + G222 — g22.2)
1

|
29 9221

1/ 1 D /sy
2 (a2 —|—4u2> ou (a Y )
—au

a? + 4u?
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1 1
1ﬂ211 = 5921 (G110 + 91110 —9111) + 5922 (G211 + G121 — 911,2)
L 9
= 29 g11,2
L/ 1Ny
D) <a2u2> v (a +du )
=0
1 1
F212 = F221 = 5921 (9121 + 9112 — g211) + 5922 (G221 + G122 — g21.2)
1y
= 29 9221
L/ 1\ D /,,
- 9 (a%ﬂ) Au (a Y )
B 1
o
1 1
%, 5921 (G122 + 9212 — g22.1) + 5922 (G222 + go2,2 — 922.2)

L 9

= 29 9222
1/ 1\3 /4,

D) <a2u2) v (a Y )

=0

In summary, the only non-zero Christoffel coefficients that we have are T'Y}; = 4u/ (a* + 4u?),
'y, = —au/ (a* + 4u?) and T?%, =T%, = 1/u.

Part D

The Riemann Curvature tensor is defined by

— arlzk arll m 1l m 1l
ijk = O - axk]—i_zrzkrmj_;rzjrmk

m

Rl




APM3713/107/1/2018

since we are dealing with a two dimensional surface, the only independent entry will be R,

so it will be sufficient to only calculate this. We have

or, Tt . .
R1212 = 8;2 - ax? + Z r 22P1m1 - Z r 21P1m2

ort ort
- 22 2L [T, + T30, — T Ty — T%, T,

ou ov
ort
= auzz + DY, — T30,
_J —a’u N —a’*u ( 4u ) B (1) —a’u
 Ou \ a2+ 4u? a? + 4u? a? + 4u? U a? + 4u?
—a? 8a’u? 4a?u? a’u

2t da (a2 +4u2)?  (a? + 4u2)? T (a? + 4u?)
—a*u (a® + 4u?) + 8a*u® — 4a*u® + a*u (a? + 4u?)
u (a2 4 4u?)’
—a*u — 4a*u® + 4a*u® + atu + 4a*u?
u (a2 4 4u?)’

4a’u?

(a2 + 4u?)?

For the Riemann curvature tensor we have

4a’u?
R, =R, — "
212 121 (@ + 42)?
—4a’u?
Ry =Rip=—
921 112 (@ + 42)?

With all other entries equal to zero.

Part E

The Ricci tensor is defined by
Rij = Z Rk”k
k

Using the fact that the Ricci tensor is symmetric we find the 4 entries of the Ricci tensor

Ry = 31111+Rz112
—4a2u?

(a2 + 4u?)’
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R12 = R21 = R1121 + R2122

Ryy = R1221+R2222

 —dad*?
(a2 4 4u2)’
Part F
The Ricci scalar is defined by
R = Z ginij

Z‘ij

So we have for the paraboloid

R = ¢g"Ri+¢"%Ria+ ¢* Ra + ¢ Ry
= g"'Ri1 + g% Ry

B ( 1 ) 4a?u? n ( 1 ) 4a?u?
@2+ 4u?) \ (a2 4 4u2)? a*u?) \ (a2 + 4u?)?

4a*u? 4 (a® + 4u?)
(a2 4+ 4u2)® (a2 + 4u?)?
4a*u® + 4a® + 16u?
(a2 + 4u2)®
4 (4u* + a® (u* + 1))
(a2 + 4u?)?

Part G

The Gaussian curvature of a two dimensional surface is given by

K — Ri219
9

where g = det [g;;] (see Exercise 3.16 p105).

The determinant of a diagonal matrix is just the product of its diagonal entries so that

g = ng

7
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= (a2 + 4u2> (a2u2>
= a*u® + 4a®u?

= a*? (a2 + 4u2)

Ri212 is the element of the Riemann curvature tensor with an index lowered, i.e.

Rigip = ZQMRZH
= 911R1212+921R2212

4 2,,2
= (a2+4u2) %
(a® + 4u?)

B 4a’u?
a2 4 4u?
So we have for the Gaussian curvature
R
K - 1212
g
_ 4a’u? 1
@ +4u? ) \ a2u? (a® + 4u?)
B 4
(a2 + 4u?)?

Part H

No, the paraboloid is not Euclidean (flat). The necessary and sufficient condition for a
surface to be flat is that the Riemann curvature tensor (all its components) should vanish
(be equal to zero) at all points on the surface. This is only true at the point where u = 0,

and not for all values of v and v.

Part I

Einstein’s field equation for two dimensions is
1
Ri; — iRgij = —kTj;

where ¢ and j can take the values of 1 or 2, as with the rest of the calculations regarding the

surface above. The only non-zero component of the energy-momentum tensor [T%] for dust

8
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is TH = pc?.
[T%] is related to [T};] by
T; = ;gimgjnTmn
Clearly, the only non-zero component of [T};] will be T3;. We find

T = > gimgI™

= guguT" + 9119127 + 912911 T** + Gr2g12T*
= gugnT"

2
= pc? (a2 + 4u2)

Now all the quantities in the Einstein field equation are known. We substitute and solve for

K
1
Ry — 53911 = —rly
4a’u? 1 (4(4u* +a* (W +1))\ / ) 5/ 9 o\ 2
7(@2 n 4u2)2 —3 ( @ —|—4u2)3 (a + 4u ) = —KpC (a + 4u )
2a°u® — 2a% — Su?

2.2 2\ 2
(a2—|—4u2)2 = Kpc (a +4u>

2a* (1 — u?) + 8u*
pc? (a2 + 4u?)*

Question 2

0

In a given frame of reference, with coordinates (z°, 2!, 2, 3), the components of a sym-

metric second order tensor [A*] are given by A® = —2 A% =1 and A% = —1, with all
unspecified components being zero. Find the value of the component A" of the tensor [A*]

in a frame obtained by the coordinate transformation

20 = 42° — 132" + 422 — 1523
2V = —1320 + et — 32% + 1243
2% = 2 — 4zt + 1127 — 523

2? = 820 + 14zt — 322 + 1723
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Solution

We know [A#¥] is a second order contravariant tensor, so its components transform according

to the rule
1. 0z ox’ B

AI;U/ — -
a%;O x> OzP

Writing this out completely for A% gives

axlo aZL‘/S 00 al,/o ax/?)

A8 10 92" 0" 20 92" 0z 30
029 920 ozt 0x0 0z? 0x0 oz 0x9

ax/o ax/S o1 a,E/o ax/:} " arlo 8[)3/3 01 N @JZIO ax/S ”
020 Ozt ozt Ox! 0z? Ox! ox3 Ozt

+8x10 817/3 02 axlo ax/S 1o N axlo 8[)3/3 99 N 31,/0 31”3 32
020 Ox? ozt Ox? 0x? Ox? ox3 Ox?
axlO ax/?) 03 aIIO ax/?, 13 axlo 8:E/3 03 axlo ax/?) 23
020 Ox3 ozt 0x3 0x? 0x3 ox3 Ox3

We use the given components and the fact that [A*”] is symmetric to determine that all
the components of [A#] is equal to zero, except for A% = A3 = -2 A3 = A3 = 1 and

A" = A2 = 1. Substituting all the components that are equal to zero reduces the above
equation to
0z 92", 020 02" 4, 02 92 Jm 0z 92" 4 N 02 92" 3 02" 92"
0x? 0xV 0x3 0xV 020 Ox? 0x3 Oxl 0x9 Ox3 ox! 0x3
axlO ax/?, (913’0 ax/3 axlo axIS axlo 81},3 axlo ((933,3 axlo ang
— AQO A30
(8952 0x0 + 0xV 8x2> + <8x3 0x9 * 0xV 8353) * Ox3 Ox? + ox! 0x3 A1)

A/03

13

From the given coordinate transformation equations, we determine the derivatives

al‘lo ax/O ax/() ax/()

= 4 =13, — =4 = —15
0z " Ozt " Oz? " O3
8:6/3 833/3 8ZB’3 8517,3

= 8 =14, — =-3 =17
0z " Ozt T Ox2 " O3

20 = 42° — 132" + 422 — 1523

2% = 820 + 14! — 322 + 1723

10
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We substitute these and the known components of [A*] into (1) to get the value of A%

A% = [Ax8+4x(=3)]A* +[(—15) x 8 +4 x 17] A% + [(—15) x 14 + (—13) x 17] A*®
= 20A4%° —524% —431A"
= 20(—1)—52(—2) —431(1)
= 347

Question 3

Show that if the metric g;; is diagonal, then I'y, = 0 whenever 7, k and [ are distinct, i.e.
whenever i # k # [.

Solution
The Christoffel coefficients are defined by

'y = Z 59 (Gmkt + Gimk — Grim)

If the metric is diagonal, we have ¢ = 0 whenever i # j . Therefore, all the terms in the

sum above will be zero, except when ¢ = m. Thus

i L
Yy = 59 (Gikd + Giik — Grii)

Since the metric is diagonal, we also have g;; = 0 whenever ¢ # j. If i # k # [, we will have
git = gii = g = 0, and thus their derivatives will also be zero. Therefore, we have I'}; = 0

if the metric is diagonal and ¢, k and [ are distinct.

Question 4

If Ay = Ay, and B® = —B% for all a, b, show that

> ApB® =0.

a,b

11
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Solution

Note: The easiest way to show that a quantity x is equal to zero is usually to

show that © = —=x.

Using the given symmetric and antisymmetric properties of [A,;] and [B“b}, respectively, we

can write

Z AabBab — ZAbaBba

ab ab
On both sides of the equation, the indices a and b are just dummy indices. The two indices
can be replaced by any other indices without changing the meaning of the expression, since
they are just counters to be summed over. In particular, we can replace b with a and a with
b, on the RHS so that
_ ZAbaBba _ ZAabBab

a,b a,b
Using this, we can write
Z AapB® = — Z Ay, B (given properties)
a,b a,b
= —> AuB” (relabel dummy indices)
a,b
Therefore we have shown that
> AyB®=0.
a,b

Question 5

The principle of consistency requires that the laws of general relativity should approximate
the laws of Newtonian physics in the Newtonian limit. Show that the relativistic momentum

p = ymuo reduces to the classical momentum when v < c.

12
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Solution

For the relativistic momentum we have

DPret = ymMU

Using the binomial theorem, for v < ¢ we can write

vy o= (1—1}2/02)71/2

- 2¢2 8¢t 165 T
1

Q

In the last step we neglected all terms with ¢ in the denominator. Since v < ¢, we have

v/c < 1 so that all the terms containing powers of v/c¢ will be very small compared to one.

Therefore, if v < ¢, we have v ~ 1 and we can write

DPrel = MU = Pelas

The relativistic momentum therefore reduces to the classical momentum when the speed is

much smaller that c.

13



